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Abstract  

A	persistent	obstacle	for	constructing	kinetic	models	of	metabolism	is	uncertainty	in	the	

kinetic	properties	of	enzymes.	Currently,	available	methods	for	building	kinetic	models	

can	cope	indirectly	with	uncertainties	by	integrating	data	from	different	biological	levels	

and	 origins	 into	 models.	 In	 this	 study,	 we	 use	 the	 recently	 proposed	 computational	

approach	 iSCHRUNK	 (in	 Silico	 Approach	 to	 Characterization	 and	 Reduction	 of	

Uncertainty	 in	 the	 Kinetic	Models),	which	 combines	Monte	 Carlo	 parameter	 sampling	

methods	and	machine	learning	techniques,	 in	the	context	of	Bayesian	inference.	Monte	

Carlo	parameter	sampling	methods	allow	us	to	exploit	synergies	between	different	data	

sources	and	generate	a	population	of	kinetic	models	that	are	consistent	with	the	available	

data	and	physicochemical	laws.	The	machine	learning	allows	us	to	data-mine	the	a	priori	

generated	kinetic	parameters	together	with	the	integrated	datasets	and	derive	posterior	

distributions	of	kinetic	parameters	consistent	with	the	observed	physiology.	In	this	work,	

we	used	iSCHRUNK	to	address	a	design	question:	can	we	identify	which	are	the	kinetic	

parameters	and	what	are	their	values	that	give	rise	to	a	desired	metabolic	behavior?	Such	

information	 is	 important	 for	 a	wide	 variety	 of	 studies	 ranging	 from	 biotechnology	 to	

medicine.	 To	 illustrate	 the	 proposed	 methodology,	 we	 performed	 Metabolic	 Control	

Analysis,	computed	the	flux	control	coefficients	of	the	xylose	uptake	(XTR),	and	identified	

parameters	 that	 ensure	 a	 rate	 improvement	 of	 XTR	 in	 a	 glucose-xylose	 co-utilizing	 S.	

cerevisiae	 strain.	 Our	 results	 indicate	 that	 only	 three	 kinetic	 parameters	 need	 to	 be	

accurately	characterized	to	describe	the	studied	physiology,	and	ultimately	to	design	and	

control	the	desired	responses	of	the	metabolism.	This	framework	paves	the	way	for	a	new	

generation	of	methods	 that	will	 systematically	 integrate	 the	wealth	of	available	omics	

data	 and	 efficiently	 extract	 the	 information	 necessary	 for	 metabolic	 engineering	 and	

synthetic	biology	decisions.		
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Author Summary 

Kinetic	 models	 are	 the	 most	 promising	 tool	 for	 understanding	 the	 complex	 dynamic	

behavior	of	living	cells.	The	primary	goal	of	kinetic	models	is	to	capture	the	properties	of	

the	metabolic	networks	as	a	whole,	and	thus	we	need	large-scale	models	for	dependable	

in	silico	analyses	of	metabolism.	However,	uncertainty	in	kinetic	parameters	impedes	the	

development	of	kinetic	models,	and	uncertainty	levels	increase	with	the	model	size.	Tools	

that	will	address	the	issues	with	parameter	uncertainty	and	that	will	be	able	to	reduce	

the	uncertainty	propagation	through	the	system	are	therefore	needed.	In	this	work,	we	

applied	 a	 method	 called	 iSCHRUNK	 that	 combines	 parameter	 sampling	 and	 machine	

learning	techniques	to	characterize	the	uncertainties	and	uncover	intricate	relationships	

between	the	parameters	of	kinetic	models	and	the	responses	of	the	metabolic	network.	

The	 proposed	 method	 allowed	 us	 to	 identify	 a	 small	 number	 of	 parameters	 that	

determine	the	responses	in	the	network	regardless	of	the	values	of	other	parameters.	As	

a	consequence,	in	future	studies	of	metabolism,	it	will	be	sufficient	to	explore	a	reduced	

kinetic	 space,	 and	 more	 comprehensive	 analyses	 of	 large-scale	 and	 genome-scale	

metabolic	networks	will	be	computationally	tractable.	
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Parameter	classification,	Kinetic	parameters,	Uncertainty,	S.	cerevisiae.	
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Introduction 
	
Kinetic	models	are	one	of	the	cornerstones	of	rational	metabolic	engineering	as	they	allow	

us	to	capture	the	dynamic	behavior	of	metabolism	and	to	predict	dynamic	responses	of	

living	 organisms	 to	 genetic	 and	 environmental	 changes.	With	 reliable	 kinetic	models,	

metabolic	engineering	and	synthetic	biology	strategies	 for	 improvement	of	yield,	 titer,	

and	productivity	of	the	desired	biochemical	can	be	devised	and	tested	in	silico	(1).	The	

scientific	community	has	acknowledged	the	utility	and	potential	of	kinetic	models,	and	

efforts	towards	building	large-	and	genome-scale	kinetic	models	were	recently	intensified	

(2-9).	Nevertheless,	 the	development	of	these	models	 is	still	 facing	challenges,	 such	as	

partial	experimental	observations	and	large	uncertainties	in	available	data	(10-12).		

The	 major	 difficulty	 in	 determining	 parameters	 of	 kinetic	 models	 are	 uncertainties	

associated	with:	(i)	flux	values	and	directionalities	(13-16);	(ii)	metabolite	concentration	

levels	and	thermodynamic	properties	(13-16);	and	(iii)	kinetic	properties	of	enzymes	(2,	

17).	As	a	result	of	interactions	of	metabolite	concentrations	and	metabolic	fluxes	through	

thermodynamics	and	kinetics,	these	uncertainties	make	parameter	estimation	difficult.	

Quantifying	these	uncertainties	and	determining	how	they	propagate	to	the	parameter	

space	is	essential	for	identification	of	parameters	that	should	be	measured	or	estimated	

to	reduce	the	uncertainty	in	the	output	quantities	such	as	time	evolution	of	metabolites	

or	control	coefficients	(18,	19).	

In	biological	systems,	large	uncertainties	and	partial	experimental	data	commonly	result	

in	a	population	 instead	of	 in	a	unique	set	of	parameter	values	 that	could	describe	 the	

experimental	 observations.	 Such	 population	 of	 parameter	 sets	 is	 typically	 computed	

using	Monte	Carlo	sampling	techniques	(3-5,	8,	9,	11,	20-28).	However,	the	problem	is	

when	certain	properties	differ	among	models	in	a	model	population.	For	example,	one	

such	property	is	flux	control	coefficients	(FCCs)(18,	19,	29).	In	(30),	we	used	the	ORACLE	

framework	(3,	4,	8,	10,	11,	31,	32)	to	compute	a	population	of	kinetic	models	along	with	

the	corresponding	flux	control	coefficients	with	the	aim	of	improving	xylose	uptake	rate	
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(XTR)	of	a	glucose-xylose	co-utilizing	S.	cerevisiae	strain.	We	have	found	that	in	the	same	

population	 of	 models	 that	 are	 consistent	 with	 the	 observed	 physiology	 FCCs	 can	 be	

different	due	 to	 lack	 of	 data	 about	 kinetic	 parameters.	 This	 can	 lead	 to	 erroneous	 or	

conflicting	 conclusions	 and	 decisions	 about	 the	 system	 in	metabolic	 engineering	 and	

synthetic	biology	studies.		

In	this	contribution,	to	resolve	such	issues,	we	propose	to	formulate	these	problems	as	

parameter	classification:	identify	which	of	the	parameters,	if	any,	should	be	constrained	

so	that	the	values	of	studied	properties,	such	as	FCCs,	are	in	predefined	ranges.	For	this	

purpose,	 we	 extended	 the	 capabilities	 of	 iSCHRUNK	 (in	 Silico	 Approach	 to	

Characterization	 and	 Reduction	 of	 Uncertainty	 in	 the	 Kinetic	 Models),	 a	 recently	

introduced	machine	learning	approach	that	characterizes	uncertainties	in	parameters	of	

kinetic	models,	and	identifies	accurate	and	narrow	ranges	of	parameters	that	can	describe	

a	 studied	 physiological	 state	 (17).	 In	 iSCHRUNK,	machine	 learning	 is	 combined	with	

methods	that	generate	populations	of	kinetic	models	(3-5,	8,	9,	11,	20-28)	to	data-mine	

the	integrated	data	and	observed	physiology	together	with	the	kinetic	parameters.	The	

extended	iSCHRUNK	workflow	is	amenable	for	identifying	parameters	that	give	rise	to	a	

wide	variety	of	properties	of	metabolic	responses.	The	identified	parameters	can	further	

be	 refined	 in	 an	 iterative	 way	 using	 the	 stratified	 sampling.	 Moreover,	 a	 set	 of	

improvements	in	the	parameter	classification	procedure	was	introduced	to	improve	the	

classification	 accuracy	 and	 to	 allow	 for	 dealing	 with	 uncertainties	 in	 alternative	

physiologies,	e.g.,	when	multiple	metabolite	concentrations	vectors	are	consistent	with	

the	observed	physiology.	

As	an	illustration	of	the	capabilities	of	the	extended	iSCHRUNK,	we	identified	the	enzymes	

and	their	kinetic	parameters	that	determine	consistent	FCC	values	related	to	XTR.	Our	

results	 showed	 that	 by	 constraining	 only	 three	 parameters,	 corresponding	 to	 xylose	

reductase	 (XRI)	and	ATP	 synthase	 (ASN),	 consistent	FCCs	 can	be	obtained	 for	models	
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computed	around	multiple	steady-state	metabolite	concentrations.	We	further	showed	

how	 the	 parameter	 classification	 can	 be	 improved	 to	 more	 accurately	 identify	 the	

parameter	subspaces	that	lead	to	well-determined	model	properties.	

Results  
	

Uncertainty in the xylose uptake responses to genetic manipulations 

In	 (30),	we	 analyzed	 the	 improvement	 of	 the	 xylose	 uptake	 rate	 (XTR)	during	mixed	

glucose-xylose	 utilization	 in	 a	 recombinant	 Saccharomyces	 cerevisiae	 strain.	 Here,	 we	

revisited	that	study	and	built	the	kinetic	model	of	S.	cerevisiae	metabolic	network	around	

the	reference	steady-state	of	metabolic	fluxes	and	metabolite	concentrations	(Methods).	

