

42

Abstract

43 Retinal signals are transmitted to cortex via neurons in the lateral geniculate nucleus (LGN),
44 where they are processed in burst or tonic response mode. Burst mode occurs when LGN
45 neurons are sufficiently hyperpolarized for T-Type Ca^{2+} channels to de-inactivate, allowing them
46 to open in response to a depolarization which can trigger a high-frequency sequence of Na^+ -
47 based spikes (i.e. burst). In contrast, T-type channels are inactivated during tonic mode and do
48 not contribute to spiking. Although burst mode is commonly associated with sleep and the
49 disruption of retinogeniculate communication, bursts can also be triggered by visual stimulation,
50 thereby transforming the retinal signals relayed to the cortex.

51 To determine how burst mode affects retinogeniculate communication, we made
52 recordings from monosynaptically connected retinal ganglion cells and LGN neurons in the cat
53 during visual stimulation. Our results reveal a robust augmentation of retinal signals within the
54 LGN during burst mode. Specifically, retinal spikes were more effective and often triggered
55 multiple LGN spikes during periods likely to have increased T-Type Ca^{2+} activity. Consistent
56 with the biophysical properties of T-Type Ca^{2+} channels, analysis revealed that effect magnitude
57 was correlated with the duration of the preceding thalamic interspike interval and occurred even
58 in the absence of classically defined bursts. Importantly, the augmentation of geniculate
59 responses to retinal input was not associated with a degradation of visual signals. Together,
60 these results indicate a graded nature of response mode and suggest that, under certain
61 conditions, bursts facilitate the transmission of visual information to the cortex by amplifying
62 retinal signals.

63

Significance

64 The thalamus is the gateway for retinal information traveling to the cortex. The lateral geniculate
65 nucleus (LGN), like all thalamic nuclei, has two classically defined categories of spikes—tonic
66 and burst—that differ in their underlying cellular mechanisms. Here we compare
67 retinogeniculate communication during burst and tonic response modes. Our results show that
68 retinogeniculate communication is enhanced during burst mode and visually evoked thalamic
69 bursts, thereby augmenting retinal signals transmitted to cortex. Further, our results
70 demonstrate that the influence of burst mode on retinogeniculate communication is graded and
71 can be measured even in the absence of classically defined thalamic bursts.

72

Introduction

73 The lateral geniculate nucleus (LGN) of the dorsal thalamus is the primary source of visual
74 signals sent to primary visual cortex (V1), receiving monosynaptic input from retinal ganglion
75 cells (RGCs) and projecting directly to cortical target neurons. Despite being labeled a relay
76 nucleus, the LGN serves to transform retinal signals in several significant and dynamic ways
77 (Dan et al., 1996; Usrey et al., 1998, Martinez et al., 2014; Fisher et al., 2017; Alitto et al.,
78 2018), including changes in the temporal domain that accompany tonic and burst activity modes
79 (reviewed in Sherman and Guillory, 2009; Usrey and Alitto, 2015). During tonic mode, LGN
80 neurons respond to excitatory input with regularly spaced action potentials, the rate of which is
81 proportional to the strength of the stimulus (Llinas and Jahnsen, 1982, Huguenard and
82 McCormick, 1992). By contrast, LGN spike trains during burst mode are irregular, include tight
83 clusters of spikes known as “bursts”, and firing rate becomes uncoupled from stimulus strength.
84 Although geniculate bursts are generally associated with periods of low arousal and sleep, when
85 LGN neurons are thought to be dissociated from the periphery, they can also occur during
86 sensory processing and have been shown to be particularly effective in evoking cortical
87 responses (Swadlow and Gusev, 2001; Weyand et al., 2001; Lesica and Stanley, 2004; Alitto
88 and Usrey, 2005; Denning and Reinagel, 2005; Bezdudnaya et al., 2006; Alitto and Usrey,
89 2011; Bereshpolova et al., 2011). Determining how burst mode affects retinogeniculate
90 communication is therefore important for understanding the transmission of visual information to
91 the cortex.

92 Across thalamic nuclei the transition from tonic to burst mode depends on a common
93 mechanism, the de-inactivation of T-type Ca^{2+} channels (or T-channels) that occurs when
94 neurons are sufficiently hyperpolarized for a sufficient duration of time (Llinas and Jahsen, 1982;
95 Huguenard and McCormick, 1992; Wei et al., 2011). When this occurs, depolarizing stimuli can
96 activate T-channels to generate a suprathreshold Ca^{2+} potential (T-potential), which can then

97 trigger a short train of high-frequency, Na^+ -based action potentials. It is important to note that
98 the magnitude of the T-potential and subsequently the number of spikes it triggers depends on
99 the percentage of T-channels in the de-inactivated versus the inactivated state which, in turn,
100 depends on the depth and duration of the preceding hyperpolarization (Deschenes et al., 1984;
101 Destexhe et al., 2002; Hong et al., 2014).

102 Here, we explore the influence of thalamic response mode on retinogeniculate
103 communication by performing simultaneous extracellular recordings of monosynaptically
104 connected pairs of RGCs and LGN neurons in the anesthetized cat. Although the occurrence of
105 T-potentials is best determined with intracellular recording methods, past work has shown that
106 bursts can be identified by applying a previously established set of statistical criteria to
107 extracellular records of LGN spike trains (Lu et al., 1992; see Materials and Methods). Using
108 these criteria, we calculated retinal efficacy (percentage of RGC spikes that triggered LGN cell
109 spikes) and retinal contribution (percentage of LGN spikes evoked by a simultaneously recorded
110 RGC) during tonic and burst response modes. Our results reveal a fundamental change in
111 retinogeniculate communication during burst mode and suggest an augmentation of visual
112 signals by T-potentials. We found that individual retinal spikes arriving during epochs supportive
113 of T-channel activity were more effective in evoking LGN responses and often triggered multiple
114 spikes. Further, there was a decrease in the percentage of LGN responses directly triggered by
115 retinal spikes during thalamic bursts; however, this was not associated with a degradation of
116 visual signals within the LGN. Consistent with the biophysical properties of T-channels, the
117 modulation of retinogeniculate communication was proportional to the duration of the preceding
118 interspike interval of the LGN neuron and was evident even in the absence of classically defined
119 thalamic bursts. These results reveal how retinal signals are transformed by the transition
120 between tonic and burst modes and, importantly, suggest that the influence of thalamic
121 response mode on retinogeniculate communication is a continuous process.

122

Materials and Methods

123 *Animal preparation*

124 Sixteen adult cats were used for this study. All experimental procedures were conducted with
125 the consent of the Animal Care and Use Committee at the University of California, Davis and
126 followed NIH guidelines. Some of the data analyzed in this study contributed to previous
127 unrelated studies on the retinogeniculate pathway (Rathbun et al., 2010; Rathbun et al., 2016;
128 Usrey et al., 1998,1999).

129 Surgical procedures were preformed while animals were anesthetized. Surgical
130 anesthesia was induced with ketamine (10 mg/kg, IM) and maintained with thiopental sodium
131 (20 mg/kg, IV, supplemented as needed). A tracheotomy was performed and animals were
132 placed in a stereotaxic apparatus where they were mechanically ventilated. EEG, EKG, CO²
133 and temperature were monitored throughout the experiment. A scalp incision was made and
134 wound edges were infused with lidocaine. A craniotomy was made over the LGN, the dura was
135 removed, and the craniotomy was filled with agarose to protect the underlying brain. Eyes were
136 adhered to metal posts, fitted with contact lenses, and focused on a tangent screen located 172
137 cm in front of the animal. Phenylephrine (10%) was administered to retract the nictitating
138 membranes and flurbiprofen sodium drops were administered (1.5 mg/hr) to prevent miosis. The
139 positions of area centralis and the optic disk were mapped by back-projecting the retinal
140 vasculature of each eye onto a tangent screen. After the completion of surgical procedures,
141 maintenance anesthesia (thiopental sodium (2-3 mg/kg/hr, IV) was administered for the
142 remaining duration of the experiment. Supplemental thiopental was given and the rate of
143 infusion was increased if physiological monitoring indicated a decrease in the level of
144 anesthesia. Once a steady plane of maintenance anesthesia was established, animals were
145 paralyzed with vecuronium bromide (0.2 mg/Kg/hr, IV). Animals were euthanized with Euthasol
146 (100 mg/kg; Virbac Animal Health, Fort Worth, Texas) at the conclusion of each experiment.

147 *Electrophysiological recording and visual stimuli*

148 Simultaneous extracellular recordings were made from LGN cells in layers A and A1 and retinal
149 ganglion cells. For thalamic recordings, the LGN was first located using single, parylene-coated
150 tungsten electrodes (AM Systems, Everett, WA). After the preferred retinotopic position was
151 located in the LGN, a 7-channel multielectrode array (Thomas Recording, Marburg, Germany)
152 was positioned into the LGN. Retinal ganglion cells were recorded from using a tungsten-coated
153 microelectrode inserted into the eye through an intraocular guide tube and maneuvered via a
154 custom-made manipulator. Neural responses were amplified, filtered and recorded to a
155 computer equipped with a Power 1401 data acquisition interface and the Spike 2 software
156 package (Cambridge Electronic Design, Cambridge, UK). Spike isolation was based upon
157 waveform analysis (parameters established independently for each cell) and the presence of a
158 refractory period as indicated in the autocorrelogram (Usrey et al., 2000, 2003).

159 Visual stimuli were generated using a VSG2/5 visual stimulus generator (Cambridge
160 Research Systems, Rochester, England) and presented on a gamma-calibrated Sony monitor
161 running at 140Hz. The mean luminance of the monitor was 38 candelas/m². Visual responses of
162 LGN neurons and RGCs were mapped and characterized using drifting sine-wave gratings and
163 white-noise stimuli. The white-noise stimulus consisted of a 16x16 grid of black and white
164 squares. Each square was independently modulated in time according to an m-sequence of
165 length 2¹⁵-1 (Sutter, 1992; Reid et al., 1997). Individual squares in the stimulus were updated
166 with each monitor frame for 2¹⁵ -1 frames (~4 minutes). Approximately 4-16 squares of the
167 stimulus overlapped each neuron's receptive field center. Drifting sine-wave grating stimuli (4
168 Hz, 100% contrast) were presented at the preferred spatial frequency for the recorded cells.

