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Abstract

A persistent obstacle for constructing kinetic models of metabolism is uncertainty in the
kinetic properties of enzymes. Currently, available methods for building kinetic models
can cope indirectly with uncertainties by integrating data from different biological levels
and origins into models. In this study, we use the recently proposed computational
approach iSCHRUNK (in Silico Approach to Characterization and Reduction of
Uncertainty in the Kinetic Models), which combines Monte Carlo parameter sampling
methods and machine learning techniques, in the context of Bayesian inference. Monte
Carlo parameter sampling methods allow us to exploit synergies between different data
sources and generate a population of kinetic models that are consistent with the available
data and physicochemical laws. The machine learning allows us to data-mine the a priori
generated kinetic parameters together with the integrated datasets and derive posterior
distributions of kinetic parameters consistent with the observed physiology. In this work,
we used iISCHRUNK to address a design question: can we identify which are the kinetic
parameters and what are their values that give rise to a desired metabolic behavior? Such
information is important for a wide variety of studies ranging from biotechnology to
medicine. To illustrate the proposed methodology, we performed Metabolic Control
Analysis, computed the flux control coefficients of the xylose uptake (XTR), and identified
parameters that ensure a rate improvement of XTR in a glucose-xylose co-utilizing S.
cerevisiae strain. Our results indicate that only three kinetic parameters need to be
accurately characterized to describe the studied physiology, and ultimately to design and
control the desired responses of the metabolism. This framework paves the way for a new
generation of methods that will systematically integrate the wealth of available omics
data and efficiently extract the information necessary for metabolic engineering and

synthetic biology decisions.
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Author Summary

Kinetic models are the most promising tool for understanding the complex dynamic
behavior of living cells. The primary goal of kinetic models is to capture the properties of
the metabolic networks as a whole, and thus we need large-scale models for dependable
in silico analyses of metabolism. However, uncertainty in kinetic parameters impedes the
development of kinetic models, and uncertainty levels increase with the model size. Tools
that will address the issues with parameter uncertainty and that will be able to reduce
the uncertainty propagation through the system are therefore needed. In this work, we
applied a method called iISCHRUNK that combines parameter sampling and machine
learning techniques to characterize the uncertainties and uncover intricate relationships
between the parameters of kinetic models and the responses of the metabolic network.
The proposed method allowed us to identify a small number of parameters that
determine the responses in the network regardless of the values of other parameters. As
a consequence, in future studies of metabolism, it will be sufficient to explore a reduced
kinetic space, and more comprehensive analyses of large-scale and genome-scale

metabolic networks will be computationally tractable.

Keywords: Metabolic Control Analysis, Large-scale kinetic models, Machine learning,

Parameter classification, Kinetic parameters, Uncertainty, S. cerevisiae.

Abbreviations: iSCHRUNK, in Silico Approach to Characterization and Reduction of
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Introduction

Kinetic models are one of the cornerstones of rational metabolic engineering as they allow
us to capture the dynamic behavior of metabolism and to predict dynamic responses of
living organisms to genetic and environmental changes. With reliable kinetic models,
metabolic engineering and synthetic biology strategies for improvement of yield, titer,
and productivity of the desired biochemical can be devised and tested in silico (1). The
scientific community has acknowledged the utility and potential of kinetic models, and
efforts towards building large- and genome-scale kinetic models were recently intensified
(2-9). Nevertheless, the development of these models is still facing challenges, such as
partial experimental observations and large uncertainties in available data (10-12).

The major difficulty in determining parameters of kinetic models are uncertainties
associated with: (i) flux values and directionalities (13-16); (ii) metabolite concentration
levels and thermodynamic properties (13-16); and (iii) kinetic properties of enzymes (2,
17). As aresult of interactions of metabolite concentrations and metabolic fluxes through
thermodynamics and kinetics, these uncertainties make parameter estimation difficult.
Quantifying these uncertainties and determining how they propagate to the parameter
space is essential for identification of parameters that should be measured or estimated
to reduce the uncertainty in the output quantities such as time evolution of metabolites
or control coefficients (18, 19).

In biological systems, large uncertainties and partial experimental data commonly result
in a population instead of in a unique set of parameter values that could describe the
experimental observations. Such population of parameter sets is typically computed
using Monte Carlo sampling techniques (3-5, 8, 9, 11, 20-28). However, the problem is
when certain properties differ among models in a model population. For example, one
such property is flux control coefficients (FCCs)(18, 19, 29).1n (30), we used the ORACLE
framework (3, 4, 8, 10, 11, 31, 32) to compute a population of kinetic models along with

the corresponding flux control coefficients with the aim of improving xylose uptake rate
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(XTR) of a glucose-xylose co-utilizing S. cerevisiae strain. We have found that in the same
population of models that are consistent with the observed physiology FCCs can be
different due to lack of data about kinetic parameters. This can lead to erroneous or
conflicting conclusions and decisions about the system in metabolic engineering and

synthetic biology studies.

In this contribution, to resolve such issues, we propose to formulate these problems as
parameter classification: identify which of the parameters, if any, should be constrained
so that the values of studied properties, such as FCCs, are in predefined ranges. For this
purpose, we extended the -capabilities of iSCHRUNK (in Silico Approach to
Characterization and Reduction of Uncertainty in the Kinetic Models), a recently
introduced machine learning approach that characterizes uncertainties in parameters of
kinetic models, and identifies accurate and narrow ranges of parameters that can describe
a studied physiological state (17). In iSCHRUNK, machine learning is combined with
methods that generate populations of kinetic models (3-5, 8,9, 11, 20-28) to data-mine
the integrated data and observed physiology together with the kinetic parameters. The
extended iISCHRUNK workflow is amenable for identifying parameters that give rise to a
wide variety of properties of metabolic responses. The identified parameters can further
be refined in an iterative way using the stratified sampling. Moreover, a set of
improvements in the parameter classification procedure was introduced to improve the
classification accuracy and to allow for dealing with uncertainties in alternative
physiologies, e.g., when multiple metabolite concentrations vectors are consistent with

the observed physiology.

As an illustration of the capabilities of the extended iSCHRUNK, we identified the enzymes
and their kinetic parameters that determine consistent FCC values related to XTR. Our
results showed that by constraining only three parameters, corresponding to xylose

reductase (XRI) and ATP synthase (ASN), consistent FCCs can be obtained for models
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computed around multiple steady-state metabolite concentrations. We further showed
how the parameter classification can be improved to more accurately identify the

parameter subspaces that lead to well-determined model properties.