The	model	 contains	258	parameters	 and	describes	102	 reactions	 and	96	 intracellular	

metabolites	distributed	over	cytosol,	mitochondria	and	extracellular	environment.	The	

experimentally	determined	values	of	kinetic	parameters	were	missing,	and	the	analyzed	

system	 was	 underdetermined,	 i.e.,	 we	 had	 102+96	 computed	 values	 for	 steady-state	

fluxes	and	metabolite	concentrations	versus	258	unknown	parameters.	This	meant	that	

a	multitude	of	parameter	sets	could	reproduce	the	observed	physiology,	and	we	used	the	

ORACLE	 framework	 that	 employs	Monte	 Carlo	 sampling	 to	 generate	 a	 population	 of	

200’000	kinetic	models.	We	computed	the	flux	control	coefficients	(FCCs)	of	the	metabolic	

network	and	used	 them	to	rank	enzymes	according	 to	 their	control	over	XTR,	 i.e.,	 the	

highest	ranked	enzymes	were	the	ones	with	the	largest	magnitude	FCCs	with	respect	to	

XTR.	 Among	 the	 top	 ranked	 enzymes,	 hexokinase	 (HXK),	 non-growth	 associated	

maintenance	(ATPM),	and	NADPH	reductase	(NDR)	had	ambiguous	control	over	XTR	(Fig	

1A).	The	distributions	of	the	control	coefficients	of	XTR	with	respect	to	HXK,	ATPM	and	

NDR	(𝐶"#$#%& ,	𝐶'%()#%& ,	and		𝐶+,&#%& ,	respectively)	were	extensively	spread	around	zero,	and	we	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/427716doi: bioRxiv preprint 

https://doi.org/10.1101/427716
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 7	

could	 not	 deduce	with	 certainty	whether	 the	 control	 of	 these	 enzymes	 over	 XTR	was	

positive	or	negative.	

Fig	1.	Ambiguous	control	of	HXK,	ATPM	and	NDR	over	xylose	uptake	(XTR)	during	

mixed	glucose-xylose	fermentation.	(A)	Control	coefficients	of	the	top	enzymes	over	

XTR.	The	bars	represent	 the	mean	values	of	 the	control	coefficients	 through	XTR.	The	

error	bars	denote	the	1st	and	the	3rd	quartile	of	the	control	coefficients	with	respect	to	

their	mean	value,	i.e.,	50%	of	the	samples	closest	to	the	mean	value	are	between	the	error	

bars.	(B)	The	distribution	of	the	control	coefficient	of	HXK	over	XTR	was	centered	around	

zero.	(C)	Pruned	population	of	the	control	coefficients	containing	only	models	that	had	a	

negative	control	of	HXK	over	XTR	(left,	green	bars)	or	a	positive	one	(right,	red	bars).	For	

comparison	purposes,	 the	non-pruned	population	of	control	coefficients	 is	also	shown	

(left	 and	 right,	 gray	 bars).	 Enzymes:	 HXK,	 hexokinase;	 PGI,	 glucose-6-phosphate	

isomerase;	 TPI,	 triose	 phosphate	 isomerase;	 ZWF,	 glucose-6-phosphate-1-

dehydrogenase;	ATPm,	non-growth	associated	ATP	maintenance;	ADK,	adenylates	kinase;	

NDR,	 NADPH	 reductase;	PDA,	 pyruvate	 dehydrogenase;	XTR,	 xylose	 transporters;	XRI,	

xylose	reductase;	XDH,	xylitol	reductase;	XK,	xylulokinase;	The	complete	list	of	enzymes	

and	chemical	species	is	provided	in	S1	File.		

The	population	of	 control	 coefficients	𝐶"#$#%& 	was	nearly	symmetric	 around	 zero	with	 a	

mean	of	0.005	and	47%	of	samples	had	negative	values	(Fig	1B).	We	split	the	population	

of	kinetic	models	based	on	the	sign	of		𝐶"#$#%&,		and	we	analyzed	the	two	populations	with	a	

negative	(Fig	1C,	left)	and	a	positive	(Fig	1C,	right)	control	of	HXK	over	XTR.	The	split	in	

the	population	did	not	have	a	substantial	effect	on	the	majority	of	the	control	coefficients.	

Interestingly,	 the	 exceptions	 were	 precisely	 the	 other	 enzymes	 with	 the	 ambiguous	

control	over	XTR,	i.e.,	ATPM	and	NDR,	which	exhibited	a	negative	correlation	with	HXK	

(Fig	1C).	This	suggested	that	there	were	two	distinct	populations	of	kinetic	models.	The	

fact	that	models	within	these	two	populations	have	several	common	metabolic	responses	
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further	implied	that	each	of	these	two	populations	of	models	had	distinct	values	of	some	

kinetic	parameters	that	determined	such	metabolic	responses.		

Identification of significant parameters determining control of HXK over XTR 

We	used	the	Classification	and	Regression	Trees	(CART)	algorithm	(33,	34)	to	identify	

significant	parameters	that	determine	responses	of	XTR	to	changes	in	HXK	activity.	The	

CART	algorithm	partitions	the	parameter	space	into	hyper-rectangles	determined	by	the	

ranges	of	parameters	that	satisfy	the	studied	property.	Here,	we	used	as	parameters	the	

degree	 of	 saturation	 of	 the	 enzyme	 active	 site,	 σA	 	 (10),	 because	 this	 quantity	 is	

constrained	in	a	well-defined	range	between	0	and	1	(Methods),	and	the	desired	property	

was	the	negative	control	of	HXK	over	XTR.	The	inputs	of	parameter	classification	were:	

(i)	the	information	for	each	out	of	200’000	parameter	sets	whether	or	not	it	gave	rise	to	

the	negative	control	of	HXK	over	XTR;	and	(ii)	parameter	values	of	200’000	parameter	

sets.	Subsequently,	we	will	refer	to	hyper-rectangles	computed	by	the	CART	algorithm	as	

rules.	

To	measure	 the	 performance	 of	 parameter	 classification	we	 defined	 the	 performance	

index	(PI),	which	quantifies	a	portion	of	parameter	sets	giving	rise	to	the	studied	property.	

In	this	work,	out	of	all	parameter	sets	that	satisfy	rules	(or	a	rule)	inferred	by	parameter	

classification,	PI	quantifies	how	many	of	them	are	giving	rise	to	the	negative	control	of	

HXK	over	XTR.	For	example,	within	a	population	of	models	satisfying	a	rule,	 if	40%	of	

models	give	rise	to	the	negative	control	of	HXK	over	XTR,	then	PI	of	this	rule	is	0.4.	

Reduced number of parameters determine control of HXK over XTR  

We	performed	parameter	classification	on	200’000	parameter	sets	of	258	parameters,	

and	 the	 algorithm	 identified	 76	 rules.	 In	 the	 identified	 rules,	 only	 46	 out	 of	 258	

parameters	were	constrained,	whereas	the	remaining	parameters	had	no	effect	on	the	

control	 of	 HXK	 over	 XTR,	 i.e.,	 their	 σA	 values	 could	 take	 any	 value	 between	 0	 and	 1	
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(Methods).	 Kinetic	 subspaces	 defined	 by	 these	 rules	 had	 a	 portion	 of	 parameter	 sets	

giving	rise	to	the	negative	control	ranging	from	PI=0.50	to	0.78,	i.e.,	50-78%	of	parameter	

sets	satisfying	these	rules	resulted	in	the	negative	control	(S2	File).	This	was	a	noteworthy	

improvement	compared	to	the	overall	kinetic	space	with	47%	of	such	parameter	sets.		

Preselection and identification of significant parameters 	

Our	finding	that	a	reduced	number	of	parameters	determines	control	of	HXK	over	XTR	

suggested	that	statistical	methods,	such	as	Fisher’s	linear	discriminant	score	(35,	36),	can	

be	used	to	preselect	the	significant	parameters,	i.e.,	the	parameters	that	affect	the	studied	

property.	Fisher’s	linear	discriminant	score	allows	us	to	quickly	preselect	parameters	by	

analyzing	 the	 parameter	 distributions	 (Methods).	 We	 preselected	 79	 (out	 of	 258)	

parameters	that	passed	the	threshold	of	1%	of	the	maximal	Fisher’s	linear	discriminant	

score	(Methods),	and	the	values	of	these	79	parameters	in	200’000	parameter	sets	were	

then	used	in	the	parameter	classification.	The	classification	algorithm	inferred	78	rules,	

and	remarkably,	70	of	these	rules	coincided	with	the	ones	obtained	in	the	first	study	(S3	

Fig	and	S2	File).	As	expected,	 the	ranges	of	 the	obtained	PIs	also	coincided	 in	the	 two	

studies.	This	result	indicated	that	Fisher’s	linear	discriminant	score	is	a	good	measure	for	

identifying	significant	parameters	and	we	used	this	score	for	parameter	preselection	in	

all	further	studies.	

The	78	rules	obtained	from	the	study	with	the	preselected	parameters	were	defined	by	

constraints	on	39	parameters	that	corresponded	to	only	24	enzymes	(S2	File).	No	rule	

was	defined	with	more	than	13	parameters	and	less	than	four	parameters.	We	ranked	the	

rules	in	the	descending	order	according	to	the	number	of	parameter	sets	that	satisfy	them	

(Methods).	The	top	rule	was	defined	by	constraints	on	eight	parameters,	and	it	enclosed	

a	subspace	with	9285	parameter	sets	and	PI	of	0.65	(Table	1).	The	2nd	and	3rd	ranked	rules	

had	higher	values	of	PI	than	the	1st	ranked	rule	(0.73	for	the	2nd	and	0.76	for	the	3rd	rule),	

but	smaller	subspaces	were	enclosed	(8049	and	6342	parameter	sets	for	the	2nd	and	the	
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3rd	rule,	respectively).	As	expected,	the	distributions	of	control	coefficients	of	XTR	with	

respect	to	HXK	corresponding	to	the	parameter	sets	that	satisfied	Rules	1,	2	and	3	were	

biased	toward	negative	values	(Fig	2).	Indeed,	compared	to	the	distribution	for	the	overall	

population	 of	 parameters	 with	 the	 mean	 of	 0.005	 and	 the	 median	 of	 0.005,	 the	

distributions	corresponding	to	the	three	rules	were	shifted	toward	the	negative	values	

with	the	means	of	-0.082,	-0.111	and	-0.132,	and	the	medians	of	-0.024,	-0.036	and	-0.044	

for	Rule	1,	Rule	2	and	Rule	3,	 respectively	(Fig	2).	These	results	demonstrate	 that	 the	

parameter	 classification	 algorithm	 can	 reliably	 be	 used	 to	 identify	 the	 significant	

parameters	and	their	ranges	that	give	rise	to	the	negative	control	of	HXK	over	XTR.	

Table	 1:	Output	 of	 parameter	 classification	 algorithm	 for	𝑪𝑯𝑿𝑲𝑿𝑻𝑹 < 𝟎 .	 Top	 3	 rules	

obtained	 from	the	parameter	classification	with	preselected	parameters.	The	rules	are	

ranked	according	the	number	of	parameter	sets	that	satisfy	parameter	ranges	defined	by	

the	corresponding	rule.	For	example,	9285	out	of	200’000	(4.6%)	generated	parameter	

sets	are	within	the	subspace	defined	by	the	top-ranked	rule,	Rule	1.	The	values	of	σA	relate	

to	the	Km	values	as	Km	=	S	(1	-	σA)/σA,	where	S	is	the	concentration	of	the	corresponding	

metabolite.	The	notation	𝜎78_:;<=>
		represents	the	degree	of	saturation	of	the	enzyme	Ei			by	

the	metabolite	Sj,	and	cmp	denotes	either	cytosolic	or	mitochondrial	compartment.	