169 *Cross-correlation analysis*

170 Cross-correograms between retinal and geniculate spike trains were made to assess
171 connectivity between pairs of cells (Figure 1). Cross-correograms were calculated by
172 generating histograms of LGN spikes relative to each retinal spike (Figure 1A) and retinal spikes
173 relative to each LGN spike (Figure 1B). Peaks indicative of monosynaptic connectivity were
174 narrow (< 1.5 ms, full width at half height), short-latency (< 5 ms), and exceeded 5x the
175 standard deviation of the baseline (Cleland et al., 1971; Usrey et al. 1998). For quantitative
176 analysis, bins contributing to the peak were identified using a bin size of 0.5 ms. The peak bin
177 was first identified and all neighboring bins greater than 3 standard deviations above the
178 baseline mean were considered part of the peak, where the baseline consisted of bins ranging
179 from 30 to 50 ms on either side of the peak bin.

180 *Retinal spike contribution and efficacy*

181 Cross-correlation analysis was used to assess connectivity between cell pairs as well as
182 strength of connection. The monosynaptic peak in a cross correogram was used to calculate
183 two measures of correlation strength, efficacy (Figure 1B) and contribution (Figure 1D; Cleland
184 et al., 1971; Usrey et al. 1998). Efficacy is the number of spikes in the monosynaptic peak
185 divided by the total number of retinal spikes; contribution is the number of spikes in the peak
186 divided by the total number of LGN spikes. To the extent that peaks were caused by
187 monosynaptic connections, efficacy and contribution have very simple interpretations. Efficacy
188 represents the fraction of the retinal spikes that evoked geniculate spikes, and contribution
189 represents the fraction of the geniculate spikes that were caused by a spike from the RGC.
190 Given that LGN neurons receive convergent input from 2-6 RGCs, it is worth noting that this
191 measure of retinal contribution quantifies the influence of the simultaneously recorded RGC on
192 the spiking behavior of the LGN neuron and not the combined influence of all of the RGCs that
193 provide convergent input to the LGN neuron.

194 When applicable we calculated the expected retinal spike efficacy for each recorded cell
195 pair as follows (Alitto et al., 2018). First, we calculated the average spike efficacy across a
196 range of interspike intervals (ISIs), estimated independently for responses driven by drifting
197 gratings and white noise. We then modeled the expected spike efficacy by assigning each
198 retinal spike the efficacy value calculated for the corresponding ISI. Thus, the spike efficacy
199 became the value expected if retinogeniculate transmission did not systematically depend upon
200 a given independent variable.

201 *Identification of LGN bursts and tonic spikes*

202 We used two well-established criteria to identify bursts in the spike trains of LGN neurons (Lu et
203 al., 1992; Swadlow and Gusev, 2001; Weyand et al., 2001; Lesica and Stanley, 2004; Alitto and
204 Usrey, 2005; Denning and Reinagel, 2005; Bezdudnaya et al., 2006; Alitto and Usrey, 2011;
205 Bereshpolova et al., 2011). These criteria were: (1) an interspike interval (ISI) >100 ms that
206 preceded the first spike in a sequence and (2) one or more subsequent spikes that followed with
207 ISIs < 4 ms (Figure 2A). Past studies applying these criteria to intracellular recordings show that
208 events defined as bursts co-occur with T-channel plateau potentials (Lu et al., 1992). For this
209 study, the first spike in the burst is referred to as the cardinal spike, and each additional spike is
210 referred to by its ordinal position (secondary, tertiary, etc.).

211 *Simulation of T-type Ca^{+2} channels*

212 Given the critical role that T-type Ca^{+2} channels play in the generation of thalamic bursts and
213 that the biophysical properties of these channels have been extensively characterized, we
214 simulated the interaction of T-Type Ca^{+2} channels and synaptic EPSPs. We used a leaky-
215 integrate and fire model neuron and a series of previously published equations that quantify the
216 voltage and time dependence of both the de-inactivation and inactivation of T-Channels
217 (Huguenard and McCormick, 1992). There is at least one other variation of this series of

218 equations (Wang et al., 1991); however, the two versions produce equivalent results within the
219 scope of the current study. The membrane potential of the model neuron was simulated by:

220

221
$$\Delta V_m = (E_{\text{Leak}} - V_m) * g_{\text{Leak}} + (E_{\text{Ex}} - V_m) * g_{\text{Ex}} + (E_{\text{Ca}} - V_m) * g_T$$

222 Here, E_{Leak} , E_{Ex} , and E_{Ca} are the reversal potentials for the leak current, excitatory input, and T-
223 Channels, respectively. g_{Leak} , g_{Ex} , and g_T are the conductance values for the leak current, the
224 excitatory inputs, and the T-channels. Synaptic inhibition was not necessary to produce thalamic
225 bursts, so they were not included in this simulation. Excitatory input was simulated using the
226 retinal spike trains recorded *in vivo*. When the V_m exceeded -35 mV an action potential was
227 recorded and V_m was reset to -60 mV. Maximum g_{Ex} was selected to generate biologically
228 reasonable firing rates and retinal spike-efficacy curves with a -60 mV resting membrane
229 potential. g_T was controlled by the following voltage and time dependent equations:

230
$$g_T = G_T * T_m^2 * T_h$$

231 Here, G_T is the maximum T-channel conductance, T_m is the activation gate and T_h is the
232 inactivation gates for the T-channels.

233 The activation states of T_m and T_h were determined by the following equations:

234

235
$$T_m = \frac{1}{\exp(\frac{V_m + 132}{-16.7}) + \exp(\frac{V_m + 16.8}{18.2})} + 0.612$$

236

$$V_m < -80 \text{ mV} \quad \tau_h = \exp\left(\frac{V_m + 467}{66.6}\right)$$
$$V_m \geq -80 \text{ mV} \quad \tau_h = \exp\left(\frac{V_m + 22}{-10.5}\right) + 28$$

237

238 Here τ_m and τ_h are the time constants for the activation and inactivation gates, respectively.

239

$$m_\infty = \frac{1}{1 + \exp(-(V_m + 56)/6.2)}$$

240

$$h_\infty = \frac{1}{1 + \exp((V_m + 80)/4)}$$

241 Here, m_∞ and h_∞ are the steady state activation levels for the activation and inactivation gates,
242 respectively. For more details on simulating T-channels see Huguenard and McCormick, 1992,
243 Smith et al., 2000, and Destexhe and Sejnowski, 2001.

244 *Spatiotemporal receptive field maps*

245 Spatiotemporal receptive fields (STRFs) were calculated from LGN spike trains evoked during
246 the presentation of a binary white-noise stimulus (16×16 grid of black and white squares).
247 Each square was temporally modulated according to a $2^{15}-1$ length m-sequence (Reid and
248 Shapley, 1992; Sutter, 1992; Reid et al., 1997). The stimulus was updated either every frame
249 (7.1 ms) or fourth frame of the display (28.4 ms), and the entire sequence (~4 or 16 min) was
250 typically repeated, up to 10x. To determine if LGN burst spikes were driven by visual
251 stimulation, LGN STRFs were calculated using either the full spike trains (all spikes) or spike-
252 count matched subsets of data (e.g., only cardinal burst spikes). Spike-count matching was
253 done on a cell-by-cell basis by determining which subset had the least spikes and then
254 randomly subsampling the other subsets to have the same total. This was done so that the
255 signal-to-noise ratios (STN) were comparable within a given cell. The signal was estimated as
256 the amplitude of the 2D Gaussian fit (Matlab function fmincon) to the frame of the STRF

257 containing the peak pixel. The Gaussian receptive field estimate is described by the following
258 equation: $G_{ij} = K \times \exp[-(x_i - x_0)^2/2 \times \sigma^2] \times \exp[-(y_i - y_0)^2/2 \times \sigma^2]$, where K is the amplitude, x_0 and
259 y_0 are the coordinates of the center of the receptive field, and σ is the standard deviation. Noise
260 was estimated as the mean value for three frames centered at $t = +100\text{ms}$.

261 *Experimental design and statistical analysis*

262 To quantify the relationship between retinogeniculate communication and thalamic response
263 mode we used generalized linear mixed effect models (GLME, Matlab function fitglme
264 Raudenbush and Bryk, 2001) using a Laplace fit method. This is done to take full advantage of
265 the number of data points collected (e.g., hundreds of thousands of retinal and thalamic spikes)
266 while accounting for differences between cells. The general form of a GLME is:

267
$$y = f(x^* \beta + z^* \mu) + \varepsilon$$

268 Here y is the outcome being modeled, x is matrix of fixed effects variables, β is a vector of fixed
269 effects coefficients, z is a matrix of random effects variables, μ is a vector of random effects
270 coefficients, ε is the residual error, f is the link function. β_0 is the y-intercept, while $\beta_{\text{variable name}}$ is
271 the coefficient of a specific variable (e.g., β_{ISI}). When analyzing the percentage of high-
272 frequency spikes, these values were modeled using the identify function and as arising from a
273 normal distribution. In this case, the β coefficients represent the linear slope between the
274 predicted outcome and the fixed effect variable. When analyzing the percentage of spikes per
275 burst, these values were modeled using a log link function and as arising from a Poisson
276 process. When analyzing retinal contribution and retinal spike efficacy, these values were
277 modeled using a logit link function and as arising from a Bernoulli process (0s and 1s). For
278 example, retinal spikes were assigned values of 1s and 0s based on whether they triggered an
279 LGN action potential (1) or did not (0), as described above. In this case, the β coefficients
280 represent the influence of the fixed effect variable on the log of the odds ratio of the predicted

281 outcome. For each GLME model, cell identity was set as a random effect to account for
282 differences between cells. For illustrative purposes, data was binned and normalized (e.g.,
283 Figure 6). Normalization was performed such that the average value (efficacy or contribution)
284 was set to 1.0. It is important to note that these transformations were done to represent effects
285 graphically that are difficult to directly represent based on Bernoulli variables; however, the
286 GLMEs models were fit to the raw values that were neither binned nor normalized.

