

1 **Promoter activity of ORF-less gene cassettes isolated from the oral metagenome**

2

3 **Supathep Tansirichaiya¹⁺, Peter Mullany¹, Adam P. Roberts^{1,2*}**

4

5 **Keywords:** integron, ORF-less gene cassettes, promoter activity, oral metagenome

6 **Running Title:** Promoter cassettes

7

8

9

10

11

12 ¹Department of Microbial Diseases, University College London, Eastman Dental Institute, 256 Gray's
13 Inn Road, London, WC1X 8LD, UK.

14 ²Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK

15 *Corresponding author; Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK

16 T: +44(0)151 705 3247. E: Adam.Roberts@lstmed.ac.uk

17 ⁺Present affiliation: Department of Clinical Dentistry, Faculty of Health Sciences, UiT the Arctic
18 University of Norway, Tromsø, Norway

19 **Abstract**

20 Integrons are genetic elements consisting of a functional platform for recombination and expression
21 of gene cassettes (GCs). GCs usually carry promoter-less open reading frames (ORFs), encoding
22 proteins with various functions including antibiotic resistance. The transcription of GCs relies mainly
23 on a cassette promoter (P_c), located upstream of an array of GCs. Some integron GCs, called ORF-less
24 GCs, contain no identifiable ORF with a small number shown to be involved in antisense mRNA
25 mediated gene regulation.

26 In this study, promoter sequences were identified, using *in silico* analysis, within GCs PCR amplified
27 from the oral metagenome. The promoter activity of ORF-less GCs was verified by cloning them
28 upstream of a *gusA* reporter, proving they can function as a promoter, presumably allowing bacteria
29 to adapt to multiple stresses within the complex physico-chemical environment of the human oral
30 cavity. A bi-directional promoter detection system was also developed allowing direct identification of
31 clones with promoter-containing GCs on agar plates. Novel promoter-containing GCs were identified
32 from the human oral metagenomic DNA using this construct, called pBiDiPD.

33 This is the first demonstration and detection of promoter activity of ORF-less GCs and the development
34 of an agar plate-based detection system will enable similar studies in other environments.

35

36 **Introduction**

37 Integrons are bacterial genetic elements able to integrate and express genes present on gene cassettes
38 (GCs) [1-3]. They consist of two main components; a functional platform and a variable array of GCs.
39 The functional platform, located on the 5' end of an integron, consists of an integrase gene (*intI*), and
40 its promoter (P_{intI}), an *attI* recombination site and a constitutive cassette promoter (P_c) for the
41 expression of GCs [4]. *IntI* is a site-specific tyrosine integrase that catalyses the insertion and excision
42 of GCs via recombination mainly at *attI* and the *attC*, the latter located at the joint of excised,
43 circularised GCs. The integrase gene; *intI*, is normally transcribed in the opposite direction to GCs
44 within an integron (Fig 1A). However, some integrons have integrase genes transcribed in the same
45 directions as their GCs. These are called unusual integrons or reverse integrons (Fig 1B), and have been
46 identified in *Treponema denticola*, *Chlorobium phaeobacteroides* and *Blastospirellula marina* [5, 6].

47 The second part of an integron is an array of GCs. Each usually contains a single promoterless open
48 reading frame (ORF) and an *attC* recombination site [7]. The proteins encoded by GCs are diverse and
49 include those associated with antibiotic resistance, virulence, and metabolism [2, 8]. When a GC is
50 excised from integron, it forms a non-replicative mobile genetic element, which can be a substrate for
51 integrase mediated recombination between *attI* (on the integrons) and *attC* (on the circular GC). This
52 directionality of recombination is favoured over *attC:attC* recombination, resulting in the usual
53 insertion of a newly integrated GC immediately next to the P_c promoter in the first position of GC
54 array, ensuring maximal expression [9-11].

55 The expression of integron integrases is controlled via the SOS response; there is a LexA-binding site
56 located in the P_{intI} [12]. In the absence of stress, the transcriptional repressor LexA binds to P_{intI} and
57 prevents the transcription of *intI*. The SOS response is activated upon the accumulation of single-
58 strand DNA (ssDNA), generated during DNA damage, DNA repair, transformation, conjugation and
59 certain antibiotic exposure e.g. trimethoprim and fluoroquinolones [13-15]. RecA recognises ssDNA
60 and polymerises into RecA nucleofilaments, which induce autocleavage of LexA, releasing P_{intI} from

61 repression and allowing *intI* transcription [12, 16]. By controlling the expression of *IntI*, bacteria can
62 reshuffle their GCs at the precise moments of need (stress), thereby avoiding accumulation of random
63 recombination events that could be deleterious to the host cell [17, 18].

64 As most of the GCs do not contain a promoter, their expression usually relies on the P_c promoter. The
65 level of expression of GCs varies depending on the distance from P_c , as the strength of expression
66 decreases when GCs are located further from P_c [19]. This ensures that a recently acquired GC will be
67 immediately expressed ensuring rapid adaptation due to stress-induced repositioned gene within the
68 integron GC array. There are also some GCs that contain their own promoters, ensuring constitutive
69 expression of their genes regardless of the P_c promoter and their position within the integron array;
70 examples include *cmlA1* (chloramphenicol resistance), *qnrVC1* (quinolone resistance), *ere(A)*
71 (erythromycin resistance) and many of the GCs encoding toxin-antitoxin (TA) systems [20-23].

72 Integron GCs have been identified from environments such as soils, marine sediments, seawater and
73 more recently from human oral metagenomes [24-28]. In our previous study on the detection of
74 integron GCs in the human oral metagenome, we found 13 ORF-less GCs out of 63 identified GCs (20%)
75 [28]. ORF-less GCs have been shown to encode regulatory RNAs, for example the trans-acting small
76 RNA (sRNA)-Xcc1, encoded by the ORF-less GC of a *Xanthomonas campestris* pv. *campestris* integron,
77 which is involved in regulation of virulence [29]. Whilst promoter activity of ORF-less GCs has been
78 discussed, this has not been experimentally demonstrated [8].

79 In this study, we performed *in silico* analysis to identify promoter sequences in the GCs identified in
80 our previous study on the oral metagenome. Promoter activity was experimentally determined by
81 cloning the selected GCs upstream of the *gusA* reporter gene and measuring β -glucuronidase enzyme
82 activity. Furthermore, we devised a GC-based promoter detection strategy utilising PCR and
83 subsequent cloning between divergently orientated reporter genes. With this system, the successful
84 cloning of amplicons from promoter-containing GCs can be visualised directly on agar plates, allowing
85 the direct isolation of GC PCR amplicons with promoter activity from metagenomic DNA.

86 **Results**

87 ***in silico* analysis of the promoter sequences on the ORF-less GCs.**

88 Among 63 GCs previously identified from human oral metagenomic DNA, 13 were predicted to be ORF-
89 less GCs [28]. Using BPROM promoter prediction software, all ORF-less GCs were predicted to contain
90 promoters on both strands, suggesting that these GCs can transcribe genes in flanking GCs (Table 1).
91 In this study, we have defined the sense strand as the same strand containing the P_c promoter (Fig 1).

92 **Determination of promoter activity of the ORF-less GCs using the β -glucuronidase assay.**

93 Five GCs were chosen for experimental expression analysis. GC TMB4 (amplified with primers targeting
94 *intI* and *attC*) was selected as it is ORF-less and located in the first position of the integron array [28].
95 ORF-less GCs MMU23 and MMB37 were selected as they had the highest overall score predicted by
96 BPROM. Finally, GCs SSU17 and MMB3 were selected as controls, to represent GCs with an ORF.

97 As BPROM predicted putative promoter sequences on both strands, promoter activity of the selected
98 GCs was determined by directionally cloning upstream of a promoterless β -glucuronidase (*gusA*) gene
99 on pCC1BAC-*lacZα-gusA* (Fig 2) in both directions. For the first position GC; TMB4, three different
100 constructs were made: TMB4 P_c promoter, TMB4 GC, and TMB4 P_c -GC constructs. As the TMB4 P_c
101 promoter was not identical to the P_c of *T. denticola* integron [30], the P_c of another integron GC; TMB1
102 [28], which was identical to it [30], was included. As the selected GCs were likely derived from
103 *Treponema* spp., two experimentally verified *T. denticola* promoters, P_{Tdtro} and P_{Fla} , were also included
104 as controls showing that *T. denticola* promoters can be recognised in our *E. coli* host [31, 32]. P_{Fla} and
105 P_{Tdtro} were selected as they rely on different sigma factors. P_{Tdtro} is recognised by sigma factor 70 (σ^{70})
106 that is responsible for the transcription of most genes during growth in both *E. coli* and *Treponema*
107 spp. [31, 33], while P_{Fla} is recognised by sigma factor 28 (σ^{28}), involved in the expression of flagella-
108 related genes in motile bacteria [32, 34]. This will determine the limitations of our assay in recognising
109 promoters associated with different types of sigma factors. The results are shown in figure 3. MMB37

110 and MMB3 had promoter activity on one strand, while MMU23 and SSU17 had no promoter activity,
111 compared to the negative control. The TMB4-P_c, TMB4 GC, TMB4 P_c-GC and TMB1- P_c constructs, all
112 showed promoter activities on both strands. The P_{Tdtrō} from *T. denticola* showed strong promoter
113 activity on both sense and antisense strands, verifying that promoters from *T. denticola* are recognised
114 by *E. coli*. As the P_c promoter sequences on TMB1 and TMB4 samples were different at several
115 nucleotides, it was shown that TMB4-P_c had higher promoter activities than the TMB1-P_c in both
116 directions (Fig 3).