Results

Uncertainty in the xylose uptake responses to genetic manipulations

In (30), we analyzed the improvement of the xylose uptake rate (XTR) during mixed
glucose-xylose utilization in a recombinant Saccharomyces cerevisiae strain. Here, we
revisited that study and built the kinetic model of S. cerevisiae metabolic network around
the reference steady-state of metabolic fluxes and metabolite concentrations (Methods).
The model contains 258 parameters and describes 102 reactions and 96 intracellular
metabolites distributed over cytosol, mitochondria and extracellular environment. The
experimentally determined values of kinetic parameters were missing, and the analyzed
system was underdetermined, i.e, we had 102+96 computed values for steady-state
fluxes and metabolite concentrations versus 258 unknown parameters. This meant that
a multitude of parameter sets could reproduce the observed physiology, and we used the
ORACLE framework that employs Monte Carlo sampling to generate a population of
200’000 kinetic models. We computed the flux control coefficients (FCCs) of the metabolic
network and used them to rank enzymes according to their control over XTR, i.e., the
highest ranked enzymes were the ones with the largest magnitude FCCs with respect to
XTR. Among the top ranked enzymes, hexokinase (HXK), non-growth associated
maintenance (ATPM), and NADPH reductase (NDR) had ambiguous control over XTR (Fig
1A). The distributions of the control coefficients of XTR with respect to HXK, ATPM and

NDR (CAER, cXTR  and CYIR, respectively) were extensively spread around zero, and we
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could not deduce with certainty whether the control of these enzymes over XTR was

positive or negative.

Fig 1. Ambiguous control of HXK, ATPM and NDR over xylose uptake (XTR) during
mixed glucose-xylose fermentation. (A) Control coefficients of the top enzymes over
XTR. The bars represent the mean values of the control coefficients through XTR. The
error bars denote the 1st and the 3rd quartile of the control coefficients with respect to
their mean value, i.e., 50% of the samples closest to the mean value are between the error
bars. (B) The distribution of the control coefficient of HXK over XTR was centered around
zero. (C) Pruned population of the control coefficients containing only models that had a
negative control of HXK over XTR (left, green bars) or a positive one (right, red bars). For
comparison purposes, the non-pruned population of control coefficients is also shown
(left and right, gray bars). Enzymes: HXK, hexokinase; PGI, glucose-6-phosphate
isomerase; TPI, triose phosphate isomerase; ZWF, glucose-6-phosphate-1-
dehydrogenase; ATPm, non-growth associated ATP maintenance; ADK, adenylates kinase;
NDR, NADPH reductase; PDA, pyruvate dehydrogenase; XTR, xylose transporters; XRI,
xylose reductase; XDH, xylitol reductase; XK, xylulokinase; The complete list of enzymes

and chemical species is provided in S1 File.

The population of control coefficients Ci+R was nearly symmetric around zero with a

mean of 0.005 and 47% of samples had negative values (Fig 1B). We split the population
of kinetic models based on the sign of CXTE and we analyzed the two populations with a
negative (Fig 1C, left) and a positive (Fig 1C, right) control of HXK over XTR. The split in
the population did not have a substantial effect on the majority of the control coefficients.
Interestingly, the exceptions were precisely the other enzymes with the ambiguous
control over XTR, i.e.,, ATPM and NDR, which exhibited a negative correlation with HXK
(Fig 1C). This suggested that there were two distinct populations of kinetic models. The

fact that models within these two populations have several common metabolic responses
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further implied that each of these two populations of models had distinct values of some

kinetic parameters that determined such metabolic responses.

Identification of significant parameters determining control of HXK over XTR

We used the Classification and Regression Trees (CART) algorithm (33, 34) to identify
significant parameters that determine responses of XTR to changes in HXK activity. The
CART algorithm partitions the parameter space into hyper-rectangles determined by the
ranges of parameters that satisfy the studied property. Here, we used as parameters the
degree of saturation of the enzyme active site, oa (10), because this quantity is
constrained in a well-defined range between 0 and 1 (Methods), and the desired property
was the negative control of HXK over XTR. The inputs of parameter classification were:
(i) the information for each out of 200’000 parameter sets whether or not it gave rise to
the negative control of HXK over XTR; and (ii) parameter values of 200’000 parameter
sets. Subsequently, we will refer to hyper-rectangles computed by the CART algorithm as
rules.

To measure the performance of parameter classification we defined the performance
index (PI), which quantifies a portion of parameter sets giving rise to the studied property.
In this work, out of all parameter sets that satisfy rules (or a rule) inferred by parameter
classification, PI quantifies how many of them are giving rise to the negative control of
HXK over XTR. For example, within a population of models satisfying a rule, if 40% of

models give rise to the negative control of HXK over XTR, then PI of this rule is 0.4.

Reduced number of parameters determine control of HXK over XTR

We performed parameter classification on 200’000 parameter sets of 258 parameters,
and the algorithm identified 76 rules. In the identified rules, only 46 out of 258
parameters were constrained, whereas the remaining parameters had no effect on the

control of HXK over XTR, i.e, their oa values could take any value between 0 and 1
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(Methods). Kinetic subspaces defined by these rules had a portion of parameter sets
giving rise to the negative control ranging from PI1=0.50 to 0.78, i.e., 50-78% of parameter
sets satisfying these rules resulted in the negative control (S2 File). This was a noteworthy

improvement compared to the overall kinetic space with 47% of such parameter sets.

Preselection and identification of significant parameters

Our finding that a reduced number of parameters determines control of HXK over XTR
suggested that statistical methods, such as Fisher’s linear discriminant score (35, 36), can
be used to preselect the significant parameters, i.e., the parameters that affect the studied
property. Fisher’s linear discriminant score allows us to quickly preselect parameters by
analyzing the parameter distributions (Methods). We preselected 79 (out of 258)
parameters that passed the threshold of 1% of the maximal Fisher’s linear discriminant
score (Methods), and the values of these 79 parameters in 200’000 parameter sets were
then used in the parameter classification. The classification algorithm inferred 78 rules,
and remarkably, 70 of these rules coincided with the ones obtained in the first study (S3
Fig and S2 File). As expected, the ranges of the obtained Pls also coincided in the two
studies. This result indicated that Fisher’s linear discriminant score is a good measure for
identifying significant parameters and we used this score for parameter preselection in
all further studies.

The 78 rules obtained from the study with the preselected parameters were defined by
constraints on 39 parameters that corresponded to only 24 enzymes (S2 File). No rule
was defined with more than 13 parameters and less than four parameters. We ranked the
rules in the descending order according to the number of parameter sets that satisfy them
(Methods). The top rule was defined by constraints on eight parameters, and it enclosed
a subspace with 9285 parameter sets and PI of 0.65 (Table 1). The 2nd and 3rd ranked rules
had higher values of PI than the 1st ranked rule (0.73 for the 2nd and 0.76 for the 3rd rule),

but smaller subspaces were enclosed (8049 and 6342 parameter sets for the 2nd and the
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3rd rule, respectively). As expected, the distributions of control coefficients of XTR with
respect to HXK corresponding to the parameter sets that satisfied Rules 1, 2 and 3 were
biased toward negative values (Fig 2). Indeed, compared to the distribution for the overall
population of parameters with the mean of 0.005 and the median of 0.005, the
distributions corresponding to the three rules were shifted toward the negative values
with the means of -0.082,-0.111 and -0.132, and the medians of -0.024, -0.036 and -0.044
for Rule 1, Rule 2 and Rule 3, respectively (Fig 2). These results demonstrate that the
parameter classification algorithm can reliably be used to identify the significant

parameters and their ranges that give rise to the negative control of HXK over XTR.

