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Genome-wide association studies have implicated thousands of non-coding variants across human
phenotypes. However, they cannot directly inform the cellular context in which disease-associated vari-
ants act. Here, we use open chromatin profiles from discrete mouse cell populations to address this
challenge. We applied stratified linkage disequilibrium score regression and evaluated heritability en-
richment in 64 genome-wide association studies, emphasizing schizophrenia. We provide evidence
that mouse-derived human open chromatin profiles can serve as powerful proxies for difficult to ob-
tain human cell populations, facilitating the illumination of common disease heritability enrichment
across an array of human phenotypes. We demonstrate signatures from discrete subpopulations of
cortical excitatory and inhibitory neurons are significantly enriched for schizophrenia heritability with
maximal enrichment in discrete cortical layer V excitatory neurons. We also show differences between
schizophrenia and bipolar disorder are concentrated in excitatory neurons in layers II-lll, IV, V as well
as the dentate gyrus. Finally, we use these data to fine-map variants in 177 schizophrenia loci, nomi-
nating variants in 104/177 loci, and place them in the cellular context where they may modulate risk.

Although genome-wide association studies (GWAS)
have implicated thousands of variants in an array of
human phenotypes, the variation underlying these
signals and cellular contexts in which variants act
have remained largely unclear (Visscher et al. 2017).
Discernment of disease-relevant variants and cell
populations is essential for comprehensive func-
tional investigation of the mechanisms of disease.

Schizophrenia has been robustly investi-
gated through GWAS with the number of associat-
ed loci increasing from twelve to 179 independent
associations in the last decade (O’Donovan et al.
2008; Pardinas et al. 2018). However, this increase
has not been accompanied by the elucidation of dis-
ease mechanisms or an increase in the identification
of causal variants. To date, support for mechanisms
and/or causal variants have been established for
two loci (Sekar et al. 2016; Song et al. 2018). The
inability to construct and test mechanisms for schizo-
phrenia largely stems from the inability to separate
disease-relevant variants from those in linkage dis-
equilibrium (LD) and from the lack of knowledge
about what cells are important for disease risk.

Recent studies have begun to identify cell

populations for schizophrenia by leveraging GWAS
summary statistics and stratified linkage disequilib-

rium score regression (S-LDSC) (Finucane et al.
2018; Skene et al. 2018). These studies have fo-
cused on human and rodent transcriptional data,
with the finest resolution of cell populations provided
by mouse single-cell RNA-seq data (scRNA-seq).
This approach relies upon the imposition of win-
dows around the transcription start sites of genes
with cell-dependent expression. Crucially, mouse
data can be leveraged by using corresponding hu-
man orthologs. The results from these studies have
supported a role for cortical excitatory and inhibi-
tory neurons in schizophrenia risk (Finucane et al.
2018; Skene et al. 2018). However, these studies
only capture signal driven by variants residing in
selected windows, excluding much of the regula-
tory landscape. As most variants identified through
GWAS occur in non-coding DNA (Maurano et al.
2012), these studies have systematically over-
looked the capacity to use these biological signa-
tures in an agnostic manner to construct hypothe-
ses indicting putative, distal cis-regulatory elements.

Ideally, human chromatin data with the same
cell population resolution as transcriptome data
would be used to provide a regulatory context for
variants. However, human chromatin data analyzed
with S-LDSC have been limited to easy-to-access
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cell populations (Ulirsch et al. 2019) or heteroge-
neous adult tissues, broad cell types, and in vitro
cell lines (like those data available through the EN-
CODE consortium) (Finucane et al. 2018; Tansey
and Hill 2018; ENCODE Project Consortium 2012;
Fullard et al. 2018). Mouse data has the potential
to overcome these barriers by providing high res-
olution of the same populations as scRNA-seq.
Recently, mouse single-cell ATAC-seq was used to
annotate variants and explore heritability of a vari-
ety traits, including schizophrenia (Cusanovich et
al. 2018). This study implicated many of the same
populations in schizophrenia as previous studies
that leveraged expression data. However, which
variants are relevant to disease and in which cells
those variants may act was not explored. Further-
more, only a limited number of GWAS SNPs are
included in S-LDSC analysis and only differential-
ly accessible peaks were analyzed (Cusanovich
et al. 2018), limiting the SNPs and regulatory ele-
ments for which hypotheses could be generated.

Previously, we have successfully used mouse
chromatin data to prioritize common human variants
for pigmentation and Parkinson disease (Praetorius
et al. 2013; McClymont et al. 2018). In this study, we
set out to address whether mouse-derived human
open chromatin profiles could be used to prioritize
cell populations and variants important to schizo-
phrenia. In this way, data from narrowly-defined cell
populations that are inaccessible in humans could
be used to provide context for variants and allow for
the construction of hypotheses. We evaluate a limit-
ed number of strategies for converting mouse open
chromatin peaks to human peaks and use heritabili-
ty enrichment (S-LDSC) to prioritize 27 selected (25
mouse and two human) cell populations across 64
GWAS with an emphasis on schizophrenia. Final-
ly, we combine statistical fine-mapping of variants
with mouse-derived human open chromatin data to
prioritize variants in schizophrenia loci and predict
a cellular context in which those variants may act.

Results

A uniform pipeline for processing of mouse
ATAC-seq data

We obtained publicly available ATAC-seq data de-
rived from lineage identified cell-types sorted ex vivo
from mice and from mouse brain single nuclei analy-
ses (Table S1) (Preissl et al. 2018; Matcovitch-Natan
et al. 2016; Gray et al. 2017; Mo et al. 2015; Hughes
et al. 2017; Hosoya et al. 2018; McClymont et al.
2018). In total, we obtained 25 mouse ATAC-seq
datasets encompassing subclasses of six broader
cell types (dopaminergic neurons, excitatory neu-

rons, glia, inhibitory neurons, retina cells, and T-cells)
(Table S1). These datasets were selected to maximize
the range of cell types for analysis, while ensuring in-
clusion of classes with predicted roles in schizophre-
nia (Howes and Kapur 2009; Coyle 2006; Nakazawa
et al. 2012) and facilitating comparison with single-cell
RNA-seq populations analyzed in previous heritabili-
ty studies (Skene et al. 2018; Finucane et al. 2018).

To compile comparable open chromatin pro-
files, all ATAC-seq data were processed in an uniform
manner. Sequencing for each cell population was
aligned to the mouse genome (mm10), replicates were
combined, and peak summits were called (see Meth-
ods for more details). This resulted in 165,143 summits
called per cell type (range: 54,880 to 353,125; medi-
an: 130,464) with profiles derived from the single-nu-
clei data having less summits in general (Table S2).

Recognizing that the variable sequencing
depths for the datasets may lead to biases in the num-
ber of summits, we sought to obtain peaks with similar
levels of evidence. To achieve this, we employed a
method used by The Cancer Genome Atlas (Corces
et al. 2018) (See Methods). We then added 250 base
pairs (bp) to either side of each summit and the uni-
form peaks were merged within each population. This
resulted in 78,115 filtered summits per cell population
(range: 38,685 to 119,870) and an average of 62,309
peaks (range: 30,791 to 99,119 peaks)(Table S2).

To ensure that the open chromatin profiles re-
flected expected cell population identities, read counts
for each cell population for the union set of peaks
(433,555 peaks) were compared using principal com-
ponentanalysis (PCA) and hierarchical clustering. PCA
revealed that the vast majority of variation (70.29%)
in the data could be explained by whether the ATAC-
seq data was single-nuclei or bulk not experiment or
cell population (Fig. S1A, S1B, S1C). Stepwise quan-
tile normalization and batch correction abolished the
variation caused by this technical effect (Fig. S1A).

In general, broad cell types clustered together
within hierarchical clustering of correlation (Figure 1A)
and when PCA results were projected into two dimen-
sional space (Figure 1B). Only single-cell data from
inhibitory medium spiny neurons (“Inhibitory MSN*”)
and broad inhibitory neurons (“Inhibitory*”) were sep-
arated from the bulk inhibitory neurons in both hierar-
chical clustering of correlation and t-SNE space (Fig-
ure 1A, 1B). Inhibitory MSN neurons clustering with
excitatory neurons is consistent with the original anal-
ysis (Preiss| et al. 2018). This separation could be
due to the different tissues and methods used to iso-
late these cells (from cortex vs. from whole forebrain
or sorting vs. single-nuclei) (Preissl et al. 2018; Mo et
al. 2015; Gray et al. 2017). Overall, these results es-
tablish that the uniformly processed open chromatin
profiles appropriately reflect cell-dependent biology.
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Figure 1. Mouse open chromatin profiles show expected relationships (A, B) and lift over of mouse peaks to human is best done with
summits (C, D, E). A) Dendrogram displaying results of hierarchical clustering of the peak count correlations of public, mouse ATAC-seq data.
Asterisks in the cell population name indicate single-nuclei datasets. B) t-SNE plot displaying relationships between the peak counts of mouse
cell populations. C) Table containing the summary of three lift over strategies applied to public mouse ATAC-seq data. D) Mouse ATAC-seq data

at the Wdr60 promoter region in the mm10 genome. As an example of

the data at this locus, summits and peaks from Excitatory Layers II-Ill are

displayed along with RefSeq transcripts. E) Mouse-derived human open chromatin data at the WDRG60 promoter region in the hg19 genome. As
an example of data at this locus, lifted over data from Excitatory Layers II-lll are displayed along with human RefSeq transcripts. Data includes

results from all three lift over strategies employed (“All peaks”, “Strict p

eaks”, and “Summits”) along with the peak created after summit lift over.