287 When simpler statistical analyses were sufficient to compare two distributions, we first tested the
288 normality of the distributions using Lilliefors modification of the Kolmogorov-Smirnov test. If it
289 was determined that both distributions were not significantly different from normal distributions,
290 then a t-test was used to compare the means of the two samples, otherwise a Wilcoxon rank
291 sum test or a sign test was used. X and Y cells were classified based on the latency of the
292 monosynaptic peak (Usrey et al., 1999). Using this measure, of the 29 cell pairs examined in
293 this study, 7 were X cell pairs and 22 were Y cell pairs. Results did not differ for these cell
294 groups; thus the 29 cell pairs were treated as a single group for the statistical analyses
295 presented. It should be noted that small differences between X and Y cells may have gone
296 undetected because of the small sample sizes inherent to studying monosynaptic connections
297 *in vivo*.

298

299

Results

300 To quantify retinogeniculate communication during tonic and burst activity modes in the LGN,
301 we made simultaneous recordings of synaptically connected RGCs and LGN neurons in the
302 anesthetized cat. Retinal and geniculate neurons were excited with white-noise stimuli (n=29
303 cell pairs) and/or drifting sinusoidal gratings (n=15 cell pairs; see Materials and Methods). As
304 will be expounded upon in the discussion section, these stimuli were chosen because of how
305 their spatiotemporal profiles might differentially interact with geniculate response mode.
306 Geniculate bursts were identified using established criteria for extracellularly recorded spikes
307 (Lo et al., 1991). Specifically, a burst was defined as a sequence of spikes that met two criteria
308 (Figure 2A): (1) the first spike in the sequence followed an ISI > 100 ms, and (2) one or more
309 subsequent spikes followed with ISIs < 4 ms. Across 29 monosynaptically connected pairs of
310 RGCs and LGN neurons, we recorded 1,394,029 retinal spikes and 530,428 LGN spikes,
311 including 54,482 geniculate bursts (2 or more spikes). As expected, burst frequency was
312 significantly greater for LGN neurons than for RGCs (Figure 2B-C; during white-noise
313 stimulation: RGC = 1.5% +/-0.3%; LGN = 16.1% +/-2.8%, $p < 10^{-5}$; during drifting grating
314 stimulation: RGC = 0.24% +/-0.6%, LGN = 26.2% +/-4.7%, $p < 10^{-5}$).

315 *Simulating thalamic bursts involving T-potentials*

316 Given that the biophysical properties of T-channels are well characterized, simulations can be
317 used to illustrate how T-channels and retinal spikes are predicted to interact and transform
318 retinogeniculate communication (see Materials and Methods). In particular, leaky integrate and
319 fire neuronal models generate bursts with the simple addition of T-channels based on published
320 equations (Figure 2D, Percent Burst with T-channels: $11.5 \pm 0.3\%$, percent burst without T-
321 channels: $0.1 \pm 0.05\%$, $p < 10^{-5}$, see Methods; Huguenard and McCormick, 1992). Similarly, the
322 addition of T-channels increased the number of geniculate spikes evoked from the same
323 excitatory input (Figure 2E, blue line and axis). Interestingly, the increase in geniculate spike

324 count remained elevated at higher resting membrane potentials where the percentage of burst
325 spikes was greatly reduced (Figure 2E, black line and axis). This suggests that the influence of
326 T-channels on geniculate activity can be measured even in the absence of classically defined
327 bursts.

328 We hypothesized that visually evoked T-potentials will augment the transmission of
329 visual signals through the LGN because of the summation of retinal EPSPs with T-potentials.
330 Specifically, T-potentials are predicted to increase the ability of retinal spikes to trigger
331 geniculate spikes as well as cause single retinal spikes to trigger multiple LGN spikes. Further,
332 given the voltage and time dependence of the de-inactivation of T-channels, the influence of T-
333 potentials on retinogeniculate communication should be dynamically regulated by the depth and
334 duration of the preceding membrane hyperpolarization (Figure 3).

335 Although membrane hyperpolarization cannot be directly measured from extracellular
336 recordings, it is likely that its influence on T-channel activity is correlated with the length of the
337 LGN cell's preceding ISI—the longer the ISI, the greater the probability of T-channel de-
338 inactivation. To test this idea, we compared the probability that LGN cells generate high-
339 frequency spikes (ISIs less than 4 ms) as a function of the LGN cells' preceding ISI. Results
340 show that percentage of high-frequency spikes from LGN cells increased dramatically as the
341 preceding ISI increased beyond 50 ms (Figure 4A and B, white noise, $\beta_{ISI} = 0.59 \pm 0.05$, $p < 10^{-5}$,
342 dist. = normal; drifting grating, $\beta_{ISI} = 0.59 \pm 0.15$, $p < 0.0005$, dist. = normal). This effect was not
343 seen for RGCs. Similarly, the number of spikes per burst was also directly dependent upon the
344 preceding ISI (Figure 4C and D; white noise: $\beta_{ISI} = 0.65 \pm 0.1$, $p < 10^{-5}$, dist. = Poisson; drifting
345 grating, $\beta_{ISI} = 0.29 \pm 0.14$, $p < 0.053$, dist. = normal).

346 *Visually triggered geniculate bursts*

347 The de-inactivation of T-channels that is fundamental to thalamic bursts can occur via
348 multiple mechanisms. During sleep and deep anesthesia, when thalamic neurons typically fire in

349 burst mode, the de-inactivating hyperpolarization is not associated with visual stimulation but
350 rather involves intrinsic corticothalamic oscillations. Under these conditions, intrinsically
351 generated bursts decouple the retina from the LGN and therefore do not convey visual
352 information to the cortex. However, as we and others have shown previously, the
353 hyperpolarization needed to de-inactivate T-channels can also result from visual stimulation
354 (Alitto et al., 2005; Denning and Reinagel, 2005; Ortuño et al., 2014). Under these conditions,
355 bursts do not degrade visual signals, but instead relay retinal/visual information to the cortex.
356 Given these very different mechanisms for burst production and the implications each
357 mechanism would have on the interpretation of our data, we examined the spike trains of the
358 cells in this study to determine whether or not the bursts conveyed visual information. To do so,
359 we calculated space-time receptive fields from LGN responses to the white-noise stimulus using
360 only burst spikes and compared these response maps to those computed using a spike-count
361 matched subset of tonic spikes. As shown in Figure 5 (A and B), burst and tonic maps had
362 similar signal-to-noise ratios indicating that the burst spikes were evoked by visual stimulation
363 (tonic spikes: 9.5 ± 1.5 , burst spikes: 10.6 ± 1.3 , $p=0.54$). Similarly, burst spikes recorded during
364 visual stimulation with drifting gratings were tightly phase locked to the stimulus (Figure 5C and
365 D; tonic spikes circular variance: 0.12 ± 0.02 , burst spikes: 0.03 ± 0.01 , $p=0.001$).

366 *Augmentation of retinal signals during visually triggered geniculate bursts*

367 To test the hypothesis that visually evoked geniculate bursts are associated with an
368 amplification of the retinal signal within the LGN, we measured retinal spike efficacy as a
369 function of time since the most recent LGN spike. Using the assumption that the probability of T-
370 channel de-inactivation increases as the LGN ISI increases in duration (see above), we
371 calculated retinal spike efficacy as a function of the “ongoing” LGN ISI (Figure 6A). For example,
372 if a retinal spike occurred 10 ms after the most recent LGN spike, the ongoing LGN ISI is 10 ms,
373 regardless of the timing of either the previous retinal spike or the next thalamic spike. If T-

374 channels de-inactivate during relatively long LGN ISIs, then retinal spikes that occurred during
375 such ongoing LGN ISIs are predicted to trigger T-potentials and thus have an enhanced ability
376 to evoke a geniculate response.

377 Unsurprisingly, retinal spike efficacy was greatest during the shortest ongoing LGN ISIs
378 and decreased as this value approached 30 ms (Figure 6B and C). This is to be expected given
379 that most LGN spikes are triggered by retinal EPSPs and it takes approximately 30 ms for the
380 LGN membrane potential to return to baseline after these depolarizations occur (Usrey et al.,
381 1998; Carandini et al., 2007). However, consistent with the de-inactivation of T-channels during
382 longer LGN ISIs, there was an increase in retinal spike efficacy during ongoing LGN ISIs >50
383 ms that was maintained for the longest recorded values (> 300 ms; Figure 6B and C; white
384 noise: $\beta_{ISI} = 2.11 \pm 0.12$, $p < 10^{-5}$, dist. = binomial; drifting grating: $\beta_{ISI} = 9.41 \pm 0.15$, $p < 10^{-5}$, dist.
385 = binomial). Consistent with past reports, retinal ISI also had a strong influence on retinal spike
386 efficacy, reflecting temporal summation of multiple retinal EPSPs in the thalamus (Usrey et al.,
387 1998, Alitto et al., 2018; Carandini et al., 2007). To account for this effect, we calculated retinal
388 ISI-spike efficacy for three categories of ongoing LGN ISIs: short (< 30 ms), medium (> 30 ms
389 and < 100 ms), and long (> 100 ms). From this it is evident that the two factors, retinal ISI and
390 ongoing LGN ISI, interact to influence retinal spike efficacy (Figure 6D and E).

391 Given that T-potentials can last for tens of milliseconds (Destexhe and Sejnowski,
392 2001), we next quantified the time course of retinal spike efficacy modulation following relatively
393 prolonged LGN ISIs (Figure 7A). For this analysis, we plotted retinal spike efficacy as a function
394 of time following the initiation of a geniculate burst. For each burst, time zero was set 4 ms after
395 the cardinal spike, thus excluding the increase in retinal spike efficacy caused by the definition
396 of a thalamic burst (i.e., at least two spikes within 4 ms). Given the influence of RGC ISI on
397 retinal spike efficacy, we also calculated the “expected efficacy” as if retinal efficacy was not

398 influenced by the preceding geniculate ISI, but was instead determined only by the retinal ISI
399 (see Materials and Methods).