Table 1: Output of parameter classification algorithm for CX1% < 0. Top 3 rules
obtained from the parameter classification with preselected parameters. The rules are
ranked according the number of parameter sets that satisfy parameter ranges defined by
the corresponding rule. For example, 9285 out of 200’000 (4.6%) generated parameter
sets are within the subspace defined by the top-ranked rule, Rule 1. The values of o relate
to the K, values as Ki» = S (1 - 0a)/0a, where S is the concentration of the corresponding

metabolite. The notation O'g]-i_cmp represents the degree of saturation of the enzyme E; by

the metabolite Sj, and cmp denotes either cytosolic or mitochondrial compartment.

Pl

Rule Size (CATR < 0) Parameters K, ranges (mM) o, ranges
a;‘ifr’;’, 3.5:10-3 6.5-100 0.001 0.651
otTgﬁ’,’_c 2.0-10-5 2.2:102 0476 0.999
og}fﬁ,l_c 7.1-10-1 2.0-10+3  0.001 0.737
9285 aggﬁfg 5.1-10+ 1.6-10+1  0.001 0.970
1 (4.6%) 0.65 o;‘d%’fc 3.4-10-2 1.3-10+2 0.001 0.799
oé’]f,’c’_cj 9.9-102 6.9-10+2 0.001 0.875
Ot 5.2:10-2 7.6-10+1  0.001 0.593
ol . 34104 2.6:10-1  0.561 0.999
o;‘dspf‘fm 2.6:10-3 5.6:100 0.318 0.999
2 (Z%%Z) 0.73 o AN 6510 35103 0.651 0.999
' Oty 6.2:10-3 1.6-10+1  0.001 0.719

10
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o5 2.0-105 2.5-102  0.443 0.999

Ot 11101 7.6-10+1 0.001 0.418

oy 5.6:100 2.6-10+3 0.001 0.318

6342 auh 6.5:10-¢ 3.5103 0.651 0.999

3 (3.2%) 0.76 o4, 6.2:103 1.6-10+1  0.001 0.719
Ot 2.8:102 7.6:10+1  0.001 0.733

Fig 2. The distributions of control coefficients of XTR with respect to HXK for Rules
1, 2 and 3 were clearly shifted toward negative values compared to the one for the
overall population of parameter sets. The horizontal box plots describe the inter-
quartile range (gray box), median (target circle), mean (diamond) and the range of +/- 2.7

standard deviations around the mean (whiskers) of the distributions.

Top 3 significant parameters

A closer inspection of the top ranked rules revealed that there were a few parameters

such as o’y or o204, . (for notation see the caption of Table 1) that appeared rather

consistently throughout the rules (Table 1 and S2 File). The appearance of a reduced
number of parameters throughout the inferred top ranked rules suggested that these
parameters were essential for a negative control of HXK over XTR. We hence ranked the
parameters based on the number of their occurrences in the rules and by how much their
ranges were constrained (Methods).

We first considered the top rule (Rule 1 in Table 1 and S2 File), and we computed the
ranking score for the associated parameters. We then ranked the parameters for the top
2 rules (Rules 1 and 2), for the top 3 rules (Rules 1, 2 and 3), and so forth, and observed
how the ranking score of the parameters evolved as we considered a growing number of
rules (Fig 3A). There was a clear separation in the ranking scores of a small number of
parameters from the remaining parameters (Fig 3A). Indeed, the three highest ranked

parameters, opq, o, 0gm , and o5

pim t3p.c » were consistent for a large number of considered

11
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rules. This result suggested that it would be sufficient to constrain a combination of the

ranges of the three parameters to ensure the negative control of HXK over XTR.

Fig 3. Top ranked parameters affecting control of hexokinase (HXK) over xylose
uptake (XTR). (A) Evolution of the ranking score for the top 10 parameters as a function
of the number of considered rules. (B) The effects of constraining the top 3 parameters

individually according to the ranges of the top 10 rules on PI.

Qualitative dependency of negative control on top 3 significant parameters

We constructed a subspace of parameters by constraining the range of the top significant

parameter, o70qp ., according to Rule 1 (Table 1), while the other parameters were

unconstrained and could take any value between 0 and 1. Within this subspace, there

were 53% of parameter sets giving rise to the negative control of HXK over XTR, i.e,

PI=0.53 (Fig 3B, top). In such a way, we constrained the ranges of o, . based on the

remaining top 10 ranked rules, and we analyzed how these ranges affected PI (Fig 3B).
There was a clear qualitative relationship between the ranges of ¢/, . and PI. Indeed,

the values of PI ranged from 0.55 (Rule 2) up to 0.57 (Rules 8 and 9) for low values of

O.XRI

nadh_o» Whereas they were as low as 0.46 for middle range values of this parameter (Fig

TPI

3B). We repeated this analysis for 0%} and o5/, and for higher values of these two

pi_m
parameters, PI was as high as 0.62 (o°y) and 0.51 (o5} ), whereas for lower values of
these two parameters Pl was as low as 0.4 (o/°y) and 0.43 (a5} ). This observation
motivated us to analyze how PI evolved with the progressive increase of the lower bound

for each of the parameters while keeping their upper bounds at 1. Interestingly, the

increase of the parameters lower bound lead to either a monotonic increase (64°) and

pi_m
o5 ) or decrease (o, ) of PI (S4 Fig). Therefore, the effect of the parameters on the

control of HXK over XTR was the most pronounced for the parameter ranges either in the

low or the high values but not in the middle range.

12
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This analysis suggested that a subspace defined by constraining o;x, . to low values and

ASN
in_m

and a3} to high values was likely to have a high PI.

Constraining top 3 significant parameters ensures the negative control of

HXK over XTR

To combine the distributions of top 3 parameters that ensure a high PI in an unbiased
way, we performed another parameter classification (Methods). The parameter
classification algorithm inferred 66 rules on these three parameters, and the top rule
enclosed 9389 samples with PI of 0.73 (S2 File). The PI value of 0.73 was close to the
maximal PI value of 0.78, which was computed for the rules formed with all parameters.
As expected, the ranges of the three parameters defined by the top rule (Fig 4C) were
consistent with the analysis presented in the previous section.

We proceeded with the validation of the ranges of the top 3 parameters on a new
population of models. We imposed the ranges of the top 3 parameters derived from the
top rule of the parameter classification and generated a population of 100’000 models
(Methods). We then computed the control coefficients of the top enzymes over XTR (Fig
4). The control coefficient C/LR was distinctively negative with a mean value of -0.09 (Fig
4(C), and its distribution was clearly shifted toward negative values compared to that of
the original population of models (Fig 1B). More than 72% of models had negative values
of TR compared to 47% in the original population of models. The value of PI of 0.72

obtained from the validation set was strikingly close to the predicted value of 0.73 from

the second tree training.

