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Abstract 
 
The fundamental task in proteomic mass spectrometry is identifying peptides from their 
observed spectra. Where protein sequences are known, standard algorithms utilize these to 
narrow the list of peptide candidates. If protein sequences are unknown, a distinct class of 
algorithms must interpret spectra de novo. Despite decades of effort on algorithmic constructs 
and machine learning methods, de novo software tools remain inaccurate when used on 
environmentally diverse samples. Here we train a deep neural network on 5 million spectra from 
55 phylogenetically diverse bacteria. This new model outperforms current methods by 25-100%. 
The diversity of organisms used for training also improves the generality of the model, and 
ensures reliable performance regardless of where the sample comes from. Significantly, it also 
achieves a high accuracy in long peptides which assist in identifying taxa from samples of 
unknown origin. With the new tool, called Kaiko, we analyze proteomics data from six natural 
soil isolates for which a proteome database did not exist. Without any sequence information, we 
correctly identify the taxonomy of these soil microbes as well as annotate thousands of peptide 
spectra.  
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Background and Summary 
Machine learning is an important tool for developing the complex mathematical and statistical 
models for proteomics data analysis. The most common application of machine learning within 
computational proteomics is the design and implementation of a scoring metric that determines 
the quality of a peptide/spectrum match, a topic that has been rigorously studied for more than 
25 years. The primary task of these tools is to rank candidate peptides as to how likely they are 
to have generated an observed spectrum, and then to identify the peptide/spectrum matches 
considered to be correct. A wide variety of machine learning methods have been explored to 
help parameterize these models, including: support vector machines1, Bayesian networks2, 
rank-based scoring3, semi-supervised learning4 and many other techniques5–8. 
 
The most successful proteomics algorithms also rely on a protein sequence database, which 
limits the peptide candidates for scoring9. Historically, these algorithms have been much more 
accurate than methods which do not use a sequence database, called de novo algorithms10,11 . 
This reliance on a database is entirely appropriate in the post-genomic era where an increasing 
number of organisms have an annotated genome. However, there remain several biologically 
and environmentally essential research areas where a complete and accurate protein database 
is still unlikely, including: antibodies produced by programmed genomic hypermutation, 
environmental samples, forensics, and natural isolates. For situations such as these, the 
proteomics community still relies on alternative computational methods like de novo spectrum 
annotation12,13. 
 
Recent advances in both algorithms and computational infrastructure have enabled a 
breakthrough in deep neural network-based machine learning, often simply called deep 
learning14. These breakthroughs have revolutionized capabilities in speech15 and image 
recognition16, language translation17, and many other challenging computational problems. 
Deep learning has also recently been used in proteomics18,19. 
 
One significant challenge with deep learning is that the immense number of parameters in deep 
neural networks requires very large training data to avoid overfitting and to make a model which 
generalizes well to unseen data. The ProteomeXchange consortium20 hosts data for the 
proteomics community, however, mining these repositories to gather sufficiently large training 
and testing data is hampered by two factors. First, the diversity of data, specifically the number 
of distinct peptides, is low compared to the overall volume of data. This is due to the fact that 
many datasets are deposited on the same model systems (e.g. Homo sapiens) and therefore 
identify many of the same peptides. Second, the datasets are submitted by a wide variety of 
labs with an equally large variety in methodology, instrumentation, data quality and meta-data. 
Thus, aggregating datasets to amass an appropriate number of distinct peptides is a time-
consuming and laborious adventure.  
 
We present both a sufficiently large and diverse benchmark dataset for deep learning, and our 
de novo algorithm trained on these data. To address the challenge of dataset size, we created 
bottom-up proteomics data from 55 phylogenetically diverse bacteria, which produced over 1 
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million confidently identified peptides from more than 5 million spectra. Using these data, we 
train a deep neural network, called Kaiko, and achieve a significant improvement in spectrum 
annotation accuracy relative to the most recent and best performing de novo tools. Finally, we 
use the tool to analyze proteomics data and correctly identify the taxonomy of six natural soil 
isolate bacteria without using any sequence information. 