Rule	 Size	 PI	
(𝑪𝑯𝑿𝑲𝑿𝑻𝑹 < 𝟎)	 Parameters	 Km	ranges	(mM)	 	𝝈𝑨		ranges	

1	 9285	
(4.6%)	 0.65	

𝜎CD_E'7+ 	 3.5·10-3	 6.5·100	 0.001	 0.651	
𝜎FGC_H%(I 	 2.0·10-5	 2.2·10-2	 0.476	 0.999	
𝜎JKLC_HM(,N 	 7.1·10-1	 2.0·10+3	 0.001	 0.737	
𝜎OGC_HM(,P	 5.1·10-4	 1.6·10+1	 0.001	 0.970	
𝜎LJC_H',$ 	 3.4·10-2	 1.3·10+2	 0.001	 0.799	
𝜎OQRH_HMSTUV 	 9.9·10-2	 6.9·10+2	 0.001	 0.875	
𝜎WLJK_H#&I 	 5.2·10-2	 7.6·10+1	 0.001	 0.593	
𝜎WLJ_H#&I 	 3.4·10-4	 2.6·10-1	 0.561	 0.999	

2	 8049	
(4.0%)	 0.73	

𝜎LJC_E'7+ 	 2.6·10-3	 5.6·100	 0.318	 0.999	
𝜎CD_E'7+ 	 6.5·10-6	 3.5·10-3	 0.651	 0.999	
𝜎LFC_E'7+ 	 6.2·10-3	 1.6·10+1	 0.001	 0.719	
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𝜎FGC_H%(I 	 2.0·10-5	 2.5·10-2	 0.443	 0.999	
𝜎WLJK_H#&I 	 1.1·10-1	 7.6·10+1	 0.001	 0.418	

3	 6342	
(3.2%)	 0.76	

𝜎LJC_E'7+ 	 5.6·100	 2.6·10+3	 0.001	 0.318	
𝜎CD_E'7+ 	 6.5·10-6	 3.5·10-3	 0.651	 0.999	
𝜎LFC_E'7+ 	 6.2·10-3	 1.6·10+1	 0.001	 0.719	
𝜎WLJK_H#&I 	 2.8·10-2	 7.6·10+1	 0.001	 0.733	

	

Fig	2.	The	distributions	of	control	coefficients	of	XTR	with	respect	to	HXK	for	Rules	

1,	2	and	3	were	clearly	shifted	toward	negative	values	compared	to	the	one	for	the	

overall	 population	 of	 parameter	 sets.	The	 horizontal	 box	 plots	 describe	 the	 inter-

quartile	range	(gray	box),	median	(target	circle),	mean	(diamond)	and	the	range	of	+/-	2.7	

standard	deviations	around	the	mean	(whiskers)	of	the	distributions.	

Top 3 significant parameters	

A	closer	inspection	of	the	top	ranked	rules	revealed	that	there	were	a	few	parameters	

such	as		𝜎CD_E'7+ 		or		𝜎WLJK_H#&I 		(for	notation	see	the	caption	of	Table	1)	that	appeared	rather	

consistently	 throughout	 the	 rules	 (Table	1	 and	S2	File).	 The	 appearance	of	 a	 reduced	

number	of	parameters	 throughout	 the	 inferred	 top	 ranked	 rules	 suggested	 that	 these	

parameters	were	essential	for	a	negative	control	of	HXK	over	XTR.	We	hence	ranked	the	

parameters	based	on	the	number	of	their	occurrences	in	the	rules	and	by	how	much	their	

ranges	were	constrained	(Methods).	

We	first	considered	the	top	rule	(Rule	1	in	Table	1	and	S2	File),	and	we	computed	the	

ranking	score	for	the	associated	parameters.	We	then	ranked	the	parameters	for	the	top	

2	rules	(Rules	1	and	2),	for	the	top	3	rules	(Rules	1,	2	and	3),	and	so	forth,	and	observed	

how	the	ranking	score	of	the	parameters	evolved	as	we	considered	a	growing	number	of	

rules	(Fig	3A).	There	was	a	clear	separation	in	the	ranking	scores	of	a	small	number	of	

parameters	 from	the	remaining	parameters	(Fig	3A).	 Indeed,	 the	 three	highest	ranked	

parameters,		𝜎WLJK_H#&I 	,		𝜎CD_E'7+ 	,	and	𝜎FGC_H%(I 	,	were	consistent	for	a	large	number	of	considered	
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rules.	This	result	suggested	that	it	would	be	sufficient	to	constrain	a	combination	of	the	

ranges	of	the	three	parameters	to	ensure	the	negative	control	of	HXK	over	XTR.	

Fig	3.	Top	ranked	parameters	affecting	control	of	hexokinase	(HXK)	over	xylose	

uptake	(XTR).	(A)	Evolution	of	the	ranking	score	for	the	top	10	parameters	as	a	function	

of	the	number	of	considered	rules.	(B)	The	effects	of	constraining	the	top	3	parameters	

individually	according	to	the	ranges	of	the	top	10	rules	on	PI.	

Qualitative dependency of negative control on top 3 significant parameters	

We	constructed	a	subspace	of	parameters	by	constraining	the	range	of	the	top	significant	

parameter,	𝜎WLJK_H#&I ,	 according	 to	 Rule	 1	 (Table	 1),	 while	 the	 other	 parameters	 were	

unconstrained	and	could	 take	any	value	between	0	and	1.	Within	 this	subspace,	 there	

were	53%	of	parameter	 sets	 giving	 rise	 to	 the	negative	 control	 of	HXK	over	XTR,	 i.e.,	

PI=0.53	(Fig	3B,	top).	In	such	a	way,	we	constrained	the	ranges	of		𝜎WLJK_H#&I 	based	on	the	

remaining	top	10	ranked	rules,	and	we	analyzed	how	these	ranges	affected	PI	(Fig	3B).	

There	was	a	clear	qualitative	relationship	between	the	ranges	of		𝜎WLJK_H#&I 	and	PI.	Indeed,	

the	values	of	PI	ranged	from	0.55	(Rule	2)	up	to	0.57	(Rules	8	and	9)	for	low	values	of	

	𝜎WLJK_H#&I ,	whereas	they	were	as	low	as	0.46	for	middle	range	values	of	this	parameter	(Fig	

3B).	We	 repeated	 this	 analysis	 for	𝜎CD_E'7+ 	and	𝜎FGC_H%(I ,	 and	 for	 higher	 values	 of	 these	 two	

parameters,	PI	was	as	high	as	0.62	(𝜎CD_E'7+)	and	0.51	(𝜎FGC_H%(I ),	whereas	for	lower	values	of	

these	 two	parameters	PI	was	 as	 low	as	0.4	 (𝜎CD_E'7+ )	 and	0.43	(𝜎FGC_H%(I ).	 This	 observation	

motivated	us	to	analyze	how	PI	evolved	with	the	progressive	increase	of	the	lower	bound	

for	 each	 of	 the	 parameters	 while	 keeping	 their	 upper	 bounds	 at	 1.	 Interestingly,	 the	

increase	of	the	parameters	lower	bound	lead	to	either	a	monotonic	increase	(𝜎CD_E'7+	and	

𝜎FGC_H%(I )	or	decrease	(𝜎WLJK_H#&I )	of	PI	(S4	Fig).	Therefore,	the	effect	of	the	parameters	on	the	

control	of	HXK	over	XTR	was	the	most	pronounced	for	the	parameter	ranges	either	in	the	

low	or	the	high	values	but	not	in	the	middle	range.	
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This	analysis	suggested	that	a	subspace	defined	by	constraining	𝜎WLJK_H#&I 	to	low	values	and	

𝜎CD_E'7+ 	and	𝜎FGC_H%(I 	to	high	values	was	likely	to	have	a	high	PI.	

Constraining top 3 significant parameters ensures the negative control of 

HXK over XTR  

To	combine	the	distributions	of	top	3	parameters	that	ensure	a	high	PI	in	an	unbiased	

way,	 we	 performed	 another	 parameter	 classification	 (Methods).	 The	 parameter	

classification	 algorithm	 inferred	66	 rules	on	 these	 three	parameters,	 and	 the	 top	 rule	

enclosed	9389	samples	with	PI	of	0.73	(S2	File).	The	PI	value	of	0.73	was	close	 to	the	

maximal	PI	value	of	0.78,	which	was	computed	for	the	rules	formed	with	all	parameters.	

As	expected,	the	ranges	of	the	 three	parameters	defined	by	the	 top	rule	 (Fig	4C)	were	

consistent	with	the	analysis	presented	in	the	previous	section.	

We	 proceeded	 with	 the	 validation	 of	 the	 ranges	 of	 the	 top	 3	 parameters	 on	 a	 new	

population	of	models.	We	imposed	the	ranges	of	the	top	3	parameters	derived	from	the	

top	rule	of	the	parameter	classification	and	generated	a	population	of	100’000	models	

(Methods).	We	then	computed	the	control	coefficients	of	the	top	enzymes	over	XTR	(Fig	

4).	The	control	coefficient	𝐶"#$#%&	was	distinctively	negative	with	a	mean	value	of	-0.09	(Fig	

4C),	and	its	distribution	was	clearly	shifted	toward	negative	values	compared	to	that	of	

the	original	population	of	models	(Fig	1B).	More	than	72%	of	models	had	negative	values	

of	𝐶"#$#%&	compared	to	47%	in	the	original	population	of	models.	The	value	of	PI	of	0.72	

obtained	from	the	validation	set	was	strikingly	close	to	the	predicted	value	of	0.73	from	

the	second	tree	training.	

Fig	4.	A	well-determined	control	of	HXK	over	XTR.	(A)	The	mean	control	coefficient	of	

HXK	over	XTR	is	negative	after	constraining	the	inferred	ranges	of	only	3	parameters.	(B)	

Distribution	of	the	control	coefficient		𝐶"#$#%& .	(C)	The	inferred	ranges	of	𝜎WLJK_H	#&I 	,	𝜎CD_E'7+	,	and	

𝜎FGC_H%(I 	that	determined	the	negative	control	of	HXK	over	XTR.	
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Uncertainty in physiology: alternative concentration profiles 

In	Metabolic	Control	Analysis	(MCA),	it	is	considered	that	the	control	coefficients	depend	

only	on	elasticities,	however	this	holds	only	when	the	reactions	are	irreversible	and	there	

are	 no	 conserved	 moieties.	 It	 has	 been	 shown	 that	 metabolite	 concentrations	 affect	

displacements	of	reactions	from	thermodynamic	equilibrium,	which	in	turn	influence	the	

control	over	fluxes	and	concentrations	in	the	network	(3,	16,	32,	37).	Therefore,	when	

there	is	uncertainty	in	physiology,	e.g.,	when	several	alternative	concentration	profiles	

correspond	 to	 experimental	 observations,	 the	 control	 coefficients	 derived	 from	 the	

kinetic	models	computed	for	these	concentration	profiles	can	be	significantly	different.	

iSCHRUNK	can	resolve	this	kind	of	problems	by	identifying	the	parameter	values	that	give	

rise	 to	 well-determined	 control	 coefficients	 of	 the	 metabolic	 network	 for	 multiple	

alternative	physiologies.	