117 **Detection of promoter-containing GCs from oral metagenome.**

118 The pCC1BAC-*lacZα-gusA* plasmid, developed for the above enzymatic assay, had the potential to be
119 used in an agar plate-based detection strategy to detect amplified integron GCs with promoter activity
120 on either strand of DNA. This construct is called the Bi-Directional Promoter Detection plasmid
121 (pBiDiPD). To verify the utility of pBiDiPD, and also to detect novel GCs containing promoter sequences
122 in the human oral metagenome, integron GCs were amplified with SUPA4-*Nsil*/SUPA3-*Nhel* and
123 MARS5-*Nsil*/MARS2-*Nhel* primers [28], and cloned into pBiDiPD. By spreading transformants on LB
124 plates containing X-gal/IPTG and 4-methylumbelliferyl β-D-glucuronide (MUG), clones containing
125 inserts with promoter activity in either direction could be identified. The clones with GCs containing a
126 promoter on the sense strand showed blue fluorescence when visualised under UV light, reflecting the
127 activity of β-glucuronidase enzymes catalysing MUG to yield the blue-fluorescent 4-
128 methylumbelliferyl. Clones with promoter activity on the antisense strand resulted in blue colonies as
129 a result of β-galactosidase enzymes catalysing X-Gal into a blue insoluble pigment 5,5'-dibromo-4,4'-
130 dichloro-indigo (Fig 4).

131 After screening clones from both amplicon libraries (amplified with SUPA3-SUPA4 and MARS2-MARS5
132 primers), 23 different GCs with promoter activities were identified (Table 2). Fourteen of these were
133 similar to the GCs identified in the previous study with >86% nucleotide identity [28]. Among the

134 recovered promoter-containing GCs, 9 out of 23 were novel including sample SSU-Pro-20, SSU-Pro-27,
135 SSU-Pro-32, SSU-Pro-46, SSU-Pro-65, MMU-Pro-5, MMU-Pro-24, and MMU-Pro-53. Artefactual PCRs
136 were discounted by detecting the consensus R' (1R) core sites [GTTRR(Y)R(Y)Y(R)] and the
137 complementary R'' (1L) core sites [R(Y)Y(R)Y(R)YAAC] of *attC* located downstream from the *attC*
138 forward primers and upstream from the *attC* reverse primers, respectively (Supplementary Table 1)
139 [35].

140 The GCs can be categorised into two groups, one predicted to encode toxin-antitoxin systems in 12
141 out of 23 GCs, including plasmid stabilization protein (toxin)-prevent-host-death protein (antitoxin),
142 BrnT (toxin)-BrnA (antitoxin), VapC (toxin)-AbrB/MazE/SpoVT family protein (antitoxin), RelE/ParE
143 family (toxin)-XRE transcriptional regulator (antitoxin). The second group contained ORF-less GCs,
144 which could be found in 7 samples, all reported in the previous study, except sample MMU-Pro-53.
145 Most of the samples (14 out of 23 GCs) showed the promoter activity only on the sense strand.
146 Samples with promoter activity only on the antisense strand were MMU-Pro-6, MMU-Pro-63, and
147 MMU-Pro-65, while 6 out of 23 GCs exhibited promoter activity on both strands.

148 **Discussion**

149 Integrons are important disseminators of antimicrobial resistance genes and therefore, it is important
150 to understand the diversity of GCs and how their expression is controlled. Even though most of the
151 GCs contained a single ORF, ORF-less GCs have also been found [24, 27, 28, 36, 37].

152 In this study, we determined promoter activity from GCs isolated by PCR from metagenomic DNA by
153 measuring promoter activity from multiple GC containing constructs. As the ORF-less GCs were
154 recovered from the oral metagenome, there is little information regarding the original host. Therefore,
155 we chose to test the promoter activities by using an *E. coli* surrogate. Nucleotide sequence analysis
156 suggested that these GCs were likely to be derived from *Treponema* spp., therefore, the ability of *E.*
157 *coli* to utilise *T. denticola* promoter sequences was determined by including the experimentally verified

158 *T. denticola* promoter, P_{TdTro} [31] which showed high activity on both sense and antisense strands,
159 providing confidence that *E. coli* could be used. However, as no promoter activity was detected from
160 P_{Fla} , it suggested that our enzymatic assay cannot detect promoters associated with σ^{28} from
161 *Treponema* spp., which could be due to an inability for the *E. coli* host to recognise the *Treponema* σ^{28}
162 promoter sequence.

163 Promoter activities of the ORF-less GCs were confirmed and quantified by using a β -glucuronidase
164 enzymatic assay. This is the first time that the promoter activity of ORF-less GCs has been
165 demonstrated *in vitro*, as shown by the activity on the sense strand of the MMB37 and both strands
166 of the TMB4. A study on the *Vibrio* integron, containing a 116-cassette array, showed that most of the
167 GCs are transcribed [38]. Therefore, ORF-less GCs could be responsible for transcription of the other
168 GCs not transcribed by P_c .

169 For the TMB4 GC (ORF-less GC in the first position), it was initially hypothesised that the promoter
170 could help increase the expression of the downstream GCs. This was shown when P_c promoter was
171 coupled with a second promoter (P_2) (found in 10% of class 1 integron and located 119 bp downstream
172 from P_c), could result in a significantly higher expression of GCs [39, 40]. The constructs of TMB4 P_c
173 and TMB4 P_c+GC were therefore included in the assay to determine whether having a promoter GC at
174 the first position could help promote the expression of downstream GCs. The results show that
175 coupling promoter GC in the first position slightly increased the expression of reporter genes (Fig. 3).
176 However, this was not significant (p -value >0.99 by using ordinary one-way ANOVA followed by
177 Bonferroni's post-hoc).

178 The lack of additive promoter activity can be explained by more competition for enzymes involved in
179 transcription such as RNA polymerases (RNAP) or sigma factors to be available for transcription from
180 each promoter, resulting in lower transcriptional level [41]. Another, not mutually exclusive possibility
181 is transcriptional interference (TI) between the four promoters on the TMB4 P_c+GC construct. We have

182 experimentally shown promoter activity of TMB4 P_c and TMB4 GC constructs on both strands,
183 indicating convergent TI is a possibility.

184 In usual integrons, P_c is in $intI$, which is convergent to the integron integrase promoter P_{IntI} downstream
185 (Fig 1), resulting in TI. The TI between P_c and P_{IntI} has been shown to control the expression of integrase
186 and the subsequent recombination of GCs. The weaker strength of P_c could result in higher expression
187 of integrase, which increases recombination of GCs [42, 43]. This relationship of P_c and $intI$ might also
188 apply to the reverse integrons found in *T. denticola*, even though their position and direction of P_{IntI} ,
189 P_c and $intI$ gene are in a different orientation compared to the usual integrons (Fig 1).

190 Due to the lack of additive promoter activity when P_c and an ORF-less GC promoter were tested in
191 tandem we hypothesised that there is an alternative selective advantage for having an ORF-less,
192 promoter-containing GC in the first position on an integron GC array.

193 The expression level of cassette genes located further down in the array normally decreases due to
194 the formation of a stem-loop structure on mRNA at $attC$ sites, which impede the progression of the
195 ribosome [44]. It was previously shown that the level of streptomycin resistance was reduced four
196 times, when the *aadA2*-containing GC was located in the second position [45]. However, our data
197 shows that the insertion of an ORF-less, promoter-containing GC in the first position did not decrease
198 the *gusA* expression significantly (considered as a proxy for the expression of gene(s) in the second
199 GC), i.e. comparing the data for TMB4 P_c and TMB4 P_c+GC . Therefore, we hypothesised that promoter-
200 containing GCs could act as a genetic clutch, where the expression of the original first GC is partially
201 disengaged from the P_c promoter and replaced by the one on the ORF-less promoter containing GC
202 (Fig 5A). This can prevent a significant change in expression of the first GC while a new, first GC is
203 sampled from the pool of GCs in order to adapt to an additional stress concurrent with the selective
204 pressure requiring expression of the first GC. This system would work as a genetic clutch with the
205 insertion of any GC containing a promoter in the same direction as P_c , so it could be the insertion of
206 either ORF-less GCs such as TMB4 GC, or other promoter-containing GCs such as the multiple TA-

207 containing GCs we have identified; providing another selective advantage to retaining them and
208 explaining their varied position within the GC array.

209 A genetic clutch within an integron can be of benefit to bacteria when they are exposed to multiple
210 environmental stresses such as two different antibiotics simultaneously. The first resistance gene
211 (green ORF in Fig 5Biii) can be expressed by the P_c promoter, while the second resistance gene (blue
212 GC), located in the third position, is expressed by P_c and the promoter GC. Therefore, allowing bacteria
213 to survive in both the presence of both drugs.

214 As the other ORF-less GC MMU23 showed no promoter activity it may have other functions or carry a
215 promoter that can be recognised in its native host but not in *E. coli*, or require other sigma factors. For
216 the ORF-containing GC MMB3 sample, the promoter activity was found on the sense strand. This GC
217 was predicted to carry toxin-antitoxin (TA) ORFs, including the PIN toxin and ribbon-helix-helix
218 antitoxin domains, which were shown to contain their own promoter. Sample SSU17 and MMU23,
219 which showed no promoter activity, can be considered as a control; illustrating that not all of GCs
220 amplified from the oral metagenome exhibited promoter activity within our assay.

221 The pCC1BAC-*lacZα-gusA* plasmid, developed for the enzymatic assay, also had potential to be used
222 for the detection of promoter activity in either direction from GCs. The clones with promoters on the
223 sense strand can be detected under UV light and showed blue fluorescence because β-glucuronidase
224 can cleave the substrate, MUG, on the plate, which produces a fluorescence compound called
225 methylumbellifluorone. For the clones carrying promoters on the antisense strand, they can be detected
226 by blue-white screening as β-galactosidase can cleave X-gal, producing an intensively blue product
227 called 5,5'-dibromo-4,4'-dichloro-indigo, which can be viewed by eye under normal light.

228 To verify the application of pCC1BAC-*lacZα-gusA* plasmids as promoter detection system, integron GCs
229 were amplified from the human saliva metagenome by using SUPA3-SUPA4 and MARS2-MARS5
230 primers, which amplify integron GCs from the oral metagenome [28]. After cloning the amplified GCs

231 between both reporter genes, two groups of GCs were identified with promoter activities: ORF-less
232 GCs and TA-containing GCs. By detecting 7 clones containing ORF-less GCs with promoter activity it
233 further supported that one of the functions of ORF-less GCs in integrons is to provide promoter
234 activities.

