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Summary: A tissue transcriptome driven classification of nephrotic syndrome patients identified a high
risk group of patients with TNF activation and established a non-invasive marker panel for pathway
activity assessment paving the way towards precision medicine trials in NS.
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Abstract: Nephrotic syndrome from primary glomerular diseases can lead to chronic kidney disease
(CKD) and/or end-stage renal disease (ESRD). Conventional diagnoses using a combination of clinical
presentation and descriptive biopsy information do not accurately predict risk for progression in patients
with nephrotic syndrome, which complicates disease management. To address this challenge, a
transcriptome-driven approach was used to classify patients with minimal change disease and focal
segmental glomerulosclerosis in the Nephrotic Syndrome Study Network (NEPTUNE). Transcriptome-
based classification revealed a group of patients at risk for disease progression. High risk patients had a
transcriptome profile consistent with TNF activation. Non-invasive urine biomarkers TIMP1 and CCL2
(MCP1), which are causally downstream of TNF, accurately predicted TNF activation in the NEPTUNE

cohort setting the stage for patient stratification approaches and precision medicine in kidney disease.
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Introduction

Nephrotic syndrome (NS) refers to a glomerular disease with a shared clinical presentation, which is
marked by proteinuria, hypoalbuminemia, hyperlipidemia and edema which can ultimately lead to kidney
failure. Several underlying diseases can result in this constellation of symptoms, including the primary
glomerular diseases of minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS),
currently classified by the descriptive pattern of injury seen on kidney biopsy. Although these primary
glomerular diseases are categorized as distinct histopathologic categories, they likely result from
heterogeneous biological processes given the person to person variability in disease onset, rates of
progression and response rates to various immunosuppressive therapies (7). Currently, diagnostic,
prognostic and therapeutic decisions are based on these histopathologic categories and routine clinical
parameters (e.g. serum creatinine and urine protein) that do not account for the heterogeneity of the
biological antecedents. Because of the imprecise diagnosis within the current descriptive disease
classification, molecularly targeted treatments for these diseases are not routinely available, and the
interpretation of results from observational studies and clinical trials of therapeutic agents, which enroll a
heterogeneous population of NS patients, are difficult to interpret. In such studies, it is often observed
while the overall trial reads out negative, a small subset of patients respond well to the trialed therapy (2-

6), yet pre-treatment predictors of response are not available.

Advances in biomedical research allow for capture of high-dimensional data across the genotype-
phenotype continuum from patients under routine clinical care and can serve as a platform for
implementation of precision medicine within NS (7). This approach utilizes large scale data integration
across multiple data domains paired with deep clinical phenotype to establish a disease classification
which is based in molecular causes as well as clinical presentation. Ultimately, the overarching goal of
this approach is to assign targeted treatment based on these refined diagnostic categories which can

reliably be identified using non-invasive markers (Figure 1).

Kidney diseases are uniquely positioned to implement this approach as a kidney biopsy is the
diagnostic gold standard for NS, allowing for identification of molecular tissue signatures which can be
linked to detailed histopathology assessment and non-invasive urine markers and validated against
clinical outcome. In this study, we utilize the prospective Nephrotic Syndrome Study Network
(NEPTUNE) cohort and its European sister network (European Renal cDNA Bank (ERCB)) to implement
this approach and identify a sub group of patients with a shared molecular signature, potentially

amenable to targeted therapy.
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Results

Unbiased Hierarchical Clustering of Tubulointerstitial Compartment Gene Expression to Identify Molecular
Subgroups of Nephrotic Syndrome: 123 NEPTUNE patients with MCD and FSGS were clustered into
three groups (n=62, 42, and 19, respectively) according to their tubulointerstitial mMRNA expression levels
from their clinically-indicated renal biopsy (Supplemental Figure 1). Baseline characteristics of the
participants in each cluster are listed in table 1. Patients in cluster three were older, and had lower eGFR
and higher UPCR at baseline. There was no difference in race, sex or duration of disease across the
clusters. Although cluster 3 had a greater proportion with FSGS, all three clusters had participants with
both MCD and FSGS according to the conventional histopathologic classification. In an unadjusted
survival model, Cluster 3 had a more progressive phenotype, with lower hazard of complete remission (p-
value 0.002) and greater hazard of the composite of ESRD or 40% decline in eGFR from baseline (p-
value 0.007, Figure 2).