As	an	 illustration,	we	analyzed	 three	alternative	physiologies	characterized	with	three	

alternative	concentration	profiles	(Reference,	Extreme1	and	Extreme2)	and	a	common	

flux	profile	(Methods).	We	have	undertaken	to	identify	significant	parameters	that	ensure	

a	 well-determined	 control	 over	 XTR	 for	 these	 physiologies.	 For	 this	 purpose,	 we	

constructed	two	populations	of	200’000	kinetic	models	for	the	Extreme1	and	Extreme2	

physiology	 (Methods).	 Overall,	 together	 with	 200’000	 parameter	 sets	 computed	

previously	for	the	reference	physiology	(Reference),	we	had	600’000	parameter	sets	for	

parameter	 classification.	 In	 the	 three	 populations	 of	 models,	 47%	 (Reference),	 46%	

(Extreme1)	and	39%	(Extreme2)	of	the	models	had	a	negative	𝐶"#$#%& .	

Significant parameters for negative control of HXK over XTR for three alternative 

physiologies  

For	each	of	three	populations	of	models,	we	preselected	parameters	based	on	the	Fisher’s	

linear	 discriminant	 score,	 and	 we	 performed	 the	 parameter	 classification	 to	 find	
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parameter	ranges	that	guarantee	a	negative	control	of	HXK	over	XTR	(S2	File).	We	used	

the	 inferred	rules	from	the	 three	parameter	classifications	to	rank	 the	 top	parameters	

over	 the	 three	 alternative	 physiologies	 (Methods).	 Interestingly,	 the	 top	 seven	

parameters	from	the	Reference	case	remained	in	the	group	of	top	seven	parameters	over	

the	three	cases	(Fig	3	and	S5	Fig).	Moreover,	the	top	two	parameters	(𝜎WLJK_H	#&I 	and		𝜎CD_E'7+	)		

from	the	Reference	case	(Fig	3)	were	the	top	two	also	for	the	Extreme1	and	Extreme2	

case	(S5	Fig).	In	contrast,	𝜎FGC_H%(I 	was	less	significant	for	the	Extreme1	and	Extreme2	case,	

and	it	was	ranked	below	𝜎WLJ_H	#&I 		in	the	overall	score	(S5	Fig).		

To	 refine	 the	 distributions	 of	 top	 3	 parameters	 for	 each	 of	 the	 three	 alternative	

physiologies,	 we	 performed	 three	 additional	 parameter	 classifications	 (Methods).	

However,	the	refined	distributions	of	top	parameters	that	ensure	a	negative	control	of	

HXT	over	XTR	might	or	might	not	coincide	 for	 the	 three	 concentrations.	Therefore,	 to	

reconcile	 the	parameter	distributions	 for	 the	 three	 cases,	we	used	 the	parameter	 sets	

defined	by	the	top	3	rules	for	each	of	these	cases	as	input	for	an	additional	parameter	

classification	 (Methods).	 The	 top	 rule	 obtained	 from	 this	 parameter	 classification	

enclosed	11’801	out	of	600’000	parameter	sets,	and	70.9%	of	these	models	had	a	negative	

control	of	HXK	over	XTR	(Table	2).		

Table	2:	Robust	ranges	of	the	top	3	parameters	over	3	concentrations.	

	 Rule	 Size	 PI	 Parameters	 	𝝈𝑨		ranges	

𝑪𝑯𝑿𝑲𝑿𝑻𝑹 < 𝟎	 1	 11801	
(2%)	 0.709	

𝜎CD_E'7+ 	 0.79	 0.99	
𝜎WLJK_H	#&I 	 0.00	 0.44	
𝜎WLJ_H	#&I 	 0.78	 0.99	

𝑪𝑯𝑿𝑲𝑿𝑻𝑹 > 𝟎	 1	 67482	
(11.2%)	 0.776	

𝜎CD_E'7+ 	 0.00	 0.59	
𝜎WLJK_H	#&I 	 0.63	 0.99	
𝜎WLJ_H	#&I 	 0.00	 0.55	
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We	imposed	the	robust	ranges	for	the	top	3	parameters	from	Table	2	and	generated	a	

population	of	100’000	models	 for	each	of	 the	 three	alternative	physiologies,	a	 total	of	

300’000	models.	We	 then	 computed	 the	 control	 coefficients	 of	 HXK	 over	 XTR,	 and	 a	

significant	improvement	of	PI	was	obtained	for	all	three	alternative	physiologies.	Indeed,	

the	Reference,	the	Extreme1	and	the	Extreme2	cases,	had	72%,	72%	and	67%	of	models	

with	a	negative	𝐶"#$#%& ,	respectively	(compared	to	the	47%,	46%	and	39%	of	models	with	

unconstrained	parameters).	The	average	PI	(0.703)	over	three	populations	of	models	was	

remarkably	close	to	the	predicted	PI	(0.709)	(Table	2).	

Table	3:	Validation	of	the	robust	distributions	of	the	top	3	parameters	for	

both	a	negative	and	a	positive	control	of	HXK	over	XTR.	

	 Reference	
physiology	

Extreme	1	
physiology	

Extreme	2	
physiology	 Average	

PI		
(𝑪𝑯𝑿𝑲𝑿𝑻𝑹 < 𝟎)	 0.719	 0.720	 0.669	 0.703	

PI		
(𝑪𝑯𝑿𝑲𝑿𝑻𝑹 > 𝟎)	 0.747	 0.802	 0.767	 0.772	

	

Significant parameters for positive control of HXK over XTR for three alternative 

physiologies  

We	 repeated	 the	 procedure	 from	 the	 previous	 section	 using	 the	 same	 set	 of	 top	 3	

parameters,	but	we	imposed	a	positive	control	of	HXK	over	XTR	as	the	objective	for	the	

parameter	classification.	The	top	inferred	rule	enclosed	a	significantly	higher	number	of	

models	(67482)	compared	to	the	case	with	a	negative	control	of	HXK	over	XTR	(11801)	

(Table	2).	Assuming	that	the	parameter	space	was	sampled	uniformly,	this	also	suggested	

that	the	parameter	subspace	that	ensures	a	positive	control	of	HXK	over	XTR	was	larger	
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than	 the	 one	 that	 ensures	 a	 negative	 control.	 Interestingly,	 there	 were	 no	 overlaps	

between	parameter	ranges	for	a	positive	and	a	negative	control	(Table	2).	The	predicted	

PI	for	a	positive	control	(0.776)	was	also	higher	than	the	one	predicted	(0.709)	for	the	

negative	control.	

We	 generated	 a	 population	 of	 100’000	 models	 for	 each	 of	 the	 three	 alternative	

physiologies	by	 imposing	 the	 robust	distributions	of	 the	 top	3	parameters	 ensuring	a	

positive	control	(Table	2).	We	obtained	PI	of	0.747	(Reference),	0.802	(Extreme1),	and	

0.767	 (Extreme2)	 (Table	 3),	 which	 was	 a	 notable	 improvement	 compared	 to	 the	

population	with	unconstrained	parameters	with	PI	of	0.53	(Reference),	0.54	(Extreme1),	

and	 0.61	 (Extreme2).	 Similar	 to	 a	 negative	 control	 study,	 the	 average	 PI	 over	 three	

populations	of	models	(0.772)	was	remarkably	close	to	the	predicted	one	(0.776)	(Table	

3).	

These	results	showed	that	few	parameters	determine	whether	the	control	of	HXT	over	

XTR	is	negative	or	positive,	meaning	that	the	operational	states	of	few	enzymes	are	vital	

to	 responses	 of	 the	metabolic	 network	 upon	 perturbations.	 For	 example,	 a	 follow-up	

experiment	testing	ambiguous	control	of	HXK	over	XTR	was	performed	in	(30),	and	it	was	

shown	 that	HXK2	 deletion	 improves	 xylose	 uptake	 rate.	 Based	 on	 this	 experimental	

observation,	 one	 can	 hypothesize	 the	 operating	 ranges	 of	 top	 enzymes	 such	 as	 ATP	

synthase	(ASN),	triose	phosphate	isomerase	(TPI)	or	xylose	reductase	(XRI).	

The	 obtained	parameter	 values	of	 kinetic	models	pertaining	 to	 single	physiology,	 e.g.,	

Reference	or	Extreme1	had	both	higher	PIs	and	larger	parameter	subspaces	compared	to	

the	ones	 inferred	 from	models	 constructed	 for	 the	 three	 alternative	physiologies.	The	

reason	behind	this	is	that	different	metabolite	concentrations	result	in	different	operating	

ranges	of	 enzymes,	 thus	 affecting	 the	 control	 over	 the	 analyzed	quantities.	One	might	

expect	 that	 the	distributions	of	 parameters	 ensuring	 a	high	PI	will	 shift,	 and	possibly	

shrink	or	stretch,	as	concentration	values	change.	Thus,	to	obtain	values	of	the	studied	

parameters	that	ensure	a	high	PI	over	multiple	concentrations,	we	combined	ranges	of	
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parameters	 computed	 for	 individual	 concentrations	 and	 curated	 them	 through	 a	

parameter	classification	(Methods).	

We	computed	here	robust	distributions	of	parameters	for	only	three,	albeit	very	different,	

metabolite	concentration	vectors,	nevertheless,	the	proposed	method	can	readily	be	used	

to	 find	 parameter	 distributions	 for	 a	 large	 number	 of	 concentration	 vectors.	 Thus,	

iSCHRUNK	can	be	used	to	create	a	mapping	between	the	metabolite	concentrations	and	

kinetic	 parameters	 spaces,	 and	 identify	 the	 regions	 in	 the	 parameters,	 metabolite	

concentrations,	and	thermodynamic	displacements	from	equilibrium	spaces	that	give	rise	

to	a	systemic	property,	e.g.,	robust	steady-state	responses	to	genetic	and	environmental	

perturbations.	

Improved parameter classification through reassignment 

We	found	no	rule	with	PI	equal	to	1	in	performed	parameter	classification	studies.	This	

suggested	that	the	parameter	subspaces	leading	to	a	negative	and	a	positive	control	of	

HXK	over	XTR	were	not	distinctly	separated.	To	improve	the	parameter	classification	for	

the	problems	where	the	separation	between	the	classes	is	fuzzy,	we	propose	to	employ	

the	k-nearest	neighbors	(k-NN)	algorithm	(Methods).	The	k-NN	algorithm	allows	us	to	

identify	the	parameter	sets	from	one	class	that	are	surrounded	by	the	parameter	sets	of	

the	other	class	and	reassign	them	to	the	latter.	In	the	context	of	finding	parameter	values	

that	give	rise	to	a	certain	property,	this	means	that	the	parameter	classification	algorithm	

will	find	only	those	parameter	sets	that	are	surrounded	by	a	majority	of	the	parameter	

sets	of	the	same	class.	This	way,	the	separation	between	the	classes	will	be	increased	at	

the	expense	of	neglecting	parameter	sets	from	the	regions	with	a	heavy	overlap	of	the	

classes.	