235 TA-containing GCs are abundant in chromosomal integrons (CIs), which were suggested to have a role
236 in preventing random deletion of GCs and stabilising the large arrays CIs [22, 46, 47]. TA systems
237 normally encode a stable toxin and a labile antitoxin [48], therefore TA cassettes have to carry their
238 own promoters to ensure their expression. These were found in CIs of *Treponema* spp., such as the
239 HicA-HicB TA-containing GC in the fourth position within the GC array (Accession number NC_002967)
240 in the CI from *T. denticola* [30]. As most of the GCs amplified with our primers were homologous with
241 *Treponema* spp., these TA-containing GCs should be present in our oral metagenome and were
242 detected by our pBiDiPD based on their promoter activities.

243 Two of the GCs, SSU-Pro-9 and MMU-Pro-18, were similar to the MMB3 and MMB37 GCs, respectively,
244 which were shown by the β -glucuronidase enzyme assay to have promoter activity on the sense
245 strand. The phenotypes of SSU-Pro-9 and MMU-Pro-18 colonies also showed only a blue fluorescence
246 phenotype, reflecting the promoter activity on the sense strand, which corresponded with the
247 enzymatic assay results of MMB3 and MMB37.

248 To summarise, the promoter activities of the ORF-less integron GCs were experimentally
249 demonstrated by using a robust β -glucuronidase enzyme assay, confirming that one of the functions
250 of ORF-less GCs is to provide promoters for the expression of ORF containing GCs, in addition to
251 expression from P_c . The dual reporter plasmid; pBiDiPD, was developed for the direct visualisation of
252 clones containing gene cassettes with promoter activity on agar plates. This can be applied as a
253 detection system for promoter activity for any other DNA fragments.

254

255 **Materials and methods**

256 ***in silico* analysis of the human oral cavity gene cassettes and the construction of pCC1BAC-*lacZα*-GC-
257 *gusA* constructs.**

258 All of the ORF-less GCs and some of the GCs containing ORFs, identified in the previous study [28],
259 were predicted for putative promoter sequences by using the web-based software BPROM in the
260 Softberry package [49].

261 **Construction of pUC19-GC-*gusA* and pCC1BAC-*lacZα*-GC-*gusA* constructs.**

262 To determine the promoter activity of the selected GCs, the constructs were initially cloned into the
263 EcoRI and KpnI restriction sites on pUC19-Ptet(M)-*gusA* plasmid [50]. The selected GCs were amplified
264 from the pGEM-T easy vector containing the GC amplicon from a previous study [28], as shown in
265 Supplementary Fig 1, by using primer listed in Supplementary Table 2.

266 Due to a significant difference in the plasmid copy number in some constructs of the pUC19-GC-*gusA*,
267 new constructs were prepared based on a low copy number CopyControl™ pCC1BAC™ vector
268 (Epicenter, UK) as it will be maintained in *E. coli* cell as one plasmid per cell and enable us to control
269 the plasmid copy number to be similar between each construct. The construct was designed to contain
270 two reporter genes, β-galactosidase *lacZα* and β-glucuronidase *gusA* genes (Fig 2 and Supplementary
271 Fig 2). As *lacZα* on pCC1BAC contained T7 promoter sequence, it was first deleted by using Q5® Site-
272 Directed Mutagenesis Kit (New England Biolabs, UK). The backbone of pCC1BAC was amplified with
273 pCC1BAC-del*LacZ*-F1 and pCC1BAC-del*LacZ*-R1, and the amplified products were treated with a
274 Kinase-Ligase-DpnI (KLD) enzyme mix, following the instructions from the manufacturer. The KLD-
275 treated product was then transformed into *E. coli* α-Select Silver Efficiency competent cells (Bioline,
276 UK) following the instructions from the manufacturer. The pCC1BAC-del*LacZ* plasmid was then
277 extracted from *E. coli* by using QIAprep Spin Miniprep Kit (Qiagen, UK), following the manufacturer's
278 instructions.

279 The *lacZα* reporter gene was amplified from the pUC19 vector (New England Biolabs, UK) with *LacZ*-
280 *F1* and *LacZ-R1* primers. For *gusA* reporter gene, it was amplified from pUC19-*Ptet(M)-gusA* with *gusA*-
281 *F1* and *gusA-R1* primers. A bidirectional terminator, modified from *lux* operon, was added to *LacZ-F1*
282 and *gusA-R1* primers, resulting in two bi-directional terminators flanking the *lacZα-gusA* reporter
283 genes [51]. This was done to prevent transcriptional read-through from the promoter in the plasmid
284 backbone and to also prevent promoters from the inserts interfering with the expression of genes on
285 the plasmid backbone. The *lacZα* and *gusA* amplicons were digested with *Nsil* restriction enzymes
286 (New England Biolabs, UK) and ligated together by using T4 DNA ligase (New England Biolabs, UK). The
287 *lacZα-gusA* ligated product was directionally cloned into the pCC1BAC-del*LacZ* plasmid by digesting
288 them with *AatII* and *AvrII* restriction enzymes and ligated together, resulting in pCC1BAC-*lacZα-gusA*
289 plasmid.

290 The selected GCs were amplified from each pUC19-GC-*gusA* constructs by using primer listed in
291 Supplementary Table 1. The amplicons were double digested with *Nsil* and *Nhel* and directionally
292 cloned into a pre-digested pCC1BAC-*lacZα-gusA* plasmid, then transformed into *E. coli* α -Select Silver
293 Efficiency competent cells.

294 **Determination of β -glucuronidase enzymatic activity.**

295 The β -glucuronidase enzymatic assay was performed to measure the promoter activity based on the
296 expression of *gusA*, following the protocol described previously with some modifications [52]. The
297 overnight cultures of *E. coli* containing the reporter constructs were prepared in LB broth
298 supplemented with 12.5 μ g/mL chloramphenicol. The OD₆₀₀ of each overnight culture was measured.
299 An aliquot of 1 mL of the overnight culture was centrifuged at 3000 $\times g$ for 10 min and discarded the
300 supernatant. The cell pellets were incubated at -70°C for 1 hr and resuspended in 800 μ l of pH 7 Z
301 buffer (50 mM 2-mercaptoethanol, 40 mM NaH₂PO₄·H₂O, 60 mM Na₂HPO₄·7H₂O, 10 mM KCl, and 1 mM
302 MgSO₄·7H₂O) and 8 μ l of toluene. The mixture was transferred to a 2 ml cryotube containing glass
303 beads (150–212 μ m in diameter) (Sigma, UK) and vortexed twice for 5 min each with an incubation on

304 ice for 1 min in between. The glass beads were then removed by centrifugation at 3000 x g for 3 min.

305 One-hundred microliters of cell lysate were mixed with 700 μ l of Z-buffer, then incubated at 37°C for

306 5min. One-hundred sixty microliters of 6 mM ρ -nitrophenyl- β -D-glucuronide (PNPG) was then added

307 to the reaction and incubated at 37°C for 5 min. The reactions were stopped by adding 400 μ l of 1 M

308 Na_2CO_3 and centrifuged at 3000 x g for 10 min to remove cell debris and glass beads. The absorbance

309 of the supernatant was measured with a spectrophotometer at the wavelength of 405 nm. Three

310 biological replicates of the β -glucuronidase enzymatic assay were performed. The β -glucuronidase

311 Miller units were calculated from
$$\frac{A_{405} \times 1000}{OD_{600} \times time \text{ (min)} \times 1.25 \times volume(\text{mL})}$$
 [53].

312 **Statistical analysis.**

313 The average and standard deviation of β -glucuronidase concentration were calculated from three

314 biological replicates, which were used for the columns and error bars in figure 3, respectively. The

315 statistical comparisons between the negative control (pCC1BAC-*lacZ-gusA*) to the other constructs

316 were performed by using ordinary one-way ANOVA with either Dunnett's post-hoc test (to compare

317 each construct with a negative control) or Bonferroni's post-hoc test (to compare constructs between

318 themselves). The groups with statistically significantly difference from the control had the *p*-value of

319 less than 0.05.

320 **Recovery of promoter-containing GCs from the human oral metagenome**

321 The integron GCs were amplified from the human oral metagenome by using as described previously

322 with SUPA4-Nsil-SUPA4-Nhel and MARS5-Nsil-MARS2-Nhel primers [28]. The human oral

323 metagenomic DNA was previously extracted from the saliva samples collected from 11 volunteers in

324 the Department of Microbial Diseases, UCL Eastman Dental Institute [28]. The Ethical approval for the

325 collection and uses of saliva samples was obtained from University College London (UCL) Ethics

326 Committee (project number 5017/001).

327 The amplified products were purified and digested with NsI and NheI and ligated with the pre-digested
328 pCC1BAC-*lacZα-gusA* plasmid. The ligated products were transformed into *E. coli* α-Select Silver
329 Efficiency competent cells by heat shock. Cells were spread on LB agar supplemented with 12.5 μg/mL
330 chloramphenicol, 80 μg/mL X-gal, 50μM IPTG, and 70 μg/mL 4-methylumbelliferyl-β-D-glucuronide
331 (MUG). After incubation at 37°C for 18 hr, the colonies with β-galactosidase activity from *lacZ* was
332 detected by blue-white screening on the agar plate, and the β-glucuronidase activity from *gusA* was
333 visualisation under UV light. Colonies exhibiting either activity were selected and subcultured on fresh
334 agar plates. The inserts were amplified by colony PCR using *lacZ-F2* and *gusA-F2* primers and
335 sequenced by sequencing service from Genewiz (Genewiz, UK).

336 **Sequence analysis and nomenclature of promoter-containing GC amplicons.**

337 DNA sequences were visualised and analysed by using BioEdit version 7.2.0
338 (<http://www.mbio.ncsu.edu/bioedit/bioedit.html>). The contigs from sequencing reactions were
339 combined by using CAP contig function in the software. The sequences were then matched to the
340 nucleotide and protein database by using BlastN and BlastX from the National Centre for
341 Biotechnology Information (NCBI), respectively. The criteria for the sequence analysis of integron GC
342 were the same as described in the previous study [28]. Two additional criteria for the verification of
343 GCs detected with pCC1BAC-*lacZα-gusA* were included. Any clones containing incomplete GCs, caused
344 by digestion at internal NsI and NheI restriction sites on the GCs, were excluded from the dataset.
345 Also chimeric inserts, which were the ligation products between digested amplicons, were also
346 excluded.