Functional context of differentially expressed genes and replication in independent cohort: 2517 genes
were differentially regulated in the NEPTUNE cohort between cluster 3 versus 1 and 2, with a 1.5 fold-
change and g-value <0.05. TNF itself was increased and found to center one of the top gene interaction
networks from the differentially expressed gene set (Figure 3A). Genes were further analyzed to
determine functional context of elevated TNF expression in Cluster 3. The canonical signal transduction
pathways with the highest enrichment score was granulocyte adhesion and diapedesis with 54 of 151
(35.8%) pathway genes differentially expressed in cluster 3 (p-value<0.001). Differentially expressed
genes in this pathway included TNF, which was one of the pathway activation inputs. In upstream
regulator analysis (an analysis that takes into account both enrichment of and underlying direction of
differential gene expression changes using cause and effect relationships), the top predicted activated
protein network was TNF (IPA Z-score=10.2, enrichment p-value=3.65E-84, Figure 3B). A mechanistic
network centered on downstream effects of TNF activation explained 26% (660/2517) of the differentially
expressed genes in the analysis and included multiple transcription factors previously implicated in
chronic kidney diseases including activation of the NFkB complex (as well as activation of NFKB1
(p105/p50) and RELA (p65) subunits) (8-70), and STAT1 and STAT3 (717). Lastly, 11 of the genes in the
TNF causal network (including TNF) were supported by multiple literature assertions in IPA (Figure 3C),

and were also profiled on a targeted proteomic profile panel.

To validate the molecular profiles identified in this cluster, unsupervised hierarchical clustering was
applied to an independent cohort. Tubulointerstitial transcriptome data from 30 patients with MCD and
FSGS in the European Renal cDNA Bank (ERCB) was used for validation (Supplementary Table 1). As in
the NEPTUNE discovery cohort and three clusters were also identified. Patients in the ERCB cluster 3
also had significantly lower mean eGFR (35 + 17, n=6, p<0.001) compared to the other two clusters

(94435 for the combined cluster 1 and 2, also see Supplementary Table 1). A differential expression
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analysis was also performed between cluster 3 and the other clusters. Genes that met a g-value<0.05
threshold in both NEPTUNE and ERCB displayed a high correlated expression profile (Supplemental
Figure 2, R2 of Log2FC =0.84, p<0.001, with 93% of transcripts sharing directionality of change). To
further validate the NEPTUNE findings, the same differential expression filter was applied (1.5 fold-
change and g-value<0.05) to the ERCB cohort cluster 3 signature. This resulted in 703 genes and
consistent with the findings from the NEPTUNE cohort, the top predicted protein network was activation
of TNF (IPA Z-score=7.2, p-value=1.9E-22). Predicted activation of TNF explained 23% (163/703) of the

differentially expressed genes in this cohort.

Patient-level TNF score and relationship with cluster: To be able to quantify TNF activation within
individual patient samples, and assess its association with NS cluster assignment, a TNF activation score
was generated using causal assertions were associated with predicted TNF activation in the NEPTUNE
cohort. Starting with 398 genes that contributed to predicted TNF activation, genes were limited to those
with multiple (23) lines of curated literature evidence (to limit spurious associations), and then further to
those up-regulated by TNF (as a majority of genes (>95%) contributing to predicted TNF activation were
up-regulated). This reduced the set of TNF-regulated genes to 145 (Supplementary Table 2). First, Log2
gene expression data for the 145 genes were converted to Z-scores across the NEPTUNE transcriptomic
dataset. Next, the mean of each of the 145 Z-score gene expression values from each participant’s profile
as the TNF activation score. Participants in cluster 3 had higher TNF activation scores than those in
clusters 1 or 2. Mean (SD) score in cluster 3 was 1.01 (0.50), as compared to 0.01 (0.34) in cluster 2 and
-0.53 (0.27) in cluster 1, p-value <0.01 (Figure 4). To address the potential for data overfitting, the 145
gene set was scored in a similar manner in the ERCB cohort. Consistent with differential gene expression
profiles, and similar networks identified in the ERCB cohort, the association of TNF activation score with
cluster 3 was confirmed in these samples (data not shown). Thus, a molecular signal consistent with TNF