Fig 4. Awell-determined control of HXK over XTR. (A) The mean control coefficient of

HXK over XTR is negative after constraining the inferred ranges of only 3 parameters. (B)

XTR XRI ASN

Distribution of the control coefficient Cjxg.(C) The inferred ranges of o;,41 ¢ , 0,

pim and

055 c that determined the negative control of HXK over XTR.
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Uncertainty in physiology: alternative concentration profiles

In Metabolic Control Analysis (MCA), it is considered that the control coefficients depend
only on elasticities, however this holds only when the reactions are irreversible and there
are no conserved moieties. It has been shown that metabolite concentrations affect
displacements of reactions from thermodynamic equilibrium, which in turn influence the
control over fluxes and concentrations in the network (3, 16, 32, 37). Therefore, when
there is uncertainty in physiology, e.g., when several alternative concentration profiles
correspond to experimental observations, the control coefficients derived from the
kinetic models computed for these concentration profiles can be significantly different.
iSCHRUNK can resolve this kind of problems by identifying the parameter values that give
rise to well-determined control coefficients of the metabolic network for multiple
alternative physiologies.

As an illustration, we analyzed three alternative physiologies characterized with three
alternative concentration profiles (Reference, Extremel and Extreme2) and a common
flux profile (Methods). We have undertaken to identify significant parameters that ensure
a well-determined control over XTR for these physiologies. For this purpose, we
constructed two populations of 200’000 kinetic models for the Extremel and Extreme?2
physiology (Methods). Overall, together with 200’000 parameter sets computed
previously for the reference physiology (Reference), we had 600’000 parameter sets for
parameter classification. In the three populations of models, 47% (Reference), 46%

(Extreme1) and 39% (Extreme2) of the models had a negative C{+x.

Significant parameters for negative control of HXK over XTR for three alternative

physiologies

For each of three populations of models, we preselected parameters based on the Fisher’s

linear discriminant score, and we performed the parameter classification to find

14


https://doi.org/10.1101/427716
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/427716; this version posted July 22, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

parameter ranges that guarantee a negative control of HXK over XTR (S2 File). We used
the inferred rules from the three parameter classifications to rank the top parameters
over the three alternative physiologies (Methods). Interestingly, the top seven
parameters from the Reference case remained in the group of top seven parameters over
the three cases (Fig 3 and S5 Fig). Moreover, the top two parameters (o4, - and g%y
from the Reference case (Fig 3) were the top two also for the Extremel and Extreme?2

case (S5 Fig). In contrast, at?;,’_ c was less significant for the Extremel and Extreme2 case,

and it was ranked below ¢ &/

nad_c in the overall score (S5 Fig).

To refine the distributions of top 3 parameters for each of the three alternative
physiologies, we performed three additional parameter classifications (Methods).
However, the refined distributions of top parameters that ensure a negative control of
HXT over XTR might or might not coincide for the three concentrations. Therefore, to
reconcile the parameter distributions for the three cases, we used the parameter sets
defined by the top 3 rules for each of these cases as input for an additional parameter
classification (Methods). The top rule obtained from this parameter classification
enclosed 11’801 out of 600’000 parameter sets, and 70.9% of these models had a negative

control of HXK over XTR (Table 2).

Table 2: Robust ranges of the top 3 parameters over 3 concentrations.

Rule Size PI Parameters o, ranges

opAfr’}’, 0.79 0.99
xTR 11801 o 0.00 0.44
ol . 0.78 0.99
opAfr’}’, 0.00 0.59

XTR 67482 XRI
Cuxx >0 1 (11.2%) 0.776 Ohadh ¢ 0.63 0.99
ol . 0.00 0.55
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We imposed the robust ranges for the top 3 parameters from Table 2 and generated a
population of 100’000 models for each of the three alternative physiologies, a total of
300’000 models. We then computed the control coefficients of HXK over XTR, and a
significant improvement of PI was obtained for all three alternative physiologies. Indeed,
the Reference, the Extremel and the Extreme2 cases, had 72%, 72% and 67% of models
with a negative CJ1R, respectively (compared to the 47%, 46% and 39% of models with
unconstrained parameters). The average PI (0.703) over three populations of models was

remarkably close to the predicted PI (0.709) (Table 2).

Table 3: Validation of the robust distributions of the top 3 parameters for

both a negative and a positive control of HXK over XTR.

Reference Extreme 1 Extreme 2
. - - Average
physiology physiology physiology
A 0.719 0.720 0.669 0.703
(CHxik < 0) ' ' ' '
A 0.747 0.802 0.767 0.772
(CHxi > 0) ' ' ' '

Significant parameters for positive control of HXK over XTR for three alternative

physiologies

We repeated the procedure from the previous section using the same set of top 3
parameters, but we imposed a positive control of HXK over XTR as the objective for the
parameter classification. The top inferred rule enclosed a significantly higher number of
models (67482) compared to the case with a negative control of HXK over XTR (11801)
(Table 2). Assuming that the parameter space was sampled uniformly, this also suggested

that the parameter subspace that ensures a positive control of HXK over XTR was larger
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than the one that ensures a negative control. Interestingly, there were no overlaps
between parameter ranges for a positive and a negative control (Table 2). The predicted
PI for a positive control (0.776) was also higher than the one predicted (0.709) for the
negative control.

We generated a population of 100’000 models for each of the three alternative
physiologies by imposing the robust distributions of the top 3 parameters ensuring a
positive control (Table 2). We obtained PI of 0.747 (Reference), 0.802 (Extreme1l), and
0.767 (Extreme2) (Table 3), which was a notable improvement compared to the
population with unconstrained parameters with PI of 0.53 (Reference), 0.54 (Extremel),
and 0.61 (Extreme2). Similar to a negative control study, the average PI over three
populations of models (0.772) was remarkably close to the predicted one (0.776) (Table
3).

These results showed that few parameters determine whether the control of HXT over
XTR is negative or positive, meaning that the operational states of few enzymes are vital
to responses of the metabolic network upon perturbations. For example, a follow-up
experiment testing ambiguous control of HXK over XTR was performed in (30), and it was
shown that HXK2 deletion improves xylose uptake rate. Based on this experimental
observation, one can hypothesize the operating ranges of top enzymes such as ATP
synthase (ASN), triose phosphate isomerase (TPI) or xylose reductase (XRI).

The obtained parameter values of kinetic models pertaining to single physiology, e.g.,
Reference or Extreme1 had both higher PIs and larger parameter subspaces compared to
the ones inferred from models constructed for the three alternative physiologies. The
reason behind this is that different metabolite concentrations result in different operating
ranges of enzymes, thus affecting the control over the analyzed quantities. One might
expect that the distributions of parameters ensuring a high PI will shift, and possibly
shrink or stretch, as concentration values change. Thus, to obtain values of the studied

parameters that ensure a high PI over multiple concentrations, we combined ranges of
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parameters computed for individual concentrations and curated them through a
parameter classification (Methods).

We computed here robust distributions of parameters for only three, albeit very different,
metabolite concentration vectors, nevertheless, the proposed method can readily be used
to find parameter distributions for a large number of concentration vectors. Thus,
iSCHRUNK can be used to create a mapping between the metabolite concentrations and
kinetic parameters spaces, and identify the regions in the parameters, metabolite
concentrations, and thermodynamic displacements from equilibrium spaces that give rise
to a systemic property, e.g., robust steady-state responses to genetic and environmental

perturbations.