347 The promoter-containing GCs were named as described in the previous study [28]. The first and second
348 letters represented the forward primer and reverse primer used in the amplification. The third letter
349 represents the source of the human oral metagenomic DNA which is U for the United Kingdom. This
350 was followed by term “Pro”, indicating the presence of promoter activity, and the number of the clone.
351 For instance, SSU-Pro-1 stands for the first clone amplified from the UK oral metagenome by using

352 SUPA3 and SUPA4 primers. The sequences of these GCs were deposited in the DNA database with the
353 accession number from MH536747 to MH536769.

354 **Conflict of interest**

355 Nothing to Declare

356 **References**

357 1. Hall RM, Collis CM. Antibiotic resistance in gram-negative bacteria: the role of gene cassettes
358 and integrons. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer
359 chemotherapy. 1998;1(2):109-19. Epub 2006/08/15. PubMed PMID: 16904397.

360 2. Cambray G, Guerout AM, Mazel D. Integrons. Annual review of genetics. 2010;44:141-66. Epub
361 2010/08/17. doi: 10.1146/annurev-genet-102209-163504. PubMed PMID: 20707672.

362 3. Michael CA, Gillings MR, Holmes AJ, Hughes L, Andrew NR, Holley MP, et al. Mobile gene
363 cassettes: a fundamental resource for bacterial evolution. The American naturalist. 2004;164(1):1-12.
364 Epub 2004/07/22. doi: 10.1086/421733. PubMed PMID: 15266366.

365 4. Escudero JA, Loot* C, Nivina A, Mazel D. The Integron: Adaptation On Demand. Microbiology
366 spectrum. 2015;3(2). doi: doi:10.1128/microbiolspec.MDNA3-0019-2014.

367 5. Boucher Y, Labbate M, Koenig JE, Stokes HW. Integrons: mobilizable platforms that promote
368 genetic diversity in bacteria. Trends in microbiology. 2007;15. doi: 10.1016/j.tim.2007.05.004.

369 6. Wu Y-W, Doak TG, Ye Y. The gain and loss of chromosomal integron systems in the *Treponema*
370 species. BMC evolutionary biology. 2013;13(1):1-9. doi: 10.1186/1471-2148-13-16.

371 7. Mazel D. Integrins: agents of bacterial evolution. *Nature reviews*. 2006;4.

372 8. Gillings MR. Integrins: past, present, and future. *Microbiology and molecular biology reviews*
373 : MMBR. 2014;78(2):257-77. Epub 2014/05/23. doi: 10.1128/mmbr.00056-13. PubMed PMID:
374 24847022; PubMed Central PMCID: PMCPMC4054258.

375 9. Collis CM, Hall RM. Gene cassettes from the insert region of integrins are excised as covalently
376 closed circles. *Molecular microbiology*. 1992;6(19):2875-85. Epub 1992/10/01. PubMed PMID:
377 1331702.

378 10. Partridge SR, Recchia GD, Scaramuzzi C, Collis CM, Stokes HW, Hall RM. Definition of the *attI1*
379 site of class 1 integrins. *Microbiology (Reading, England)*. 2000;146 (Pt 11):2855-64. Epub
380 2000/11/07. PubMed PMID: 11065364.

381 11. Collis CM, Recchia GD, Kim M-J, Stokes HW, Hall RM. Efficiency of Recombination Reactions
382 Catalyzed by Class 1 Integron Integrase IntI1. *Journal of bacteriology*. 2001;183(8):2535-42. doi:
383 10.1128/JB.183.8.2535-2542.2001. PubMed PMID: PMC95170.

384 12. Guerin E, Cambray G, Sanchez-Alberola N, Campoy S, Erill I, Da Re S, et al. The SOS response
385 controls integron recombination. *Science (New York, NY)*. 2009;324(5930):1034. Epub 2009/05/23.
386 doi: 10.1126/science.1172914. PubMed PMID: 19460999.

387 13. Baharoglu Z, Bikard D, Mazel D. Conjugative DNA transfer induces the bacterial SOS response
388 and promotes antibiotic resistance development through integron activation. *PLOS Genetics*.
389 2010;6(10):e1001165. doi: 10.1371/journal.pgen.1001165.

390 14. Baharoglu Z, Krin E, Mazel D. Connecting environment and genome plasticity in the
391 characterization of transformation-induced SOS regulation and carbon catabolite control of the *Vibrio*
392 *cholerae* integron integrase. *Journal of bacteriology*. 2012;194(7):1659-67. Epub 2012/01/31. doi:
393 10.1128/jb.05982-11. PubMed PMID: 22287520; PubMed Central PMCID: PMCPMC3302476.

394 15. Baharoglu Z, Mazel D. *Vibrio cholerae* triggers SOS and mutagenesis in response to a wide
395 range of antibiotics: a route towards multiresistance. *Antimicrobial agents and chemotherapy*.
396 2011;55(5):2438-41. Epub 2011/02/09. doi: 10.1128/aac.01549-10. PubMed PMID: 21300836;
397 PubMed Central PMCID: PMCPMC3088271.

398 16. Little JW. Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease.
399 *Biochimie*. 1991;73(4):411-21. Epub 1991/04/01. PubMed PMID: 1911941.

400 17. Harms K, Starikova I, Johnsen PJ. Costly Class-1 integrons and the domestication of the the
401 functional integrase. *Mobile genetic elements*. 2013;3(2):e24774. Epub 2013/08/06. doi:
402 10.4161/mge.24774. PubMed PMID: 23914313; PubMed Central PMCID: PMCPMC3681742.

403 18. Starikova I, Harms K, Haugen P, Lunde TT, Primicerio R, Samuelsen O, et al. A trade-off between
404 the fitness cost of functional integrases and long-term stability of integrons. *PLoS Pathog*.
405 2012;8(11):e1003043. Epub 2012/12/05. doi: 10.1371/journal.ppat.1003043. PubMed PMID:
406 23209414; PubMed Central PMCID: PMCPMC3510236.

407 19. Coyne S, Guigon G, Courvalin P, Perichon B. Screening and quantification of the expression of
408 antibiotic resistance genes in *Acinetobacter baumannii* with a microarray. *Antimicrobial agents and*
409 *chemotherapy*. 2010;54(1):333-40. Epub 2009/11/04. doi: 10.1128/aac.01037-09. PubMed PMID:
410 19884373; PubMed Central PMCID: PMCPMC2798560.

411 20. Stokes HW, Hall RM. Sequence analysis of the inducible chloramphenicol resistance
412 determinant in the Tn1696 integron suggests regulation by translational attenuation. *Plasmid*.
413 1991;26(1):10-9. Epub 1991/07/01. PubMed PMID: 1658833.

414 21. da Fonseca EL, Vicente AC. Functional characterization of a Cassette-specific promoter in the
415 class 1 integron-associated *qnrVC1* gene. *Antimicrobial agents and chemotherapy*. 2012;56(6):3392-4.
416 Epub 2012/03/07. doi: 10.1128/aac.00113-12. PubMed PMID: 22391535; PubMed Central PMCID:
417 PMCPMC3370728.

418 22. Szekeres S, Dauti M, Wilde C, Mazel D, Rowe-Magnus DA. Chromosomal toxin-antitoxin loci
419 can diminish large-scale genome reductions in the absence of selection. *Molecular microbiology*.
420 2007;63(6):1588-605. Epub 2007/03/21. doi: 10.1111/j.1365-2958.2007.05613.x. PubMed PMID:
421 17367382.

422 23. Biskri L, Mazel D. Erythromycin esterase gene *ere(A)* is located in a functional gene cassette in
423 an unusual class 2 integron. *Antimicrobial agents and chemotherapy*. 2003;47(10):3326-31. Epub
424 2003/09/25. PubMed PMID: 14506050; PubMed Central PMCID: PMCPMC201170.

425 24. Stokes HW, Holmes AJ, Nield BS, Holley MP, Nevalainen KM, Mabbott BC, et al. Gene cassette
426 PCR: sequence-independent recovery of entire genes from environmental DNA. *Applied and
427 environmental microbiology*. 2001;67(11):5240-6. Epub 2001/10/27. doi: 10.1128/aem.67.11.5240-
428 5246.2001. PubMed PMID: 11679351; PubMed Central PMCID: PMCPMC93296.

429 25. Elsaied H, Stokes HW, Nakamura T, Kitamura K, Fuse H, Maruyama A. Novel and diverse
430 integron integrase genes and integron-like gene cassettes are prevalent in deep-sea hydrothermal
431 vents. *Environmental microbiology*. 2007;9(9):2298-312. Epub 2007/08/10. doi: 10.1111/j.1462-
432 2920.2007.01344.x. PubMed PMID: 17686026.

433 26. Koenig JE, Sharp C, Dlutek M, Curtis B, Joss M, Boucher Y, et al. Integron Gene Cassettes and
434 Degradation of Compounds Associated with Industrial Waste: The Case of the Sydney Tar Ponds. PloS
435 one. 2009;4(4):e5276. doi: 10.1371/journal.pone.0005276.

436 27. Elsaied H, Stokes HW, Kitamura K, Kurusu Y, Kamagata Y, Maruyama A. Marine integrons
437 containing novel integrase genes, attachment sites, *attI*, and associated gene cassettes in polluted
438 sediments from Suez and Tokyo Bays. The ISME journal. 2011;5(7):1162-77. Epub 2011/01/21. doi:
439 10.1038/ismej.2010.208. PubMed PMID: 21248857; PubMed Central PMCID: PMCPMC3146285.

440 28. Tansirichaiya S, Rahman MA, Antepowicz A, Mullany P, Roberts AP. Detection of Novel
441 Integrons in the Metagenome of Human Saliva. PloS one. 2016;11(6):e0157605. doi:
442 10.1371/journal.pone.0157605.