	We	reconsidered	the	classification	for	parameters	determining	a	negative	control	of	HXK	

over	XTR	in	the	Reference	case,	and	we	applied	the	k-NN	algorithm	with	k=10	over	the	

set	of	initial	200’000	parameters	in	order	to	find	the	surrounding	for	each	of	parameter	
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sets,	and	to	perform	the	reassignment	(Methods).	If	in	the	group	of	10	closest	neighbors	

of	a	parameter	set	the	percentage	of	parameter	sets	from	the	same	class	was	less	than	a	

reassignment	threshold,	r,	 then	that	parameter	set	was	reassigned.	We	performed	two	

parameter	classification	studies	for	two	different	reassignment	thresholds,	r,	of	30%	and	

50%	(Methods).	

We	found	that	as	the	reassignment	threshold	was	increasing	the	tree	training	algorithm	

was	 inferring	 a	 smaller	 number	 of	 rules	 (73	 for	 r	 =	 30%	 versus	 31	 for	 r	 =	 50%).	

Furthermore,	the	inferred	rules	were	enclosing	a	smaller	number	of	parameter	sets	for	

higher	values	of	r,	i.e.,	for	r	=	30%	and	50%,	the	top	rules	enclosed	respectively	13427	

and	1339	parameter	sets	(Fig	5	and	S2	File).	In	contrast,	the	obtained	PIs,	were	higher	for	

r	=	50%	than	for	r	=	30%	(Fig	5).	For	example,	PI	of	the	top	rule	for	r	=	50%	was	0.83,	

whereas	 the	one	 for	r	=	30%	was	0.73	(Fig	5	and	S2	File).	A	comparison	between	the	

original	method	with	preselection,	which	is	identical	to	the	reassignment	method	with	r	

=	0%	(corresponding	to	no	reassignment),	and	the	reassignment	methods	for	r	=	30%	and	

50%	showed	a	general	tendency	of	the	latter	for	obtaining	rules	with	improved	PI	and	

that	enclose	a	smaller	number	of	parameter	sets	(Fig	5).	

	

Fig	5.	The	rules	obtained	with	the	original	method	versus	the	ones	obtained	with	

the	 improved	 parameter	 classification	 algorithm.	 For	 each	 rule,	 we	 plot	 the	

performance	index	(PI)	as	a	function	of	the	number	of	enclosed	parameter	sets	(rule	size).	

The	rules	are	obtained	with:	the	original	method	with	preselection	(red	diamonds),	the	

reassignment	method	with	30%	threshold	(blue	crosses)	and	the	reassignment	method	

with	50%	threshold	(green	asterisks).		

	

We	also	tested	the	reassignment	procedure	for	parameters	determining	a	positive	control	

of	HXK	over	XTR	in	the	case	of	the	reference	metabolite	concentration	with	k=10	and	r	=	

60%.	The	classification	algorithm	inferred	19	rules	with	PIs	ranging	from	0.75	to	0.90.	
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The	 rules	were	 defined	 by	 only	 28	parameters	 (S2	 File).	 The	 top	 rule	 enclosed	 1711	

parameter	sets	with	PI	of	0.90,	and	it	was	defined	by	6	parameters.	

To	validate	the	proposed	improvement	to	the	parameter	classification,	we	imposed	the	

distributions	of	the	parameters	defined	by	the	top	rules	for	the	negative	control	case	with	

r=50%,	and	 for	 the	positive	control	case	with	r=60%	(S2	File).	We	generated	for	each	

study	a	population	of	100’000	models,	and	we	computed	the	control	coefficients	in	the	

network.	

In	the	case	of	negative	control,	the	distribution	of	the	control	coefficient	𝐶"#$#%& 	was	biased	

toward	negative	values	with	mean	-0.13	(Fig	6A	and	6B).	More	than	79%	of	the	computed	

control	 coefficients	 	𝐶"#$#%&	 	were	 negative.	 (Table	 4).	 Similarly,	 in	 the	 case	 of	 positive	

control,	 the	 distribution	 of	 the	 control	 coefficient		𝐶"#$#%& 		 was	 shifted	 toward	 positive	

values	with	the	mean	of	0.21	and	a	remarkable	PI	of	0.89	(Fig	6D	and	6F,	and	Table	4).	

For	 the	negative	and	positive	cases,	 the	 top	rules	were	defined	by	6	parameters	each,	

where	three	parameters,	𝜎WLJK_H	#&I 	,	𝜎CD_E'7+	,	and	𝜎FGC_H%(I 	,	were	common	for	both	cases	(Fig	6C	

and	 6E).	 These	 three	 parameters	 were	 also	 ranked	 as	 the	 top	 3	 parameters	 in	 the	

parameter	 classification	 with	 the	 original	 algorithm	 (Fig	 4).	 Moreover,	 the	 range	 of	

𝜎WLJK_H	#&I 	was	 constrained	 toward	 low	 values	 for	 the	 negative	 control	 and	 toward	 high	

values	 for	 the	 positive	 control.	 In	 contrast,	 the	 parameters	 𝜎CD_E'7+	 	and	 𝜎FGC_H%(I were	

constrained	toward	high	values	for	the	negative	control,	and	toward	low	values	for	the	

positive	 control.	 These	 patterns	 suggest	 that	 these	 three	 parameters	 are	 crucial	 for	

determining	the	sign	of	the	control	of	HXK	over	XTR,	whereas	the	remaining	parameters,	

𝜎JKLC_HM(,N 	,	𝜎LFC_E'7+ 	,	and	𝜎YQF_H#&I 	for	the	negative	control	case,	and	𝜎WLJ_H#&I 	,	𝜎LFC_H'%()	,	and	𝜎WLJC_H+,& 	for	

the	positive	control	case,	are	likely	having	a	minor	effect	on	the	PI.		

This	 result	 clearly	 demonstrated	 that	 the	 reassignment	 procedure	 allows	 for	 more	

precise	identification	of	the	subspaces	leading	to	a	desired	control	of	HXK	over	XTR.	We	
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observed	 improvement	 of	 both	 PI	 and	 the	mean		𝐶"#$#%&	value	 compared	 to	 the	 results	

obtained	with	the	unaltered	parameter	classification	algorithm.	

	Fig	6.	Validation	of	the	parameter	classification	with	reassignment.	Control	of	HXK	

over	 XTR	 is	 negative	 (A)	 and	 positive	 (D)	 after	 constraining	 the	 inferred	 ranges	 of	 6	

parameters.	Distribution	of	the	control	coefficient		𝐶"#$#%& 		for	the	case	of	negative	(B)	and	

positive	(E)	control.	The	inferred	ranges	of	parameters	that	determined	negative	(C)	and	

positive	(F)	control	of	HXK	over	XTR.	

Table	 4:	 Validation	 of	 the	 ranges	 of	 the	 top	 6	 parameters	 obtained	 with	

reassignment	for	both	a	negative	and	a	positive	control	of	HXK	over	XTR.	

	 Unconstrained	
parameters	

Negative	
control	

(𝑪𝑯𝑿𝑲𝑿𝑻𝑹 < 𝟎)	

Positive	
control	

(𝑪𝑯𝑿𝑲𝑿𝑻𝑹 > 𝟎)	

mean	(𝑪𝑯𝑿𝑲𝑿𝑻𝑹 )	 0.005	 -0.13	 0.21	

%	of	negative	
𝑪𝑯𝑿𝑲𝑿𝑻𝑹 	 47	 79.4	 11.4	

%	of	positive	
𝑪𝑯𝑿𝑲𝑿𝑻𝑹 	 53	 20.6	 88.6	

	

Discussion  
	
Machine	 learning	 methods	 (38-42)	 have	 found	 applications	 in	 a	 large	 number	 of	

biological	and	biomedical	areas	such	as	cancer	research	(43-45),	population	genetics	(46,	

47),	 protein	 structure	 and	 function	 prediction	 and	 phylogenomic	 mapping	 (48-52),	

protein-protein	 interactions	 (53-55),	 medical	 imaging	 (56-60),	 gene	 expression	 and	

microarray	data	analysis	(61-64),	 regulatory	 interactions	 (65,	 66),	metabolic	pathway	
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dynamics	(67),	biomarker	discovery	and	analysis	of	metabolomics	and	proteomics	data	

(68-71).	However,	the	potential	of	these	methods	for	detecting	patterns	in	parameters	of	

kinetic	 models	 of	 metabolism	 and	 uncovering	 hidden	 relationships	 between	 kinetic	

parameters,	omics	data,	and	observed	phenotypes	remained	largely	unexploited.		

Machine	 learning	 methods	 require	 large	 sets	 of	 training	 data	 for	 their	 successful	

application	and	methods	for	generating	kinetic	metabolic	models	that	use	Monte	Carlo	

sampling	offer	an	unprecedented	opportunity	for	employing	machine	learning	to	advance	

our	 understanding	 of	 metabolic	 processes	 in	 cellular	 organisms.	 Kinetic	 models	 are	

usually	built	around	a	metabolic	steady-state,	which	is	characterized	by	the	metabolite	

concentrations	and	metabolic	fluxes,	and	the	generated	populations	of	kinetic	parameters	

together	 with	 the	 observed	 steady-state	 data	 contain	 implicit	 information	 about	 the	

studied	physiology.	This	information,	if	extracted	systematically,	can	be	used	as	guidance	

for	the	design	of	metabolic	engineering	and	synthetic	biology	strategies	that	ensure	the	

desired	metabolic	responses	of	studied	organisms.	

In	this	work,	we	have	extended	iSCHRUNK	functionalities	to	data-mine	this	information	

and	systematically	reduce	uncertainties	in	the	values	of	kinetic	parameters	that	give	rise	

to	the	desired	metabolic	behavior.	As	a	demonstration,	we	reduced	the	uncertainties	in	

the	kinetic	parameters	that	ensure	that	values	of	flux	control	coefficients	remain	within	a	

pre-specified	range.		

iSCHRUNK	 lends	 itself	 to	 a	 broad	 scope	 of	 applications	 ranging	 from	 sustainable	

production	of	biochemicals	 to	medicine	and	regarding	both	 the	analysis	and	design	of	

metabolism.	 It	allows	us	 to	 analyze	 the	 relationships	between	 the	 inferred	parameter	

ranges	 and	 the	 measurements	 acquired	 on	 the	 actual	 biological	 system,	 and,	

consequently,	 to	 create	 hypotheses	 regarding	 the	 operating	 states	 of	 enzymes	 and	

provide	information	about	saturations	of	all	enzymes	in	the	network.	This	information	is	

crucial	for	biotechnology	studies	where	living	cells	need	to	be	engineered	for	improved	
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performance,	 or	 for	 drug	 discovery	 studies	 where,	 e.g.,	 we	 want	 to	 overproduce	 a	

compound	that	is	toxic	to	a	pathogen.	