400 Across our data set, there was a dramatic increase in retinal spike efficacy that lasted for
401 approximately 10 ms from the onset of the burst compared to the expected efficacy values
402 (Figure 7B and C; white noise: Burst $\beta_0 0.55 \pm 0.34$, Expected $\beta_0 -1.9 \pm 0.36$, $p < 10^{-5}$, dist. =
403 binomial; drifting gratings: Burst $\beta_0 2.1 \pm 0.40$, Expected $\beta_0 -3.2 \pm 0.43$, $p < 10^{-5}$, dist. =
404 binomial). Importantly, a similar modulation was seen for individual tonic spikes that were
405 preceded by an ISI >100 ms (Figure 7B and C; white noise: Long IS Tonic $\beta_0 -3.2 \pm -0.11$, $p <$
406 0.0005 , dist. = binomial; drifting gratings: Long ISI Tonic $\beta_0 = 0.34 \pm 0.43$, $p < 10^{-5}$, dist. =
407 binomial). Although, the increase in efficacy was greater following burst spikes compared to
408 tonic spikes (white noise: $p = 0.073$; drifting gratings: $p < 0.005$), it is clear that the modulation of
409 retinal efficacy is present even in the absence of classically defined bursts. As shown in Figure
410 7D and E the modulation of retinal spike efficacy is strongly dependent upon the LGN cells'
411 preceding ISI (white noise, high-frequency spikes: $\beta_{ISI} 3.1 \pm 0.5$, $p < 10^{-5}$, low-frequency spikes
412 $\beta_{ISI} 3.4 \pm 1.8$, $p = 0.047$; drifting gratings, high-frequency spikes: $\beta_{ISI} 5.3 \pm 0.25$, $p < 10^{-5}$, low-
413 frequency spikes $\beta_{ISI} 4.0 \pm 0.2$, $p < 10^{-5}$). Further, the modulation of retinal efficacy begins to occur
414 following geniculate ISIs shorter than would constitute a thalamic burst.

415 *Retinal contribution to geniculate burst spikes*

416 Results presented above show that retinal spike efficacy is modulated by the preceding ISIs of
417 LGN cells in a manner consistent with the involvement of T-channels and the amplification of
418 visual signals within the LGN. To gain a comprehensive understanding of how response mode
419 modulates retinogeniculate communication, we also quantified the influence of geniculate bursts
420 on retinal contribution—the percentage of LGN spikes evoked from the recorded RGC. In
421 general, geniculate bursts are expected to decrease retinal contribution by generating LGN
422 spikes independent of retinal influence, therefore degrading the visual signal within the LGN. As

423 described above, this is particularly true during geniculate bursts evoked by intrinsic
424 corticothalamic oscillations. However, during visually driven geniculate bursts, such as the
425 bursts examined in the current study (Figure 5), one may detect a decrease in retinal
426 contribution, as measured via correlation analysis, even when there is no corresponding
427 degradation of visual processing and LGN activity remains reliant on retinal influences. Thus, in
428 addition to quantifying the influence of response mode on retinal contribution, we also sought to
429 gain deeper insight into the functional consequences on visual processing in the LGN.

430 Consistent with the ability of T-channels to modulate retinal contribution, there was a
431 significant inverse relationship between preceding LGN ISI and retinal contribution during visual
432 stimulation (Figure 8A and B; white noise: $\beta_{\text{ISI}} = -1.0 \pm 0.1$, $p = 10^{-5}$, dist. = binomial; drifting
433 grating: $\beta_{\text{ISI}} = -8.6 \pm 0.06$, $p < 10^{-5}$, dist. = binomial). This correlation was present even in the
434 absence of high-frequency geniculate spikes (ISIs < 4 ms; white noise: $\beta_{\text{ISI}} = -0.37 \pm 0.09$, $p =$
435 0.0001, dist. = binomial; drifting grating: $\beta_{\text{ISI}} = -4.4 \pm 1.2$, $p < 0.0001$, dist. = binomial) and was
436 evident for preceding ISIs < 100ms during visual stimulation with drifting gratings (drifting
437 grating: $\beta_{\text{ISI}} = -2.2 \pm 0.41$, $p < 10^{-5}$, dist. = binomial; white noise: $\beta_{\text{ISI}} = -1.1 \pm 0.65$, $p = 0.09$, dist. =
438 binomial), again reinforcing the conclusion that burst mode can influence geniculate activity
439 even in the absence of classically defined bursts. For both white-noise and grating stimulation,
440 the decrease in retinal contribution lasted for several milliseconds following a prolonged LGN ISI
441 (Figure 8C and D, white noise = 6.1 ms; drifting gratings = 5.2 ms).

442 We next wanted to determine if the measured decrease in retinal contribution was
443 caused by an uncoupling of retinal and geniculate activity. Although we measured a decrease in
444 retinal contribution, it is possible that T-potentials allow single retinal spikes to evoke multiple
445 LGN spikes, leading to an amplification of the retinal signal within the LGN. This would cause a
446 decrease in the measured retinal contribution because the time delay from the triggering retinal
447 spike increases with each subsequent LGN spike. Therefore, only the cardinal geniculate spike

448 would fall into the monosynaptic window and thus be counted as triggered by the retina (Figure
449 9A). To determine the extent to which this occurred, we calculated retinal augmentation: here
450 defined as the average retinal contribution minus the retinal contribution given that the previous
451 spike was directly evoked by the recorded RGC. Effectively, this quantifies the relative change
452 in contribution following an evoked spike. Positive values of retinal augmentation would be
453 consistent with single retinal spikes triggering multiple LGN action potentials. Further, for retinal
454 augmentation to be consistent with the involvement of T-potentials, then it should (1) increase
455 with the preceding LGN ISI and (2) only be present during epochs containing relatively short
456 subsequent LGN ISIs (e.g., high-frequency LGN spikes).

457 Retinal augmentation was significantly greater than zero during LGN bursts (Figure 9,
458 blue trace, white noise: retinal augmentation = 0.23 ± 0.1 , $p = 0.0027$; drifting gratings: retinal
459 augmentation = 0.77 ± 0.13 , $p < 0.0001$). Further, this effect was dependent upon the preceding
460 LGN ISI, as measured by the difference in the influence of LGN ISI when the retinal contribution
461 of the cardinal spike is considered (white noise: Cardinal Contributed, $\beta_{\text{ISI}} = -2.8 \pm 0.34$, Cardinal
462 Not Contributed $\beta_{\text{ISI}} = -1.7 \pm 0.40$, $p = 0.017$, dist. = binomial: Cardinal Contributed $\beta_{\text{ISI}} = -$
463 24.0 ± 0.81 , Cardinal Not Contributed $\beta_{\text{ISI}} = -3.6 \pm 0.16$, $p < 10^{-5}$, dist. = binomial). By comparison,
464 in the absence of high-frequency LGN spikes, there was no evidence of signal augmentation,
465 regardless of the preceding ISI (Figure 9D and E, red lines; white noise: retinal augmentation =
466 0.05 ± 0.06 , $p = 0.18$; drifting gratings: retinal augmentation = -0.11 ± 0.12 , $p = 0.3$).

467 The above analysis recasts the calculated decrease in retinal contribution for secondary
468 burst spikes as an augmentation of the retinal signal; however, it does not address the decrease
469 in retinal contribution for cardinal LGN burst spikes. One possible explanation for the decrease
470 in retinal contribution for cardinal burst spikes is that T-potentials can be triggered by the
471 release of inhibition, and this relationship is difficult to measure using correlation analysis. Burst
472 spikes generated by the withdrawal of inhibition would lack a triggering retinal EPSP; however,

473 they would still relay visual information to the cortex. To determine if LGN spikes that lacked a
474 detectable triggering retinal spike encoded visual information, we calculated spike-count
475 matched response maps for four categories of LGN spikes: contributed and non-contributed
476 spikes during both tonic and burst response modes (Figure 10). While there was an overall
477 decrease in signal-to-noise ratios for non-contributed spikes compared to contributed spikes (all
478 contributed STN: 5.14 ± 0.54 ; all non-contributed STN: 3.5 ± 0.41 , $p = 0.02$), the decrease was
479 present for both tonic spikes and burst spikes (non-contributed burst STN: 4.2 ± 0.6 , non-
480 contributed tonic STN: 2.8 ± 0.53 , $p = 0.1$). Thus, there is no evidence that non-contributed burst
481 spikes degrade the visual signal present in the LGN spike train.

482

483

Discussion

484 The primary goal of this study was to determine the influence of thalamic burst mode on
485 retinogeniculate communication. By simultaneously recording the spiking activity of
486 monosynaptically connected pairs of RGCs and LGN neurons, we have shown that retinal
487 signals to the cortex are amplified by visually evoked bursts in the LGN. This amplification is the
488 result of (i) an increase in the probability that a retinal spike will trigger a geniculate response
489 and (ii) an increase in the number of geniculate spikes that a single retinal spike can trigger.
490 Further analysis demonstrates that the modulation of retinogeniculate communication increases
491 as the preceding LGN ISI increases and the amplification of retinal activity occurs even in the
492 absence of traditionally defined thalamic bursts. These results are consistent with the known
493 biophysical properties of the T-type Ca^{2+} channels which underlie bursts in all thalamic nuclei
494 (Llinás and Jahnsen, 1982; Babadi, 2005; Destexhe, and Sejnowski, 2001; Sherman and
495 Guillery, 2009; Elijah et al., 2015; Zeldenrust et al., 2018). We propose that T-potentials amplify
496 the transmission of visual signals to primary visual cortex, most likely during periods of low-
497 arousal. Given that this modulation can occur in the absence of thalamic bursts, T-potentials
498 may also modulate retinogeniculate communication during behavioral conditions not typically
499 associated with thalamic bursts.

500 *Retinogeniculate communication during visually driven LGN bursts can be explained by the
501 known properties of T-type Ca^{2+} channels*

502 Thalamic bursts are generated by the de-inactivation and subsequent activation of T-type Ca^{2+}
503 channels (reviewed in Destexhe, and Sejnowski, 2001). This occurs when a strong
504 hyperpolarization (de-inactivation) is followed by relatively rapid depolarization (activation). The
505 depolarization can be active, as occurs with synaptic excitation, or passive, as occurs during the
506 withdrawal of synaptic inhibition, or a combination of both (Andersen and Eccles, 1962; Llinás
507 and Jahnsen, 1982; Hirsch et al., 1983; Deschenes et al., 1984; Destexhe, and Sejnowski,

508 2001). Importantly, the resulting Ca^{2+} mediated depolarizations (T-potentials) are dependent
509 upon the depth and duration of the preceding hyperpolarization (Figure 3). Because of this, we
510 hypothesized that T-channel activity could be estimated from the preceding LGN ISI. Consistent
511 with this hypothesis, we found an increase in the probability and duration of high-frequency
512 spiking (ISIs < 4 ms; the second criterion of a burst) as the preceding LGN ISI increased in
513 duration (Figure 4). Likewise, there was a strong relationship between preceding LGN ISI and
514 the amplification of retinogeniculate transmission (Figures 6-9).