Methods 

Data generation 
Cell culture and sample preparation. The growth, sample preparation and data collection was 
reported previously21. Cells were harvested by centrifuging at 3,500 x g for 5 min at room 
temperature and washed twice with 5 mL PBS by centrifuging at the same conditions. Cells 
were lysed in a Bullet Blender (Next Advance) for 4 minutes at speed 8 in 200 μL of 100 mM 
NH4HCO3 and approximately 100 μL 0.1 mm zirconia/silica beads at 4° C. Lysates were 
transferred into clean tubes and the remaining beads were washed with 200 μL of 100 mM 
NH4HCO3. The supernatants from the washing step were collected and combined with the cell 
lysate. Resulting protein extract was assayed by bicinchoninic acid (BCA) assay (Thermo Fisher 
Scientific, San Jose, CA) following manufacturer instructions. Aliquots of 300 μg of proteins 
were denatured and reduced using 8M urea and 5 mM DTT, and incubated at 60° C for 30 min 
with 850 rpm shaking. Samples were then diluted 10 fold in 100 mM NH4HCO3 and CaCl2 was 
added to a final concentration of 1 mM using a 1M stock. Trypsin was added at 1/50 of the 
protein concentration and the digestion was carried out for 3 h at 37° C. Digestion products 
were desalted in 1-mL C18 cartridges (50 mg beads, Strata, Phenomenex). Cartridges were 
activated with 3 mL of methanol and equilibrated with 2 mL of 0.1% TFA before loading the 
samples. After sample loading, the cartridges were washed with 4 mL of 5% acetonitrile 
(ACN)/0.1% TFA and peptides were eluted with 1 mL of 80% ACN/0.1% TFA. Peptides were 
dried in a vacuum centrifuge, resuspended in water and assayed using a BCA assay. Peptide 
concentrations were normalized to 0.1 μg/μL before randomization and analysis by liquid 
chromatography-tandem mass spectrometry (LC-MS/MS). 
 
LC-MS/MS data acquisition. The data acquisition was performed as previously described in 
detail21 using a Waters nanoEquityTM UPLC system (Millford, MA) coupled with a Q Exactive 
Plus mass spectrometer from Thermo Fisher Scientific (San Jose, CA).  The LC was configured 
to load the sample first on a solid phase extraction (SPE) column followed by separation on an 
analytical column. 500 ng of peptides were loaded into the SPE column (5 cm x 360 µm OD x 
150 µm ID fused silica capillary tubing (Polymicro, Phoenix, AZ); packed with 3.6-µm Aeries 
C18 particles (Phenomenex, Torrance, CA) and the separation was carried out in a capillary 
column (70 cm x 360 µm OD x 75 µm ID packed with 3-µm Jupiter C18 stationary phase 
particles (Phenomenex). The elution was performed at 300 nl/min flow rate and the following 
gradient of acetonitrile (ACN) in water, both containing 0.1% formic acid: 1-8% ACN solvent in 2 
min, 8-12% ACN in 18 min, 12-30% ACN in 55 min, 30-45% ACN in 22 min, 45-95% ACN in 3 
min, hold for 5 min in 95% ACN and 99-1% ACN in 10 min. Eluting peptides were directly 
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analyzed in the mass spectrometer by electrospray using etched silica fused tips22. Full MS 
spectra were acquired at a scan range of 400-2000 m/z and a resolution of 35,000 at m/z 400. 
Tandem mass spectra were collected for the top 12 most intense ions with ≥ 2 charges using 
high-collision energy (HCD) fragmentation from collision with N2 at a normalized collision energy 
of 30% and a resolution of 17,500 at m/z 400. Each parent ion was targeted once for 
fragmentation and then dynamically excluded for 30 s. 
 
Peptide identification. In the training and test set, the true source\taxonomy of each sample is 
known. To create the ground truth of spectrum identifications, we used the correct organism’s 
protein sequence database and annotated spectra with the MSGF+ algorithm, as previously 
described21. PSM results from MSGF+ were filtered using a q-value threshold of 0.001. The 
PSMs passing this filter were considered the ground truth for the deep neural network training 
and testing. Because our use of this data is for de novo spectrum annotation, we limited 
peptides/spectrum matches further to exclude peptides longer than 30 residues as these were 
unlikely to have complete peptide fragment peaks, which are important for a de novo solution. 
We also filtered peptides with a precursor mass >3000 Da. After filtering, the total number of 
distinct peptides was 1,013,498 from 5,116,305 spectra. Peptide sequences are highly specific 
to each organism, and the overlap between organisms was very low. Except for the pairs of 
organisms within the same genus or species (i.e. the two different strains of B. subtilis or the 
two different species within Bifidobacterium), the average amount of shared peptides between 
any two organisms was ~0.17%. These arise from highly conserved proteins like EF-Tu or 
RpoC for which peptides can be found conserved across phyla.  
. 