Improved parameter classification through reassignment

We found no rule with PI equal to 1 in performed parameter classification studies. This
suggested that the parameter subspaces leading to a negative and a positive control of
HXK over XTR were not distinctly separated. To improve the parameter classification for
the problems where the separation between the classes is fuzzy, we propose to employ
the k-nearest neighbors (k-NN) algorithm (Methods). The k-NN algorithm allows us to
identify the parameter sets from one class that are surrounded by the parameter sets of
the other class and reassign them to the latter. In the context of finding parameter values
that give rise to a certain property, this means that the parameter classification algorithm
will find only those parameter sets that are surrounded by a majority of the parameter
sets of the same class. This way, the separation between the classes will be increased at
the expense of neglecting parameter sets from the regions with a heavy overlap of the
classes.

We reconsidered the classification for parameters determining a negative control of HXK
over XTR in the Reference case, and we applied the k-NN algorithm with k=10 over the

set of initial 200’000 parameters in order to find the surrounding for each of parameter
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sets, and to perform the reassignment (Methods). If in the group of 10 closest neighbors
of a parameter set the percentage of parameter sets from the same class was less than a
reassignment threshold, r, then that parameter set was reassigned. We performed two
parameter classification studies for two different reassignment thresholds, r, of 30% and
50% (Methods).

We found that as the reassignment threshold was increasing the tree training algorithm
was inferring a smaller number of rules (73 for r = 30% versus 31 for r = 50%).
Furthermore, the inferred rules were enclosing a smaller number of parameter sets for
higher values of r, i.e., for r = 30% and 50%, the top rules enclosed respectively 13427
and 1339 parameter sets (Fig 5 and S2 File). In contrast, the obtained Pls, were higher for
r = 50% than for r = 30% (Fig 5). For example, PI of the top rule for r = 50% was 0.83,
whereas the one for r = 30% was 0.73 (Fig 5 and S2 File). A comparison between the
original method with preselection, which is identical to the reassignment method with r
= 0% (corresponding to no reassignment), and the reassignment methods for r=30% and
50% showed a general tendency of the latter for obtaining rules with improved PI and

that enclose a smaller number of parameter sets (Fig 5).

Fig 5. The rules obtained with the original method versus the ones obtained with
the improved parameter classification algorithm. For each rule, we plot the
performance index (PI) as a function of the number of enclosed parameter sets (rule size).
The rules are obtained with: the original method with preselection (red diamonds), the
reassignment method with 30% threshold (blue crosses) and the reassignment method

with 50% threshold (green asterisks).

We also tested the reassignment procedure for parameters determining a positive control
of HXK over XTR in the case of the reference metabolite concentration with k=10 and r =

60%. The classification algorithm inferred 19 rules with PIs ranging from 0.75 to 0.90.
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The rules were defined by only 28 parameters (S2 File). The top rule enclosed 1711
parameter sets with PI of 0.90, and it was defined by 6 parameters.

To validate the proposed improvement to the parameter classification, we imposed the
distributions of the parameters defined by the top rules for the negative control case with
r=50%, and for the positive control case with r=60% (S2 File). We generated for each
study a population of 100’000 models, and we computed the control coefficients in the

network.

In the case of negative control, the distribution of the control coefficient C/+X was biased

toward negative values with mean -0.13 (Fig 6A and 6B). More than 79% of the computed

control coefficients CXTR were negative. (Table 4). Similarly, in the case of positive

CXTR

control, the distribution of the control coefficient Cjxx was shifted toward positive

values with the mean of 0.21 and a remarkable PI of 0.89 (Fig 6D and 6F, and Table 4).

For the negative and positive cases, the top rules were defined by 6 parameters each,

where three parameters, o,y  » i » and 055 . , were common for both cases (Fig 6C

and 6E). These three parameters were also ranked as the top 3 parameters in the

parameter classification with the original algorithm (Fig 4). Moreover, the range of

opih c was constrained toward low values for the negative control and toward high

TPI

values for the positive control. In contrast, the parameters ¢2°Y and Otzp c Were

pi_m
constrained toward high values for the negative control, and toward low values for the
positive control. These patterns suggest that these three parameters are crucial for
determining the sign of the control of HXK over XTR, whereas the remaining parameters,

GPD1 ASN XRI XRI ATPM

Odmap-c » Oatpm » and g for the negative control case, and oy ¢, o4t ¢, and oot

nadp_c for

the positive control case, are likely having a minor effect on the PI.

This result clearly demonstrated that the reassignment procedure allows for more

precise identification of the subspaces leading to a desired control of HXK over XTR. We
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CXTR

observed improvement of both PI and the mean Cjxx value compared to the results

obtained with the unaltered parameter classification algorithm.

Fig 6. Validation of the parameter classification with reassignment. Control of HXK
over XTR is negative (A) and positive (D) after constraining the inferred ranges of 6
parameters. Distribution of the control coefficient CAIE for the case of negative (B) and

positive (E) control. The inferred ranges of parameters that determined negative (C) and

positive (F) control of HXK over XTR.

Table 4: Validation of the ranges of the top 6 parameters obtained with

reassignment for both a negative and a positive control of HXK over XTR.

. Negative Positive
Unconstrained
parameters control control
(Cixk < 0) (Cixk > 0)
mean (CXIR 0.005 -0.13 0.21
0 .
% OfC'}ﬁ%at“’e 47 79.4 114
HXK
0 ..
% OfCB(?:'tlve 53 206 88.6
HXK
Discussion

Machine learning methods (38-42) have found applications in a large number of
biological and biomedical areas such as cancer research (43-45), population genetics (46,
47), protein structure and function prediction and phylogenomic mapping (48-52),
protein-protein interactions (53-55), medical imaging (56-60), gene expression and

microarray data analysis (61-64), regulatory interactions (65, 66), metabolic pathway
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dynamics (67), biomarker discovery and analysis of metabolomics and proteomics data
(68-71). However, the potential of these methods for detecting patterns in parameters of
kinetic models of metabolism and uncovering hidden relationships between kinetic
parameters, omics data, and observed phenotypes remained largely unexploited.
Machine learning methods require large sets of training data for their successful
application and methods for generating kinetic metabolic models that use Monte Carlo
sampling offer an unprecedented opportunity for employing machine learning to advance
our understanding of metabolic processes in cellular organisms. Kinetic models are
usually built around a metabolic steady-state, which is characterized by the metabolite
concentrations and metabolic fluxes, and the generated populations of kinetic parameters
together with the observed steady-state data contain implicit information about the
studied physiology. This information, if extracted systematically, can be used as guidance
for the design of metabolic engineering and synthetic biology strategies that ensure the
desired metabolic responses of studied organisms.

In this work, we have extended iSCHRUNK functionalities to data-mine this information
and systematically reduce uncertainties in the values of kinetic parameters that give rise
to the desired metabolic behavior. As a demonstration, we reduced the uncertainties in
the kinetic parameters that ensure that values of flux control coefficients remain within a
pre-specified range.

iSCHRUNK lends itself to a broad scope of applications ranging from sustainable
production of biochemicals to medicine and regarding both the analysis and design of
metabolism. It allows us to analyze the relationships between the inferred parameter
ranges and the measurements acquired on the actual biological system, and,
consequently, to create hypotheses regarding the operating states of enzymes and
provide information about saturations of all enzymes in the network. This information is

crucial for biotechnology studies where living cells need to be engineered for improved
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performance, or for drug discovery studies where, e.g., we want to overproduce a
compound that is toxic to a pathogen.

