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Abstract

Motivation: Computational protein design (CPD) calculations rely on the generation of large amounts
of data on the search for the best sequences. As such, CPD workflows generally include the batch
generation of designed decoys (sampling) followed by ranking and filtering stages to select those with
optimal metrics (scoring). Due to these factors, the proper analysis of the decoy population is a key
element for the effective selection of designs for experimental validation.

Results: Here, we present a set of tools for the analysis of protein design ensembles. The tool is
oriented towards protein designers with basic coding training aiming to process efficiently their decoy
sets as well as for protocol developers interested in benchmarking their new approaches. Although
initially devised to process Rosetta design outputs, the library is extendable to other design tools.
Availability and Implementation: rstoolbox is implemented for python2.7 and 3.5+. Code is freely avail-
able at https://github.com/Ipdi-epfl/rstoolbox under the MIT license. Full documentation and examples
can be found at https:/Ipdi-epfl.github.io/rstoolbox.

Contact: bruno.correia@epfl.ch

in the search of the best design solution, tools to facilitate the management
and analysis of large decoy ensembles are essential to CPD pipelines.

1 Introduction

Computational protein design (CPD) has become a popular tool for the

Here, we present rstoolbox, a python library aimed to the management
and analysis of design populations. The library includes scripts for quick
creation and optimization of new proteins and functionalities (Gainza- data overview and presents a full set of functions to produce multi-param-
Cirauqui and Correia 2018). Due to the abysmal size of the sequence-
structure space (Taylor, Chelliah et al. 2009), CPD heuristic approaches

became necessary. These approaches, such as Monte Carlo (MC) (Li and

eter scoring schemes and compare design ensembles generated from dif-
ferent protocols. The full bundle of functionalities are useful and accessi-

ble to designers with limited coding experience, through visual interfaces

Scheraga 1987), use stochastic sampling methods and a scoring function such as Ipython (Pérez and Granger 2007), and also to developers inter-

to guide the structure and sequence exploration towards an optimal score. ested in benchmarking and optimizing new CPD protocols.
This allows them to explore a wider area of the sequence-structure space
in a feasible time span. However, these approaches cannot guarantee that

the solutions reached the global minima (Gainza, Nisonoff et al. 2016). 2 Package Overview

CPD workflows relying in heuristic approaches compensate for this short- The rstoolbox library has been written over pandas (McKinney 2010). Its

coming in two way: I) extensive sampling yielding a large decoy popula- main component is the DesignFrame, a table-like structure in which rows

tion; II) sophisticated ranking and filtering schemes to aid the recognition represent designed decoys and columns particular properties of the decoy

of the best solutions. This general approach is used by the Rosetta suite
(Alford, Leaver-Fay et al. 2017), one of the most widespread CPD tool.

(including score terms, sequence, secondary structure, residues of interest
and others). This structure directly allows for key functionalities such as

For Rosetta, as with other similar approaches, the amount of sampling sequence variant identification, sequence similarity analysis or decoy se-
required scales with the degrees of freedom (conformational and se- lection and access to the specific plotting functions included in the library.
quence) that a particular CPD task demands. While deterministic routines DesignFrames are easily filled by reading Rosetta silent files, a com-

such as scoring only require a single output, full structure prediction such pressed format that holds both structure coordinates and statistics of Ro-

as ab initio or docking may require to generate up to 10° decoys to actually setta outputs. Additionally, any tabulated or table-like data file can be

find acceptable solutions amongst them (Simons, Bonneau et al. 1999, casted into a DesignFrame. This makes the library effortlessly adaptable
Kim, Blum et al. 2009). Between these two extremes, a variety of sam- to work with other design tools.

pling ranges have been estimated for other design problems. Thus, fixed

backbone design simulations (Kuhlman and Baker 2000) may reach suffi-

cient sampling within hundreds of decoys while protocols that allow back-

bone flexibility such as loop modeling (Stein and Kortemme 2013) or flex-

ible backbone (Kuhlman, Dantas et al. 2003) design might go up to 10*

and 10° decoys respectively. Due to the high number of decoys generated
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The components of the library can directly interact with most of the
commonly used python plotting libraries. In addition, extra plotting func-
tions are also present to facilitate specific analysis of CPD data. Although
the library can access Rosetta functions to perform extra functionalities
such as automatic backbone angle determination and Ramachandran anal-
ysis, most of its functionalities are independent of a local installation of
Rosetta. This dramatically reduces the requirements and complexity for
non-regular programmers to setup and exploit the library.
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Fig. 1. rstoolbox structure. The library relies on multiple table-like objects derived from
DataFrames. Each object is created through different reading functions for different input
types and provide access to a variety of analysis. Due to their table-like nature, tabulated

formats are widely compatible, enabling the easy input and process new data formats.

3 Results

3.1 Direct Executables

The rstoolbox provides a set of direct executables described in the library
documentation and exemplified in the Supplementary Materials. Of spe-
cial note is minisilent.py, which removes all structural data from silent
files reducing the file size dramatically. This becomes an extremely useful
solution to include CPD metadata into public repositories, facilitating the
management of published datasets and, thus, increasing reproducibility.

3.2 Library Access

The library exposes a set of functions (each of them explained in detail in
the documentation API) that allows both for the rich analysis of a given
dataset as well as the setup of new design simulations. On one hand, it
provides visual tools (see Supplementary Material) and multi-score filter-
ing as means of analysis. On the other hand, it can generate PSSM matri-
ces and promote new mutants from selected decoys, producing the neces-
sary files to explore those new mutants in Rosetta. Through this, it be-
comes the ideal solution for the human-guided steps between CPD cycles.
Covering the final steps of the experimental testing of designs generated
with CPD, the library can manage experimental data obtained properly
attach it to the individual decoy. rstoolbox allows for computational and
experimental data to be integrated, aiding the iterative process of

experimental assessment and optimization coupled to CPD to generate im-
proved designs.

Availability

The rstoolbox source code, a complete API and documentation, examples,
installation instructions, issue tracking and continuous integration are
available via the GitHub repository. For users-only, the package is avail-
able at PyPI with the call ‘pip install rstoolbox’.
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