Training Kaiko 
Codebase. Kaiko is based on DeepNovo, a deep neural network algorithm for peptide/spectrum 
matching18. We downloaded the source code for DeepNovo 
(https://github.com/nh2tran/DeepNovo) and its pre-trained model, which is publicly available at 
https://drive.google.com/open?id=0By9IxqHK5MdWalJLSGliWW1RY2c. As described below, 
we modified the original DeepNovo codebase, keeping with Python 2.7 and TensorFlow 1.2 as 
used in the original. First, we modified the codebase to accept multiple input files for training 
and testing. Our training and testing data came from over 250 mass spectrometry files, but the 
original DeepNovo was designed for only a single input file. Therefore, we added extra 
command-line options (e.g., --multi_decode and --multi_train) and the associated wrapper 
methods to allow for multi-file execution. A second change was done to avoid rebuilding the 
Cython codes on every parameter adjustment. For this, we replaced the Cython with the python 
numba package without any loss of performance and speed. Finally, we changed the code for 
spectral modeling based on domain knowledge. Specifically, we corrected the mass calculation 
of doubly charged ions and changed the bins used for isotopic profiles within the ion-CNN 
model.  
 
We trained multiple models for Kaiko, which differed primarily in the number of peptides/spectra 
used during training: ~300K spectra, 1M spectra, 2M spectra, 3M spectra and the final models 
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trained with all spectra. When training the final model on the full dataset, we adjusted the 
learning rate to 10-4 rather than using the default value (10-3) of AdamOptimizer in DeepNovo. 
Training our final model requires very significant computational resources and time. With the 
hardware used in this project, training took ~12 hours per epoch; our final model was achieved 
after 60 epochs. All training and testing was performed on PNNL’s Marianas cluster, a machine 
learning platform that is part of PNNL’s Institutional Computing. System specifications on the 
nodes used in this training were: Dual Intel Broadwell E5-2620 v4 @ 2.10GHz CPUs (16 cores 
per node), 64 GB 2133Mhz DDR4 memory, and Dual NVIDIA P100 12GB PCI-e based GPUs.  
 
Assessing Progress. The training regimen for deep learning is pragmatically broken up into 
several rounds of iteration over the training data, called epochs. During each epoch, a mini-
batch stochastic optimization was employed, in which each batch of 128 spectra is randomly 
chosen and training proceeds on each batch one at a time. The model is trained by updating the 
parameters within the neural network (weights and biases) after each batch is compared to the 
true labels. While training, the error associated with the model can be calculated as a cross-
entropy loss for the probabilities of correctly predicting the amino acid letters on the training 
data. After each batch, we also randomly sample 15,000 spectra from the validation dataset 
(~1% of total testing data) and compute the loss error, which we call the validation error. 
Importantly, model performance on this validation set is not used to update the model 
parameters; we simply use it to independently evaluate model performance and make a 
checkpoint to track the best models. The training and validation error after each batch for 20 
epochs of training is shown in Supplemental Figure 2. 
 
By comparing the training and validation error, we clearly see when the model has started to 
overfit. This happens when the training error crosses over (becomes smaller than) the validation 
error and continues to decrease as the validation error levels off. This is a result of the model 
learning specific features of the training data that are not generalizable. In models built with 
more than 3 million spectra, no overfitting is seen yet; models built with less than 3 million 
spectra quickly overfit to the training data.   

Comparing Kaiko to other de novo tools 
To compare the performance of Kaiko to state-of-the-art de novo tools, we analyzed all files in 
the testing data sets using DeepNovo18, PEAKS11 and Novor23. As mentioned above, we used a 
pre-trained model for the DeepNovo to predict peptide sequences for the test files using a 
‘decode’ option. PEAKS Studio version 8.5 was run using default data refinement options on 
mzML formatted data. De novo settings were as follows: precursor error tolerance - 20ppm, 
fragment ion error tolerance - 0.02 Da. Oxidation of methionine was set as a variable 
modification. For Novor the spectral files were converted from mzML to MGF format using 
MSConvert. Novor version 1.05 was run using the following settings: fragmentation - HCD, 
massAnalyzer - FT, precursor error tolerance - 20ppm, fragment ion error tolerance - 0.02 Da. 
Oxidation of methionine was set as a variable modification. All other settings were left at their 
defaults. Only the best peptide spectrum match was used in the evaluation. Please refer to 
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https://github.com/PNNL-Comp-Mass-Spec/Kaiko_Publication/analysis/for_novor and 
/for_peaks for specific implementation details. 
 