The method can be applied not only to identify distributions of kinetic parameters but
also to determine distributions of the metabolic fluxes and metabolite concentrations
satisfying given requirements. It can also be used for guaranteeing both qualitative and
quantitative features of metabolism, and several requirements can be combined
simultaneously. For example, iSCHRUNK can be used to identify and quantify the
parameters that maintain a redox potential while enforcing the desired level of yield and
specific productivity of a compound of interest. Provided that the desired properties are
biologically feasible, the method can be used to guarantee an arbitrary number of
requirements.

Finally, iISCHRUNK can be used to alleviate issues with high computational requirements
of Monte Carlo sampling of kinetic parameters in large- and genome-scale metabolic
networks. As the size of the models and complexity of studies increases, sampling a kinetic
space becomes increasingly difficult and even intractable. However, iSCHRUNK allows us
to identify relevant kinetic parameters that correspond to the observed physiology. The
key finding of the current and previous studies (17) is that only a small set of parameters
corresponding to a few enzymes is sufficient to characterize the observed physiology.
Therefore, once we identify the most relevant parameters, it suffices to densely sample
the identified parameters while fixing the remaining parameters at arbitrary feasible
values. This way, iSCHRUNK dramatically reduces the sampling space, thus enabling

computational analyses of large-scale and genome-scale dynamic metabolic systems.
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Methods

Identifying significant parameters that determine studied properties

The computational method for characterization and reduction of uncertainty, iSCHRUNK,
was proposed in (17). iSCHRUNK involves a set of successive computational procedures
that can help us to ascertain and quantify the kinetic parameters that correspond to a
given physiology. iSCHRUNK can be used with any method that generates populations of
kinetic models describing given physiology such as ensemble modeling (24) or ORACLE
(3, 4,8,10, 11, 31, 32). Here, we extended the original iSCHRUNK workflow (17) by an
iterative loop that uses parameter classification to perform stratified sampling of the
kinetic parameters, i.e., it allows identifying refined sets of parameters that lead to the
desired metabolic behavior (Fig. 7). We used the extended iSCHRUNK to identify the
distribution of kinetic parameters that determine the sign in ambiguous distributions of

control coefficients as follows:

Fig 7. Workflow of the computational procedure for uncertainty analysis. (A) The
workflow allows us to identify ranges of kinetic parameters ensuring that a studied
property is satisfied, e.g., the sign in ambiguous distributions of control coefficients. (B)

Detailed steps of parameter classification.

[.  We defined the stoichiometric model of glucose-xylose co-utilizing S. cerevisiae (S6
Fig). The model consisted of 102 atomically balanced reactions and 96 intracellular
metabolites, and included glycolysis, pentose phosphate pathway, tricarboxylic cycle
(TCA), electron transport chain (ETC) and XR/XDH xylose assimilation pathway (30,
72).Based on the physiological information on the cellular compartmentalization the
intracellular metabolites were categorized as cytosolic or mitochondrial, and the
extracellular metabolites were modeled as well. We integrated the thermodynamic

constraints based on the information about the Gibbs free energies of reactions (73-
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76) together with the fermentation data from Miskovic et al. (30), and we then
performed the Thermodynamics-based Flux balance Analysis (TFA) (4, 13-15,77,78)
to compute the thermodynamically consistent steady-state flux (S7 File).

[I. We sampled the space of metabolite concentrations that is consistent with: (i) the

directionalities of the steady-state flux obtained in step I; and (ii) the available
observations of metabolite concentration ranges (4, 8). The displacements of the
reactions from thermodynamic equilibrium that correspond to the sampled
metabolite concentration sets were simultaneously computed (18, 27).
We then computed the reference vector of metabolite concentrations, Reference, as the
sample that was closest to the mean metabolite concentration vector (S7 File). The
Principal Component Analysis (4, 79) of the samples was next performed, and we
computed two extreme metabolite concentration vectors, Extremel and Extreme2, as
the two samples that were at the extreme ends of the sampled space along the
direction of the first principal component (S7 File). In the following steps, we have
computed a population of kinetic models for each of three alternative physiologies.
The three physiologies were characterized by the common flux profile computed in
Step I and three alternative concentration profiles (Reference, Extremel and
Extreme2) computed in this step.

[I. =~ We assigned a kinetic mechanism to each enzyme-catalyzed reaction using the
information from literature (18, 80-82). For reactions without available information
about their kinetic mechanisms, we used the generalized reversible Hill law (83). The
used kinetic mechanisms included reversible Michaelis-Menten kinetics, Uni-Bi, Bi-
Uni, ordered Bi-Bi, Bi-Ter, Ter-Bi (81). We also modeled an allosteric regulation for
the phosphofructokinase (PFK), where the assigned kinetic mechanism was Hill
kinetics with the Hill coefficient h = 4 (S8-510 File). At this point of the procedure, we
may integrate available Michaelis constants, Kn,, from the literature and databases

(84, 85). In this study, we did not use K, values from the literature, instead, we
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sampled the space of K, values indirectly through the sampling of the degree of
saturation of the enzyme active site, 64 (10). For a vector of metabolite concentrations
computed in Step II, we calculated the K, value corresponding to a value oa as K, =
Sj(1- 0a)/0a, where §; is the jt element of the metabolite concentration vector that
corresponded to oa (10). Without prior information, we sampled oa values between 0
(non-saturation) and 1 (full saturation). Otherwise, we performed the stratified
sampling where we imposed the o, distributions obtained from the classification
algorithm in Step VII (Fig 7A and 7B). An alternative to sampling o values would be
to sample the enzyme states (27, 28).

IV.  We verified the local stability of the steady-state (10), and we rejected the kinetic
parameters corresponding to unstable steady states and the ones that are not
consistent with the experimentally observed data and literature.

V. In this step, we analyze whether or not the studied property is satisfied. If yes then
we proceed to step VII, otherwise we perform the parameter classification in Step VI
to find parameter values that give rise to the studied property. Here, we computed
populations of control coefficients to quantify the responses of the metabolic fluxes
and intracellular metabolite concentrations to changes in activities of the network
enzymes. In general, we can study any property related to metabolic network such as:
significant fluxes in the network such as the product flux and the uptake fluxes, yields,
key concentrations such as ATP or NADH, other relevant quantities such as redox
potential (NADH/NAD*+).

We then verified if the control of HXK over XTR was well determined. We defined the
control of an enzyme over the analyzed quantity as being well determined if 50% of
control coefficients around the mean control coefficient had the same sign. For
example, in the population of the control coefficients of XTR with respect to
xylulokinase (XK) all the samples between the 1st and the 3rd quartile were negative

(Fig 1A), and hence we considered that XK had a well-determined negative control
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over XTR. In contrast HXK, ATPM and NDR had an ambiguous control over XTR (Fig
1A). If HXK had well-determined control over XTR, we proceeded to Step VII.
Otherwise, we went to Step VI.