activation in primary NS was represented by a downstream gene signature in multiple cohorts.

Association of TNF activation score with clinical outcomes: At baseline, TNF activation score was
correlated with severity of interstitial fibrosis (rho = 0.69, p-value <0.001, Figure 5), but median (IQR) was
22.5 (10.5 — 49.5) and range was 0 to 71%. To evaluate to what extent TNF activation score from the
renal tissue expression data captured the variability in loss of eGFR over time observed in cluster 3 as
compared to clusters 1 and 2, a generalized estimating equation (GEE) model of eGFR over time was fit
separately with cluster membership and TNF activation score as primary predictors of interest. After
adjustment for demographics, diagnosis, time, baseline eGFR and UPCR, cluster 3 was associated with a
19 mL/min/1.73m2 lower eGFR during follow-up as compared to cluster 1. Cluster 2 was not significantly
different from cluster 1. Similarly, in the fully adjusted model, a 1 unit greater TNF activation score was

associated with a 12 mL/min/1.73 m2 lower eGFR during follow-up (Table 2).
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Non-invasive biomarker identification of TNF activation score: Taking advantage of targeted proteomic
data sets available as part of the multi-scalar data platform in NEPTUNE, profiles from 54 urinary
cytokines, matrix metalloproteinases and tissue inhibitor of metalloproteinases were investigated. As
shown in Figure 3C, 11 proteins with urine biomarker profiles were also part of a TNF causal network (i.e.
gene expression values were downstream of TNF and a readout or signature of potential TNF activation
in the kidney). Thus, we hypothesized that a biomarker or group of urine biomarkers might be sufficient to
recapitulate intra-renal TNF activation and act as non-invasive surrogate biomarkers. Biomarkers with
expression profiles in the dynamic range in at least 75% of samples, and those with a high level of intra-
renal log2 mRNA versus log10 urine protein (normalized to creatinine) correlation (p<0.0001, r220.25) in
MCD and FSGS were chosen as potentially representative of the intra-renal transcriptional state (Figure
6A). Two genes, CCL2 and TIMP1 had corresponding urine proteomic profiles meeting these criteria
(Figure 6B). Urine biomarker profiles for CCL2 (also known as MCP1) and TIMP1 were highly correlated
with the TNF activation score (p<0.0001, r’20.25 for both biomarkers, Figure 6C). Thus, these
biomarkers were identified as non-invasive surrogates reflective of the intra-renal transcriptional state and

of the TNF activation score.

Predictive ability of biomarkers: The base model presented here used eGFR and UPCR and additional
models added the urinary biomarker levels of TIMP1 and MCP1. The fully adjusted model had highest c-

statistic and positive predictive value for non-invasive assessment of the TNF activation score (Table 3).
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Discussion

This work introduces the concept of how a precision medicine strategy can work for nephrotic
syndrome. The study utilized kidney biopsy tissue transcriptomics to identify a subgroup of nephrotic
syndrome patients with a shared molecular profile and poor clinical outcome. Using an unbiased analysis
of tubulointerstitial compartment gene expression data, without clinical or pathology data, a subgroup of
participants was identified that had less remission of proteinuria and more loss of kidney function over
time. The molecular profile of this group was evaluated for its underlying biological processes and found
to center on TNF activation. TNF activation, quantified within individual patients, was sufficient to capture
association with poor clinical outcome observed by cluster assignment. A combination of clinical features
and urinary biomarkers could then be identified as non-invasive predictors of tissue TNF activation with
high accuracy.