Converting open chromatin summits from mouse
to human provides the most accurate open chro-
matin profile

We lifted over all open chromatin profiles for these cell
populations from the mouse genome (mm10) to syn-
tenic sequences in the human genome (hg19). In or-

der to optimize lift over, we compared three methods.
We sought the method which retained the maximum
number of peaks while ensuring human profiles
resembled mouse profiles. First, peaks were lifted
over “as is” including 250 bp extensions with default
lift over parameters (“all”’). Second, peaks were lift-
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ed over “as is” but with much stricter parameters,
limiting gap sizes to 20 bp to match previous studies
(“strict”)(Vierstra et al. 2014). Finally, we converted
the single base pair summits with default param-
eters and added 250 bp on each side (“summit”).

Although the first method (“all”) resulted
in retention of the most peaks from mouse to hu-
man (~86%), it also led to a range of peak sizes
(1 bp to 54,494 bp) that were vastly different than
the uniform input size of 501 bp (Figure 1C). Fur-
ther, ~58% of lifted over peaks were >501 bp, with
~55,658 peaks doubling in size (>1,000 bp) (Figure
1C). Our second strategy (“strict”) led to ~42% of
peaks being lifted over (Figure 1C). This strict pa-
rameter did not sufficiently control for peak size with
2382 peaks still exhibiting a peak size greater than
1,000 bp. Finally, the third strategy (“summits”) led
to ~75% of peaks being converted while controlling
for size (Figure 1C). This third strategy allowed for
the mouse-derived human peaks to properly repre-
sent mouse peaks. This can be illustrated by obser-
vations at the WDR60 promoter (Figure 1D, 1E). In
mouse, one open chromatin summit (from the ex-
citatory neurons from cortical layers IlI-lll) is identi-
fied which leads to a peak directly over the Wdr60
promoter (Figure 1D). When lifted over as a peak,
it expands from 501 bp to ~13 kb (“All peaks”, Fig-
ure 1E). When strictly controlling for gaps, the peak
fails to liftover (“Strict peaks”, Figure 1E). Neither
of these results are representative of the regulatory
landscape seen in mouse. However, the summit lifts
over and produces a 501 bp peak that encompasses
the WDRG60 promoter, providing an accurate repre-

sentation of the data in mouse (“Summits” and “Sum-
mit peaks”, Figure 1E). Ultimately, lifting over sum-
mits proved the most robust method, retaining a high
proportion of peaks while controlling for size and pro-
files derived from summits were used going forward.

The majority of mouse-derived human peaks
show regulatory activity in human tissues

We next explored how well data from these cell
populations recapitulate profiles from orthologous
cell populations in humans. Most cell populations
included in our study do not have orthologous data
generated from humans by design. In order to eval-
uate the profiles, we compared mouse T-cell pro-
files (CD4 and CD8) to human open chromatin data
from orthologous cell populations processed identi-
cally to the mouse data. Additionally, we compared
our data to open chromatin data from the Road-
map Epigenome Project (Ernst and Kellis 2015).

We observe 43.5% (16,674/38,299; Figure
2A) of mouse-derived CD8 ATAC-seq peaks overlap
with human CD8 ATAC-seq peaks (40,916 peaks)
which is slightly higher than previous studies (Vier-
stra et al. 2014). Using T-cell Roadmap data, we ob-
serve 60% (22,927/38,299) and 59% (22,689/38,299)
overlap with naive (77,770 peaks) and memory CD8
T-cell data (80,049 peaks) with a slight improvement
to 61% (23,698/38,299) when combined (Figure
2A)(90,267 peaks). Further, we find ~83% overlap
(31,757/38,299) with peaks found in any Roadmap
tissue (493,894 peaks) or the combination of Road-
map and ATAC-seq data (31,796/38,299) (Figure
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2A) (624,749 peaks). We observe similar num-
bers for mouse-derived CD4 T-cells (Table S3).

We extended this analysis to cell populations
for which no orthologous data exists. In addition to
DNase-seq from Roadmap tissues, we compared pro-
files to brain-related Roadmap samples only (208,021
peaks) and ATAC-seq data from neurons from the
Brain Open Chromatin Atlas (BOCA) (255,977 peaks)
(Fullard et al. 2018). As in the T-cell comparisons, all
cell populations have the highest overlap with the com-
bination of DNAase-seq and ATAC-seq (Table S4).
For example, ~79% of peaks in excitatory neurons in
layers lI-1ll (“Excitatory Layers II-111") overlap with the
combined data while we observed 73% with all Road-
map data, 60% with brain-related Roadmap data, and
53% with BOCA data (Figure 2B; Table S4). In sum-
mary, the vast majority (average: 78%, range: 70-88%;
Table S4) of mouse-derived human open chromatin
regions across all cell populations overlap with hu-
man open chromatin. This indicates that the large ma-
jority of mouse-derived human peaks have regulatory
potential in humans and that mouse-derived human
peaks are suitable proxies for human cell populations.

Mouse-derived human profiles recapitulate cell
population disease enrichments and reveal new
biology

We sought to determine whether mouse-derived chro-
matin data could be used to inform heritability enrich-
ment of traits and pinpoint cell populations contribut-
ing to common phenotypes. We employed S-LDSC
to test for enrichment of heritability in open chromatin
from 27 cell populations across 64 GWAS. We includ-
ed open chromatin data from human T-cells to allow
for direct comparison to mouse-derived data. The
spectrum of traits evaluated included a selection of
common neuropsychiatric, neurological, immunologi-
cal, and behavioral traits, as well as traits from GWAS
performed on UK Biobank data (Table S5) (Brain-
storm Consortium et al. 2018; Bycroft et al. 2018).

Overall, S-LDSC results for all 64 GWAS es-
tablished that mouse-derived ATAC-seq data, when
lifted over to the human genome, displayed increased
heritability enrichment in cell populations consistent
with the known biology. In order to explore trait en-
richment patterns, we calculated Z-scores of P-val-
ues within traits for all S-LDSC results (Table S6).
High Z-scores indicate that a cell population has
increased heritability for a trait when compared to
the other populations. Z-scores were then grouped
using hierarchical clustering by cell population and
trait. This revealed three broad clusters of cells (Fig-
ure 3A, column groups I-1ll) and three clusters of
phenotypes (Figure 3A, row groups A-C). Collec-
tively, these data highlight biological relationships
between cell populations and traits (Figure 3A).

In the first of these highlighted relationships,
we observe a collection of broadly defined inhibitory
neurons, inhibitory medium spiny neurons (MSNs),
excitatory neurons in all cortical layers, and excit-
atory dentate gyrus (DG) neurons (Figure 3A; row
group A, column group Il). Cell populations cluster-
ing in this group show consistently higher heritability
enrichment for neuropsychiatric, neurological, and
behavioral phenotypes with many showing signifi-
cant heritability enrichment (indicated by asterisks)
for these traits including neuroticism (Figure 3B). Al-
though perhaps initially surprising, age of menarche,
female age at first birth, and number of children are
highlighted in this group, cognitive phenotypes dis-
play significant genetic correlation with female age
at first birth and number of children (Lam et al. 2017).

Grouped together among the adjacent col-
lection of cells are a broadly defined collection of ret-
inal (rods, cones) and nervous system populations
(excitatory neurons, glial cells, inhibitory PV and VIP
neurons, embryonic dopaminergic neurons) (Figure
3A; row group A, column group 3). While not cluster-
ing with the second group of cells, the central nervous
system-derived cell populations in this group show
enrichment in neurological phenotypes (education
years, bipolar disorder, and schizophrenia) that also
show enrichment in the second group of cells (Figure
3A, row group A, column group Il). However, the en-
richments are less than those in the second group.
Nonetheless, this group highlights enrichments that
may warrant further exploration. The observation
that data corresponding to the “morning person”
trait reveals enrichment within the blue cone open
chromatin region (OCR) profile (Figure 3A) is con-
sistent with the finding that genes expressed highly
in retinal tissue are enriched in “morning person” loci
(Jones et al. 2019), adding evidence to a potential
biological relationship. Additionally, the observed en-
richment for astrocyte OCR profile with body mass
index heritability (Figure 3A) mirrors mounting evi-
dence that astrocytes and other glia play a role in
controlling body weight (Garcia-Céaceres et al. 2012).

The third major grouping (Figure 3A; row
group B, column group I) demonstrates heritability
for immune-related traits, including lupus, eczema,
Crohn’s disease, and general autoimmune traits
from the UK Biobank are enriched in open chromatin
data from immune cells (microglia, T-cells). Indeed,
we detect significant associations for many traits in-
cluding multiple sclerosis (Figure 3C). Many of these
enrichments are consistent with prior data gener-
ated using human tissue (Finucane et al. 2018).