Assigning taxonomy to unknown samples 
Proteomics data from six bacterial soil isolates was acquired using the same sample 
preparation and LC-MS/MS method as described above. The isolates are from the natural 
isolate collection at the Kristen DeAngelis laboratory at the University of Massachusetts 
Amherst, and researchers at PNNL were blinded to the identity of these isolates until after both 
data generation and analysis were finished. Kaiko’s top-scoring peptide sequence for each 
spectrum was used for species identification. We filtered these peptide/spectrum matches to 
include only the top 25% according to Kaiko’s quality prediction score. We then exclude 
sequences shorter than 10 and longer than 17 residues. The resulting sequences were used to 
search the Uniref100 protein database [https://www.uniprot.org/uniref/] using DIAMOND24 to 
identify an organism(s) containing that peptide sequence. Only database matches of 100% were 
retained for species prediction. Taxon scoring then proceeded using a two-pass procedure. In 
the first pass, for each peptide sequence, all taxa possessing a 100% match were assigned 1 
hit, such that multiple taxa were often assigned a hit from a single peptide sequence. Taxa were 
then ranked by the total number of hits assigned. In the second pass, hits were only assigned to 
the highest-ranking taxon with a 100% match to each predicted sequence. In this way, scoring 
is assigned to the candidate most likely to be correct.  

Data Availability 
The mass spectrometry proteomics data for this benchmark set are split into two separate 
depositions, for the training and testing datasets respectively. The training dataset consists of 
spectra from 51 organisms and has been deposited to the ProteomeXchange Consortium via 
the PRIDE25 partner repository with the dataset identifier PXD010000. The testing dataset 
consists of spectra for 4 organisms and has been deposited to the ProteomeXchange 
Consortium via the PRIDE partner repository with the dataset identifier PXD010613. 
 

Code Availability 
All software used in this project is open source under the BSD license and available on GitHub.  
The Kaiko tool is available at https://github.com/PNNL-Comp-Mass-Spec/Kaiko. The Jupyter 
notebooks and R code used to analyze the results and create figures are available at 
https://github.com/PNNL-Comp-Mass-Spec/Kaiko_Publication. 
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Results 
Using a large and environmentally diverse set of mass spectrometry proteomics data, we 
sought to improve on peptide/spectrum identification where no protein sequence database is 
available. Unlike many of the established tools for de novo identification, our tool is not a 
dynamic programming10,11,26 or decision tree approach23. Instead, following DeepNovo18, we 
have used a deep neural network to let the algorithm learn about the data and generate a 
scoring method on its own. Using these learned parameters, the neural network compares 
peptide sequences against the observed spectrum. Candidate peptide sequences are not 
limited by a database or any other outside information; they are simply chosen from the 
combinatorial set of all 20N possible amino acid sequences. The top scoring candidate is 
reported as the best peptide/spectrum match. Our newly trained deep neural network model is 
called Kaiko, after the Japanese deep ocean submersible used to explore the Marianas Trench. 
 
The structure of our neural network began with the recently published and open source 
DeepNovo method18; however, adaptations have been made to improve model performance 
(see Methods). Importantly, we have amassed a dramatically larger dataset, which is necessary 
for meaningful training of deep neural networks. For training and validation, we use 4,604,540 
spectra and 927,316 peptides from 51 distinct bacteria (Figure 1, Supplemental Table 1). Data 
from four additional organisms were held out for testing of the final model (511,765 spectra and 
90,048 peptides). As Kaiko is a deep neural network, it is essential to have sufficient training 
data for parameter optimization. Training a deep neural network with insufficient data leads to 
poor overall performance (Supplemental Figure 1). For our neural network architecture, training 
events with less than 3 million spectra resulted in severely overfit models (Supplemental Figure 
2).  
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Figure 1 - Bacteria represented in training and testing data. A phylogenetic tree built from 
the multiple sequence alignment of rplB is shown for all organisms in the training (white nodes) 
and testing datasets (red nodes). The size of the node is scaled to represent the number of 
spectra used. Large taxonomic divisions as defined by NCBI’s taxonomy are colored for 
convenience.  
 