TNF is a pro-inflammatory, immunoregulatory cytokine, implicated in many systemic inflammatory
diseases as well as kidney diseases (72-14). It is produced by infiltrating immune cells, but also by renal
tissue cells, including podocytes and mesangial cells (75). In isolated rat glomeruli, TNF-alpha
administration increased albumin permeability (76). In rats that spontaneously develop nephrotic
syndrome and FSGS (Buffalo/Mna), renal expression of TNF increases before the onset of proteinuria
(77). In humans, TNF levels from cultured peripheral blood mononuclear cells were higher in children with
active nephrotic syndrome, compared to those in remission and controls (78). Case reports and small
studies have reported that anti-TNF therapy may be effective in a subset of nephrotic syndrome patients,
but no data was available on intra-renal activation of the pathway (79-217). Current clinical practice and
diagnostic evaluation cannot identify this subset for targeted interventional trials.

Based on this animal and human evidence, the FONT trial (novel therapies in resistant FSGS) tested
the TNF inhibitor adalimumab in patients with therapy-resistant FSGS using an unstratified approach (4).
Of the total 16 patients treated in the phase | and phase Il studies, 2 participants had dramatic
improvements in proteinuria (from 17 to 0.6mg/mg and from 3.6 to 0.6 mg/mg in the other). Although the
study is considered an unsuccessful trial in demonstrating efficacy of this therapy for all FSGS patients, a
response in any of the patients with this severe phenotype is notable. This highlights the biologic
heterogeneity underlying the recruited population to this study and similar clinical trials in FSGS. The
observation of highly variable and unpredictable response to TNF blockade in the FONT trial is similar to
that observed in routine clinical practice to standard therapies. It demonstrates the need for a precision
approach to better assign patients to conventional therapies as well as offering access to experimental
therapies in the setting of clinical trials to match patients to the most effective medication and sparing
toxicity from unnecessary medications.

The pipeline described in this paper could be applied to clinical trial design whereby a nephrotic
syndrome population could be enriched for patients with a higher probability of having a particular
pathway upregulated and amenable to targeted therapy. Specifically, the coefficients from a validated

logistic model could be used to calculate a probability of pathway activation as inclusion criteria for entry


https://doi.org/10.1101/427880
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/427880; this version posted September 27, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

into a clinical trial. Thus, this would increase the chance that a trial would include a higher proportion of
patients with a more homogeneous molecular profile amenable to the investigational target.

Several limitations of this approach are acknowledged. The clustering was done using the
tubulointerstitial compartment as opposed to the glomerular compartment which is certainly also relevant
to the pathophysiology of glomerular diseases. However, tubulointerstitial damage and fibrosis has been
shown to be one of the strongest predictors of clinical outcome in the NEPTUNE cohort and treatment
response (22), which crosses the conventional disease classifications. Medications targeting this common
mechanism may be expected to have efficacy as disease modifying drugs in chronic kidney disease
across multiple conventionally diagnosed renal diseases (9). For some patients, high TNF activation may
represent a disease too advanced to be amenable to any therapy. However, the analysis did include
samples from multiple patients with low interstitial fibrosis and high TNF scores. Bulk expression data was
utilized and so differentially expressed genes may reflect differences in cell composition between the
clusters. The accuracy of the non-invasive surrogates as dynamic, i.e. target engagement biomarkers
requires validation and is being pursued in a proof of concept clinical trial under development.

In conclusion, this study implements a novel pipeline not previously applied in nephrotic syndrome
patients to utilize tissue transcriptomics to identify a subgroup of patients with poor clinical outcomes.
The potentially targetable pathway, TNF, was identified as a primary driver of disease and non-invasive
markers could identify a patient population enriched for TNF activation. This mechanistic based disease
classification is the first step to achieving the goal of assigning patients to therapies in a targeted manner

and thus minimizing toxicity and maximizing benefit.