By contrast, in the lower portion of this hierar-
chical clustering analysis (Figure 3A, row group C),
the corresponding phenotypes show no such clear
biological theme and highlight few cell populations
that have enrichments that achieve significance
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Figure 3. S-LDSC results from 64 GWAS show heritability enrichment in expected cell populations and reveal further insight into disease.A)
Aheatmap displaying the Z-scores of -log10(P-values) for 27 cell populations across 64 GWAS analyzed. Data was hierarchical clustered by GWAS
and cell population. Cell populations that met the across trait significance level (-log10(P) = 4.53857) are indicated with an asterisk. B, C, D) Example
dotplots displaying -log10(heritability coefficient P-values) S-LDSC results for GWAS indicative of the observed clustering patterns. Neuroticism (B)
for row cluster A, multiple sclerosis (C) for row cluster B, and height from the GIANT consortium (D) for row cluster C. Populations are colored and
ordered by broader cell-type category. Asterisks in the cell population name indicate single-nuclei ATAC-seq data. All results can be found in Table S6.

across traits (Figure 3A). It may be expected that
traits like height (Figure 3D), fasting glucose,
and balding type I, would not reveal significant
enrichments in the cell populations we evaluate.

While immune cells show similarly in-
creased heritability enrichment in immune ftraits,
the overlap between traits that reach significance
for human T-cells and mouse-derived data is in-
complete (Figure 3A). For CD4 T-cells, =90%
(58/64) of traits are concordant in their enrich-
ment for heritability at a trait-wide level in both
human and mouse data. We demonstrate for hu-
man CD4 T-cells, four traits were found to reach
trait-wide significance (Figure 3A; Table S6). The
mouse-derived human CD4 T-cell data shows
significance at only 2/4 at the trait-wide level. Ad-
ditionally, mouse-derived CD4 data reveals four

additional traits which reach significance that fail
to reach significance using human CD4 data,
suggesting that the mouse data may have the
power to detect enrichment not yet observed in
publicly available human datasets. These gener-
al patterns are seen with the CD8 data as well.
However, a significance threshold for enrichment
is an arbitrary level at which to compare cell pop-
ulations. In order to explore how mouse-derived
human data recapitulated what would be seen in
orthologous human data, we compared the herita-
bility regression coefficients between human and
mouse T-cells. We observed that in the case of
both CD4 T-cells (Spearman’s rho = 0.6005) and
CD8 T-cells (Spearman’s rho = 0.6681), the hu-
man and mouse-derived data show strong correla-
tion (Figure S2). The observed differences may,
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in part, reflect the different locations from which the
cells were collected (mouse T-cells, thymus; human
T-cells, bone marrow/peripheral blood)(Table S1).
They may also reflect the power resulting from more
homogenous and less challenged immune cell pop-
ulations that may be obtained from laboratory mice.

Collectively, these results highlight that
mouse-derived human profiles broadly recapit-
ulate known biology across a wealth of human
phenotypes and thus can serve as suitable prox-
ies for orthologous human cell populations. We
also observed that they can illuminate poten-
tially important new biology for a host of traits.

Schizophrenia heritability is most enriched in
cortical layer excitatory neurons

Having established the power of mouse-derived hu-
man profiles in studying the genetic architecture of
common disease, we restricted our focus to schizo-
phrenia. To facilitate direct comparison with prior
transcription-based analyses (Skene et al. 2018),
we made use of the recent CLOZUK schizophrenia
GWAS (Pardifias et al. 2018). Of 27 chromatin pro-

files, 13 achieved significance when corrected for all
traits tested (Figure 4A; Table S6). Our analyses large-
ly indict cortical neurons; with open chromatin profiles
from both excitatory and inhibitory populations dis-
playing significant enrichment (Figure 4A; Table S6).

Within subsets of cortical excitatory neurons,
the availability of data from layer-identified popula-
tions allowed for detection of a clear and progres-
sive increase in the extent of enrichment, progress-
ing from layers II-lll and 1V, reaching an apex with
open chromatin profiles derived from layer V, and
then diminishing slightly in layer VI (Figure 4A; Ta-
ble S6). This pattern is mirrored in single-nuclei data
wherein enrichment in layer Ill/IV/V cortical excitato-
ry neurons (“Excitatory Layers 1I-V*”) exceeds that
for layer VI cortical excitatory neurons (“Excitatory
Layer VI*”) with both being significant (Figure 4; Ta-
ble S6). Significant enrichment for profiles derived
from excitatory neurons of the dentate gyrus (“Ex-
citatory DG*”) provides evidence of additional con-
tribution made by hippocampal excitatory neurons.

Schizophrenia heritability enrichment is not
restricted to excitatory neurons; subpopulations of
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Figure 4. S-LDSC results for CLOZUK and PGC schizophrenia studies as well as bipolar disorder GWAS reveal excitatory cortical neuron
enrichment. A, B, C, D, E) Dotplots displaying the -log10(heritability coefficient P-values) S-LDSC results for: A) CLOZUK schizophrenia GWAS,
B) PGC schizophrenia GWAS, C) PGC bipolar disorder GWAS, D) schizophrenia and bipolar disorder GWAS and E) PGC schizophrenia versus
bipolar disorder GWAS. Across trait significance levels for are shown (-log10(P) = 4.53857; blue dashed line). Populations are colored and or-
dered by broader cell-type category. Asteriks in the cell population name indicate single-nuclei ATAC-seq data. All results can be found in Table S6.
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inhibitory neurons also reveal enrichment, with
highest levels seen in the broadly defined Gad2+
GABAergic population (Figure 4A; Table S6). No-
tably, enrichment in parvalbumin positive neurons
(“Inhibitory PV”) also reaches significance. This
inhibitory PV neuron observation echoes a recent
study demonstrating that treatment of PV inhibito-
ry neurons in a mouse model of schizophrenia re-
sulted in amelioration of disease phenotypes (Ma-
rissal et al. 2018). Beyond the cortex, we detect
strong enrichment in Drd1 positive medium spiny
neurons (“Inhibitory MSN*”). Lastly, we note a pre-
dicted contribution of glial cells to schizophrenia;
chromatin signatures from astrocytes also pass the
threshold for significance (Figure 4A; Table S6).

These chromatin based observations are
consistent with results using transcriptional data
(Skene et al. 2018). These prior data primarily im-
plicated medium spiny neurons, all layers of corti-
cal excitatory neurons, cortical inhibitory neurons,
as well as hippocampal CA1 excitatory neurons.
We find enrichment in all but hippocampal CA1 ex-
citatory neurons, for which we do not have data.
However, we observe enrichment in excitatory neu-
rons derived from the dentate gyrus, which mirror
significant schizophrenia enrichment seen in mouse
dentate granule cells (Skene et al. 2018). Finally,
while astrocytes are not consistently implicated in
the transcriptional data, astrocytes from mouse stri-
atum, mouse visual cortex, and human cortex show
enrichment for schizophrenia heritability (Skene et
al. 2018). Overall, our analysis of open chromatin
provides strong orthogonal evidence to transcrip-
tional data for the enrichment of schizophrenia
heritability in narrowly-defined cell populations.

Excitatory neurons in the cortex and hippo-
campus are enriched for differences between
schizophrenia and bipolar disorder

Leveraging our success analyzing schizophrenia,
we set out to determine which cell populations may
differentiate schizophrenia and bipolar disorder. Al-
though bipolar disorder is related to schizophrenia
and their heritabilities are highly correlated, they
are unique disorders (Brainstorm Consortium et al.
2018). We took advantage of a recent study that not
only performed traditional GWAS for schizophrenia
and bipolar disorder (affected vs. controls) but also
performed GWAS for schizophrenia and bipolar
disorder compared to controls and schizophrenia
compared to bipolar disorder (Bipolar Disorder and
Schizophrenia Working Group of the Psychiatric Ge-
nomics Consortium 2018). These unique compari-
sons allowed us to use S-LDSC to pinpoint what cell
populations may be modulating disease differences.

We first looked at how the “Schizophrenia

vs. controls” GWAS compared to our results from
the CLOZUK study. While the “Schizophrenia vs.
controls” samples were also included in the CLOZUK
study, the studies were performed independently,
and thus show slightly different results (Figure 4A,
4B; Table S6). 13/27 cell populations are found to be
significant in both studies with all excitatory neuron
populations reaching significance in both with layer
V neurons being most enriched. Furthermore, both
broadly defined inhibitory neuronal populations as
well as inhibitory medium spiny neurons are found
in both. However, the Psychiatric Genomics Consor-
tium (PGC)-only study showed significant enrichment
in embryonic forebrain dopaminergic neurons and
inhibitory VIP neurons (Figure 4B) whereas sum-
mary statistics from the CLOZUK study did not. The
PGC-only study also failed to detect enrichment in
astrocytes and inhibitory PV neurons (Figure 4B).