443 29. Chen X-L, Tang D-J, Jiang R-P, He Y-Q, Jiang B-L, Lu G-T, et al. sRNA-Xcc1, an integron-encoded
444 transposon- and plasmid-transferred trans-acting sRNA, is under the positive control of the key
445 virulence regulators HrpG and HrpX of *Xanthomonas campestris* pathovar *campestris*. RNA Biology.
446 2011;8(6):947-53. doi: 10.4161/rna.8.6.16690.

447 30. Coleman N, Tetu S, Wilson N, Holmes A. An unusual integron in *Treponema denticola*.
448 Microbiology (Reading, England). 2004;150(Pt 11):3524-6. Epub 2004/11/06. doi:
449 10.1099/mic.0.27569-0. PubMed PMID: 15528643.

450 31. Brett PJ, Burtnick MN, Fenno JC, Gherardini FC. *Treponema denticola* TroR is a manganese-
451 and iron-dependent transcriptional repressor. Molecular microbiology. 2008;70(2):396-409. Epub
452 2008/09/03. doi: 10.1111/j.1365-2958.2008.06418.x. PubMed PMID: 18761626; PubMed Central
453 PMCID: PMCPMC2628430.

454 32. Limberger RJ, Slivienski LL, Izard J, Samsonoff WA. Insertional inactivation of *Treponema*
455 *denticola tap1* results in a nonmotile mutant with elongated flagellar hooks. *Journal of bacteriology*.
456 1999;181(12):3743-50. Epub 1999/06/15. PubMed PMID: 10368149; PubMed Central PMCID:
457 PMCPMC93852.

458 33. Paget MSB, Helmann JD. The σ^{70} family of sigma factors. *Genome Biology*. 2003;4(1):203-.
459 PubMed PMID: PMC151288.

460 34. Koo B-M, Rhodius VA, Campbell EA, Gross CA. Mutational analysis of *Escherichia coli* σ^{28} and
461 its target promoters reveal recognition of a composite -10 region, comprised of an “extended -10
462 motif” and a core-10 element. *Molecular microbiology*. 2009;72(4):830-43. doi: 10.1111/j.1365-
463 2958.2009.06691.x. PubMed PMID: PMC2756079.

464 35. Stokes HW, O'Gorman DB, Recchia GD, Parsekhian M, Hall RM. Structure and function of 59-
465 base element recombination sites associated with mobile gene cassettes. *Molecular microbiology*.
466 1997;26(4):731-45. doi: 10.1046/j.1365-2958.1997.6091980.x.

467 36. Boucher Y, Nesbø CL, Joss MJ, Robinson A, Mabbutt BC, Gillings MR, et al. Recovery and
468 evolutionary analysis of complete integron gene cassette arrays from *Vibrio*. *BMC evolutionary*
469 *biology*. 2006;6(1):3. doi: 10.1186/1471-2148-6-3.

470 37. Li X, Shi L, Yang W, Li L, Yamasaki S. New array of *aacA4-catB3-dfrA1* gene cassettes and a
471 noncoding cassette from a class-1-integron-positive clinical strain of *Pseudomonas aeruginosa*.
472 *Antimicrobial agents and chemotherapy*. 2006;50(6):2278-9. Epub 2006/05/26. doi:
473 10.1128/aac.01378-05. PubMed PMID: 16723608; PubMed Central PMCID: PMCPMC1479156.

474 38. Michael CA, Labbate M. Gene cassette transcription in a large integron-associated array. *BMC*
475 *genetics*. 2010;11:82. Epub 2010/09/17. doi: 10.1186/1471-2156-11-82. PubMed PMID: 20843359;
476 PubMed Central PMCID: PMCPMC2945992.

477 39. Papagiannitsis CC, Tzouvelekis LS, Miriagou V. Relative strengths of the class 1 integron
478 promoter hybrid 2 and the combinations of strong and hybrid 1 with an active p2 promoter.
479 *Antimicrobial agents and chemotherapy*. 2009;53(1):277-80. Epub 2008/11/13. doi:
480 10.1128/aac.00912-08. PubMed PMID: 19001114; PubMed Central PMCID: PMCPMC2612174.

481 40. Lévesque C, Brassard S, Lapointe J, Roy PH. Diversity and relative strength of tandem
482 promoters for the antibiotic-resistance genes of several integron. *Gene*. 1994;142(1):49-54. doi:
483 [http://dx.doi.org/10.1016/0378-1119\(94\)90353-0](http://dx.doi.org/10.1016/0378-1119(94)90353-0).

484 41. Singh SS, Singh N, Bonocora RP, Fitzgerald DM, Wade JT, Grainger DC. Widespread suppression
485 of intragenic transcription initiation by H-NS. *Genes & development*. 2014;28(3):214-9. Epub
486 2014/01/23. doi: 10.1101/gad.234336.113. PubMed PMID: 24449106; PubMed Central PMCID:
487 PMCPMC3923964.

488 42. Jové T, Da Re S, Denis F, Mazel D, Ploy M-C. Inverse correlation between promoter strength
489 and excision activity in class 1 integrons. *PLOS Genetics*. 2010;6(1):e1000793. doi:
490 10.1371/journal.pgen.1000793.

491 43. Guerin E, Jove T, Tabesse A, Mazel D, Ploy MC. High-level gene cassette transcription prevents
492 integrase expression in class 1 integrons. *Journal of bacteriology*. 2011;193(20):5675-82. Epub
493 2011/08/23. doi: 10.1128/jb.05246-11. PubMed PMID: 21856858; PubMed Central PMCID:
494 PMCPMC3187215.

495 44. Jacquier H, Zaoui C, Sanson-le Pors MJ, Mazel D, Bercot B. Translation regulation of integrons
496 gene cassette expression by the *attC* sites. *Molecular microbiology*. 2009;72(6):1475-86. Epub
497 2009/06/03. doi: 10.1111/j.1365-2958.2009.06736.x. PubMed PMID: 19486293.

498 45. Collis CM, Hall RM. Expression of antibiotic resistance genes in the integrated cassettes of
499 integrons. *Antimicrobial agents and chemotherapy*. 1995;39(1):155-62. Epub 1995/01/01. PubMed
500 PMID: 7695299; PubMed Central PMCID: PMCPMC162502.

501 46. Guerout AM, Iqbal N, Mine N, Ducos-Galand M, Van Melderen L, Mazel D. Characterization of
502 the *phd-doc* and *ccd* toxin-antitoxin cassettes from *Vibrio* superintegrons. *Journal of bacteriology*.
503 2013;195(10):2270-83. Epub 2013/03/12. doi: 10.1128/jb.01389-12. PubMed PMID: 23475970;
504 PubMed Central PMCID: PMCPMC3650543.

505 47. Rowe-Magnus DA, Guerout AM, Biskri L, Bouige P, Mazel D. Comparative analysis of
506 superintegrons: engineering extensive genetic diversity in the Vibrionaceae. *Genome research*.
507 2003;13(3):428-42. Epub 2003/03/06. doi: 10.1101/gr.617103. PubMed PMID: 12618374; PubMed
508 Central PMCID: PMCPMC430272.

509 48. Van Melderen L, Saavedra De Bast M. Bacterial toxin-antitoxin systems: more than selfish
510 entities? *PLOS genetics*. 2009;5(3):e1000437. Epub 2009/03/28. doi: 10.1371/journal.pgen.1000437.
511 PubMed PMID: 19325885; PubMed Central PMCID: PMCPMC2654758.

512 49. Solovyev V, Salamov A. Automatic Annotation of Microbial Genomes and Metagenomic
513 Sequences. In: Li RW, editor. In *Metagenomics and its Applications in Agriculture, Biomedicine and*
514 *Environmental Studies*: Nova Science Publishers; 2011. p. 61-78.

515 50. Seier-Petersen MA, Jasni A, Aarestrup FM, Vigre H, Mullany P, Roberts AP, et al. Effect of
516 subinhibitory concentrations of four commonly used biocides on the conjugative transfer of Tn916 in
517 *Bacillus subtilis*. The Journal of antimicrobial chemotherapy. 2014;69(2):343-8. Epub 2013/10/05. doi:
518 10.1093/jac/dkt370. PubMed PMID: 24092655; PubMed Central PMCID: PMCPMC3886932.

519 51. Swartzman A, Kapoor S, Graham AF, Meighen EA. A new *Vibrio fischeri lux* gene precedes a
520 bidirectional termination site for the *lux* operon. Journal of bacteriology. 1990;172(12):6797-802.
521 Epub 1990/12/01. PubMed PMID: 2254256; PubMed Central PMCID: PMCPMC210795.

522 52. Dupuy B, Sonenshein AL. Regulated transcription of *Clostridium difficile* toxin genes. Molecular
523 microbiology. 1998;27(1):107-20. doi: 10.1046/j.1365-2958.1998.00663.x.

524 53. Miller JH. Experiments in molecular genetics. NY: Cold Spring Harbor Laboratory Press: Cold
525 Spring Harbor; 1972.

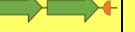
526 **Tables**

527 **Table 1;** The putative promoters for ORF-less GCs and GCs with an ORF (SSU17 and MMB3) predicted
 528 using BPROM.