Materials and Methods

Study Participants: The study was conducted on 123 participants with biopsy proven Minimal Change
Disease (MCD) and Focal Segmental Glomerulosclerosis (FSGS) enrolled in the NEPTUNE study and
who had tissue genome wide mRNA expression profiing completed. NEPTUNE is a multi-center,
prospective study of children and adults with >500mg/day of proteinuria, recruited at the time of first
clinically indicated baseline renal biopsy. Pathologic diagnosis is confirmed by review of digital whole
slide images by study pathologists (23). Patients with evidence of other renal disease (e.g., lupus,
diabetic nephropathy), prior solid organ transplant, and life expectancy < 6 months were excluded. The
study enrolled at 21 clinical sites starting in August, 2010. The objectives and study design of NEPTUNE
have been previously described (24) and can be found in the clinicaltrials.gov database under
NCT1209000. Consent was obtained from individual patients at enrollment, and the study was approved
by Institutional Review Boards of participating institutions. A subset of participants from the European
Renal cDNA Cohort (ERCB) (n=30) with MCD and FSGS were used as a validation cohort for the gene

expression analyses (25).
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Clinical Data: NEPTUNE participants are followed prospectively, every 4 months for the first year, and
then biannually thereafter for up to 5 years. Detailed information regarding socio-demographics, medical
history and medication exposure are collected by subject interview and chart review. Local laboratory
results are recorded and blood and urine specimens are collected at baseline and in each follow-up visit
for central measurement of serum creatinine and urine protein/creatinine ratio. eGFR (mL/min/1.73m2)
was calculated using the CKD-Epi formula for participants >18 years old and the modified CKiD-Schwartz
formula for participants <18 years old. ESRD was defined as initiation of dialysis, receipt of kidney
transplant or eGFR <15 mL/min/1.73m? for two measurements. Complete remission was defined as
UPCR <0.3 mg/mg on either a single void specimen or 24-hour urine collection. ERCB is a European
multicenter study capturing renal biopsy tissue for gene expression profiling along with cross-sectional
clinical information (e.g., demographics, eGFR) collected at the time of a clinically indicated renal
biopsy(25).

Molecular Data and Analysis: Genome wide transcriptome analysis was performed on manually micro-
dissected renal biopsy tissue that separated the tubulointerstitial compartment from the glomerular
compartment. Total RNA was isolated, reverse transcribed, linearly amplified and hybridized on an
Affymetrix 2.1 ST platform (NEPTUNE) and U133 platform (ERCB) as described previously (9, 26-29).
Gene expression was normalized, log-2 transformed and batch corrected with Entrez Gene ID
annotations. Only genes expressed 1 standard deviation above the negative control were considered to
be expressed and included in the analysis. Unsupervised hierarchical clustering and differential gene
expression analysis was performed with Multiple Experiment Viewer (WebMeV, mev.tm4.org) using the
tubulointerstitial compartment expression data. Differentially expressed genes between clusters of
interest were analyzed for enrichment of canonical pathways and functional groups using the Ingenuity

Pathway Analysis Software Suite (IPA).

TNF Score: Genes causally linked downstream of TNF were selected to compose a TNF activation
score.(30) Selected genes were significantly up-regulated (>1.5-fold change and <0.05) in the
differential expression gene set in cluster 3 compared to 1 and 2 and were predicted to be activated by
TNF from 3 independent lines of evidence (i.e. literature references supporting the relationship) from IPA.
145 genes met these criteria (Supplemental table 3) and a z-score was generated for each gene for each
patient. The individual z-scores across all 145 genes were averaged to calculate the composite TNF

alpha activation score for each patient.

Urine Biomarkers: A panel of 54 urinary cytokines, matrix metalloproteinases and tissue inhibitor of
metalloproteinases was available on a subset of NEPTUNE participants using the multiplex Luminex
platform. All urine protein levels were normalized to urine creatinine. To be evaluated as a potential non-

invasive marker of TNF activation, the urine protein had to be a product of a gene causally linked
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downstream of TNF and to be correlated with intra-renal tissue gene expression and TNF activation

score.