VI.  We fed back to the classification algorithm the population of the analyzed control
coefficient from Step V together with the corresponding values of the parameters
(degree of saturation of the enzyme active site o4) from Step III. The classification
problem was defined to find the ranges of the o4 values (and consequently the ranges
of the corresponding K, values) that determine the sign, positive or negative, of the
analyzed control coefficient. We solved this parameter classification problem using
the CART algorithm (33, 34) from the MATLAB software package.

We then used the output of the parameter classification, the distributions of oa, for
the sampling in Step IlIb (Fig 7A). More details about the parameter classification are

presented in the next section.

VII.  In this step, we can postulate hypotheses and design systems biology strategies.

In Step V we entered an iterative loop for identifying the ranges of o4 (or equivalently Kp,)
for which the analyzed control coefficients were well determined (Fig 7). The iteration
started by passing the invalidated oa values from this step to the classification algorithm
in Step VI. We then used the refined oa distributions from Step VI in the sampling
procedure in Step III. Next, the refined samples of o, were next tested for consistency in
Step IV, and finally, we constructed a new population of control coefficients in Step V and
verified it. At each iteration, the oa values (K, values) that reduced the ambiguity in the
population of the analyzed control coefficients were refined and used for stratified

sampling in Step III.
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Parameter classification

We carried out the parameter classification in several steps (Fig 7B). We first removed
from the consideration the parameters that were not affecting the control over the
analyzed flux. We then used the CART algorithm with the preselected parameters for
three populations of kinetic models where each population was computed with a different
metabolite concentration vector (see Step II of the framework discussed above). In the
third step, we ranked the parameters over three concentrations, and we chose the top
parameters to continue. We next refined the distributions of the top parameters for each
concentration individually, and we then used this information to determine the consistent
distributions of top parameters over all concentrations. We detail the parameter

classification steps below.

Preselect parameters

Our preliminary results indicated that only a subset of kinetic parameters affected the
sign of the analyzed control coefficient. The reduction in the parameter space was in
agreement with our previous study (17), and inspired us to assess which parameters had
a negligible effect on the computed control coefficients, to discard them, and then to
proceed with the parameter classification. The benefits of preselecting the parameters
are twofold. First, applying a computationally inexpensive method for preselecting the
parameters and then using the CART algorithm on the reduced space can significantly
reduce computational requirements of iISCHRUNK. Second, the parameters with a
negligible effect on the control coefficients can introduce a bias in the estimates of key
parameters. We can eliminate this bias by discarding the irrelevant parameters.

We used the Fisher’s Linear Discriminant score (35, 36) to preselect the parameters:

|m1—m2|2
S = 2 2
o1 + 05
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where m; and m, denote the mean values of the parameter populations that result in
negative (or positive) and non-negative (or non-positive) control coefficients, while ¢
and o7 are the corresponding variances. The higher S was, the larger was the influence of
the analyzed parameter in discriminating between a positive and a negative control. We
ranked the parameters according to this score, and we kept the parameters whose scores

were at least 1% of the highest obtained score.

Train classification tree and rank inferred classification rules

For each of the three metabolite concentration vectors, we trained a classification tree.
The classification algorithm inferred classification rules based on the values of the
preselected oa parameters and the outcomes, e.g., negative and non-negative control
coefficients, obtained with these oa parameters. Each rule corresponds to a set of
inequalities defined on different parameters. Thus, a rule is a hypercube in the parameter
space. The number of inferred rules depends on the properties of the parameter space to
be classified and also on the number of parameter sets that are used to train the algorithm.
In order to prevent the overfitting, we fixed to 200 the minimal number of parameter sets
that the algorithm can use to construct a rule (17, 34, 86). The rules defined by a large
number of parameter sets are “more certain”. Besides, assuming that we sampled the
parameter space uniformly, the “more certain” rules will likely enclose a larger volume of
the parameter space with the well-determined control. Therefore, for each metabolite
concentration vector, we ranked the inferred classification rules according to the number

of parameter sets they contained.

Rank parameters across classification rules and over all concentrations

To rank the parameters of the models obtained for a concentration vector such as
reference concentration vector or one of the extreme concentration vectors, we defined

the following score for parameter j:
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Ny

1

SC] = N—Z(l - Ri,j)

¢i=1
where N, denotes the number of rules over which we performed the ranking, N, denotes
the number of rules, a subset of N, rules, that constrained parameter j, and R; ; is the
range of parameter j defined by the rule i. This score incorporates two factors: (i) a
number of occurrences of parameters across classification rules - parameters that appear

in more rules are more relevant; (ii) how much parameters are constrained - less

important parameters are less constrained.

To rank the parameters of the models obtained over all concentrations, we computed the

aggregate score:

N¢
1
Agg _ k
G =N, Z 54
k=1

where N, denotes the number of metabolite concentration vectors and SC]-" is the score
computed for the concentration k. Observe that values of N, N, and R; ; may differ for

different concentrations.

We can choose to perform the ranking across: (i) all rules returned by the classification
algorithm; though the classification algorithm can return different number of rules for
three metabolite concentrations, the normalization constants N, ensure an unbiased
scoring over different concentrations; (ii) the chosen top rules, e.g., over Top 10 rules
(Ng = 10 for all three concentrations). We used this score to rank the parameters; the

higher the score was for a parameter, the higher was its ranking.

Refine distributions of top parameters

For each of metabolite concentration vectors (Reference, Extremel and Extreme2) and a
set of top parameters ranked over all concentrations, e.g., Top 3 or Top 5 oa values, we

performed the second parameter classification, i.e, tree training, to find refined
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parameter distributions that determine the sign of the analyzed control coefficient. The
inputs to the parameter classification algorithms were the population of the analyzed
control coefficient together with the corresponding top oa values. Thus, for the three
concentration vectors, we constructed parameter subspaces that were constrained only

by the obtained ranges of the top parameters.

Determine robust distributions of top parameters over alternative physiologies

The refined distributions of top parameters that correspond to a well-determined control
might well mismatch among the three cases (Reference, Extremel and Extreme2).
Therefore, some parameter values can correspond to a well-determined control for one
physiology and to an ambiguous control for the other physiologies. To obtain the
consistent distributions of the top parameters over all concentrations in an unbiased way
we performed the third tree training as follows.

For each of the three alternative physiologies, we took as the input to parameter
classification the parameter sets whose ranges of top parameters were defined according
to top 3 rules. We used in parameter classification the parameter sets from the subspace
of top rules as these parameter sets are likely to have well-determined control at least for
one of the alternative physiologies. We then verified for each top parameter set if it
corresponds to a well-determined control for the three alternative physiologies. If a
parameter set corresponded to a well-determined control for the three alternative
physiologies (S11 Fig, red stars), we considered it consistent; otherwise, it was
considered inconsistent (S11 Fig, blue and yellow stars). We fed this information as the
second input to the classification algorithm and performed the training.