The	method	can	be	applied	not	only	to	identify	distributions	of	kinetic	parameters	but	

also	 to	determine	distributions	 of	 the	metabolic	 fluxes	 and	metabolite	 concentrations	

satisfying	given	requirements.	It	can	also	be	used	for	guaranteeing	both	qualitative	and	

quantitative	 features	 of	 metabolism,	 and	 several	 requirements	 can	 be	 combined	

simultaneously.	 For	 example,	 iSCHRUNK	 can	 be	 used	 to	 identify	 and	 quantify	 the	

parameters	that	maintain	a	redox	potential	while	enforcing	the	desired	level	of	yield	and	

specific	productivity	of	a	compound	of	interest.	Provided	that	the	desired	properties	are	

biologically	 feasible,	 the	 method	 can	 be	 used	 to	 guarantee	 an	 arbitrary	 number	 of	

requirements.		

Finally,	iSCHRUNK	can	be	used	to	alleviate	issues	with	high	computational	requirements	

of	 Monte	 Carlo	 sampling	 of	 kinetic	 parameters	 in	 large-	 and	 genome-scale	metabolic	

networks.	As	the	size	of	the	models	and	complexity	of	studies	increases,	sampling	a	kinetic	

space	becomes	increasingly	difficult	and	even	intractable.	However,	iSCHRUNK	allows	us	

to	identify	relevant	kinetic	parameters	that	correspond	to	the	observed	physiology.	The	

key	finding	of	the	current	and	previous	studies	(17)	is	that	only	a	small	set	of	parameters	

corresponding	 to	a	 few	enzymes	 is	 sufficient	 to	 characterize	 the	observed	physiology.	

Therefore,	once	we	identify	the	most	relevant	parameters,	it	suffices	to	densely	sample	

the	 identified	 parameters	while	 fixing	 the	 remaining	 parameters	 at	 arbitrary	 feasible	

values.	 This	 way,	 iSCHRUNK	 dramatically	 reduces	 the	 sampling	 space,	 thus	 enabling	

computational	analyses	of	large-scale	and	genome-scale	dynamic	metabolic	systems.	
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Methods 

Identifying significant parameters that determine studied properties  

The	computational	method	for	characterization	and	reduction	of	uncertainty,	iSCHRUNK,	

was	proposed	in	(17).	iSCHRUNK	involves	a	set	of	successive	computational	procedures	

that	can	help	us	 to	ascertain	and	quantify	the	kinetic	parameters	 that	correspond	to	a	

given	physiology.	iSCHRUNK	can	be	used	with	any	method	that	generates	populations	of	

kinetic	models	describing	given	physiology	such	as	ensemble	modeling	(24)	or	ORACLE	

(3,	4,	8,	10,	11,	31,	32).	Here,	we	extended	the	original	iSCHRUNK	workflow	(17)	by	an	

iterative	 loop	 that	 uses	 parameter	 classification	 to	 perform	 stratified	 sampling	 of	 the	

kinetic	parameters,	 i.e.,	 it	allows	identifying	refined	sets	of	parameters	that	lead	to	the	

desired	metabolic	 behavior	 (Fig.	 7).	We	 used	 the	 extended	 iSCHRUNK	 to	 identify	 the	

distribution	of	kinetic	parameters	that	determine	the	sign	in	ambiguous	distributions	of	

control	coefficients	as	follows:	

Fig	7.	Workflow	of	the	computational	procedure	for	uncertainty	analysis.	(A)	The	

workflow	 allows	 us	 to	 identify	 ranges	 of	 kinetic	 parameters	 ensuring	 that	 a	 studied	

property	is	satisfied,	e.g.,	the	sign	in	ambiguous	distributions	of	control	coefficients.	(B)	

Detailed	steps	of	parameter	classification.	

I. We	defined	the	stoichiometric	model	of	glucose-xylose	co-utilizing	S.	cerevisiae	(S6	

Fig).	The	model	consisted	of	102	atomically	balanced	reactions	and	96	intracellular	

metabolites,	and	included	glycolysis,	pentose	phosphate	pathway,	tricarboxylic	cycle	

(TCA),	electron	transport	chain	(ETC)	and	XR/XDH	xylose	assimilation	pathway	(30,	

72).	Based	on	the	physiological	information	on	the	cellular	compartmentalization	the	

intracellular	 metabolites	 were	 categorized	 as	 cytosolic	 or	 mitochondrial,	 and	 the	

extracellular	metabolites	were	modeled	as	well.	We	integrated	the	thermodynamic	

constraints	based	on	the	information	about	the	Gibbs	free	energies	of	reactions	(73-
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76)	 together	 with	 the	 fermentation	 data	 from	 Miskovic	 et	 al.	 (30),	 and	 we	 then	

performed	the	Thermodynamics-based	Flux	balance	Analysis	(TFA)	(4,	13-15,	77,	78)	

to	compute	the	thermodynamically	consistent	steady-state	flux	(S7	File).		

II. We	sampled	 the	space	of	metabolite	concentrations	 that	 is	consistent	with:	 (i)	 the	

directionalities	 of	 the	 steady-state	 flux	 obtained	 in	 step	 I;	 and	 (ii)	 the	 available	

observations	 of	 metabolite	 concentration	 ranges	 (4,	 8).	 The	 displacements	 of	 the	

reactions	 from	 thermodynamic	 equilibrium	 that	 correspond	 to	 the	 sampled	

metabolite	concentration	sets	were	simultaneously	computed	(18,	27).	

We	then	computed	the	reference	vector	of	metabolite	concentrations,	Reference,	as	the	

sample	that	was	closest	to	the	mean	metabolite	concentration	vector	(S7	File).	The	

Principal	Component	Analysis	 (4,	 79)	of	 the	 samples	was	next	performed,	 and	we	

computed	two	extreme	metabolite	concentration	vectors,	Extreme1	and	Extreme2,	as	

the	 two	 samples	 that	 were	 at	 the	 extreme	 ends	 of	 the	 sampled	 space	 along	 the	

direction	of	the	first	principal	component	(S7	File).	In	the	following	steps,	we	have	

computed	a	population	of	kinetic	models	for	each	of	three	alternative	physiologies.	

The	three	physiologies	were	characterized	by	the	common	flux	profile	computed	in	

Step	 I	 and	 three	 alternative	 concentration	 profiles	 (Reference,	 Extreme1	 and	

Extreme2)	computed	in	this	step.	

III. We	 assigned	 a	 kinetic	 mechanism	 to	 each	 enzyme-catalyzed	 reaction	 using	 the	

information	from	literature	(18,	80-82).	For	reactions	without	available	information	

about	their	kinetic	mechanisms,	we	used	the	generalized	reversible	Hill	law	(83).	The	

used	kinetic	mechanisms	included	reversible	Michaelis-Menten	kinetics,	Uni-Bi,	Bi-

Uni,	ordered	Bi-Bi,	Bi-Ter,	Ter-Bi	(81).	We	also	modeled	an	allosteric	regulation	for	

the	 phosphofructokinase	 (PFK),	 where	 the	 assigned	 kinetic	 mechanism	 was	 Hill	

kinetics	with	the	Hill	coefficient	h	=	4	(S8-S10	File).	At	this	point	of	the	procedure,	we	

may	 integrate	 available	Michaelis	 constants,	Km,	 from	 the	 literature	 and	databases	

(84,	 85).	 In	 this	 study,	 we	 did	 not	 use	Km	 values	 from	 the	 literature,	 instead,	 we	
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sampled	 the	 space	 of	Km	 values	 indirectly	 through	 the	 sampling	 of	 the	 degree	 of	

saturation	of	the	enzyme	active	site,	σA	(10).	For	a	vector	of	metabolite	concentrations	

computed	in	Step	II,	we	calculated	the	Km	value	corresponding	to	a	value	σA	as	Km	=	

Sj(1-	σA)/σA,	where	Sj	 is	the	 jth	element	of	the	metabolite	concentration	vector	 that	

corresponded	to	σA	(10).	Without	prior	information,	we	sampled	σA	values	between	0	

(non-saturation)	 and	 1	 (full	 saturation).	 Otherwise,	 we	 performed	 the	 stratified	

sampling	 where	 we	 imposed	 the	 σA	distributions	 obtained	 from	 the	 classification	

algorithm	in	Step	VII	(Fig	7A	and	7B).	An	alternative	to	sampling	σA	values	would	be	

to	sample	the	enzyme	states	(27,	28).	

IV. We	verified	 the	 local	stability	of	 the	steady-state	 (10),	and	we	rejected	 the	kinetic	

parameters	 corresponding	 to	 unstable	 steady	 states	 and	 the	 ones	 that	 are	 not	

consistent	with	the	experimentally	observed	data	and	literature.	

V. In	this	step,	we	analyze	whether	or	not	the	studied	property	is	satisfied.	If	yes	then	

we	proceed	to	step	VII,	otherwise	we	perform	the	parameter	classification	in	Step	VI	

to	find	parameter	values	that	give	rise	to	the	studied	property.	Here,	we	computed	

populations	of	control	coefficients	to	quantify	the	responses	of	the	metabolic	fluxes	

and	 intracellular	metabolite	concentrations	 to	changes	 in	activities	of	 the	network	

enzymes.	In	general,	we	can	study	any	property	related	to	metabolic	network	such	as:	

significant	fluxes	in	the	network	such	as	the	product	flux	and	the	uptake	fluxes,	yields,	

key	 concentrations	 such	 as	ATP	or	NADH,	other	 relevant	quantities	 such	 as	 redox	

potential	(NADH/NAD+).		

We	then	verified	if	the	control	of	HXK	over	XTR	was	well	determined.	We	defined	the	

control	of	an	enzyme	over	the	analyzed	quantity	as	being	well	determined	if	50%	of	

control	 coefficients	 around	 the	 mean	 control	 coefficient	 had	 the	 same	 sign.	 For	

example,	 in	 the	 population	 of	 the	 control	 coefficients	 of	 XTR	 with	 respect	 to	

xylulokinase	(XK)	all	the	samples	between	the	1st	and	the	3rd	quartile	were	negative	

(Fig	1A),	and	hence	we	considered	that	XK	had	a	well-determined	negative	control	
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over	XTR.	In	contrast	HXK,	ATPM	and	NDR	had	an	ambiguous	control	over	XTR	(Fig	

1A).	 If	 HXK	 had	 well-determined	 control	 over	 XTR,	 we	 proceeded	 to	 Step	 VII.	

Otherwise,	we	went	to	Step	VI.	