Statistical Analysis of the Association with Clinical data and Urine Biomarkers: Descriptive statistics,
including mean and standard deviation (SD) for normally distributed variables, median and interquartile
range (IQR) for skewed variables and proportions for categorical variables were used to characterize
baseline participant characteristics by molecular cluster. Multi-variable linear generalized estimating
equations (GEE) were used to assess association of molecular cluster and TNF score with eGFR during
follow-up. Pearson’s correlation was used to assess the relationship between TNF score and urinary
biomarker concentration or mRNA expression. Urinary biomarker levels were divided by urinary
creatinine to correct for urinary concentration/dilution and were log2 transformed to achieve a normal
distribution. Logistic regression models were fit to assess the association of urinary biomarkers with a
positive vs. negative TNF score. C-statistics were calculated from the logistic models to characterize the
discrimination of the models. The improved predictive value of urinary biomarkers was assessed using
the LR test for nested models. Analyses were performed using STATA, v12.1 (College Station, TX) with

two-sided tests of hypotheses and p-value <0.05 as the criterion for statistical significance.
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Step 1:

Kidney biopsy tissue is micro-dissected into
glomerular and tubule-interstitial compartments
for RNA extraction and profiling

v

Step 2: Clustering based on tissue gene
expression is used to form molecular-data
based patient subgroups

v

Step 3: Molecularly defined subgroups are
tested for association with clinical phenotypes

A J

Step 4: Genes differentially expressed across
the subgroups are placed in their functional
context to identify the responsible biologic
networks and downstream transcriptional

changes

Step 5. Responsible network intra-renal
transcript levels are tested for correlation with
non-invasive surrogate markers (i.e. urine).
Urine markers can then be tested for prediction
accuracy of molecular subgroup affiliation.

|

Step 6: Urinary markers are used to screen for
individuals that have a higher probability of
response to a therapy targeting a network
which defines their molecular subgroup
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Figure 1: Overall strategy to identify non-invasive urinary
markers for tissue-derived molecular patient subgroups.
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Figure 2: Unadjusted Kaplan Meier curves by cluster membership for complete remission of
proteinuria from time of screening, p-value 0.002 (A), and composite of ESRD/40% drop in eGFR from
baseline, p-value 0.007 (B).

(B) Kaplan-Meier Survival for Composite ESRD/40% decline in eGFR

T

(A) Kaplan-Meier Survival for Complete Remission
8 4

0.00
|

0.25
L
0.75
|

Probability
0.50
1
Probability
0.50
L

w 'e]
~ - o 4
=] =}
8 S |
= T T S 7 T T T
0 10 20 30 40 0 10 20 30 40
Follow-up times (months) Follow-up times (months)
Number at risk Number at risk
Cluster 1 52 19 1 8 4 Cluster 1 50 48 40 34 29
Cluster2 37 19 13 1 9 Cluster2 37 36 29 26 19
Cluster3 17 12 10 7 3 Cluster3 16 14 8 7 4
Cluster 3 ‘ | Cluster 1 Cluster 2 Cluster 3

Cluster 2

Cluster 1
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Figure 4: Distribution of TNF patient scores across all profiled participants and by cluster

membership.
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Figure 5: TNF alpha activation was correlated with interstitial fibrosis.
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Figure 6. Urinary inflammatory biomarkers correlate with TNF activation score. (A) A prioritization
schema was applied to identify biomarkers with the most reliable intra-renal mRNA and urine proteomic
profile correlations. (B) Intra-renal and urine biomarker profile correlation plots in subjects with MCD or
FSGS for CCL2 (left panel) and TIMP1 (right panel). (C) TNF activation score plotted against urine
biomarker profiles for MCP1 and TIMP1.
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Table 1: Baseline characteristics of participants by gene expression cluster. Continuous,
normally distributed variables are presented as mean (SD). Continuous, non-normally distributed
variables are presented as median (IQR). Categorical variables are presented as n(%).