Clones	Strand	-10 box	-35 box	Score		
				-10 box	-35 box	Linear discriminant function (LDF)* (Overall score)
TMB4	+	AGGTATAAT	ATAAGA	89	-10	9.78
	-	CATTATTTT	TTGACA	41	66	7.60
SSU9	+	AATTATAAT	TAAAAAA	74	0	7.04
	-	TAGTATAAT	TTTATT	80	34	7.11
MMU2	+	AATTATAAT	TTAAAAA	74	37	8.36
	-	TAGTATAAT	TTTATT	80	34	8.90
MMU11	+	ATGTAAAAT	TTGCTG	75	47	11.34
	+	AACTATACT	AGGAAA	59	-7	5.99
	-	AAATAAAAT	TTTTCA	56	34	6.96
	-	CTATAAATT	TTTCAA	44	36	3.24
MMU19	+	AGGTATAAT	TAGAAA	89	23	9.07
	+	TTGAAAAAT	TTGCGG	44	32	3.43
	-	TATTATAAT	TTTCCT	79	37	9.10
MMU23	+	AATTATAAT	TAAAAG	74	-6	9.84
	+	TTTTATTAT	TTGATG	72	52	6.05
	-	TATTATAAT	TTTCCT	79	37	8.66
	-	TAGTATAAT	TTTATT	80	34	8.05
MMB2	+	AATTATAAT	TATAAG	74	-2	8.71
	+	TATTATAAT	TTGATG	79	52	7.88
	-	TATTATAAT	TTTCCT	79	37	9.10

Clones	Strand	-10 box	-35 box	Score		
				-10 box	-35 box	Linear discriminant function (LDF)* (Overall score)
	-	TATTATAAT	TTTATT	79	34	8.84
MMB5	+	AATTATAAT	TTAAAA	74	37	8.36
	-	TAGTATAAT	TTTATT	80	34	7.95
MMB20	+	AATTATAAT	TAAAAG	74	-6	9.09
	-	TATTATAAT	TTTCCT	79	37	9.10
MMB32	+	TATTATAAT	TTGATG	79	52	6.28
	+	AGATATAAA	GTGTAA	39	14	4.84
	-	TATTATAAT	TTGATT	79	53	6.61
	-	TTTTATTTT	TTAAAA	52	37	5.11
MMB36	+	AATTATAAT	TTAAAA	74	37	6.94
	+	TATTATAAT	TTGATG	79	52	6.45
	-	TATTATAAT	TTTATT	79	34	7.44
	-	TTTTAAAAT	TTGACT	79	61	6.13
MMB37	+	AATTATAAT	TAAAAG	74	-6	9.11
	+	TTATATAAT	TTGATG	75	52	8.55
	-	TAGTATTAT	TTTATT	66	34	10.48
	-	TATTATAAT	TTTCCT	79	37	9.10
SSU17	+	CTTTATAAT	ATGAAT	82	25	7.80
	+	TGATAAAAT	GTGAAA	75	27	4.62
	-	TGATATAAT	TTTATT	82	34	9.34
	-	TGATTAGAT	TTTATG	21	33	5.10
MMB3	+	CTGTATATT	TTGATA	63	58	6.74
	+	ATTTATGAT	ATGAAA	65	30	5.18
	-	ATGTATTGT	TTGATG	44	52	6.64

Clones	Strand	-10 box	-35 box	Score		
				-10 box	-35 box	Linear discriminant function (LDF)* (Overall score)
	-	GCATATAAT	TTCTCT	65	28	4.75


* The LDF takes into account motifs found in promoters: -10 and -35 boxes, a distance between -10 and -35 boxes, and frequencies of certain nucleotides represented in transcription start sites. It can be approximated as $\log(\text{likelihood of a site being promoter})/\text{likelihood of a site not being promoter})$ [49].
** The selected samples for the enzymatic assay are highlighted in yellow.

529

530 **Table 2.** Characterisation of the human oral integron GCs containing promoter sequences detected by pBiDiPD.

Gene cassettes	Primer pair	Cassette Size (bp)	Orientation*	BlastN		BlastX				Promoter activity		Accesion number
				Closest homologue	Percentage identity (%)/ Coverage (%)	Closest homologue	ORF size (bp)	Percentage identity (%)/Coverage (%)	Accession number of the homologous proteins (BlastX)	Sense Strand (<i>gusA</i>)	Antisense strand (<i>lacZ</i>)	
SSU-Pro-7	SUPA3-SUPA4	1001		SSU22	98/95	Prevent-host-death protein (Phd_YefM antitoxin superfamily) [<i>Treponema vincentii</i>]	264	97/100	WP_006188308.1	Y	N	MH536747
						XRE family transcriptional regulator [<i>Treponema vincentii</i>]	441	98/100	WP_006188306.1			
SSU-Pro-9	SUPA3-SUPA4	834		MMB3	98/99	Hypothetical protein (antitoxin, ribbon-helix-helix domain protein) [<i>Treponema putidum</i>]	246	67/100	WP_044978234.1	Y	N	MH536748
						Twitching motility protein PiT (PIN toxin domain) [<i>Treponema putidum</i>]	414	71/100	AIN93467.1			
SSU-Pro-13	SUPA3-SUPA4	855		MMB39	98/99	Toxin RelE [<i>Treponema medium</i>]	357	95/100	WP_016522532.1	Y	N	MH536749
						Transcriptional regulator (Antitoxin, XRE family) [<i>Treponema medium</i>]	330	95/100	WP_016522533.1			
SSU-Pro-16	SUPA3-SUPA4	925		SSU28	98/100	AbrB/MazE/SpoVT family DNA-binding domain-containing protein (Antitoxin) [<i>Treponema putidum</i>]	231	96/100	WP_044979179.1	Y	N	MH536750

Gene cassettes	Primer pair	Cassette Size (bp)	Orientation*	BlastN		BlastX				Promoter activity		Accession number
				Closest homologue	Percentage identity (%)/ Coverage (%)	Closest homologue	ORF size (bp)	Percentage identity (%)/Coverage (%)	Accession number of the homologous proteins (BlastX)	Sense Strand (<i>gusA</i>)	Antisense strand (<i>lacZ</i>)	
						Endoribonuclease MazF (Toxin) [<i>Treponema denticola</i>]	336	99/100	WP_010694033.1			
SSU-Pro-20	SUPA3-SUPA4	1263		MMU28	77/42	Prevent-host-death protein (Phd_YefM antitoxin superfamily) [<i>Treponema sp. JC4</i>]	249	75/88.3	WP_009103386.1	Y	N	MH536751
						Plasmid stabilization protein (ParE toxin superfamily) [<i>Treponema sp. JC4</i>]	147	57/43.8	WP_009104800.1			
SSU-Pro-24	SUPA3-SUPA4	425		SSU9	99/100	-	-	-	-	Y	Y	MH536752
SSU-Pro-27	SUPA3-SUPA4	753		<i>Treponema putidum</i> strain OMZ 758	93/100	BrnT family toxin [<i>Treponema sp.</i>]	273	99/100	WP_002666393.1	Y	N	MH536753
						CopG family transcriptional regulator (BrnA antitoxin) [<i>Treponema denticola</i>]	288	99/100	WP_044909778.1			
SSU-Pro-32	SUPA3-SUPA4	972		No significant similarity found.	-	ReIE/ParE family toxin [<i>Treponema denticola</i>]	354	98/100	WP_002683264.1	Y	N	MH536754
						XRE family transcriptional regulator [<i>Treponema denticola</i>]	273	100/100	WP_002683262.1			

Gene cassettes	Primer pair	Cassette Size (bp)	Orientation*	BlastN		BlastX				Promoter activity		Accession number
				Closest homologue	Percentage identity (%)/ Coverage (%)	Closest homologue	ORF size (bp)	Percentage identity (%)/Coverage (%)	Accession number of the homologous proteins (BlastX)	Sense Strand (<i>gusA</i>)	Antisense strand (<i>lacZ</i>)	
SSU-Pro-34	SUPA3-SUPA4	832		SSU5	99/100	Hypothetical protein (antitoxin, ribbon-helix-helix domain protein) [<i>Treponema putidum</i>]	246	67/100	WP_044978234.1	Y	N	MH536755
						PIN domain-containing protein [<i>Treponema putidum</i>]	414	71/100	WP_044978236.1			
SSU-Pro-39	SUPA3-SUPA4	1137		MMU25	99/99	Hypothetical protein [uncultured bacterium]	462	99/100	ANC55535.1	Y	N	MH536756
						Hypothetical protein [<i>Treponema maltophilum</i>]	213	88/100	WP_016526060.1			
						PemK/MazF family toxin [<i>Fibrobacter sp. UWCM</i>]	342	80/100	WP_022932935.1			
SSU-Pro-46	SUPA3-SUPA4	971		No significant similarity found	-	Hypothetical protein [<i>Treponema socranskii</i>]	267	80/100	WP_021329686.1	Y	N	MH536757
						Hypothetical protein [<i>Treponema socranskii</i>]	228	84/100	WP_021329641.1			
						DUF4160 domain-containing protein [<i>Treponema sp. C6A8</i>]	276	67/100	WP_027729334.1			
SSU-Pro-65	SUPA3-SUPA4	811		<i>Treponema sp. OMZ 838</i>	91/21	AbdB/MazE/SpoVT family DNA-binding domain-containing protein (Antitoxin) [<i>Treponema denticola</i>]	228	93/100	WP_010693782.1	Y	N	MH536758

Gene cassettes	Primer pair	Cassette Size (bp)	Orientation*	BlastN		BlastX				Promoter activity		Accession number
				Closest homologue	Percentage identity (%)/ Coverage (%)	Closest homologue	ORF size (bp)	Percentage identity (%)/Coverage (%)	Accession number of the homologous proteins (BlastX)	Sense Strand (<i>gusA</i>)	Antisense strand (<i>lacZ</i>)	
						VapC family toxin [<i>Treponema denticola</i>]	402	93/100	WP_010693784.1			
MMU-Pro-4	MARS5-MARS2	520		MMU2	99/100	-	-	-	-	Y	Y	MH536759
MMU-Pro-5	MARS5-MARS2	983		<i>Treponema putidum</i> strain OMZ 758	94/78	Prevent-host-death protein (Phd_YefM antitoxin superfamily) [<i>Treponema denticola</i>]	240	98/98.8	WP_002669519.1	Y	Y	MH536760
						ReIE/StbE family addiction module toxin [<i>Treponema denticola</i>]	318	94/100	WP_002688980.1			
MMU-Pro-6	MARS5-MARS2	737		MMB36	86/100	-	-	-	-	N	Y	MH536761
MMU-Pro-18	MARS5-MARS2	634		MMB37	95/100	-	-	-	-	Y	N	MH536762
MMU-Pro-22	MARS5-MARS2	431		MMU19	91/100	-	-	-	-	Y	Y	MH536763
MMU-Pro-24	MARS5-MARS2	904		No significant similarity found	-	Universal stress protein [<i>Marinobacter sp.</i>]	348	30/54.1	WP_008177208.1	Y	Y	MH536764
						Hypothetical protein [<i>Methylobacter tundripaludum</i>]	213	79/100	WP_031438379.1			
						Prevent-host-death protein [<i>Treponema pedis</i>]	84	76/27.8	WP_024469914.1			