515 During tonic response mode, it is generally assumed that each geniculate spike is
516 triggered by a specific retinal action potential (Kaplan and Shapley, 1984; Sincich et al., 2007).
517 As is common for monosynaptic interactions, and is particularly true at retinogeniculate
518 synapses, cross-correlation analysis indicates that there is a precise monosynaptic window in
519 which the triggering presynaptic spike can be found prior to the postsynaptic response (Figure
520 2). Although previous work has shown that the latency and duration of the monosynaptic
521 window is invariant to changes in the visual stimulus (Fischer et al., 2017; Alitto et al., 2018), T-
522 potentials can alter this relationship in two important ways. First, T-potentials can cause single
523 retinal EPSPs to trigger multiple LGN action potentials. In this case, there is a retinal EPSP in
524 the monosynaptic window of the cardinal burst spike; however, for each subsequent LGN spike,
525 the triggering retinal spike occurs outside of this window (see Figure 9). Importantly, these burst
526 spikes are all associated with retinal activity and should not be confused with intrinsically driven
527 burst spikes that do not convey visual information. Second, T-potentials can be triggered by the
528 release of inhibition, even in the absence of active depolarization (e.g., a retinal EPSP). This is
529 commonly referred to as a rebound potential. During visual stimulation, the withdrawal of
530 inhibition often occurs with the onset of excitation (e.g., push-pull interactions; Wang et al.,
531 2011; Suresh et al., 2016); however, the interaction of these two mechanisms may significantly
532 transform the temporal relationship between retinal input and geniculate output, making it

533 appear as if there was no triggering retinal excitation. As illustrated in Figure 10, burst spikes
534 that did not have a detectable triggering retinal spike nonetheless convey visual stimulation and
535 should not be confused with intrinsically driven activity that does not.

536 *Stimulus dependent amplification of visual signals*

537 The biophysical properties of T-channels also explain stimulus-dependent differences in
538 retinogeniculate communication during LGN bursts. In particular, the inferred influence of T-
539 channels was greater with drifting grating stimulation compared to white-noise stimulation. This
540 difference likely reflects the different spatiotemporal properties of drifting gratings and white-
541 noise. Namely, the periodic nature of drifting gratings ensures that LGN neurons alternate
542 between periods of strong excitation and strong inhibition, a pattern that is well suited for T-
543 channel activity (Lu et al., 1992; Smith et al., 2000). By contrast, white-noise stimuli lack these
544 correlations, leading to the generation of fewer and weaker T-potentials. Consistent with these
545 differences, the amplification of visual signals was weaker and required longer geniculate ISIs
546 during white-noise stimulation compared to drifting grating stimulation.

547 These stimulus dependent effects can also align our results with those from a previous
548 study in macaque monkeys (Sincich et al., 2007). In this study, results indicate that retinal
549 activity, as assessed using thalamic S-potentials, drives nearly all geniculate burst spikes.
550 Similar to the white-noise stimulus used in the current study, the pink-noise stimulus used in the
551 earlier study lacked the low-temporal frequencies that strongly de-inactivate T-channels, likely
552 resulting in subthreshold T-potentials that were more dependent upon retinal excitation to drive
553 geniculate action potentials. Although they did not examine the influence of geniculate bursts on
554 retinal spike efficacy, if our suggestion is correct, then similar increases in retinal spike efficacy
555 should be present in their data set. This would also indicate a shared mechanism across
556 species to augment retinal signaling during geniculate bursts.

557 *Thalamic Burst Mode and Behavioral State*

558 Visually evoked geniculate bursts are more likely to occur with inattentiveness or light
559 anesthesia when the membrane potential of geniculate cells is thought to be more
560 hyperpolarized than in the alert state. Under these conditions, the type of visual signal that is
561 most likely to trigger a T-potential is a strongly suppressive stimulus followed by a strongly
562 excitatory stimulus (Alitto et al., 2005). Resulting bursts effectively amplify the geniculocortical
563 transmission of retinal signals resulting from the onset of a neuron's preferred stimulus (Guido
564 et al., 1992; Sherman and Guillory, 2002). In contrast, sleep and deep anesthesia engage
565 intrinsic corticothalamic oscillations that dominate geniculate activity and drive synchronous
566 bursting activity that serves to de-couple the thalamus and cortex from sensory activity (Steriade
567 and Contreras, 1995; Timofeev et al., 1996; Elton 1997; Steriade, 2003). Thus, depending on
568 the state of the corticothalamic circuitry, bursts may serve very different purposes: they can
569 amplify the communication of visual signals to cortex during inattentiveness or light anesthesia
570 or de-couple the thalamus and cortex during sleep and deep anesthesia.

571 Although bursts occur across all behavioral states, they occur most frequently during
572 periods associated with diminished visual processing (Livingston and Hubel, 1981; Bezdudnaya
573 et al., 2006; Neil et al., 2010). With this in mind, the amplification of retinal signals during
574 geniculate bursts should not be taken as evidence that visual processing is enhanced during
575 periods of low arousal relative to periods of more highly engaged sensory processing. Rather,
576 T-potentials enhance the ability of retinal spikes to trigger LGN activity during periods of
577 otherwise diminished visual processing. During comparable behavioral states, a retinal EPSP
578 that occurs during a T-potential is more likely to trigger LGN spikes than the same retinal spike
579 in isolation. Given the relative suppression of tonic LGN activity during periods associated with
580 geniculate bursts, the burst related retinal amplification functions as a contingency mechanism
581 for the successful transmission of sensory signals to the cortex that would otherwise be lost.

Burst and tonic response modes are often described as binary states, which is an accurate description for the extreme ends of behavioral arousal: tonic mode during active sensory processing and burst mode during sleep and anesthesia. This hard distinction, however, fails to capture thalamic processing during the transition between the two response modes (Deleuze et al., 2012; Hong et al., 2014). In between the extremes of focused sensory processing and slow-wave sleep, the graded de-inactivation of a cell's T-channels may play a previously underappreciated role in visual processing. Under certain conditions, the transition between tonic and burst response modes may approach a step function (Bezdudnaya et al. 2006); however, more studies are required to understand the full dynamic range of state dependent sensory processing. Finally, although bursts defined by classical criteria are less frequent in alert animals (Weyand et al., 2001; Ruiz et al., 2006; Weyand 2007; Alitto et al., 2011), this does not exclude the influence of T-potentials on visual responses in the LGN. T-potentials that do not trigger classically defined thalamic bursts may make a significant contribution to sensory processing in the engaged state.

596

597

References

598 Alitto HJ, Moore BD 4th, Rathbun DL, Usrey WM (2011) A comparison of visual responses in the
599 lateral geniculate nucleus of alert and anaesthetized macaque monkeys. *J Physiol* 589:87-
600 99.

601 Alitto HJ, Rathbun DL, Fisher TG, Alexander PC, Usrey WM (2018) Contrast gain control and
602 retinogeniculate communication. *European Journal of Neuroscience*. [Epub ahead of print;
603 Mar 8, 2018; doi: 10.1111/ejn.13904]

604 Alitto HJ, Weyand TG, Usrey WM (2005) Distinct properties of stimulus-evoked bursts in the lateral
605 geniculate nucleus. *J Neurosci* 25:514-23.

606 Andersen P, Eccles J (1962) Inhibitory phasing of neuronal discharge. *Nature* 196:645-647.

607 Babadi B (2005) Bursting as an effective relay mode in a minimal thalamic model. *J Comput
608 Neurosci* 18:229-243.

609 Bereshpolova Y, Stoelzel CR, Zhuang J, Amitai Y, Alonso JM, Swadlow HA (2011) Getting
610 drowsy? Alert/nonalert transitions and visual thalamocortical network dynamics. *J Neurosci*
611 31:17480-17487

612 Bezdudnaya T, Cano M, Bereshpolova Y, Stoelzel CR, Alonso JM, Swadlow HA (2006) Thalamic
613 burst mode and inattention in the awake LGNd. *Neuron* 49:421-32.

614 Carandini M, Horton JC, Sincich LC (2007) Thalamic Filtering of Retinal Spike Trains by
615 Postsynaptic Summation. *J Vision* 7:20.1-11.

616 Cleland BG, Dubin MW, Levick WR (1971) Simultaneous recording of input and output of lateral
617 geniculate neurones. *Nat New Biol* 231:191-192.

618 Dan Y, Atick JJ, Reid RC (1996) Efficient coding of natural scenes in the lateral geniculate nucleus:
619 experimental test of a computational theory. *J Neurosci*. 16:3351-3362.

620 Deleuze C, David F, Behuret, S, Sadoc G, Shin HS, Uebele V N, Renger JJ, Lambert RC,
621 Leresche N, Bal T (2012) T-type calcium channels consolidate tonic action potential output
622 of thalamic neurons to neocortex. *J Neurosci* 32:12228-12236.

623 Denning KS, Reinagel P (2005) Visual control of burst priming in the anesthetized lateral
624 geniculate nucleus. *J Neurosci* 25:3531-8.

625 Deschenes, M., Paradis, M., Roy, J. P, Steriade, M (1984) Electrophysiology of neurons of lateral
626 thalamic nuclei in cat: resting properties and burst discharges. *J Neurophysiol* 51:1196-
627 1219.

628 Destexhe A, Sejnowski, TJ (2001) Thalamocortical Assemblies. New York, NY: Oxford Press.

629 Destexhe A, Sejnowski, TJ (2002) The initiation of bursts in thalamic neurons and the cortical
630 control of thalamic sensitivity. *Philos Trans R Soc Lond B Biol Sci*, 357:1649-1657.

631 Elijah DH, Samengo I, Montemurro MA (2015) Thalamic neuron models encode stimulus
632 information by burst-size modulation. *Front Comput Neurosci*, 9:113.

633 Elton M, Winter O, Heslenfeld D, Loewy D, Campbell K Kok A (1997) Event-related potentials to
634 tones in the absence and presence of sleep spindles. *J Sleep Res* 6:78-83.

635 Guido W, Lu SM, Sherman SM (1992) Relative contributions of burst and tonic responses to the
636 receptive field properties of lateral geniculate neurons in the cat. *J Neurophysiol* 68:2199-
637 2211.