All Cluster 1 Cluster 2 Cluster 3 p-value
(N = 123) (N = 62) (N = 42) (N = 19)

Age (years) 29 (22) 17 (16) 39 (23) 44 (18) <0.001
Black Race 40 (34%) 18 (31%) 12(30%) 10 (53%) 017
Female 41 (35%) 22 (38%) 18 (44%) 6 (32%) 0.31
FSGS 67 (57%) 22 (38%) 30 (73%) 15 (79%) <0.001
Disease Duration
month) 4 (1, 26) 45 (1.5, 17.5) 6.5 (2, 52) 1.0 (0, 20) 0.06
eGFR
(mL/minA.73m2) 88 (36) 108 (31) 79 (28) 45 (20) <0.001
UPCR (mg/mg) 12(03,35) | 07(0.1,2.7) 15(0.7, 3.6) 2.4 (15, 4.6) 0.01
% IF 5(1,19) 1(0, 5) 9 (4, 19) 27 (18, 56) <0.001
On RAAS Blockad

: ockade 67 (57%) 24 (41%) 31 (76%) 12 (63%) 0.003
on ST 60 (51%) 37 (64%) 18 (44%) 5 (26%) 0.01

*eGFR: estimated glomerular filtration rate; MCD: Minimal Change Disease; FSGS: Focal Segmental
Glomerulosclerosis; UPCR: Urine protein to creatinine ratio; IF: Interstitial Fibrosis; RAAS: Renin-
angiotensin Aldosterone System; IST: Immunosuppressive Therapy

Table 2: Generalized Estimating Equations (GEE) of eGFR (mL/min/1.73m2) after the baseline visit.
Separate models for cluster membership and TNF activation score as primary predictors of interest.

Univariable Model Multivariable Model*
Predictor Coefficient (95% p-value Coefficient (95% p-value
Cl) Cl)
Model 1: Cluster Cluster 1 Ref Ref.
Membership Cluster 2 -28 (-17, -38) <0.001 -9 (0.5, -19) 0.06
Cluster 3 -55 (-40, -70) <0.001 -19 (-5, -32) 0.006
Model 2: TNF TNF
activation Score Activation -31 (-23, -40) <0.001 -12 (-4, -19) 0.002
Score

*Multivariable model adjusted for age, sex, race, diagnosis, baseline eGFR, UPCR and time.
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Table 3: Logistic Regression of positive TNF activation score

Luminex Model 1 Model 2 Model 3 Mode 4
(n=61, 23 Events) c-statistic 0.86 c-statistic 0.79 c-statistic 0.86 c-statistic 0.91

PPV 79% PPV 67% PPV 82% PPV 81%

correctly classified 80% | Correctly classified Correctly Classified 80% | Correctly Classified

71% 84%

OR P-value OR P-value OR P-value OR p-value
Log2(uTIMP1/Creat) | 2.23 0.001 1.92 0.03
Log2(uMCP1/Creat) 2.23 0.001 1.29 0.43
Age 0.99 0.76
UPCR 1.99 0.02
eGFR 0.94 0.001
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Supplementary Materials

Supplemental Table 1: Baseline characteristics of ERCB participants by gene expression cluster.
Continuous, normally distributed variables are presented as mean (SD). Continuous, non-normally
distributed variables are presented as median (IQR). Categorical variables are presented as n(%).