Gene cassettes	Primer pair	Cassette Size (bp)	Orientation*	BlastN		BlastX				Promoter activity		Accession number
				Closest homologue	Percentage identity (%)/Coverage (%)	Closest homologue	ORF size (bp)	Percentage identity (%)/Coverage (%)	Accession number of the homologous proteins (BlastX)	Sense Strand (<i>gusA</i>)	Antisense strand (<i>lacZ</i>)	
MMU-Pro-31	MARS5-MARS2	574		MMB5	88/70	-	-	-	-	Y	N	MH536765
MMU-Pro-48	MARS5-MARS2	817		<i>Treponema sp.</i> OMZ 838	91/25	AbrB/MazE/SpoVT family DNA-binding domain-containing protein [<i>Treponema denticola</i>]	228	93/100	WP_010693782.1	Y	N	MH536766
						VapC family toxin [<i>Treponema denticola</i>]	402	93/100	WP_010693784.1			
MMU-Pro-53	MARS5-MARS2	430		No significant similarity found	-	-	-	-	-	Y	Y	MH536767
MMU-Pro-63	MARS5-MARS2	927		SSU8	99/99	Hypothetical protein [<i>Treponema denticola</i>]	531	98/93.7	WP_002692239.1	N	Y	MH536768
MMU-Pro-65	MARS5-MARS2	896		MMU27	99/100	Hypothetical protein [uncultured bacterium]	399	99/84.2	ANC55539.1	N	Y	MH536769
						Hypothetical protein [uncultured bacterium]	357	99/100	ANC55540.1			

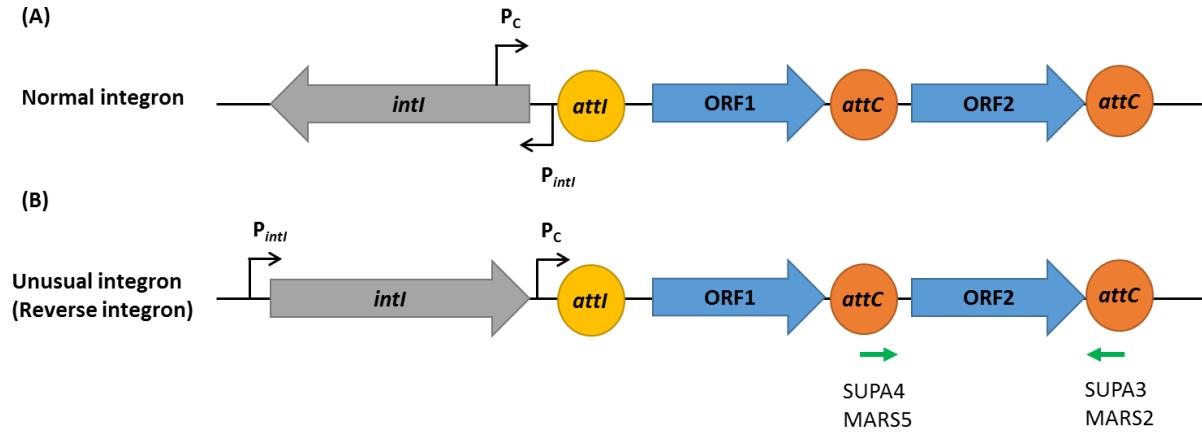
* The orange half circles and green arrow boxes are representing *attC* sites and ORFs, respectively.

** The GCs found in this study are highlighted in yellow. Those not highlighted were also detected in Tansirichaiya et al. (2016) [28].

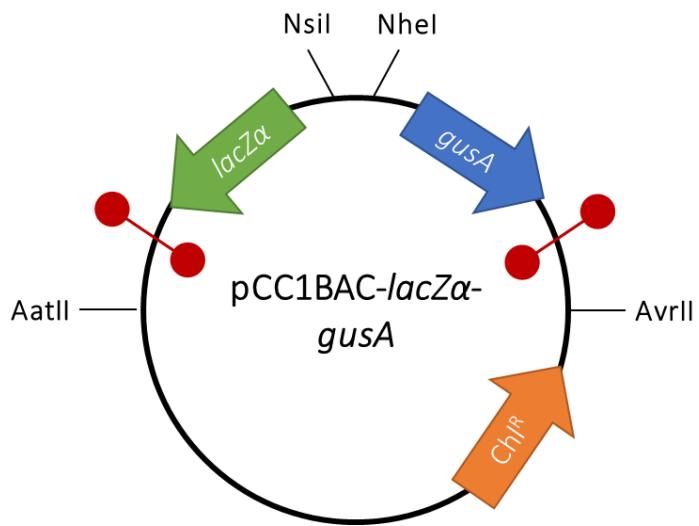
532 **Figure Legends**

533 **Figure 1:** A generalised structure of (A) usual integrons and (B) unusual, or reverse integrons. The green
534 arrows indicate the primer binding sites on the unusual integron structure of *T. denticola*. The grey
535 and blue open arrowed boxes represent integrase gene (*intI*) and the open reading frames (ORFs),
536 respectively, pointing in the direction of transcription. The promoters, P_{intI} and P_C , were represented
537 by black arrows. The recombination sites, *attI* and *attC*, were represented by yellow and orange circles,
538 respectively.

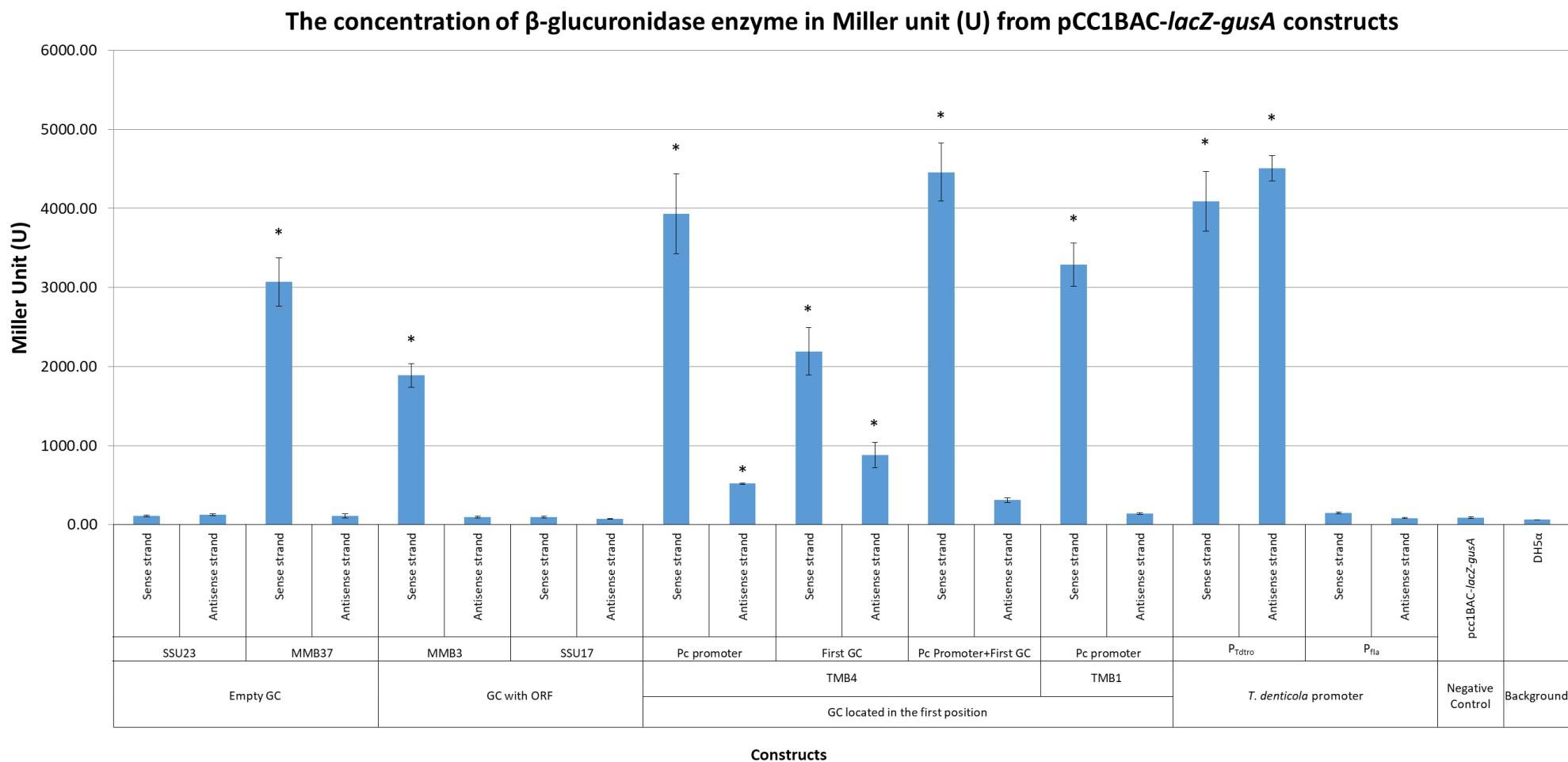
539 **Figure 2:** The structure of pCC1BAC-*lacZα-gusA*_plasmid. The green, blue and orange open arrowed
540 boxes represent *lacZα*, *gusA* and chloramphenicol resistance gene, respectively, pointing in the
541 direction of transcription. The black lines indicate the position of restriction sites on the plasmid. The
542 red circles indicate bidirectional transcriptional terminators.