VI. We	 fed	back	 to	 the	 classification	algorithm	 the	population	of	 the	 analyzed	 control	

coefficient	 from	 Step	 V	 together	with	 the	 corresponding	 values	 of	 the	 parameters	

(degree	of	saturation	of	 the	enzyme	active	site	σA)	 from	Step	 III.	The	classification	

problem	was	defined	to	find	the	ranges	of	the	σA	values	(and	consequently	the	ranges	

of	the	corresponding	Km	values)	that	determine	the	sign,	positive	or	negative,	of	the	

analyzed	control	coefficient.	We	solved	this	parameter	classification	problem	using	

the	CART	algorithm	(33,	34)	from	the	MATLAB	software	package.	

We	then	used	the	output	of	the	parameter	classification,	the	distributions	of	σA,	for	

the	sampling	in	Step	IIIb	(Fig	7A).	More	details	about	the	parameter	classification	are	

presented	in	the	next	section.	

VII. In	this	step,	we	can	postulate	hypotheses	and	design	systems	biology	strategies.	

	

In	Step	V	we	entered	an	iterative	loop	for	identifying	the	ranges	of	σA	(or	equivalently	Km)	

for	which	the	analyzed	control	coefficients	were	well	determined	(Fig	7).	The	iteration	

started	by	passing	the	invalidated	σA	values	from	this	step	to	the	classification	algorithm	

in	 Step	 VI.	 We	 then	 used	 the	 refined	 σA	 distributions	 from	 Step	 VI	 in	 the	 sampling	

procedure	in	Step	III.	Next,	the	refined	samples	of	σA	were	next	tested	for	consistency	in	

Step	IV,	and	finally,	we	constructed	a	new	population	of	control	coefficients	in	Step	V	and	

verified	it.	At	each	iteration,	the	σA	values	(Km	values)	that	reduced	the	ambiguity	in	the	

population	 of	 the	 analyzed	 control	 coefficients	 were	 refined	 and	 used	 for	 stratified	

sampling	in	Step	III.	
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Parameter classification 

We	carried	out	the	parameter	classification	in	several	steps	(Fig	7B).	We	first	removed	

from	 the	 consideration	 the	 parameters	 that	 were	 not	 affecting	 the	 control	 over	 the	

analyzed	 flux.	We	 then	used	 the	CART	algorithm	with	 the	preselected	parameters	 for	

three	populations	of	kinetic	models	where	each	population	was	computed	with	a	different	

metabolite	concentration	vector	(see	Step	II	of	the	framework	discussed	above).	In	the	

third	step,	we	ranked	the	parameters	over	three	concentrations,	and	we	chose	the	top	

parameters	to	continue.	We	next	refined	the	distributions	of	the	top	parameters	for	each	

concentration	individually,	and	we	then	used	this	information	to	determine	the	consistent	

distributions	 of	 top	 parameters	 over	 all	 concentrations.	 We	 detail	 the	 parameter	

classification	steps	below.	

Preselect parameters 

Our	preliminary	results	indicated	that	only	a	subset	of	kinetic	parameters	affected	the	

sign	 of	 the	 analyzed	 control	 coefficient.	 The	 reduction	 in	 the	 parameter	 space	was	 in	

agreement	with	our	previous	study	(17),	and	inspired	us	to	assess	which	parameters	had	

a	 negligible	 effect	 on	 the	 computed	 control	 coefficients,	 to	 discard	 them,	 and	 then	 to	

proceed	with	the	parameter	classification.	The	benefits	of	preselecting	the	parameters	

are	twofold.	First,	applying	a	computationally	inexpensive	method	for	preselecting	the	

parameters	and	 then	using	the	CART	algorithm	on	 the	reduced	space	can	significantly	

reduce	 computational	 requirements	 of	 iSCHRUNK.	 Second,	 the	 parameters	 with	 a	

negligible	effect	on	the	control	coefficients	can	introduce	a	bias	in	the	estimates	of	key	

parameters.	We	can	eliminate	this	bias	by	discarding	the	irrelevant	parameters.	

We	used	the	Fisher’s	Linear	Discriminant	score	(35,	36)	to	preselect	the	parameters:	

𝑺 =
|𝒎𝟏 −𝒎𝟐|𝟐

𝝈𝟏𝟐 + 𝝈𝟐𝟐
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where	𝑚N 	and	𝑚P 	denote	 the	mean	values	of	 the	parameter	populations	 that	 result	 in	

negative	(or	positive)	and	non-negative	(or	non-positive)	control	coefficients,	while	𝜎NP	

and	𝜎PP	are	the	corresponding	variances.	The	higher	S	was,	the	larger	was	the	influence	of	

the	analyzed	parameter	in	discriminating	between	a	positive	and	a	negative	control.	We	

ranked	the	parameters	according	to	this	score,	and	we	kept	the	parameters	whose	scores	

were	at	least	1%	of	the	highest	obtained	score.	

Train classification tree and rank inferred classification rules  

For	each	of	the	three	metabolite	concentration	vectors,	we	trained	a	classification	tree.	

The	 classification	 algorithm	 inferred	 classification	 rules	 based	 on	 the	 values	 of	 the	

preselected	 σA	 parameters	 and	 the	 outcomes,	 e.g.,	 negative	 and	 non-negative	 control	

coefficients,	 obtained	 with	 these	 σA	 parameters.	 Each	 rule	 corresponds	 to	 a	 set	 of	

inequalities	defined	on	different	parameters.	Thus,	a	rule	is	a	hypercube	in	the	parameter	

space.	The	number	of	inferred	rules	depends	on	the	properties	of	the	parameter	space	to	

be	classified	and	also	on	the	number	of	parameter	sets	that	are	used	to	train	the	algorithm.	

In	order	to	prevent	the	overfitting,	we	fixed	to	200	the	minimal	number	of	parameter	sets	

that	the	algorithm	can	use	to	construct	a	rule	(17,	34,	86).	The	rules	defined	by	a	large	

number	of	 parameter	 sets	are	 “more	 certain”.	Besides,	 assuming	 that	we	 sampled	 the	

parameter	space	uniformly,	the	“more	certain”	rules	will	likely	enclose	a	larger	volume	of	

the	parameter	 space	with	 the	well-determined	 control.	 Therefore,	 for	 each	metabolite	

concentration	vector,	we	ranked	the	inferred	classification	rules	according	to	the	number	

of	parameter	sets	they	contained.		

Rank parameters across classification rules and over all concentrations 

To	 rank	 the	 parameters	 of	 the	 models	 obtained	 for	 a	 concentration	 vector	 such	 as	

reference	concentration	vector	or	one	of	the	extreme	concentration	vectors,	we	defined	

the	following	score	for	parameter	𝑗:	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/427716doi: bioRxiv preprint 

https://doi.org/10.1101/427716
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 30	

𝑆𝐶8 =
1
𝑁h

i(1 − 𝑅>,8)
+k

>lN

	

where	𝑁h	denotes	the	number	of	rules	over	which	we	performed	the	ranking,		𝑁m	denotes	

the	number	of	 rules,	 a	 subset	 of	𝑁h 	rules,	 that	 constrained	parameter	𝑗,	 and	𝑅>,8 	is	 the	

range	 of	 parameter	𝑗 	defined	 by	 the	 rule	𝑖 .	 This	 score	 incorporates	 two	 factors:	 (i)	 a	

number	of	occurrences	of	parameters	across	classification	rules	–	parameters	that	appear	

in	 more	 rules	 are	 more	 relevant;	 (ii)	 how	 much	 parameters	 are	 constrained	 –	 less	

important	parameters	are	less	constrained.	

To	rank	the	parameters	of	the	models	obtained	over	all	concentrations,	we	computed	the	

aggregate	score:	

𝑆𝐶8
'oo =

1
𝑁:
i 𝑆𝐶8p
+q

plN

	

where	𝑁: 	denotes	the	number	of	metabolite	concentration	vectors	and	𝑆𝐶8p	is	the	score	

computed	for	the	concentration	𝑘.	Observe	that	values	of	𝑁h, 𝑁m 	and	𝑅>,8	may	differ	for	

different	concentrations.	

We	can	choose	to	perform	the	ranking	across:	(i)	all	rules	returned	by	the	classification	

algorithm;	 though	the	classification	algorithm	can	return	different	number	of	rules	 for	

three	 metabolite	 concentrations,	 the	 normalization	 constants	𝑁h 	ensure	 an	 unbiased	

scoring	over	different	concentrations;	 (ii)	the	chosen	top	rules,	e.g.,	 over	Top	10	rules	

(𝑁h = 10	for	all	three	concentrations).	We	used	 this	score	 to	rank	 the	parameters;	 the	

higher	the	score	was	for	a	parameter,	the	higher	was	its	ranking.		

Refine distributions of top parameters  

For	each	of	metabolite	concentration	vectors	(Reference,	Extreme1	and	Extreme2)	and	a	

set	of	top	parameters	ranked	over	all	concentrations,	e.g.,	Top	3	or	Top	5	σA	values,	we	

performed	 the	 second	 parameter	 classification,	 i.e.,	 tree	 training,	 to	 find	 refined	
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parameter	distributions	that	determine	the	sign	of	the	analyzed	control	coefficient.	The	

inputs	 to	 the	parameter	 classification	algorithms	were	 the	population	of	 the	 analyzed	

control	 coefficient	 together	with	 the	 corresponding	 top	 σA	values.	 Thus,	 for	 the	 three	

concentration	vectors,	we	constructed	parameter	subspaces	that	were	constrained	only	

by	the	obtained	ranges	of	the	top	parameters.		

Determine robust distributions of top parameters over alternative physiologies  

The	refined	distributions	of	top	parameters	that	correspond	to	a	well-determined	control	

might	 well	 mismatch	 among	 the	 three	 cases	 (Reference,	 Extreme1	 and	 Extreme2).	

Therefore,	some	parameter	values	can	correspond	to	a	well-determined	control	for	one	

physiology	 and	 to	 an	 ambiguous	 control	 for	 the	 other	 physiologies.	 To	 obtain	 the	

consistent	distributions	of	the	top	parameters	over	all	concentrations	in	an	unbiased	way	

we	performed	the	third	tree	training	as	follows.	

For	 each	 of	 the	 three	 alternative	 physiologies,	 we	 took	 as	 the	 input	 to	 parameter	

classification	the	parameter	sets	whose	ranges	of	top	parameters	were	defined	according	

to	top	3	rules.	We	used	in	parameter	classification	the	parameter	sets	from	the	subspace	

of	top	rules	as	these	parameter	sets	are	likely	to	have	well-determined	control	at	least	for	

one	 of	 the	 alternative	 physiologies.	We	 then	 verified	 for	 each	 top	 parameter	 set	 if	 it	

corresponds	 to	 a	 well-determined	 control	 for	 the	 three	 alternative	 physiologies.	 If	 a	

parameter	 set	 corresponded	 to	 a	 well-determined	 control	 for	 the	 three	 alternative	

physiologies	 (S11	 Fig,	 red	 stars),	 we	 considered	 it	 consistent;	 otherwise,	 it	 was	

considered	inconsistent	(S11	Fig,	blue	and	yellow	stars).	We	fed	this	information	as	the	

second	input	to	the	classification	algorithm	and	performed	the	training.		