638 Guido W, Lu SM, Vaughan JW, Godwin DW, Sherman SM (1995) Receiver operating
639 characteristic (ROC) analysis of neurons in the cat's lateral geniculate nucleus during tonic
640 and burst response mode. *Vis Neurosci* 12:723-741.

641 Hirsch, JC, Fourment, A, Marc ME (1983) Sleep-related variations of membrane potential in the
642 lateral geniculate body relay neurons of the cat. *Brain Res* 259: 308-312.

643 Hong SZ., Kim HR, Fiorillo, CD (2014) T-type calcium channels promote predictive homeostasis of
644 input-output relations in thalamocortical neurons of lateral geniculate nucleus. *Front*
645 *Comput Neurosci* 8:98.

646 Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in
647 thalamic relay neurons. *J Neurophysiol* 68:1373-1383.

648 Kaplan E, Shapley R (1984) The origin of the S (slow) potential in the mammalian lateral
649 geniculate nucleus. *Exp Brain Res* 55:111-116.

650 Lesica NA, Stanley GB (2004) Encoding of natural scene movies by tonic and burst spikes in the
651 lateral geniculate nucleus. *J Neurosci* 24:10731-10740.

652 Livingstone MS, Hubel DH (1981) Effects of sleep and arousal on the processing of visual
653 information in the cat. *Nature* 291:554-61.

654 Llinás R, Jahnsen H (1982) Electrophysiology of mammalian thalamic neurones in vitro. *Nature*
655 297:406-8.

656 Lu SM, Guido W, Sherman SM (1992) Effects of membrane voltage on receptive field properties of
657 lateral geniculate neurons in the cat: contributions of the low-threshold Ca^{2+} conductance.
658 *J Neurophysiol* 68:1285-1298.

659 Martinez LM, Molano-Mazón M, Wang X, Sommer FT, Hirsch JA (2014) Statistical wiring of
660 thalamic receptive fields optimizes spatial sampling of the retinal image. *Neuron* 81:943-56.

661 Niell CM, Stryker MP (2010) Modulation of visual responses by behavioral state in mouse visual
662 cortex. *Neuron* 65:472-479.

663 Ortuño T, Grieve KL, Cao R, Cudeiro J, Rivadulla C. 2014. Bursting thalamic responses in awake
664 monkey contribute to visual detection and are modulated by corticofugal feedback. *Front*
665 *Behav Neurosci* 8:198.

666 Rathbun DL, Alitto HJ, Warland DK, Usrey WM (2016) Stimulus Contrast and Retinogeniculate
667 Signal Processing. *Front Neural Circuits* 10:8.

668 Rathbun DL, Warland DK, Usrey WM (2010) Spike timing and information transmission at
669 retinogeniculate synapses. *J Neurosci* 30:13558-13566.

670 Raudenbush SW, Bryk AS (2002) Hierarchical Linear Models: Applications and Data Analysis.
671 London, England: Sage Publications.

672 Reid RC, Shapley RM (1992) Spatial structure of cone inputs to receptive fields in primate lateral
673 geniculate nucleus. *Nature* 356:716–718.

674 Reid RC, Victor JD Shapley RM (1997) The use of m-sequences in the analysis of visual neurons:
675 linear receptive field properties. *Vis Neurosci* 16:1015–1027.

676 Reinagel P, Godwin D, Sherman SM, Koch C (1999) Encoding of visual information by LGN bursts.
677 *J Neurophysiol* 81, 2558-2569.

678 Ruiz O, Royal D, Sáry G, Chen X, Schall JD, Casagrande VA. 2006. Low-threshold Ca²⁺-
679 associated bursts are rare events in the LGN of the awake behaving monkey. *J
680 Neurophysiol* 95:3401-3413.

681 Sherman SM, Guillery RW (2002) The role of the thalamus in the flow of information to the cortex.
682 *Philos Trans R Soc Lond B Biol Sci* 357, 1695-1708.

683 Sherman SM, Guillery RW (2009) Exploring the Thalamus and its Role in Cortical Function, second
684 edition. Cambridge, MA: MIT Press.

685 Sincich LC, Adams DL, Economides JR, Horton JC (2007) Transmission of Spike Trains at the
686 Retinogeniculate Synapse. *J Neurosci* 27:2683-2692.

687 Smith GD, Cox CL, Sherman SM, Rinzel J (2000) Fourier analysis of sinusoidally driven
688 thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. *J
689 Neurophysiol* 83:588-610.

690 Steriade M (2003) The corticothalamic system in sleep. *Front Biosci* 8:878-899.

691 Steriade M, Contreras D (1995) Relations between cortical and thalamic cellular events during
692 transition from sleep patterns to paroxysmal activity. *J Neurosci* 15:623-642.

693 Suresh V, Ciftcioglu UM, Wang X, Lala BM, Ding, K. R, Smith, WA, Sommer FT, Hirsch JA (2016)
694 Synaptic Contributions to Receptive Field Structure and Response Properties in the Rodent
695 Lateral Geniculate Nucleus of the Thalamus. *J Neurosci*. 36: 10949–10963.

696 Sutter EE (1987) A practical non-stochastic approach to nonlinear time-domain
697 analysis. In: Advanced Methods of Physiological Systems Modeling. Los Angeles:
698 University of Southern California, vol. 1, p. 303–315.

699 Swadlow HA, Gusev AG (2001) The impact of 'bursting' thalamic impulses at a neocortical
700 synapse. *Nat Neurosci* 4:402-408.

701 Timofeev I, Contreras D, Steriade M (1996) Synaptic responsiveness of cortical and thalamic
702 neurons during various phases of slow oscillation in cat. *J Physiol (Lond)* 494:265-278.

703 Usrey WM, Alitto HJ (2015) Visual Functions of the Thalamus. *Annu Rev Vis Sci* 1:351-371.

704 Usrey WM, Alonso JM, Reid RC (2000) Synaptic interactions between thalamic inputs to simple
705 cells in cat visual cortex. *J Neurosci* 20:5461-5467.

706 Usrey WM, Reppas JB, Reid RC (1998) Paired-spike interactions and synaptic efficacy of retinal
707 inputs to the thalamus. *Nature* 395:384-387.

708 Usrey WM, Reppas JB, Reid RC (1999) Specificity and strength of retinogeniculate connections. *J
709 Neurophysiol* 82:3527-3540.

710 Usrey WM, Sceniak MP, Chapman B (2003) Receptive fields and response properties of neurons
711 in layer 4 of ferret visual cortex. *J Neurophysiol* 89:1003-1015.

712 Wang, X, Sommer, FT, Hirsch, JA (2011) Inhibitory circuits for visual processing in thalamus. *Curr*
713 *Opin Neurobiol* 21:726–733.

714 Wang, XJ, Rinzel, J, Rogawski MA (1991) A model of the T-type calcium current and the low-
715 threshold spike in thalamic neurons. *J Neurophysiol* 66:839-850.

716 Wei H, Bonjean M, Petry HM, Sejnowski TJ, Bickford ME (2011) Thalamic burst firing propensity: a
717 comparison of the dorsal lateral geniculate and pulvinar nuclei in the tree shrew. *J Neurosci*
718 31:17287–17299.

719 Weyand TG, Boudreux M, Guido W (2001) Burst and tonic response modes in thalamic neurons
720 during sleep and wakefulness. *J Neurophysiol* 85:1107-1118.

721 Weyand TG (2007) Retinogeniculate transmission in wakefulness. *J Neurophysiol* 98:769-785.

722 Zeldenrust F, Chameau P, Wadman WJ (2018) Spike and burst coding in thalamocortical relay
723 cells. *PLoS Comput Biol* 14:2:e1005960. doi: 10.1371/journal.pcbi.1005960

724

Figure Legends

725 **Figure 1.** Cross-correlation analysis to identify monosynaptic connections between retinal
726 ganglion cells and LGN neurons. **A**, A raster plot showing the timing of action potentials of an
727 LGN neuron relative to the action potentials of a simultaneously recorded RGC (time = 0). **B**, A
728 clear, narrow, short-latency peak can be seen in this example cross-correlogram, indicating a
729 monosynaptic connection between the two neurons. For this example, retinal efficacy was 0.39.
730 **C,D**, Similar plots showing the timing of action potentials of the RGC relative to those of the
731 LGN neuron (time = 0). For this example, retinal spike contribution was 0.73.

732

733 **Figure 2.** Comparison of burst frequency in the retina and LGN. **A**, Bursts (blue tick marks)
734 were identified by applying the following criteria to extracellular recordings: (1) the first spike
735 was preceded by an interspike interval (ISI) >100 ms (horizontal arrow) and (2) subsequent
736 spikes followed with ISIs < 4 ms. **B,C**, Scatterplot showing the percentage of RGC and LGN
737 cell spikes that were identified as part of a burst, during white-noise (**B**) and drifting grating (**C**)
738 stimulation. **D**, Scatterplot showing the percentage of simulated LGN spikes that were identified
739 as part of a burst when a leaky integrate-and-fire mode either included or did not include T-
740 channels. **E**, Line graph showing the influence of membrane potential on the percentage of LGN
741 spikes that were identified as part of a burst when the simulation included T-channels (left y-
742 axis, black line) and the increase in simulated LGN spike count due to the addition of T-
743 channels to the model (right y-axis, red line). Error bars = standard error.

744

745 **Figure 3.** Leaky integrate-and-fire simulation of geniculate bursts. Simulation of T-potentials
746 using a standard integrate-and-fire neural model. Using previously published equations (see
747 Materials and Methods) we simulated the influence of increasing the amplitude (progressively
748 stronger by row) and duration (progressively longer by column) of a hyperpolarization on T-

749 channel activation to response to depolarization. Black lines = model with T-channels, gray lines
750 = model without T-channels.

751

752 **Figure 4.** The influence of preceding ISI on high-frequency spiking in the retina and LGN. **A, B**,
753 Line plots showing the influence of preceding ISI on the percentage of high-frequency spikes
754 (red line = RGC, blue line = LGN) during white-noise (**A**) and drifting grating (**B**) stimulation.
755 High-frequency spikes are defined as two or more consecutive spikes with ISIs <4 ms. Shaded
756 area = stand error. **C, D**, Line plots showing the influence of preceding LGN ISI on the number
757 of spikes per burst.