All Cluster 1 Cluster 2 Cluster 3 p-value
(N =30) (N=05) (N=19) (N=16) (Clust. 3 vs
1+2)
Age (years) Mean (SD) 47(15) 39(18) 48(21) 0.55
Female N (%) 4 (80%) 8 (42%) 2 (33%) 0.65
FSGS N (%) 3 (60%) 9 (47%) 5 (83%) 0.19
?nflf/im /173m2) | Mean (SD) 71 (45) 100 (30) 35 (17) <0.001

*eGFR: estimated glomerular filtration rate; MCD: Minimal Change Disease; FSGS: Focal Segmental
Glomerulosclerosis.
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Supplemental Table 2: TNF-regulated genes contributing to the TNF activation score

Entrez Gene Entrez Gene Entrez Gene Entrez Gene Entrez  Gene
ID Symbol ID Symbol ID Symbol ID Symbol ID Symbol
12 SERPINA3 1436 CSF1R 3575 IL7R 5359 PLSCR1 7127 TNFAIP2
31 ACACA 1520 CTSS 3587 IL10RA 5696 PSMB8 7128 TNFAIP3
154 ADRB2 1524 CX3CR1 3606 1L18 5698 PSMB9 7130 TNFAIP6
165 AEBP1 1536 CYBB 3624 INHBA 5699 PSMB10 7133 TNFRSF1B
240 ALOX5 1545 CYP1B1 3627 CXCL10 5788 PTPRC 7412 VCAM1
241 ALOXSAP 1634 DCN 3659 IRF1 5806 PTX3 7424 VEGFC
330 BIRC3 1848 DUSP6 3676 ITGA4 6036 RNASE2 7474 WNT5A
355 FAS 1903 S1PR3 3678 ITGAS 6279 S100A8 7852 CXCR4
567 B2M 1906 EDN1 3683 ITGAL 6288 SAAl 7980 TFPI2
597 BCL2A1 1958 EGR1 3684 ITGAM 6347 CCL2 8870 IER3
602 BCL3 1999 ELF3 3685 ITGAV 6351 CCL4 9021 SOCS3
629 CFB 2113 ETS1 3689 ITGB2 6352 CCLS 9023 CH25H
718 C3 2213 FCGR2B 3690 ITGB3 6356 CCL11 9180 OSMR
834 CASP1 2335 FN1 3694 ITGB6 6363 CCL19 9536 PTGES
837 CASP4 2353 FOS 3725 JUN 6364 CCL20 9636 1SG15
920 CD4 2634 GBP2 3726 JUNB 6367 CCL22 10512 SEMA3C
929 CD14 2833 CXCR3 3934 LCN2 6372 CXCL6 10537 UBD
942 CD86 2920 CXCL2 4050 LTB 6401 SELE 10563 CXCL13
952 (D38 3082 HGF 4071 TMA4SF1 6403 SELP 11221 DUSP10
958 CD40 3091 HIF1A 4233 MET 6422 SFRP1 25816 TNFAIP8
960 CD44 3133 HLA-E 4313 MMP2 6772 STAT1 26298 EHF
1009 CDH11 3383 ICAM1 4318 MMP9 6868 ADAM17 51284 TLR7
1026 CDKN1A 3428 IFI16 4323 MMP14 6890 TAP1 58191 CXCL16
1051 CEBPB 3459 IFNGR1 4609 MYC 7040 TGFB1 64332 NFKBIZ
1191 CLU 3489 |IGFBP6 4688 NCF2 7052 TGM2 79689 STEAP4
1233 CCR4 3554 |L1R1 5054 SERPINE1 7076 TIMP1 112464 PRKCDBP
1236 CCR7 3563 IL3RA 5284 PIGR 7097 TLR2 114548 NLRP3
1316 KLF6 3566 IL4R 5328 PLAU 7099 TLR4 414062 CCL3L3
1435 CSF1 3574 IL7 5329 PLAUR 7124 TNF 729230 CCR2
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Supplemental Figure 1: Cluster dendrogram of (A) NEPTUNE MCD and FSGS participants based on
kidney biopsy tubulointerstitial gene expression data and (B) ERCB MCD and FSGS participants based
on kidney biopsy tubulointerstitial gene expression data.
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Cluster 1 Cluster 2 Cluster 3

Cluster 1 Cluster 2 TCluster 3
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Supplemental Figure 2. Log2 fold changes are presented for each dataset. Genes significantly
differentially expressed (1,259 genes, q<0.05) in samples from cluster 3 patients for both NEPTUNE and
ERCB cohorts are presented.
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