Next, we looked at bipolar disorder and found
similar results to schizophrenia. Namely, all excitato-
ry neuron populations showed heritability enrichment
with the highest enrichment being seen in the individ-
ual excitatory layers (Figure 4C; Table S6). Additional-
ly, both broadly defined inhibitory neuron populations
show enrichment, mirroring schizophrenia. In contrast,
while subsets of cortical inhibitory neurons are found
to be enriched in schizophrenia, none are found to
be enriched in bipolar disorder (Figure 4C; Table S6).
Perhaps most strikingly, the consistent, high enrich-
ment of inhibitory medium spiny neurons in schizo-
phrenia is absent in bipolar disorder, potentially point-
ing towards important biological differences (Figure
4C; Table S6). Furthermore, we analyze the combined
schizophrenia and bipolar cohort and see significant
enrichment in the same excitatory and inhibitory neu-
rons. However, in the combined analysis, both embry-
onic dopaminergic populations also reach significance
along with oligodendrocytes (Figure 4D; Table S6).

Finally, we analyze the schizophrenia versus
bipolar disorder cohort. Only four cell populations
reach trait-wide significance and all four are excit-
atory neurons including excitatory neurons from cor-
tical layers IlI-1ll, 1V, V, as well as the dentate gyrus
(Figure 4E; Table S6). This result provides ortholo-
gous support to extensive work that has shown lay-
er-specific neuronal differences between schizo-
phrenia and bipolar disorder (Chana et al. 2003;
Rajkowska et al. 2001; Benes et al. 2001) as well
as differences in dentate gyrus neuronal matura-
tion seen in these diseases (Yu et al. 2014). Over-
all, through the wealth of GWAS data available, we
are able to begin to tease apart the complex rela-
tionship between schizophrenia and bipolar disorder.

Statistical fine-mapping of 177 schizophrenia loci
reveals complex biological hypotheses

Ultimately, our goal was to not only identify cell popu-
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lations relevant to disease but to use that data to pri-
oritize variants in schizophrenia loci. We incorporated
significantly enriched open chromatin annotations into
statistical fine-mapping of 177 independent schizo-
phrenia loci. We extracted all common SNPs (minor
allele frequency > 0.01 in 1000 Genomes European
data) in LD with 179 independent lead SNPs (> > 0.1
in 1000 Genomes European data) from the CLOZUK
schizophrenia GWAS (Pardifias et al. 2018) (see
Methods). Note that since we identified proxy SNPs
from independent GWAS signals, some SNPs are
fine-mapped independently in multiple loci. The sum-
mary statistics for all proxy SNPs were extracted from
GWAS data and split into loci based on independent
lead SNPs. Two loci were excluded (see Methods) re-
sulting in a total of 177 independent schizophrenia loci.

We used the fine-mapping program, PAIN-
TOR (Kichaev et al. 2014; Kichaev and Pasaniuc
2015; Kichaev et al. 2017) in order to incorporate an-
notation data. The open chromatin profiles for the 13
significant cell populations for the CLOZUK schizo-
phrenia GWAS were merged into one annotation
for use in fine-mapping (see Methods). Schizophre-
nia loci were fine-mapped with and without anno-
tation using a Markov Chain Monte Carlo sampling
algorithm without specifying the number of causal
SNPs in each locus. In total, 62,994 unique SNPs
were fine-mapped with an average of 370 SNPs
per locus (Table S7). When combining results both
with and without annotation, 1,512 SNPs in 166 loci
reached a posterior inclusion probability (PIP) of
> 0.1, 82 SNPs in 56 loci reached a PIP > 0.5, and
30 SNPs in 23 loci reached a PIP > 0.9 (Table S7).
All fine-mapping results can be found in Table S8.

We explored how all variants with a PIP > 0.1
impact open chromatin regions in schizophrenia en-
riched cell populations. This cutoff was chosen be-
cause it has been shown to have a high benefit-to-cost
ratio for follow-up experiments (Kichaev et al. 2014).
We observed 281 unique SNPs across 104 loci achieve
a PIP > 0.1 and overlap with an open chromatin re-
gion present in at least one schizophrenia enriched
cell population (Table S9). Furthermore, 242 SNPs
are predicted to disrupt transcription factor binding
sites as determined with ENCODE data (Table S10)
with disruption of REST, EP300, and EGR1 TF motifs
being the most common motifs disrupted (Table S11).

Since we used SNPs in LD with independent
signals, not amalgamated loci, 2,317 SNPs were fine-
mapped in more than one locus. 39 of those SNPs
achieve a PIP > 0.1 across multiple loci, potentially
identifying the effects of single variants contributing to
multiple reported “independent” signals (Table S12).
One such example is rs11682175 which is in LD
with two independent index SNPs located within the
VRK2 gene, rs75575209 (r? = 0.105) and rs7596038
(* = 0.326) (Table S12). rs11682175 achieves high

PIPs with annotation in both loci (0.999 and 0.864
in rs75575209 and rs7596038, respectively)(Table
S12). While not reported in the CLOZUK GWAS,
rs11682175 has been significantly associated with ma-
jor depression (Wray et al. 2018), neuroticism (Nagel
et al. 2018), and schizophrenia (Schizophrenia Work-
ing Group of the Psychiatric Genomics Consortium
2014). This SNP, however, does not intersect with any
OCRs in the cell populations studied. We believe that
we observe this result due to the “clumping” method-
ology used during the original GWAS (Pardifias et al.
2018). While the top fine-mapped SNP (rs11682175)
reaches genome-wide significance in the original
GWAS, it seems to be grouped under rs7596038
during the first clumping procedure (based on LD and
P-values) and was not reported as an “independent”
signal (Pardinas et al. 2018) (Figure S3). rs11682175
is much more significant than rs75575209, but since
it is in low LD with rs75575209, it is included in that
‘independent” locus was well during our analysis.
This high significance but low LD with the lead SNPs
lead to this SNP (while not reported in the original
GWAS) to rise to the top of both loci and may rep-
resent an independent signal masked by clumping.

For many loci, the hypotheses aris-
ing from our analyses are clear, consistent with
known biology, and limited in scope; for others,
the ongoing challenge is laid out in the breadth
of SNPs highlighted by OCRs across a variety of
cell types. We describe a few examples below.

The GABBRZ2 locus is tagged by rs10985817
and contains 164 fine-mapped SNPs (Table S7). Two
SNPs, rs10985817 and rs10985819, achieve a PIP
> 0.1. Both SNPs are encompassed by an OCR only
present in dentate gyrus excitatory neurons (Table
1, Table S9) directly establishing a clear hypothesis.
However, hypotheses emerging from many loci are
not as immediately straightforward. One of the in-
dependent GWAS signals in an intron of CACNA1C
(lead SNP rs2007044; 144 fine-mapped SNPs) con-
tains eight SNPs that achieve a PIP > 0.1 (Table 1;
Table S7). Six of these SNPs intersect with at least
one OCR in the populations studied with three inter-
secting exclusively with one excitatory neuron pop-
ulation (rs4765913, rs882195, rs11062170) (Table
1). rs4765913 resides exclusively in an OCR found
in excitatory dentate gyrus neurons and has been
significantly associated with bipolar disorder in mul-
tiple studies (Psychiatric GWAS Consortium Bipolar
Disorder Working Group 2011; Charney et al. 2017).
Further, one SNP, rs2239038, intersects OCRs found
in excitatory neurons in multiple layers of the cortex
(Table 1). Finally, two SNPs intersect with both excit-
atory and inhibitory neurons (rs1860002, rs2238057)
(Table 1) indicating that CACNA1C expression may
be modulated in both populations. Thus although bi-
ologically informed hypotheses may be directly de-
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RSID Lead SNP PIP with no | PIP with Cell Populations
annotation annotation

rs10985817 | rs10985817 0.089 0.185 | Excitatory DG*
rs10985819 | rs10985817 0.067 0.146 | Excitatory DG*
rs4765913 rs2007044 0.111 0.24 | Excitatory DG*
rs2007044 rs2007044 0.342 0.206 | None
rs882195 rs2007044 0.084 0.181 | Excitatory DG*
rs1860002 rs2007044 0.089 0.18 | Inhibitory*, Excitatory Layers II-lll, Excitatory Layer IV
rs2239038 rs2007044 0.069 0.129 | Excitatory Layer V, Excitatory Layers II-Ill, Excitatory Layer IV
rs11062170 rs2007044 0.055 0.117 | Excitatory Layer IV
rs2238057 rs2007044 0.053 0.106 | Inhibitory VIP, Inhibitory Gad2, Excitatory Layers II-1ll
rs4298967 rs2007044 0.117 0.094 | None
rs181813160 | rs4144797 0.906 0.974 | Neun neg, Embryonic DA Midbrain, Inhibitory VIP, Inhibitory*, Inhibitory MSN*, Inhibitory

Gad2, Embryonic DA Forebrain, Excitatory Layer VI*, Excitatory Layer VI, Excitatory
Layer V, Excitatory Layers II-V*, Excitatory Layers II-Ill, Excitatory Layer IV, Excitatory
DG*, Excitatory Camk2a, Cones (green), Cones (blue), Astrocytes*

rs188020433 | rs4144797 0.942 0.967 | None

rs778371 rs4144797 0.258 0.363 | Excitatory Layers II-V*

rs73102769 rs4144797 0.159 0.204 | Inhibitory MSN*, Excitatory Layer V, Excitatory Layer IV

rs1878289 rs4144797 0.139 0.195 | Embryonic DA Midbrain, Excitatory Layers II-V*

rs4144797 rs4144797 0.082 0.189 | Rods, Neun neg, Embryonic DA Midbrain, Inhibitory VIP, Inhibitory Gad2, Embryonic DA
Forebrain, Excitatory Layer VI, Excitatory Layer V, Excitatory Layers II-V*, Excitatory
Layers II-lll, Excitatory Layer IV, Excitatory DG*, Excitatory Camk2a, Cones (green),
Cones (blue), CD8 T-cells, CD8 T-cells human, CD4 T-cells, CD4 T-cells human

rs2592127 rs4144797 0.123 0.18 | Embryonic DA Midbrain, Excitatory Layer VI*, Excitatory Layer VI, Excitatory Layer V,
Excitatory Layers II-V*

rs2675960 rs4144797 0.076 0.115 | Embryonic DA Midbrain, Inhibitory VIP, Inhibitory MSN*, Inhibitory Gad2, Embryonic DA