758

759 **Figure 5.** Geniculate bursts are evoked by visual stimulation. **A**, Spatiotemporal receptive field
760 (STRF) maps from a representative LGN neuron calculated using specific subsets of spike-
761 count matched geniculate spikes: all spikes (left), burst spikes (middle), and tonic spikes (right).
762 **B**, Bar graph showing sample mean signal-to-noise ratios (STN) for tonic and burst STRFs. **C**,
763 Polar plot illustrating the phase locking of LGN tonic (red line) and burst (blue line) spikes during
764 visual stimulation with drifting gratings. **D**, Bar graph showing circular variance for tonic and
765 burst spikes during visual stimulation with drifting gratings. Low circular variance values indicate
766 that the spikes were phase locked to the visual stimulus, while a value of 1 indicates that the
767 spikes occurred equally across all phases. Error bars = standard error.

768

769 **Figure 6.** Retinal spike efficacy is influenced by ongoing LGN ISI. **A**, Ongoing LGN ISI is
770 defined as the time since the most recent LGN spike at the occurrence of a RGC spike. This is
771 in contrast to retinal ISI, the interval between two consecutive RGC spikes, and LGN ISI, the
772 interval between two consecutive LGN spikes. **B, C**, Line plots showing the influence of ongoing

773 LGN ISI on retinal spike efficacy, during white-noise (**B**) and drifting grating stimulation (**C**). The
774 shaded areas around the line indicate standard error. The gray boxes indicate the range of ISI
775 values used for the GLME model (see Materials and Methods). **D, E**, Line plots showing the
776 influence of ongoing LGN ISI on retinal spike efficacy (red = ongoing LGN ISI < 30ms, light blue
777 line = ongoing LGN ISI > 30ms and < 100ms, dark blue line = ongoing LGN ISI > 100ms).

778

779 **Figure 7.** Retinal spike efficacy is influenced by preceding LGN ISI. **A**, To quantify the influence
780 of preceding LGN ISI on retinal spike efficacy, time = 0 was set to 4.0 ms after the cardinal
781 spike in a burst or the referenced tonic spike (black arrow). **B, C**, Line plot showing that retinal
782 spike efficacy is enhanced following both burst spikes (blue line) and tonic spikes with a
783 preceding ISI > 100 ms (red line). The expected values given the preceding retinal ISIs are
784 plotted as a baseline comparison (black line). Shaded areas indicate standard error. **D, E**, Line
785 plots showing the influence of preceding ISI on retinal spike efficacy for 4 -10 ms following time
786 0 as indicated in **A**.

787

788 **Figure 8:** The influence of preceding ISI on retinal contribution. **A, B**, Line plot showing the
789 influence of preceding LGN ISI on retinal spike contribution (red line = low frequency spikes,
790 blue line = high frequency spikes). Shaded area indicates standard error. **C, D**, Line plots
791 showing the temporal duration of the influence shown in **A, B**. Time zero is set as the
792 occurrence of the initial spike following the referenced ISI (e.g., time of the cardinal spike in a
793 burst).

794

795 **Figure 9.** Augmentation of retinal transmission during high-frequency LGN activity. **A**, When a
796 retinal spike triggers a T-potential, it may result in a thalamic burst. Using correlation analysis

797 only the cardinal spike would fall within the monosynaptic window (shaded box) and therefore
798 be counted as driven by the retina. **B, C**, The influence of preceding LGN ISI on retinal
799 contribution when the data is separated into two categories: cardinal spike was contributed by
800 the recorded RGC (red line), cardinal spike was not contributed by the recorded RGC (green).
801 Shaded area indicates standard error. **D, E**, Line plot showing retinal augmentation calculated
802 from the data shown in **B, C**.

803

804 **Figure 10.** Burst spikes lacking a triggering RGC spike are nonetheless visually evoked. **A-E**,
805 STRFs calculated from different subsets of spike-count matched LGN spikes: (**A**) all spikes, (**B**,
806 **C**) tonic and burst spikes evoked by the recorded RGC, (**D,E**) tonic and bursts spikes that were
807 not evoked by the recorded RGC. **F, G**, Bar graphs showing signal-to-noise ratios for LGN
808 spikes that were either evoked (**F**) or not evoked (**G**) by the recorded RGC (red = tonic spikes,
809 blue = burst spikes). Error bars indicated standard error.