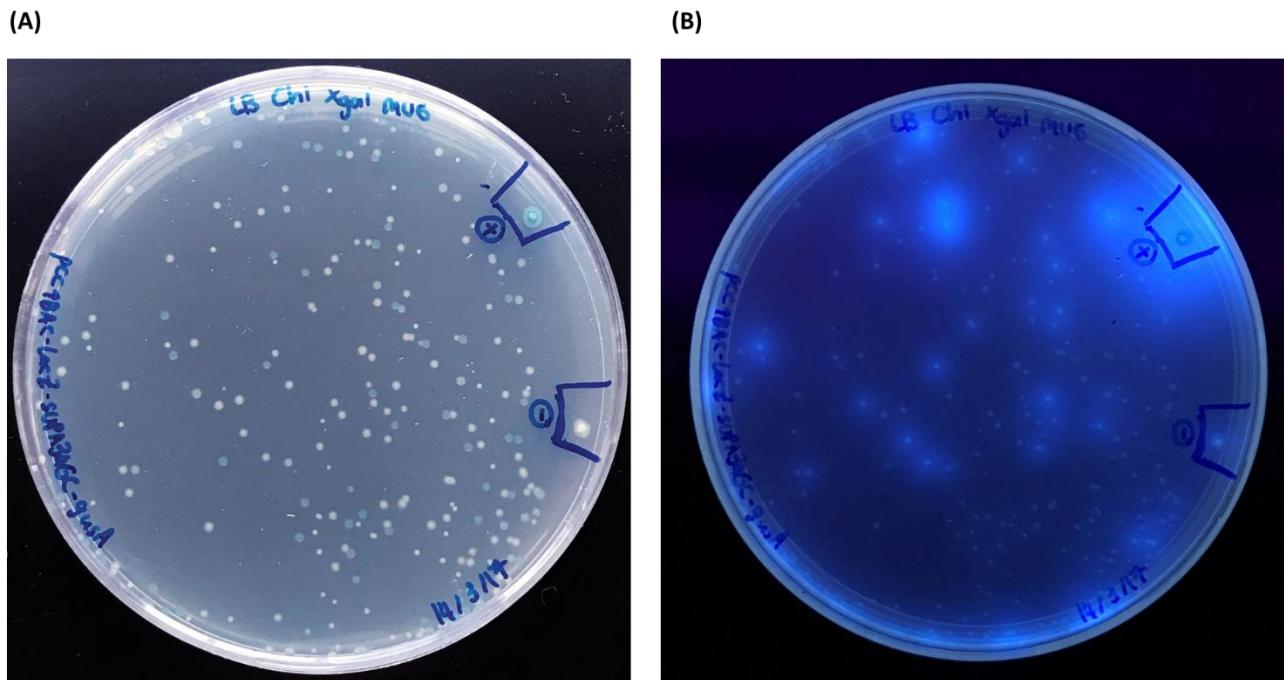

543 **Figure 3:** The promoter activity from pCC1BAC-*lacZα-GC-gusA* constructs estimated by β -
544 glucuronidase enzyme assays. Error bars indicate the standard errors of the means from three
545 replicates. The asterisks (*) indicate the constructs were statistically significantly different from the
546 negative control group (pCC1BAC-*lacZα-gusA*) with the *p*-value <0.05 by using ordinary one-way
547 ANOVA followed by Dunnett's multiple comparison tests.

548 **Figure 4:** The detection of the integron GCs by using pBiDiPD. A.) Blue-white screening to detect for
549 the clones with promoter activity on the antisense strand, B.) Exposing the colonies under the UV light
550 to detect clones with promoter activity on the sense strand. The positive (+) and negative (-) colonies
551 were the *E. coli* containing pCC1BAC-*lacZα-TMB4-Pc-gusA* (with experimentally proven promoter
552 activities on either strand of DNA and pCC1BAC-*lacZα-gusA* (no promoter activity), respectively


553 **Figure 5:** The proposed genetic clutch. (A) When a promoter-containing GC inserts into the first
554 position, it can act as a genetic clutch by disengaging the original first GC (blue arrow) from PC
555 promoter and replaced with the one on promoter GC. When a new GC (green arrow) inserts, it can be

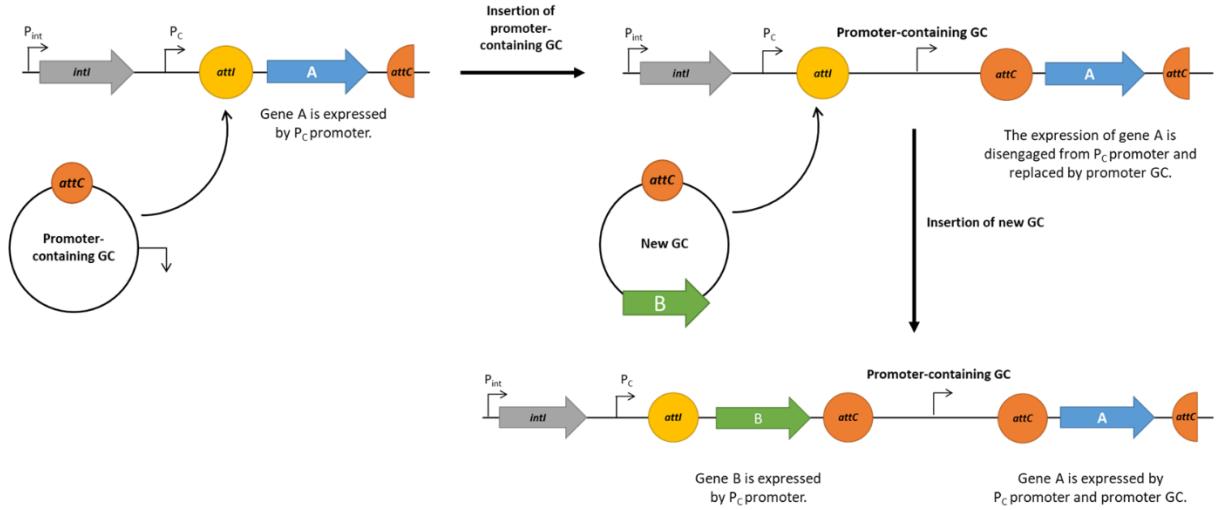
556 expressed by PC promoter, while the blue GC is expressed by promoter-containing GC and PC
557 promoter. (B) The expression level of gene cassettes with and without a genetic clutch. The estimated
558 levels of expression of the blue ORF in i.) the first, ii.) the second and iii.) the third position were shown
559 in the bar chart. The solid bars represent the situation when promoter-containing GC was inserted
560 upstream of the blue GC, while the gridded bars represent the situation when no promoter-containing
561 GC was inserted. The asterisks indicate the experimentally verified expression level, suggested by the
562 results in Figure 3 (TMB4 PC and TMB4 PC+GC). The expression of the blue ORF was hypothesised to
563 be decreased when more GCs are inserted without the presence of a promoter-containing GC as a
564 genetic clutch (gridded bars), based on the data from previous study [45].

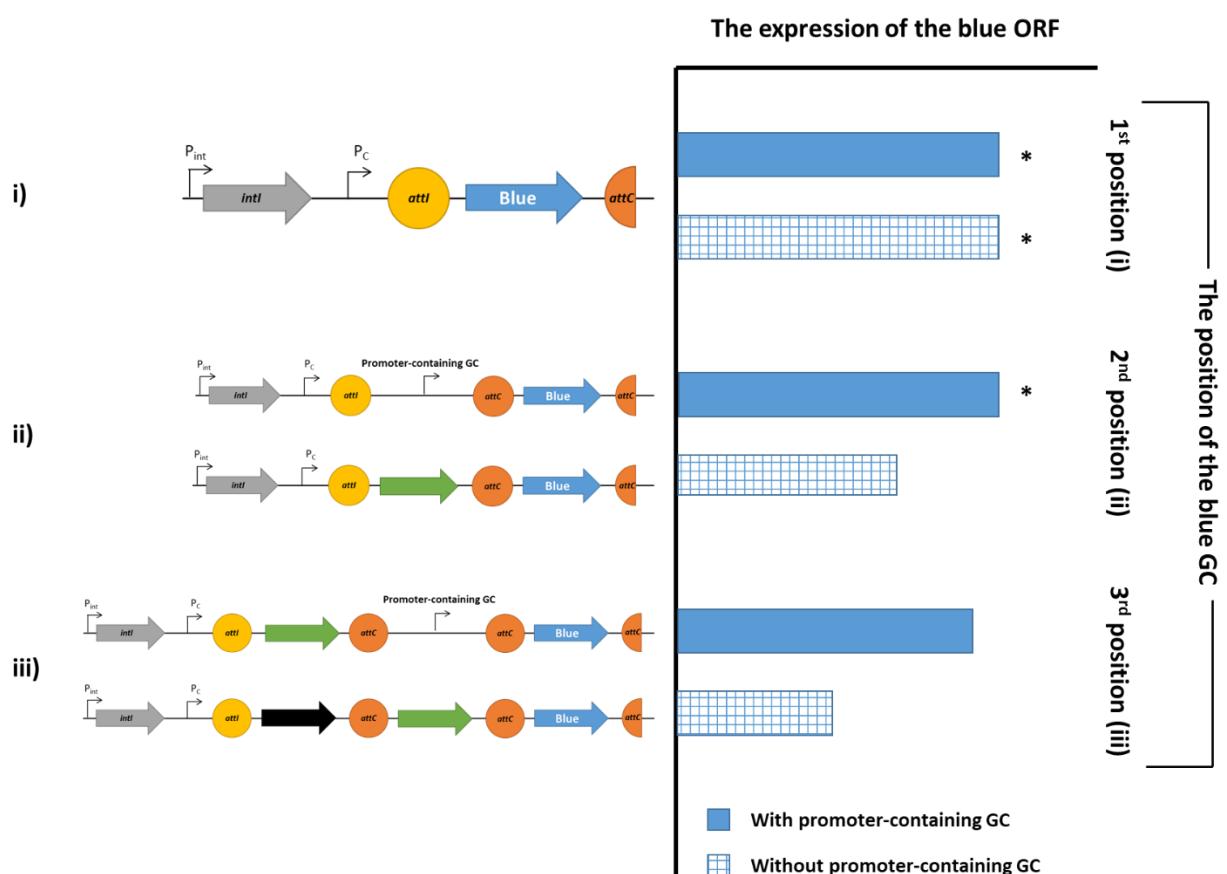

565 **Figure 1**


567 **Figure 2.**

568

Figure 3.


571 **Figure 4.**


572

573 **Figure 5.**

A.)

B.)