Predicting correct peptide sequences 
 
The primary metric for spectrum identification is whether the algorithm scores the correct 
peptide sequence as the best peptide/spectrum match among the many possible candidates. To
evaluate the accuracy of Kaiko and other de novo algorithms, we compare their top result for 
each spectrum in the test dataset to the answer derived by MSGF+27, a database search 
scoring algorithm (see Methods). Test spectra are from four organisms, and are represented by 
multiple mass spectrometry analyses from replicates and/or different experimental conditions. 
Each spectral file was analyzed by Kaiko, PEAKS11, Novor23 and DeepNovo18. For each 
analysis, we simply compute the percent of spectra that are correctly annotated. Kaiko achieved 
an average accuracy of 33% over all testing files and organisms (Figure 2). When considering 
the top five spectrum annotations, average accuracy exceeded 41%.  
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Figure 2 - Accuracy of spectrum annotation. Four de novo spectrum annotation tools were 
benchmarked against the testing data, which was bottom-up proteomics data from four diverse 
bacterial species. The accuracy of each program is shown in the bar histogram. The line series 
represents an approximated continuous distribution of the histogram. 
 
We next looked at model performance as a function of peptide length (Figure 3). Most 
algorithms performed well with short peptides, length < 8. Unfortunately, these peptides are 
infrequent in bottom-up proteomics data samples (Supplementary Figure 3). Kaiko exhibited 
significantly improved accuracy at all lengths, but especially for the most common peptide 
lengths (10-15 residues), where it achieved an accuracy of ~30-60%. We note that Kaiko had 
high accuracy at very long peptide lengths of 15 and above. Although these peptides are 
extremely difficult to annotate de novo, they are valuable for predicting phylogeny as the long 
sequences are more likely to be uniquely mapped to a small taxonomy range. 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/428334doi: bioRxiv preprint 

https://doi.org/10.1101/428334
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3 - Sequence prediction accuracy by peptide length.  For each peptide sequence 
length, the accuracy of spectrum annotation is shown for each of the four algorithms.  
 
 
Performance differences on diverse species  
One important aspect of Kaiko’s model is its generality, meaning the ability to perform well on 
diverse samples. As a measure of how representative the test data is of Kaiko’s future use on 
any given organisms, we looked at the relatedness of the test set compared to the organisms 
within the training set. For Enterococcus faecalis, its closest relative within the training set is 
Streptococcus agalactiae; both are from the order Lactobacillales. These two organisms 
diverged ~1 billion years ago28. (For reference, humans and the plant model organism 
Arabidopsis diverged 1.6 billion years ago29). This is the closest pair of organisms between the 
training and testing datasets. The proteomics data from these two organisms share 306 
peptides, or 1.3%. At the other extreme, the test set contains Akkermansia muciniphila, which is 
from the bacterial phylum Verrucomicrobia. There are no members of this phylum in the training 
set. This means that the closest relative within our training set for A. muciniphila diverged over 3 
billion years ago, near the bacterial phyla radiation. Although Kaiko was more accurate for E. 
faecalis than A. muciniphila (42% accuracy compared to 30% respectively), it should be noted 
that it performed equally well for A. muciniphila as for Caulobacter crescentus and 
Halanaerobium congolense (30%, 28% and 34%, respectively). Both C. crescentus and H. 
congolense are related to organisms within the training set at the level of class. Therefore, we 
believe that Kaiko will perform consistently well regardless of the organism and for peptides not 
present in the training set. 
 
Predicting correct substrings 
The imperfect fragmentation of peptides in the mass spectrometer leads to the incomplete 
observation of b/y fragment ions, a situation that becomes more likely as peptide length 
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increases. Spectral interpretation can also be complicated by co-fragmenting peptides30,31. 
Therefore, for some spectra it is not a realistic expectation to identify the full and complete 
sequence. In this situation, a long substring that is correct is an important goal, as it can be 
used for partial database matching, sequence tag searching, or blast-like searches of similar 
sequences 32–35.  
 
For each spectrum, we recorded the longest correct substring from the de novo prediction 
(Figure 4). For length 9 peptides, all algorithms annotated at least 50% of the spectra correctly. 
Kaiko was significantly better than other algorithms, annotating 72% of spectra correctly; the 
next best algorithms, PEAKS, annotated 58% of spectra correctly. As peptide length increased, 
accuracy decreased across all algorithms. However, Kaiko was the best performer at peptides 
of any length. On average Kaiko correctly annotated 25% more spectra than PEAKS, and 50-
100% more than Novor or DeepNovo.  
 

Figure 4 - Longest correct substring. Algorithm performance was assessed by identifying the 
longest correct substring within the predicted peptide sequence. The bar charts (y-axis legend 
on the left) shows the raw number of identifications with a correct match length. The dashed line 
charts (y-axis legend on the right) shows the cumulative percentage of identifications relative to 
all peptides of a given length. 
 