The obtained consistent distributions of top parameters over the three cases were used

in Step III to perform a stratified sampling.
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Reassignment procedure for improved tree training

In the cases when the space of parameter sets leading to a negative and the one leading
to a positive control over analyzed quantities are overlapping, the separation between
parameter classes is fuzzy. To enhance the separation between the classes, we propose
here utilization of the k-nearest neighbors (k-NN) algorithm in the parameter
classification as follows (87).

For each of the parameter vectors, we first assessed whether or not they were
determining, e.g., a negative control, and we assigned them to two distinct sets. The first
set, SN, contained parameter vectors that gave rise to a negative control, whereas the
second set, SP, contained the ones that gave rise to a non-negative control. We then ran
the k-nearest neighbors (k-NN) algorithm, and for each parameter vector from the set SN,
we computed how many out of its k-nearest neighbors belonged to the same set (SN). For
each of these parameter vectors, if the percentage of k-nearest neighbors that belonged
to the set SN was higher than a pre-specified reassignment threshold, r, we then retained
that vector in the set SN. For instance, for r = 50%, if more than 50% of k-nearest
neighbors of the analyzed parameter set belonged to the set SN, that parameter set
remained in the set SN. Otherwise, we re-assigned that parameter vector to the set SP.
With the proposed reassignment procedure, we emphasized the regions of the parameter
space that have a higher proportion of parameter vectors belonging to the set SN.

The reassignment procedure introduced two new parameters: the reassignment
threshold, r, and the number of nearest neighbors, k. The values of r were chosen on the
basis of the initial, unbiased, sampling that was performed in Step III. Specifically, from
the initial sampling we could assess the average percentage of SN parameter vectors in
the set of all vectors. We then set r to be a larger than the average percentage so that the
parameter classification algorithm could identify the regions in the parameter space with

the above than average proportion of SN vectors. Assuming that the parameter space was
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sampled uniformly, we use the parameter k to choose the larger or smaller part of the
parameter space around the analyzed parameter vector for a possible reassignment. Very
large values of k are not recommended as the reassignment procedure would consider
the overall parameter space and no samples would be retained in the set SN as ris chosen

to be larger than the average percent of SN vectors in the overall set of parameter vectors.

Bayesian inference and parameter classification

Bayesian inference relies on use of Bayes theorem to compute the conditional distribution

of a parameter vector 6 given observed data x:

p(x|6)p(6)
p(x)

p(Olx) =
where p(6|x) is the posterior distribution of the parameters 6, p(6) is the prior
distribution of parameters, p(x|68) is the likelihood, and p(x) is the evidence. In
computing the posterior distribution p(6|x), the evidence can be ignored as it represents
a normalizing constant. It is often computationally prohibitive to explicitly evaluate the
likelihood function and Approximate Bayesian Computation (ABC) methods are used for
approximating this function by simulations (88).
For this type of studies, the ABC rejection algorithm (89) can be used as follows. First, the
prior distribution of kinetic parameters is generated using the ORACLE framework or any
other method that uses Monte Carlo sampling of uncertain parameters for constructing
populations of kinetic models (3-5, 8, 9, 11, 20-28). The corresponding control
coefficients are next computed, and the parameter classification algorithm is then used to
discard parameter vectors from the prior that gave rise to ambiguous control over
analyzed quantities. As a result, the retained samples are distributed according to the

approximate posterior distribution of kinetic parameters that give rise to well-

determined control over analyzed quantities.
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Computational requirements

The simulations in this study were performed in MATLAB using an Apple MacPro
Workstation with 2.7 GHz 12-Core Intel Xeon E5 processor and 64 GB of RAM memory.
The required time to generate a set 200’000 kinetic models was ~12.5h, whereas one run

of the parameter classification algorithm required several minutes.
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Supporting information

$1 File. List of abbreviations for model’s enzymes and chemical species

S2 File. Parameter classification rules together with the corresponding feasibility
indices. The rules were obtained from: (i) the parameter classification with the whole set
of 258 parameters (sheet “Preliminary training”); (ii) the parameter classification with
the preselected 81 parameters (sheet “Training with Fisher preselection”); and (iii) the
parameter classification with the top 3 ranked parameters (sheet “Second training (top 3
params)”); (iv) the first parameter classification for the robust ranges of parameters
ensuring a negative control for the reference (sheet “Robust Reference”), extreme 1
(sheet “Robust Extreme 1”), and extreme 2 (sheet “Robust Extreme 2”) metabolite
concentrations; (v) the second parameter classification with top 3 parameters for the
robust ranges of parameters ensuring a negative control for the reference (sheet “Robust
Reference Top 3”), extreme 1 (sheet “Robust Extreme 1 Top 3”), and extreme 2 (sheet
“Robust Extreme 2 Top 3”) metabolite concentrations; (vi) the parameter classification
with reassignment for the reference metabolite concentration ensuring a negative control
with the reassignment threshold r = 50% (sheet “Reassign — Ref -50%"), and r = 30%
(sheet “Reassign - Ref -30%"), and ensuring a positive control with r = 60% (sheet “Pos

Reassign - Ref - 60%”).

S3 Fig. Preselection of the parameters based on Fisher’s linear discriminant score.
The rules from a tree training with all parameters (blue crosses), and the rules from a tree
training with a reduced set of parameters (red diamonds) coincide in the majority of

instances.

S4 Fig. Evolution of PI (blue) together with that of the number of enclosed

parameter vectors (orange) for a progressive increase of the lower bound, g,, of the
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top 9 parameters, while their upper bound was fixed at 1. For a value of the lower
bound g4 =g,*, Pl was calculated over the range (g4*1) of the parameter g4. For example,
for g, = 0, the whole range, i.e, g, € (0,1), of a parameter was considered, and the

corresponding PI was calculated. For g, = 1, PI was calculated for a fixed value g, = 1.

S5 Fig. Top ranked parameters affecting control of hexokinase (HXK) over xylose
uptake (XTR) over three concentrations. Evolution of the ranking score for the top 10

parameters as a function of the considered number of rules.

S6 Fig. Metabolic pathways of the VIT C-10880 S. cerevisiae strain. The network
includes 102 reactions and 96 metabolite concentrations distributed over cytosol,
mitochondria, and extracellular environment. VTT C-10880 strain can consume xylose

through the integrated xylose reductase/ xylitol dehydrogenase pathway.

S7 File. Reference metabolite flux vector together with the metabolite Reference,

Extremel, and Extreme2 concentration vectors.

S8 File. Stoichiometry of used models. List of reactions and the corresponding mass

balances.

S9 File. List of reactions together with the used kinetic mechanisms (together with

$10 File).

$10 File. Rate expressions for used Kinetic mechanisms together with the

expressions for the corresponding metabolite elasticities.
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S11 Fig. Parameter vectors that correspond to a well-determined control for the
three metabolite concentration vectors (Reference, Extremel and ExtremeZ2).
Parameter sets corresponding to a well-determined control for the three metabolite
concentrations (red stars), for two out of three (yellow stars) and for one out of three
(blue stars) metabolite concentrations. The gray stars denote the parameter vectors not

belonging to a top rule for any of the three concentrations.
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