Forebrain, Excitatory Layer VI*, Excitatory Layer VI, Excitatory Layer V, Excitatory Layers
1I-V*, Excitatory Layers II-1ll, Excitatory Layer IV, Astrocytes”

rs4144795 rs4144797 0.066 0.112 | Rods, Neun neg, Embryonic DA Midbrain, Microglia*, Inhibitory*, Inhibitory PV, Inhibitory
Gad2, Embryonic DA Forebrain, Excitatory Layer VI, Excitatory Layer V, Excitatory Layers
II-111, Excitatory Layer IV, CD8 T-cells, CD4 T-cells, CD4 T-cells human

rs1878287 rs4144797 0.08 0.105 | Inhibitory*, Excitatory Layer VI*, Excitatory Layer VI, Excitatory Layer V, Excitatory Layers
II-v*

rs938575 rs4144797 0.112 0.068 | None

rs4973569 rs4144797 0.103 0.053 | None

rs778363 rs4144797 0.116 0.051 | None

Table 1. Summary of prioritized SNPs in the rs10985817, rs2007044, and rs4144797 schizophrenia loci. All SNPs
that achieved a PIP > 0.1 are included. Information about the prioritized SNPs in the table includes reference SNP ID
(“RSID”), the lead independent SNP identified in Pardinas, et al. (Pardifias et al. 2018) (“Lead SNP”), the PIP of each
SNP when enriched annotations were not included (“PIP with no annotation”), the PIP of each SNP when enriched
annotations were included (“PIP with annotation”), and the cell populations in which the variant intersects with open
chromatin  (“Cell  populations”). Posterior  inclusion  probability, PIP;  Single nucleotide  polymorphism,  SNP.

veloped in this way, they often remain multifaceted.  located in the promoter of GIGYF2 (Figure 5A). Both

Like the CACNA1C locus, the locus tagged ~ SNPs intersect with an OCR in a wide array of cell
by rs4144797 contains 395 finemapped SNPs p_opulations wi‘gh rs181813160 inters_ecting 1_2/13 en-
spread throughout a locus containing the GIGYF2,  fiched populations and rs4144797 intersecting 8/13
KCNJ13, SNORC, and NGEF genes on chromo-  enriched populations (Table 1). rs181813160 has the
some 2 (Figure 5A). This locus contains 13 SNPs  highest PIP (~0.97) in our dataset that also intersects
that achieve a PIP > 0.1 of which 9 intersect with an ~ @n OCR, making it a prime causal candidate. Using
OCR from a variety of schizophrenia enriched cell ENCODE data, we find rs181813160 is predicted to
populations (Table 1). Two of these SNPs are par-  strongly disrupt a potential binding site for 21 differ-
ticularly interesting as they are located in promot- ~ €nt transcription factors including immediate early
er regions of genes. rs181813160 is located in the ~ genes, EGR1-EGR4 (Figure 5B; Table S10). EGR1
promoter of NGEF and the lead SNP, rs4144797,is  Plays a major role in modulating synaptic plasticity
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and neuronal activity and EGR family members are
down-regulated in schizophrenic brains (Yamada
et al. 2007; Duclot and Kabbaj 2017). NGEF regu-
lates the growth of axons and dendrites in neurons
(Shamah et al. 2001; Blackmore et al. 2010), strength-
ening a hypothesis that would link this locus to synap-
tic dysfunction in schizophrenia (Fromer et al. 2014;
Purcell et al. 2014; Sekar et al. 2016; Cannon 2015;
Sellgren et al. 2019). Furthermore, rs4144797 is pre-
dicted to strongly create an EGR1 binding site (along
with impacting 6 other TF binding sites), linking both

promoter region variants (Figure 5B,Table S10).

Discussion

Despite the capacity of GWAS to inform genetic
architecture, connecting this to the risk, genesis
and progression of disease has remained a stub-
born challenge. This challenge is particularly stark
in schizophrenia, where association of 179 inde-
pendent loci implicates thousands of noncoding
variants in disease risk without providing a system-
atic and biologically informed strategy to construct
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Figure 5. Fine-mapping prioritizes SNPs in the schizophrenia-associated locus surrounding the NGEF gene. A) A visualization of the
schizophrenia-associated locus identified by the lead SNP, rs4144797. The plot displays the RefSeq transcripts and fine-mapped SNPs in the
region in addition to the posterior inclusion probabilities (PIP) when annotation was included for all SNPs. The lead SNP (rs4144797) and the SNP
with the highest PIP (rs181813160) are highlighted. B) EGR family motifs derived from ENCODE data that are created (rs4144797) or disrupted
(rs18181360) inthe rs4144797 locus. The nucleotides impacted are highlighted in red underneath the motif and named in the bars under the motif box.

BioRxiv Preprint InDesign Template. Loyal Goff 2018
https://github.com/gofflab/goff_lab_styles

11



https://doi.org/10.1101/427484
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/427484; this version posted September 4, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

BioRxiv Preprint

under aCC-BY-NC-ND 4.0 International lice] @ok and

cCallion, 2019

hypotheses. Genomic data is being increasingly
used as a guide for the construction of hypotheses
for common variant involvement in disease risk.
Although a significant challenge, systematic func-
tional testing of disease-associated, non-coding
variation will be facilitated by the development of
biologically informed hypotheses. This study em-
phasizes the value of strategies which seek cellu-
lar context for disease risk and non-coding variation
as a prelude to massively parallel functional stud-
ies in cell types whose selection is truly biological-
ly informed. It demonstrates the power of obtaining
cellular surrogates from mice which may not be
readily obtained from humans and opens the door
to use the mouse model in the generation of tem-
poral and sensitized cellular data to better inform
human trait heritability and functional dissection.

Our study provides orthologous confirma-
tion of the contribution of cortical and interneuron
populations in neuropsychiatric disorders through
chromatin data. In schizophrenia specifically, OCR
signatures from cortical (both excitatory and inhibi-
tory) populations are most enriched for schizophre-
nia heritability. We demonstrate a clear increase in
the enrichment of heritability for schizophrenia from
layer llI-1ll, reaching a maximum at discrete layer V
excitatory neurons and single-nuclei populations
containing layer V neurons. Through the wealth of
GWAS available, we were also able to illuminate
cell specific differences and similarities between
schizophrenia and bipolar disorder. Taking this data
further, we prioritize schizophrenia variants through
fine-mapping variants using open chromatin profiles
from enriched cell populations. Inherently, these data
establish a tableau of testable hypotheses that may
be taken off the “shelf” into the lab environment. We
identify SNPs in 104/177 tested schizophrenia-asso-
ciated loci (~59%) that may now be considered can-
didates for functional testing in their specific cellular
contexts. We see examples of relatively straight-
forward loci (GABBR2 locus) and observations of
more complicated hypotheses in which multiple vari-
ants within a risk haplotype may be exerting their
effects, potentially simultaneously, in overlapping
and unique cell populations (CACNA1C and NGEF
loci). As a whole, these data take a critical next step
in obtaining functional insight to common disease.

Although clearly powerful, the capacity to
observe enrichment remains dependent on the
availability of biological relevant datasets including
cell types, developmental stages, or physiological
states. The fact that these observations are facilitat-
ed by datasets generated in mice only serves to ex-
pand the potential application of this approach, rein-
forcing mice as a lens by which to study the genetics
underlying common human phenotypes (Hook et al.
2018; McClymont et al. 2018). It establishes the fea-

sibility of generating lineage-specific data where ac-
cess in humans is more challenging. It makes avail-
able an almost limitless collection of cell populations
with potential disease relevance; across the spectrum
of developmental stages; in the presence or absence
of genetic, chemical, and behavioral perturbation. Our
data is consistent with recently published single-cell
ATAC-seq work (Cusanovich et al. 2018). Here we
demonstrate, although useful, single-cell acquisition
is not necessary to achieve the cell layer-based res-
olution. Furthermore, the sparse nature of chromatin
data obtained from individual cells necessitates se-
quencing large numbers of cells (Cusanovich et al.
2018) or additional information from RNA to optimize
cell identification (Cao et al. 2018). Even with multi-
ple levels of information, some cell populations de-
lineated through single-cell assays cannot be reliably
identified (Cusanovich et al. 2018; Cao et al. 2018;
Preissl et al. 2018). Bulk assays, at this time, may
thus prove more immediately feasible and flexible.