 
Proteomics of Natural Isolates 
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Proteomics analysis of natural bacterial isolates often requires de novo spectrum annotation. 
Although genome and metagenome sequencing has greatly expanded the number of species 
that contain a complete proteome database, there are still significant practical and financial 
barriers that prevent labs from always having an assembled and well-annotated genome for 
samples taken from nature. To show the ability of our deep learning-based algorithm to 
annotate spectra from an unknown organism, we obtained bottom-up proteomics data from six 
microbes isolated from soil and attempted to identify the sample. For each sample, we 
annotated the spectra with Kaiko and used DIAMOND to identify the closest sequences in the 
Uniprot database (see Methods). We then plotted the organisms which had the most matching 
spectra and inferred the organism for the sample. 
 
For four samples, a matched proteome database became public during our investigation; 
however, this was still blinded from our analysis. In each of these cases, we identified the exact 
species as the source of the sample (Figure 5). This included two Verrucomicrobia for which 
Kaiko’s training data had nothing in the same phylum: Opitutus sp. GAS368 and 
Verrucomicrobium sp. GAS474. The other two isolates with a matched genome were from the 
order Rhizobiales: Afipia sp. GAS231 and Rhizobiales bacterium GAS188. The Afipia sample 
also contained spectra which mapped to neighboring Bradyrhizobium species, which could be 
from shared gene content, contamination or previously unidentified co-culturing.  
  
For two samples, there is no matched proteome and therefore, taxonomic placement through 
BLAST-like sequence matching is more complicated to interpret. Isolate02 cannot be definitively 
assigned to a genus within NCBI’s taxonomy based on 16S sequencing, but is close to multiple 
genera within the family Acidobacteriaceae. Using Kaiko’s peptide annotations, we identified 
two potential candidates for the sample: Acidobacterium capsulatum and Silvibacterium 
bohemicum (both Acidobacteriaceae). However, both species had significantly fewer peptide 
hits matching their proteome and therefore, were weaker matches than expected. This weak 
alignment to a single organism and splitting between organisms within the same family is 
consistent with the isolate’s ambiguous taxonomic assignment. The final sample, Isolate01, is 
suggested to be a Gemmobacter by 16S sequencing. Peptide hits from Kaiko identified this 
sample as Rhodobacter sp. 24-YEA-8, which is within the same family as Gemmobacter 
(Rhodobacteraceae). With the difficulties surrounding bacterial taxonomic classification and the 
uncertainty of species designation36, this is still a close match.  
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Figure 5 - Taxonomic classification of natural isolates via proteomics. For each of the six 
natural isolates, replicate proteomics data was annotated with Kaiko. Peptides were matched to 
sequences in Uniprot and visualized on the phylogenetic tree. Nodes within the tree are from 
NCBI’s Linnaean taxonomy definition of each organism. The size of pie wedge is scaled to 
represent the number of spectra matching that taxon. For each sample, the top 5 taxa according 
to the number of peptide hits was included in the visualization. 
 

Conclusions 
We present here a de novo spectrum annotation tool, Kaiko, which has significantly improved 
accuracy compared to other de novo algorithms. An important feature of the tool is that it was 
trained on spectra from a very diverse set of organisms and therefore performs well on the 
diverse set of species found in natural environments. This is an important step forward for meta-
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proteomics, which has long struggled to identify spectra from microbial communities. To 
demonstrate the application of de novo sequencing on data from natural sources, we used 
Kaiko to identify the taxon of samples from bacterial soil isolates. Kaiko succeeded at scenarios 
which are expected in natural samples, i.e. samples from phyla where no training data existed 
and samples from organisms whose taxonomy is currently ambiguous and/or have no sequence 
representation in public databases.  
 
As machine learning continues to gain momentum in the life sciences and specifically within 
bioinformatics, it is important to have readily available benchmark datasets so that new tools 
and computational methodologies can compare themselves to earlier work. Moreover, it is 
important that the benchmark data be sufficiently large to properly train models and that it 
represents the diversity of data which could be collected. In this sense, the training and testing 
spectra presented here, which are publicly available through PRIDE, represents an ideal for 
mass spectrometry proteomics. Spectra come from 55 bacteria which span greater than 3 billion 
years of protein sequence evolution. The 5 million spectra represent over 1 million peptide 
sequences and are all acquired on modern high-resolution instrumentation. We also note that 
such a highly curated and diverse dataset can be used to improve performance of a wide variety 
of computational methods beyond de novo spectrum identification37. 
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