810

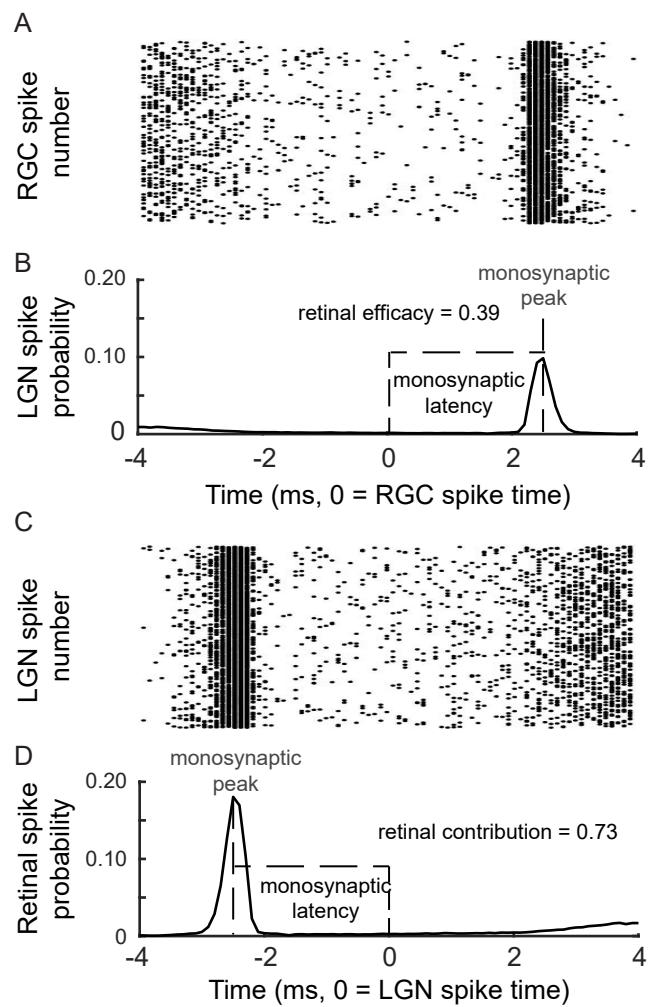


Figure 1

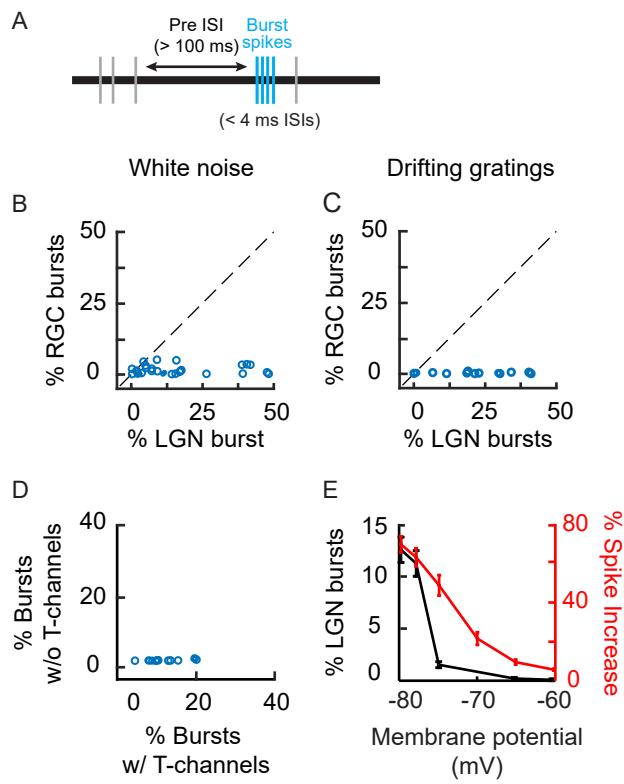


Figure 2

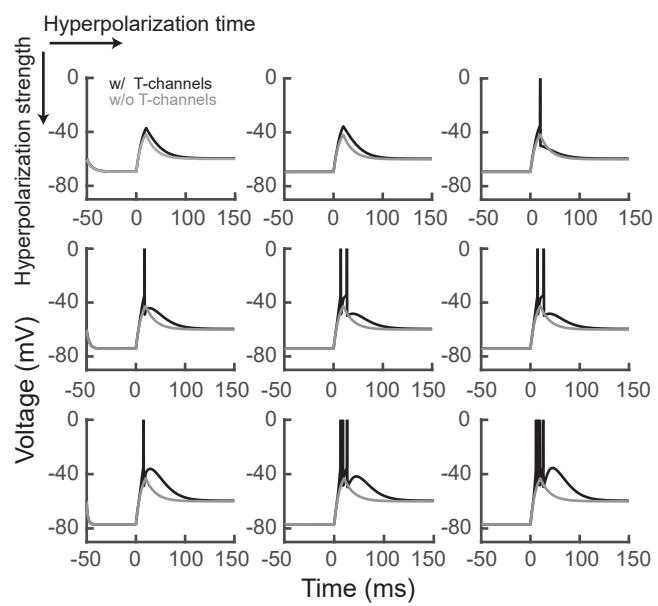


Figure 3

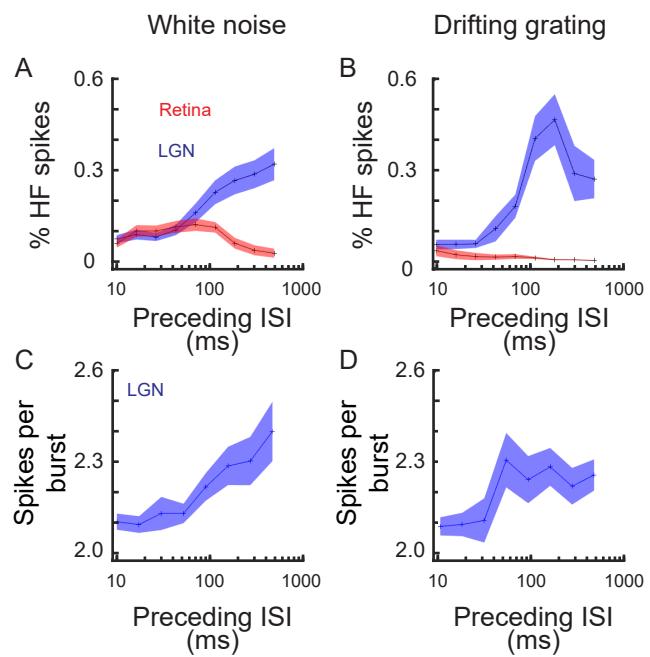


Figure 4

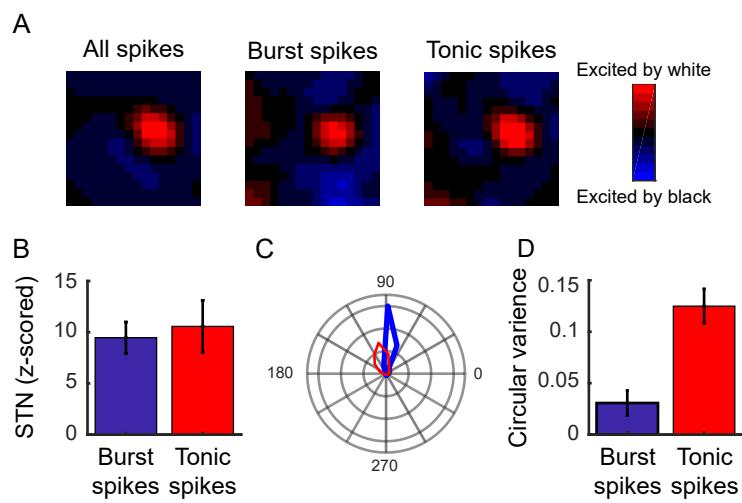


Figure 5

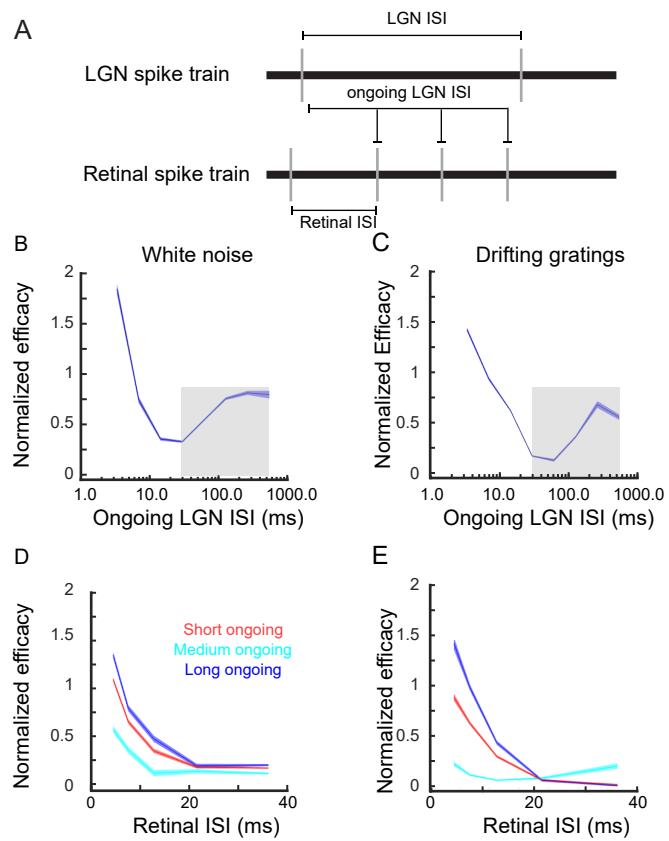


Figure 6

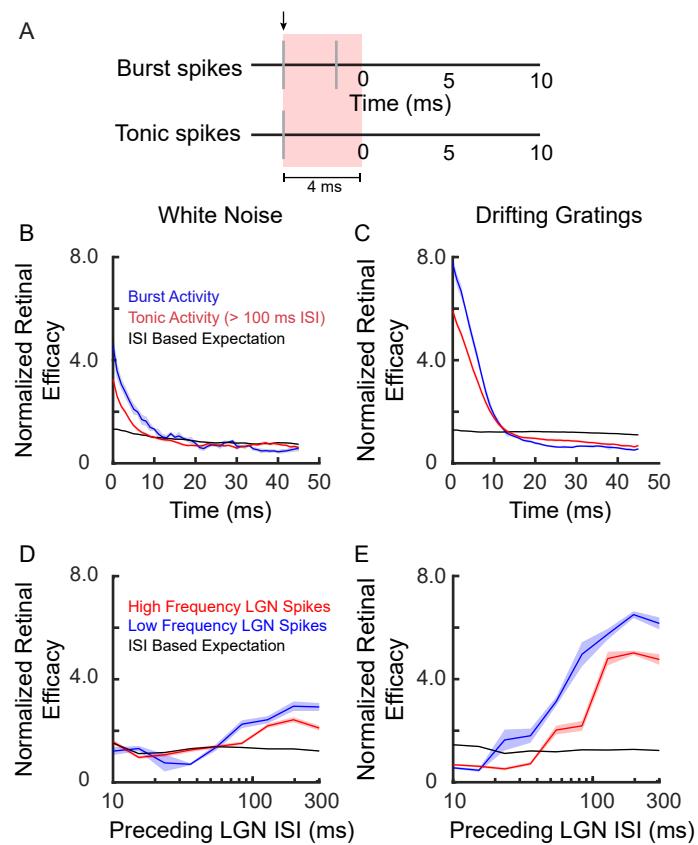


Figure 7

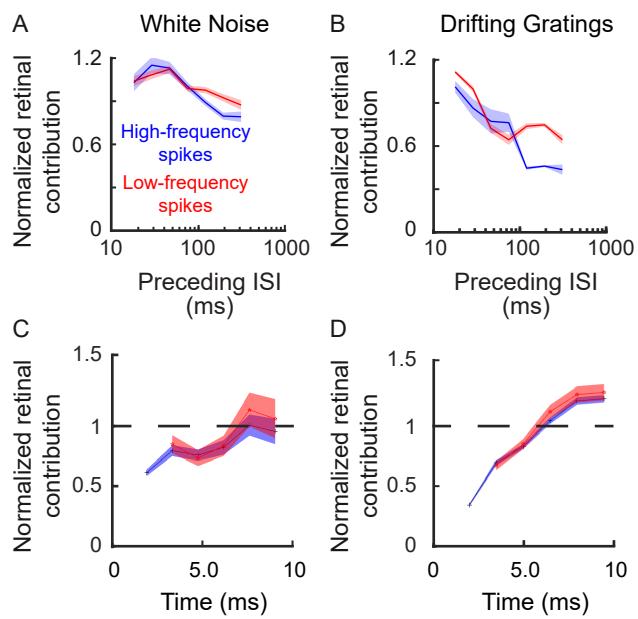


Figure 8

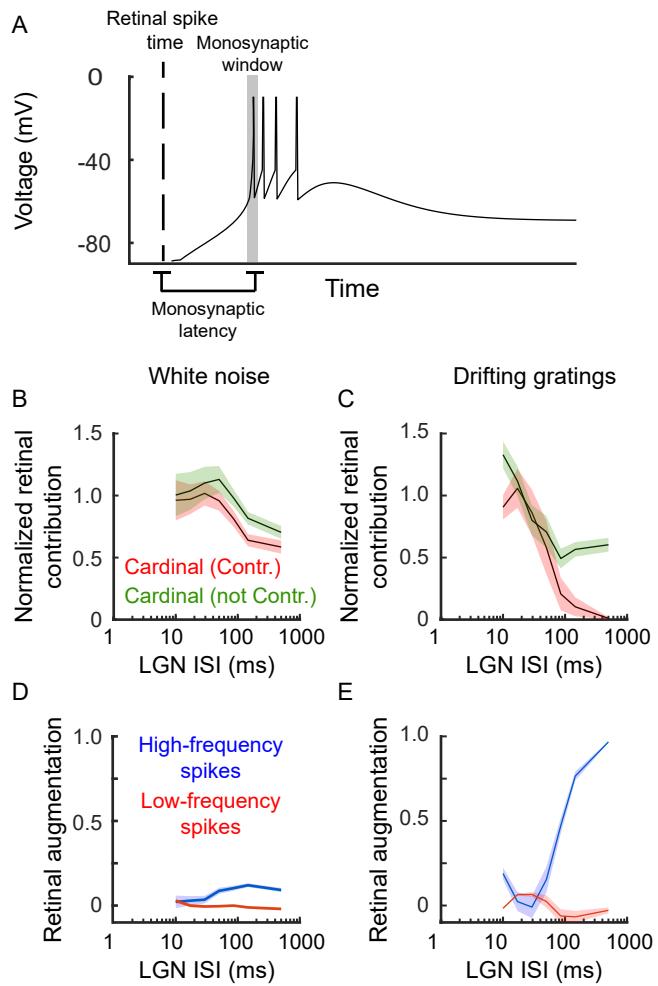


Figure 9

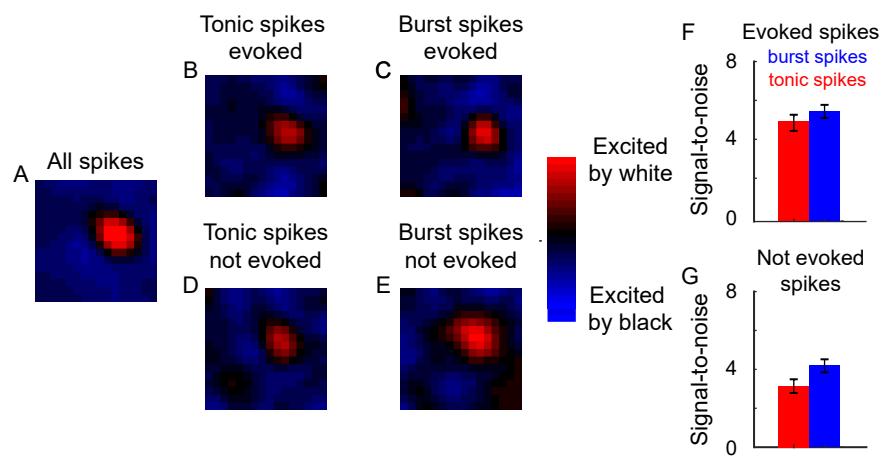


Figure 10