While we generate results that support pre-
vious studies, there are limitations to the breadth
and depth of data we have assembled. We cannot
arrive at conclusions about the disease relevance
of any cell-type that was not tested here. Additional-
ly, open chromatin profiles lack the biological inter-
pretation provided by histone marks when trying to
identify functional regulatory DNA. We expect these
issues to be solved progressively by increasing
the resolution, quality, and completeness of chro-
matin and histone data in tandem with decreasing
cell numbers needed to obtain high quality data.

Further, our results rely on lifting over mouse
data to the human genome. While we optimize lift-
ing over and show the vast majority of mouse peaks
have a human syntenic ortholog, the entire land-
scape of regulatory DNA present in these cell pop-
ulations in humans cannot be queried. Although the
extent to which this limits immediate progress is un-
clear, we show on average, 78% of mouse-derived
human peaks are open in humans and that these
profiles recapitulate heritability enrichment results
from a variety of phenotypes. This gives us confi-
dence in our approach, however, efforts to obtain
single-cell data from human brain samples make fu-
ture human datasets a possibility (Lake et al. 2018).

Finally, our analysis focuses on common
SNPs due to the underlying model used in S-LD-
SC (Finucane et al. 2018). We, therefore, cannot
come to any conclusions about the contribution of
rare variation. This may cause the exclusion of true
causal variants. We acknowledge this may be com-
pounded by a focus on SNPs. Other more complex
variation has been shown to be important in schizo-
phrenia loci and cannot yet be fully assayed with
this method (Sekar et al. 2016; Song et al. 2018).
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Overall, our data define a spectrum of immedi-
ately testable hypotheses, implicating specific variants
as potentially modulating the activity of cis-regulatory
elements in discrete cellular contexts across pheno-
types. Taken collectively the capacity to move direct-
ly from GWAS to design of functional tests by using
mouse-derived data represents a significant step for-
ward in the dissection of common human phenotypes.

Methods
Obtaining ATAC-seq data

Raw ATAC-seq sequencing data was primari-
ly obtained from the Gene Expression Omnibus
(GEO) except single-nuclei ATAC-seq data (Pre-
issl et al. 2018), which was obtained from the au-
thor’s website (URLs). All details about the down-
loaded sequencing data can be found in Table S1.

Additional steps were needed in order to
aggregate ATAC-seq reads from individual nuclei
into cell populations. A list of barcode names (cells)
and the clusters to which they belonged in Preissl,
et. al., were obtained from the authors of the origi-
nal paper (personal communication). Crucially,
these barcodes were included in the name of each
sequencing read. Barcodes were grouped accord-
ing to their cluster identity and paired-end reads be-
longing to each cell population were extracted via
sequencing read name using the BBMap script ‘de-
muxbyname.sh’ with the parameters ‘substringmode’
(URLs). FASTQ files for each barcode in each rep-
licate were then combined into a single FASTQ file
for each cluster. This method had the advantage of
only extracting reads originating from cells that had
passed quality control measures (Preissl et al. 2018).

Alignment and peak calling

Paired-end reads were aligned to the mouse ge-
nome (mm10/GRCm38; URLs) using bowtie2 (ver-
sion 2.2.5; URLs) (Langmead and Salzberg 2012)
with the following parameters: ‘-p 15 --local -X2000’.
Paired-end reads aligning to the mitochondrial ge-
nome as well as random and unknown chromo-
somes were removed. SAMtools (Li et al. 2009) was
used to remove duplicate reads (v0.1.9), improper-
ly paired reads (v1.3.1), and reads with a mapping
quality score of less than or equal to 30 (v1.3.1).

Replicates for each cell population were then
merged into a single bam file and peak summits
were called for each mouse cell population (25 in
total) using the MACS2 (v. 2.1.1.20160309) (Zhang
et al. 2008) ‘macs2 callpeak’ function with the fol-
lowing parameters: ‘--seed 24 --nomodel --nolamb-
da --call-summits --shift -100 --extsize 200 --keep-
dup all --gsize mm’. Regions that are considered
artifacts of ATAC-seq and other chromatin assays

in mm10 (so called ‘blacklist regions’; see URLS)
were removed using BEDtools (v2.27.0) f‘inter-
sect’ (Quinlan and Hall 2010). Raw MACS2 out-
put can be found on Zenodo (see Data Access).

In order to perform downstream compar-
isons with data generated in mice, raw ATAC-
seq data from CD4 and CD8 T-cells were ob-
tained (Corces et al. 2016) (Table S1). These
data were processed in the same manner as the
mouse data above with the exception that the
reads were aligned to the human genome (hg19).

Since we were comparing ATAC-seq data-
sets with vastly different sequencing depths and
numbers of called summits, we applied a recently
introduced filtering strategy for ATAC-seq peaks
(Corces et al. 2018). For each dataset, we summed
the MACS2 peak scores and divided that num-
ber by one million (total score per million). We
then divided each individual peak score by the to-
tal score per million for that dataset to produce a
“score per million” (Corces et al. 2018). Ultimate-
ly we chose a “score per million” cutoff of two as
that would equate to a P-value per million of 0.01.

Relationship between public mouse sets

Summits called in each population were made into
uniform 501 bp peaks by adding 250 bp to each
side of the summit. Peaks were then merged into
a union set of peaks using BEDtools ‘merge’ with
default parameters. This final set of filtered and
merged peaks contained a total of 433,555 peaks.

In order to obtain a count matrix for cell
population comparison, featureCounts (v1.6.1)
was used (Liao et al. 2014). First, the union set of
ATAC-seq peaks was manually converted to an
SAF file (see Subread website; URLs). The com-
mand ‘featureCounts’ was used with the *-T 10 -F
SAF’ parameters in order to obtain a count ma-
trix. BEDtools ‘nuc’ was used with a FASTA file
of combined mm10 chromosome sequences ob-
tained from the UCSC Genome browser (URLS)
in order to calculate GC content for each peak.

The count matrix, the count matrix summary
file, and the peak GC content file were read into the
R statistical environment (URLs). Data were trans-
formed into log2(count + 1) counts and the CQN R
package (Hansen et al. 2012) and ComBat from
the SVA R package (Leek et al. 2012) were used
to quantile normalize counts and correct CQN nor-
malized counts for type of experiment (single-nuclei
or bulk). Principal component analysis (PCA) was
performed using all peak counts with the R functions
‘prcomp()’ with default settings and “scale. = TRUE”
setting. t-SNE was performed with the first 6 princi-
pal components from PCA using the ‘tsne’ package
in R with the ‘tsne()’ function with the following pa-
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rameters: perplexity = 5, max_iter = 10000, whiten
= T. Additionally, the Pearson correlation between
corrected peak counts was used to hierarchical
cluster the data. Correlations were converted to
distances by subtracting the absolute value of the
correlations from 1. Clustering was performed us-
ing the R function ‘hclust’ with ‘method = “ward.D2”
and figures were produced with custom R scripts.

Liftover

All strategies used the lift over script “bnMapper.
py”’ from the bx-python software package (Denas
et al. 2015) (URLs) along with the “reciprocal best”
mm10 to hg19 chain file (mm10.hg19.rbest.chain.
gz) from UCSC genome browser (URLs). Three dif-
ferent lift over strategies were compared: one us-
ing the called summits and two using the uniform,
unmerged 501 bp peaks. The first strategy lifted
over the single bp summit sets with the settings: ‘-f
BED12’. The second strategy lifted over the 501 bp
peak sets again with the settings: -f BED12’. The
third strategy again used the 501 bp peaks with the
settings: -f BED12 -g 20 -t 0.1". This third strate-
gy has been employed previously (Vierstra et al.
2014) and it applies a more strict lift over which
limits the size of the gaps allowed in the mapped
sequences. Ultimately, the lift over of the peak sum-
mits was used for all subsequent analyses. After lift
over to hg19, 250 bp was added on to both sides
of each summit to create peaks. Overlapping peaks
for each annotation were merged using BEDtools
‘merge’ with default parameters. Human regions
that are blacklisted either by the ENCODE con-
sortium or ATAC-seq users were removed (URLSs).

Comparison to publicly available human open
chromatin data

Human open chromatin profiles derived from mouse
data were compared to imputed Roadmap Epigen-
etic Project DNase | hypersensitivity data from 127
human tissues and cell populations (Ernst and Kellis
2015) and ATAC-seq data from neurons isolated from
14 human brain regions (Fullard et al. 2018) (URLSs).
Comparisons were made using the BEDtools ‘jac-
card’ command with default parameters. Overlaps
were calculated for each annotation (Table S4).

Partitioning heritability with linkage disequilibri-
um score regression (S-LDSC)

All necessary components needed to run S-LD-
SC including baseline scores, PLINK files, fre-
quency files, weights, and SNPs, were download-
ed from the Broad Institute (URLs; Table S13). All
fles were ‘1000G_Phase3’ versions. Additional-
ly, Roadmap Epigenetic Project LDSC files were

used as additions to the baseline model as was
done in a previous application of LDSC on ATAC-
seq data (Finucane et al. 2018). These were also
obtained from the Broad Institute (URLs; Table S13).