The	obtained	consistent	distributions	of	top	parameters	over	the	three	cases	were	used	

in	Step	III	to	perform	a	stratified	sampling.	
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Reassignment procedure for improved tree training 

In	the	cases	when	the	space	of	parameter	sets	leading	to	a	negative	and	the	one	leading	

to	a	positive	control	over	analyzed	quantities	are	overlapping,	the	separation	between	

parameter	classes	is	fuzzy.	To	enhance	the	separation	between	the	classes,	we	propose	

here	 utilization	 of	 the	 k-nearest	 neighbors	 (k-NN)	 algorithm	 in	 the	 parameter	

classification	as	follows	(87).	

For	 each	 of	 the	 parameter	 vectors,	 we	 first	 assessed	 whether	 or	 not	 they	 were	

determining,	e.g.,	a	negative	control,	and	we	assigned	them	to	two	distinct	sets.	The	first	

set,	SN,	 contained	parameter	 vectors	 that	 gave	 rise	 to	 a	negative	 control,	whereas	 the	

second	set,	SP,	contained	the	ones	that	gave	rise	to	a	non-negative	control.	We	then	ran	

the	k-nearest	neighbors	(k-NN)	algorithm,	and	for	each	parameter	vector	from	the	set	SN,	

we	computed	how	many	out	of	its	k-nearest	neighbors	belonged	to	the	same	set	(SN).	For	

each	of	these	parameter	vectors,	if	the	percentage	of	k-nearest	neighbors	that	belonged	

to	the	set	SN	was	higher	than	a	pre-specified	reassignment	threshold,	r,	we	then	retained	

that	 vector	 in	 the	 set	 SN.	 For	 instance,	 for	 r	 =	 50%,	 if	 more	 than	 50%	 of	 k-nearest	

neighbors	 of	 the	 analyzed	 parameter	 set	 belonged	 to	 the	 set	 SN,	 that	 parameter	 set	

remained	in	the	set	SN.	Otherwise,	we	re-assigned	that	parameter	vector	to	the	set	SP.	

With	the	proposed	reassignment	procedure,	we	emphasized	the	regions	of	the	parameter	

space	that	have	a	higher	proportion	of	parameter	vectors	belonging	to	the	set	SN.		

The	 reassignment	 procedure	 introduced	 two	 new	 parameters:	 the	 reassignment	

threshold,	r,	and	the	number	of	nearest	neighbors,	k.	The	values	of	r	were	chosen	on	the	

basis	of	the	initial,	unbiased,	sampling	that	was	performed	in	Step	III.	Specifically,	from	

the	initial	sampling	we	could	assess	the	average	percentage	of	SN	parameter	vectors	in	

the	set	of	all	vectors.	We	then	set	r	to	be	a	larger	than	the	average	percentage	so	that	the	

parameter	classification	algorithm	could	identify	the	regions	in	the	parameter	space	with	

the	above	than	average	proportion	of	SN	vectors.	Assuming	that	the	parameter	space	was	
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sampled	uniformly,	we	use	the	parameter	k	to	choose	the	larger	or	smaller	part	of	the	

parameter	space	around	the	analyzed	parameter	vector	for	a	possible	reassignment.	Very	

large	values	of	k	are	not	recommended	as	the	reassignment	procedure	would	consider	

the	overall	parameter	space	and	no	samples	would	be	retained	in	the	set	SN	as	r	is	chosen	

to	be	larger	than	the	average	percent	of	SN	vectors	in	the	overall	set	of	parameter	vectors.	

Bayesian inference and parameter classification 

Bayesian	inference	relies	on	use	of	Bayes	theorem	to	compute	the	conditional	distribution	

of	a	parameter	vector	𝜃	given	observed	data	x:	

𝑝(𝜃|𝑥) =
𝑝(𝑥|𝜃)𝑝(𝜃)

𝑝(𝑥)
	

where	 𝑝(𝜃|𝑥) 	is	 the	 posterior	 distribution	 of	 the	 parameters	 𝜃 ,	 𝑝(𝜃) 	is	 the	 prior	

distribution	 of	 parameters,	 𝑝(𝑥|𝜃) 	is	 the	 likelihood,	 and	 𝑝(𝑥) 	is	 the	 evidence.	 In	

computing	the	posterior	distribution	𝑝(𝜃|𝑥),	the	evidence	can	be	ignored	as	it	represents	

a	normalizing	constant.	It	is	often	computationally	prohibitive	to	explicitly	evaluate	the	

likelihood	function	and	Approximate	Bayesian	Computation	(ABC)	methods	are	used	for	

approximating	this	function	by	simulations	(88).	

For	this	type	of	studies,	the	ABC	rejection	algorithm	(89)	can	be	used	as	follows.	First,	the	

prior	distribution	of	kinetic	parameters	is	generated	using	the	ORACLE	framework	or	any	

other	method	that	uses	Monte	Carlo	sampling	of	uncertain	parameters	for	constructing	

populations	 of	 kinetic	 models	 (3-5,	 8,	 9,	 11,	 20-28).	 	 The	 corresponding	 control	

coefficients	are	next	computed,	and	the	parameter	classification	algorithm	is	then	used	to	

discard	 parameter	 vectors	 from	 the	 prior	 that	 gave	 rise	 to	 ambiguous	 control	 over	

analyzed	quantities.	As	a	 result,	 the	 retained	samples	are	distributed	according	 to	 the	

approximate	 posterior	 distribution	 of	 kinetic	 parameters	 that	 give	 rise	 to	 well-

determined	control	over	analyzed	quantities.	
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Computational requirements 

The	 simulations	 in	 this	 study	 were	 performed	 in	 MATLAB	 using	 an	 Apple	 MacPro	

Workstation	with	2.7	GHz	12-Core	Intel	Xeon	E5	processor	and	64	GB	of	RAM	memory.	

The	required	time	to	generate	a	set	200’000	kinetic	models	was	~12.5h,	whereas	one	run	

of	the	parameter	classification	algorithm	required	several	minutes.		
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Figures 
	

	

Fig	1.	
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Fig	3.	
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Supporting information 
	
S1	File.	List	of	abbreviations	for	model’s	enzymes	and	chemical	species		

	

S2	File.	Parameter	classification	rules	together	with	the	corresponding	feasibility	

indices.	The	rules	were	obtained	from:	(i)	the	parameter	classification	with	the	whole	set	

of	258	parameters	(sheet	“Preliminary	training”);	(ii)	the	parameter	classification	with	

the	preselected	81	parameters	(sheet	“Training	with	Fisher	preselection”);	and	(iii)	the	

parameter	classification	with	the	top	3	ranked	parameters	(sheet	“Second	training	(top	3	

params)”);	 (iv)	 the	 first	 parameter	 classification	 for	 the	 robust	 ranges	 of	 parameters	

ensuring	 a	 negative	 control	 for	 the	 reference	 (sheet	 “Robust	 Reference”),	 extreme	 1	

(sheet	 “Robust	 Extreme	 1”),	 and	 extreme	 2	 (sheet	 “Robust	 Extreme	 2”)	 metabolite	

concentrations;	 (v)	 the	 second	parameter	 classification	with	 top	3	parameters	 for	 the	

robust	ranges	of	parameters	ensuring	a	negative	control	for	the	reference	(sheet	“Robust	

Reference	Top	3”),	extreme	1	(sheet	“Robust	Extreme	1	Top	3”),	and	extreme	2	(sheet	

“Robust	Extreme	2	Top	3”)	metabolite	concentrations;	(vi)	the	parameter	classification	

with	reassignment	for	the	reference	metabolite	concentration	ensuring	a	negative	control	

with	 the	reassignment	threshold	r	=	50%	(sheet	 “Reassign	–	Ref	 -50%”),	and	r	=	30%	

(sheet	“Reassign	–	Ref	-30%”),	and	ensuring	a	positive	control	with	r	=	60%	(sheet	“Pos	

Reassign	-	Ref	-	60%”).	

	

S3	Fig.	Preselection	of	the	parameters	based	on	Fisher’s	linear	discriminant	score.	

The	rules	from	a	tree	training	with	all	parameters	(blue	crosses),	and	the	rules	from	a	tree	

training	with	 a	 reduced	 set	 of	 parameters	 (red	diamonds)	 coincide	 in	 the	majority	of	

instances.	

	

S4	 Fig.	 Evolution	 of	 PI	 (blue)	 together	 with	 that	 of	 the	 number	 of	 enclosed	

parameter	vectors	(orange)	for	a	progressive	increase	of	the	lower	bound,	𝜎',	of	the	
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top	9	parameters,	while	their	upper	bound	was	fixed	at	1.	For	a	value	of	the	lower	

bound	𝜎'	=𝜎'*,	PI	was	calculated	over	the	range		(𝜎'*,1)	of	the	parameter	𝜎'.	For	example,	

for	 	𝜎' 	=	 0,	 the	 whole	 range,	 i.e., 	𝜎' 	∈ 	(0,1),	 of	 a	 parameter	 was	 considered,	 and	 the	

corresponding	PI	was	calculated.	For	𝜎'	=	1,	PI	was	calculated	for	a	fixed	value		𝜎' = 1.		

	

S5	Fig.	Top	ranked	parameters	affecting	control	of	hexokinase	(HXK)	over	xylose	

uptake	(XTR)	over	three	concentrations.	Evolution	of	the	ranking	score	for	the	top	10	

parameters	as	a	function	of	the	considered	number	of	rules.	

	

S6	 Fig.	Metabolic	pathways	 of	 the	 VTT	 C-10880	S.	 cerevisiae	 strain.	The	 network	

includes	 102	 reactions	 and	 96	 metabolite	 concentrations	 distributed	 over	 cytosol,	

mitochondria,	and	extracellular	environment.	VTT	C-10880	strain	can	consume	xylose	

through	the	integrated	xylose	reductase/	xylitol	dehydrogenase	pathway.		

	

S7	File.	Reference	metabolite	flux	vector	together	with	the	metabolite	Reference,	

Extreme1,	and	Extreme2	concentration	vectors.	

	

S8	File.	Stoichiometry	of	used	models.	List	of	reactions	and	the	corresponding	mass	

balances.	

	

S9	File.	List	of	reactions	together	with	the	used	kinetic	mechanisms	(together	with	

S10	File).	

	

S10	File.	Rate	expressions	for	used	kinetic	mechanisms	together	with	the	

expressions	for	the	corresponding	metabolite	elasticities.	
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S11	Fig.	Parameter	vectors	 that	correspond	to	a	well-determined	control	 for	 the	

three	 metabolite	 concentration	 vectors	 (Reference,	 Extreme1	 and	 Extreme2).	

Parameter	 sets	 corresponding	 to	 a	 well-determined	 control	 for	 the	 three	 metabolite	

concentrations	(red	stars),	for	two	out	of	three	(yellow	stars)	and	for	one	out	of	three	

(blue	stars)	metabolite	concentrations.	The	gray	stars	denote	the	parameter	vectors	not	

belonging	to	a	top	rule	for	any	of	the	three	concentrations.	
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