Summary statistics for 64 GWAS were ob-
tained from a variety of sources as either “raw”
summary statistics or summary statistics that were
pre-processed in the LDSC pipeline (Table S5; URLS).
48 of the summary statistics were obtained from the
Alkes Price group as either preprocessed, published
summary statistics or “raw” summary statistics of
UK Biobank phenotypes (Table S5; URLs). 16 of the
summary statistics were handpicked and were most-
ly from neurological traits including schizophrenia.
“Raw” GWAS summary statistics were download-
ed and processed using the ‘munge_sumstats.py’
script (LDSC v1.0.0). Specific command parameters
used to process the data are listed in Table S5. Note,
processed summary statistics from the CLOZUK
schizophrenia GWAS (Pardifias et al. 2018) need-
ed minor modifications after processing (Table S5).

Annotation files needed for analysis were cre-
ated using the ‘make_annot.py’ script included in the
LDSC software (v1.0.0; URLs) while specifying the
following parameters: --bed-file; --bimfile; --annot-file.
LD score files needed for analysis were created with
the ‘ldsc.py’ script with the following parameters: --12;
--bfile; --ld-wind-cm 1; --thin-annot; --annot; --out;
--print-snps. Cell-type partitioned heritability calcula-
tions (also referred to as S-LDSC) were performed
with the ‘ldsc.py’ script with the following parame-
ters: --h2-cts; --ref-ld-chr; --ref-ld-chr-cts; --w-ld-chr.

The P-values for heritability enrichment are
based on a one-sided test for the regression coefficient
being greater than 0. This allowed for a direct compar-
ison of the magnitude of enrichment (i.e. higher P-val-
ue = higher enrichment). For more information, see Fi-
nucane, et al., 2015 (Finucane et al. 2015) and LDSC
website (URLSs). Partitioned heritability calculations for
all traits were combined and analyzed in R. The cre-
ation of plots was carried out using custom R scripts.
The level of significance was set for LDSC results as
the Bonferroni corrected P-value when taking into ac-
count all summary statistics and cell populations test-
ed (0.05/(27*64) = 0.00002894; -log10(P) = 4.53857).

Fine-mapping SNPs in schizophrenia loci
Finding proxy SNPs

A total of 179 genome-wide significant, indepen-
dent index SNPs from the CLOZUK SZ study were
obtained (Pardifias et al. 2018). In order to assay
all common SNPs within LD of the index SNPs, the
function ‘get_proxies’ from the R package ‘proxysnps’
(URLs) was used with the following parameters: win-
dow_size = 2e6, pop = “EUR”. Only SNPs with an
P > 0.1 from an index SNP and a minor allele fre-
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quency (MAF) > 1% were retained for fine-mapping.

This method obtained 71,344 unique SNPs
with reference SNP (RS) numbers across 177 loci.
Note that some SNPs are shared between loci. The
index SNP as reported in Pardinas, et al., could not
be used to identify proxy snps in seven loci for var-
ious reasons. Instead a suitable replacement was
used based on LD or on changes in SNP databases
over time (Table S14). In addition, two genome-wide
significant loci were excluded from the analysis. The
locus with the index SNP rs1023497 was excluded
because it is not a biallelic variant in 1000 Genomes
data so proxies were not found. The second locus
was the MHC locus (rs3130820) because of its com-
plicated LD structure and because it is generally ex-
cluded from LDSC analysis (Finucane et al. 2018).

File setup for fine-mapping

In order to discover disease-relevant variants within
each locus, we statistically fine-mapped all 177 SZ
loci using PAINTOR (v3.1; URLs)(Kichaev et al. 2014;
Kichaev and Pasaniuc 2015; Kichaev et al. 2017).
PAINTOR was chosen for its ability to use summary
statistics, run simulations on multiple loci at once, and
incorporate chromatin annotation data. Proxy SNPs
were merged with summary statistics from Pardinas,
et al. (Pardifias et al. 2018) (URLs) leaving 62,994
unique SNPs. The merged data was then split into
177 loci based on the index SNP and formatted for
use in PAINTOR by using custom R scripts. The num-
ber of SNPs in each locus ranged from 7 to 1919
(Table S15). The loci were used to create both the
LD and annotation files needed to run PAINTOR.

LD files were created with the script
‘CalcLD_1KG_VCF.py’ included in PAIN-
TOR with the following parameters:

--reference; --mapl; --effect_allele A1; --alt_allele A2;
--population EUR; --Zhead Zscore; --position pos.
The 1000 Genomes reference VCF used was im-
puted and filtered by Beagle (Browning et al. 2018)
since the program used to find proxy SNPs (‘prox-
ysnps’) used the same VCF (URLs). Note that the
downloaded ‘CalcLD_1KG_VCF.py’ script was mod-
ified as suggested on the PAINTOR GitHub page so
if the Z-score was flipped when calculating LD, the
alleles were also flipped (URLs). It was also mod-
ified so ambiguous SNPs would not be removed.

Annotation files were created using the ‘Anno-
tateLocus.py’ script included with PAINTOR with the
following key parameters: --chr chr --pos pos. Python
syntax in this script was modified in order for it to run
(see Github). As suggested by the PAINTOR authors,
the correlations between annotations found to be
significant in LDSC were calculated using custom R
scripts. All significant annotations had a Pearson cor-
relation > 0.2 (the cut-off suggested by authors), so

all annotations were merged. Annotation files for all
loci were reproduced with the merged annotation.

Running PAINTOR fine-mapping

In order to reduce the time and computational burden
required to estimate annotation enrichments in PAIN-
TOR and perform the fine-mapping with sufficiently
long Monte Carlo Markov Chain (MCMC) simulation,
the merged annotation enrichment was estimated
with a shorter MCMC with the following key param-
eters: -mcmc; -burn_in 5000; -max_samples 1000
-num_chains 5; -set_seed 3; -MI 30. The enrichment
estimates for the baseline model and the annota-
tion model were then used in subsequent analyses.

In order to perform robust fine-mapping
using MCMC, enrichments estimated above were
used as input to a fine-mapping strategy using
PAINTOR MCMC simulations with the following key
parameters: -mcmc; -burn_in 100000; -max_sam-
ples 1000000 -num_chains 5; -set_seed 3; -MI
1. Fine-mapping was run both with and without
merged annotations with the parameter for sup-
plying enrichment estimates set at ‘-gamma_in-
tial 3.79521’ for the no annotation simulation and
‘-gamma_initial 3.79521, -0.939523’ set for the
simulation including annotation. The number of
samples used for ‘-burn_in’ and ‘-max_samples’
parameters were chosen based on parameters
set for MCMC fine-mapping with other methods
(Banerjee et al. 2018). Visualizations of fine-map-
ping results were created with custom R scripts.

SNP transcription factor binding site disruption

In order to explore the functional impact of fine-
mapped SNPs on transcription factor binding sites,
the R program motifbreakR was used (Coetzee et
al. 2015). All SNPs with a PIP > 0.1 in either of the
fine-mapping simulations (with or without annota-
tions) and overlap with an open chromatin region
from a S-LDSC schizophrenia enriched cell-popula-
tion were used. The following parameters were used
in the ‘snps.from.rsid( )’ function from motifbreakR
in order to analyze the variants: ‘dbSNP = SNPlocs.
Hsapiens.dbSNP144.GRCh37; search.genome =
BSgenome.Hsapiens.UCSC.hg19’. SNPs were then
scanned for modification of transcription factor bind-
ing sites as defined by ENCODE by using the ‘mo-
tiforeakR( )’ function with the following parameters:
filterp = TRUE; pwmList = encodemotif; threshold =
1e-4; method ="“ic”; bkg =c(A=0.25, C=0.25, G=0.25,
T=0.25); BPPARAM = BiocParallel::bpparam().

URLs

Preissl, et al. full data set. http://renlab.sdsc.edu/
r3fang/snATAC/
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mm10 Bowtie2 index: ftp://ftp.ccb.jhu.edu/pub/data/
bowtie2_indexes/mm10.zip

Bowtie2: http://bowtie-bio.sourceforge.net/bowtie2/
index.shtml

Subread FeatureCounts: http://bioinf.wehi.edu.au/
featureCounts/

Broad Institute LDSC summary statistics files:
https://data.broadinstitute.org/alkesgroup/sum-
stats_formatted/; https://data.broadinstitute.org/al-

kesgroup/UKBB/

LDSC: https://github.com/bulik/Idsc

BBMap: https://sourceforge.net/projects/bbmap/

R statistical software: http://www.r-project.org/

tsne R package: https://github.com/jdonaldson/rtsne
mm10 fasta sequence: http://hgdownload.cse.ucsc.
edu/goldenPath/mm10/chromosomes/

ENCODE blacklisted regions: http://mitra.stanford.
edu/kundaje/akundaje/release/blacklists/  (Down-
loaded May 4, 2018)

mm10: mm10.blacklist.bed.gz
hg19: wgEncodeHg19ConsensusSignalArii
factRegions.bed.gz

ATAC-seq mitochondrial blacklisted regions: https://
sites.google.com/site/atacseqpublic/atac-seq-anal-
ysis-methods/mitochondrialblacklists-1 (Download-
ed: May 4, 2018)

mm10: JDB_BLACKLIST.MM10.BED

hg19: JDB_BLACKLIST.HG19..BED
Bx-python: https://github.com/bxlab/bx-python
Reciprocal best liftover chain: https://hgdown-

load-test.gi.ucsc.edu/goldenPath/hg19/vsMm10/re-
ciprocalBest/

Roadmap DNase | imputed data: https://egg2.wustl.
edu/roadmap/data/byFile Type/peaks/consolidated-
Imputed/narrowPeak/

BOCA ATAC-seq: https://bendlj01.u.hpc.mssm.edu/
multireg/resources/boca_peaks.zip

proxysnps: https://github.com/slowkow/proxysnps
PAINTOR: https://github.com/gkichaev/PAINTOR_
V3.0

PAINTOR modification: https://github.com/gkichaev/
PAINTOR_V3.0/issues/17

BEAGLE VCF: http://bochet.gcc.biostat.washing-
ton.edu/beagle/1000_Genomes_phase3_v5a/

Data Access

The sources for publicly available ATAC-seq data can
be found in Table S1 and are described in the Meth-
ods. Documentation of code is available on GitHub
(https://github.com/pwh124/open_chromatin).  Ac-
cesstodataincluding peaks and all files for heritability

enrichment analyses and fine-mapping are available
viaZenodo (https://doi.org/10.5281/zenodo.3253181).
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Figure S1. Summary of principal component analysis of ATAC-seq cell population peak read counts. A, B, C) PC1 vs. PC2 for
log2(counts + 1) (top) and quantile normalized and batch corrected log2(counts + 1) (bottom). Cell populations are colored according to
type of ATAC-seq performed (“bulk” or “single-cell”), B) experiment from which they came, and C) broad cell population category. All meta-

information can be found in Table S1.
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Figure S2. S-LDSC results are correlated between human T-cell open chromatin profiles and mouse-derived human open
chromatin profiles. A, B) Scatterplots of S-LDSC heritability regression coefficients between orthologous cell populations of A) CD4
and B) CD8 T-cells. Both plots show a linear model fit to the data with a 95% confidence interval.
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Figure S3. rs11682175 is the top fine-mapped SNP in the rs75575209 and rs7596038 independent schizophrenia
associated loci. Summary statistics (“Odds Ratio” and “GWAS P-value” are shown at the top of the figure for all three
SNPS (rs11682175 and lead SNPs). The boxes below the summary statistics show a checkmark if the SNPs meet that
criteria in Pardinas et al. 2018. These criteria include whether the SNP was genome-wide significant in the original study,
whether it was reported as an independent lead SNP, whether it was reported as a clumped lead SNP and what the
fine-mapping posterior probabilities including annotations were for each SNP. Below the chart are the LD relationships
between SNPs as calculated in 1000 Genomes European data (Phase 3). The bottom of the figure shows how the
clumping procedures used in the original study lead to three genome-wide SNPs being combined into two independent
lead SNPs and one reported locus.
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Supplemental Table Legends

Supplemental Table S1. Description of all publicly
available ATAC-seq used in this study. Included is
the cell population name used in the paper, the file
name used for the cell population data, a description
of the cell population, the type of ATAC-seq, a
broader cell type classification of cell populations, the
Pubmed or bioRxiv ID for the publication of the data,
source of the data, and any associated file names.

Supplemental Table S2. Summary of mouse peak
data. Thisincludes the cell population name, the number
of summits called in the mouse genome (“mm10_
summits”), the number of summits that passed filtering
(“mm10_filtered_summits”), and the number of peaks
that resulted from the called summits (“mm10_peaks”).

Supplemental Table S3. Summary of T-cell peak
overlap data. This includes the mouse-derived
human open chromatin profile file name (“human.
mouse filename”), the total number of mouse-
derived human peaks (“total.peaks”), the filename
of the human open chromatin data (“human
flename”), the sample name used for the human
data (“sample.name”) and the number of peaks that
overlap between the two files (“overlap.count”).

Supplemental Table S4. Summary of overlap
data for all cell populations. This includes the cell
population name (“population”), the number and
percentage of peaks that overlap with all Roadmap
Epigenome Atlas data (“roadmap_peaks” and
“roadmap_percent”), the number and percentage
of peaks that overlap with brain related tissues in
Roadmap Epigenome Atlas Data (“roadmap_brain_
peaks” and “roadmap_brain_percent”), the number
and percentage of peaks that overlap with ATAC-seq
from BOCA(Fullard et al. 2018) (“boca_peaks” and
“boca_percent”), and the number and percentage
of peaks that overlap with all the data combined
(“combined_peaks” and “combined_percent”).

Supplemental Table S5. Summary of all the
summary statistics analyzed with S-LDSC. This
includes the phenotype name (“Phenotype”), the
name of the source of the data (“Source”), the URL
from which the data was downloaded (“URL”), PubMed
ID for any accompanying publications (“PMID”), the
filename of the summary statistics (“Filename”), the
exact LDSC munge command used to process the
data (“Munge_command”), and any additional notes.

Supplemental Table S6. The results from S-LDSC
for all 64 traits analyzed. Each tab in the document
is a different set of summary statistics. Each tab
contains the cell population (“cell.population”), the

broad type of cell (“type”), the phenotype analyzed
(“pheno”), the heritability regression coefficient
(“Coefficient”), the standard error of the heritability
regression coefficient (“Coefficient_std_error”), the
P-value of the coefficient (“Coefficient_P_value”),
the -log10(P-value) (“p.log10”), and whether or not
the cell population achieves significance (“signif.all”).

Supplemental Table S7. Summary of 177 fine-
mapped schizophrenia loci. This contains the lead
SNP identified in Pardinas, et al.(Pardifias et al.
2018) (“lead.snp”), the total number of SNPs fine-
mapped for each locus (“total.snps”), the number of
SNPs that reach a PIP > 0.1 (“> 0.1”), the number of
SNPs that reach a PIP > 0.5 (“> 0.5”), the number of
SNPs that reach a PIP > 0.9 (“> 0.9”), the number of
SNPs that both reach a 0.1 PIP and overlap with an
open chromatin region in an enriched cell population
(“overlap.ten.enrich”), the number of SNPs that both
reach a 0.5 PIP and overlap with an open chromatin
region in an enriched cell population (“overlap.fifty.
enrich”), the number of SNPs that both reach a 0.9
PIP and overlap with an open chromatin region
in an enriched cell population (“overlap.ninety.
enrich”), and the total number of causal variants
calculated per locus by adding PIPs for both fine-
mapping without annotation (“total.pp.null”) and
with enriched annotation (“total.pp.annotation”).

Supplemental Table S8. All results from fine-
mapping 177 schizophrenia loci. This includes
the SNP ID (“id”), the chromosome (“chr”), the
position (“pos”), the reference SNP ID (“rsid”), the
A1 allele (“A1”), the A2 allele (“A2), the Z-score for
schizophrenia (“Zscore”), the lead SNP (“lead.snp”),
the R? between the proxy SNP and the lead SNP (‘r.
squared”), the -log10(P-value) for the SNP in the
schizophrenia GWAS (“-log10(P)”), the PIP when
annotation was not included (“PIP_null’), and the
PIP when the annotation was included (“PIP_anno”).

Supplemental Table S9. All results from SNPs
that achieve a PIP > 0.1 and overlap with an open
chromatin region froman enriched cell population.
All information mentioned in Table S8 are present. In
addition, included in “binary matrix” indicating whether
or not the SNP intersects open chromatin in that cell
population (0 = “no”, 1 = “yes”). Note that instead
of asterisks, single-nuclei datasets are indicated
with the “_sc” suffix. Finally, the total number of cell
populations that the SNP intersects with (“all.sum”)
and the total number of enriched cell populations that
the SNP intersects with (“enrich.sum”) are included.

Supplemental Table S10. All results from
motifbreakR. This includes the name of the SNP
(“rsid”), the lead SNP or SNPs it is associated
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with (“lead.snps”), the effect of the motif disruption
(“effect”), the gene symbol of the transcription factor
whose motif is disrupted (“geneSymbol”), the source
of the motif data (“dataSource”), the name of the
motif (“providerName” and “providerID”), and the
sequence that is matched for the motif (“seqMatch”).

Supplemental Table S11. A summary of how
frequently the motif of a transcription factor is
impacted by SNPs with a PIP > 0.1. Included is the
name of the transcription factor (“TF.gene”) and the
number of times it is disrupted by a SNP (“Freq”).

Supplemental Table S12. All results of SNPs that
achieve a PIP > 0.1 in multiple schizophrenia
loci. All columns included in Table S8 are present.

Supplemental Table S13. A summary of LDSC
file downloads. Includes file’'s purpose (“LDSC
files downloaded”) and the download link (“URL”).

Supplemental Table S14. A summary of the SNPs
used to extract proxy SNPs for schizophrenia loci.
This includes chromosome (“chr1”), start and of locus
(“start” and “end”), the lead SNP for the locus (“lead.
snp”), the SNP used to extract proxy SNPs (“search.
snp”), and any notes about the search SNP (“notes”).

Supplemental Table S15. A summary of the
number of SNPs in each schizophrenia locus
throughout the process of creating files to be fine-
mapped by PAINTOR. This includes the lead SNP
(“index.snp”), the total number of proxies extracted
(“all.proxies”) and the total number of proxies after
merging with summary statistics (“snps.after.merge”).
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