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31 Abstract
32 Dominant mutations of Gata4, an essential cardiogenic transcription factor (TF), cause 

33 outflow tract (OFT) defects in both human and mouse. We investigated the molecular 

34 mechanism underlying this requirement.  Gata4 happloinsufficiency in mice caused OFT 

35 defects including double outlet right ventricle (DORV) and conal ventricular septum 

36 defects (VSDs). We found that Gata4 is required within Hedgehog (Hh)-receiving second 

37 heart field (SHF) progenitors for normal OFT alignment. Increased Pten-mediated cell-

38 cycle transition, rescued atrial septal defects but not OFT defects in Gata4 heterozygotes. 

39 SHF Hh-receiving cells failed to migrate properly into the proximal OFT cushion in Gata4 

40 heterozygote embryos. We find that Hh signaling and Gata4 genetically interact for OFT 

41 development. Gata4 and Smo double heterozygotes displayed more severe OFT 

42 abnormalities including persistent truncus arteriosus (PTA) whereas restoration of 

43 Hedgehog signaling rescued OFT defects in Gata4-mutant mice. In addition, enhanced 

44 expression of the Gata6 was observed in the SHF of the Gata4 heterozygotes. These 

45 results suggested a SHF regulatory network comprising of Gata4, Gata6 and Hh-signaling 

46 for OFT development. This study indicates that Gata4 potentiation of Hh signaling is a 

47 general feature of Gata4-mediated cardiac morphogenesis and provides a model for the 

48 molecular basis of CHD caused by dominant transcription factor mutations.

49
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50 Author Summary

51 Gata4 is an important protein that controls the development of the heart. Human who 

52 possess a single copy of Gata4 mutation display congenital heart defects (CHD), 

53 including the double outlet right ventricle (DORV). DORV is an alignment problem in 

54 which both the Aorta and Pulmonary Artery originate from the right ventricle, instead of 

55 originating from the left and the right ventricles, respectively. To study how Gata4 

56 mutation causes DORV, we used a Gata4 mutant mouse model, which displays DORV. 

57 We showed that Gata4 is required in the cardiac precursor cells for the normal alignment 

58 of the great arteries. Although Gata4 mutation inhibits the rapid increase in number of the 

59 cardiac precursor cells, rescuing this defects does not recover the normal alignment of 

60 the great arteries. In addition, there is a movement problem of the cardiac precursor cells 

61 when migrating toward the great arteries during development. We further showed that a 

62 specific molecular signaling, Hh-signaling, is responsible to the Gata4 action in the 

63 cardiac precursor cells. Importantly, over-activating the Hh-signaling rescues the DORV 

64 in the Gata4 mutant embryos. This study provides an explanation for the ontogeny of 

65 CHD.

66  
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67 Introduction

68       Congenital Heart Defects (CHDs) CHDs occurr in approximately 1% of live births [1] 

69 and are the most common serious birth defects in humans [2, 3].  Approximately one third 

70 of the CHDs involve malformations of the outflow tract (OFT), which leads to significant 

71 morbidity and mortality of children and adults [4]. Multiple OFT abnormalities involve the 

72 relationship of the Aorta and Pulmonary Artery to the underlying left and right ventricles. 

73 For example, double-outlet right ventricle (DORV) is an anomaly in which the Aorta and 

74 Pulmonary Artery originate from the right ventricle [4]. A key characteristic of DORV that 

75 distinguishes it from other OFT defects is that the aorta and pulmonary trunk are well 

76 separated but are improperly aligned over the right ventricle. The molecular basis of OFT 

77 misalignment in DORV has remained unclear. 

78  SHF-derived cells migrate into the developing poles of the heart tube, to effect 

79 morphogenesis of the cardia cinflow and outflow.  The anterior SHF is essential for OFT 

80 and great artery development [5-9].  The failure of the anterior SHF-derived myocardial 

81 and endocardial contributions to the arterial pole of the heart causes a shortened OFT 

82 and arterial pole misalignment, resulting in inappropriate connections of the great arteries 

83 to the ventricular mass [10-12]. Deletion of genes responsible for SHF morphogenesis, 

84 such as Isl1, Mef2c, and Jagged1, leads to abnormal OFT formation including DORV [5, 

85 6, 8, 12-19].  These observations lay the groundwork for investigating the molecular 

86 pathways required for OFT development in SHF cardiac progenitor cells.

87      Gata4, a member of the GATA family of zinc finger transcription factors, is an essential 

88 cardiogenic transcriptional regulator implicated in many aspects of cardiac development 
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89 and function [20-34].  Human genetic studies have implicated haploinsufficiency of 

90 GATA4 in human CHDs, to date including atrial septal defects (ASD), ventral septal 

91 defects (VSD), and tetralogy of Fallot (TOF) [21, 35-39].  In mouse models, decreased 

92 expression of Gata4 results in the development of common atrioventricular canal (CAVC), 

93 DORV, and hypoplastic ventricular myocardium in a large proportion of mouse embryos 

94 [27, 40]. Multiple studies have demonstrated the molecular requirement of Gata4 in the 

95 endocardium for normal cardiac valve formation [24, 30, 41].  Furthermore, we previously 

96 demonstrated that Gata4 is required in the posterior SHF for atrial septation.  Both 

97 Hedgehog (Hh) signaling and Pten-mediated cell-cycle progression were shown to be 

98 downstream of Gata4 in atrial septation [42].  However, the mechanistic requirement for 

99 Gata4 in OFT development is less clear.  For example, from the multiple Gata4 

100 transcriptional targets that have been identified in the context of heart development, 

101 including Nppa, α-MHC, α-CA, B-type natriuretic peptide (BNP), Ccnd2, and Cyclin D2, 

102 and Mef2c [20, 23, 24, 26, 43, 44], only Mef2c has a functional role in OFT development 

103 [12].

104  In this study, we investigated the mechanistic requirement for Gata4 in OFT 

105 development.  We found that Gata4 heterozygosity in SHF hedgehog (Hh)-receiving cells 

106 recapitulates the OFT misalignment observed in Gata4 germline heterozygotes in mice.  

107 Gata4 heterozygous embryos had decreased numbers of SHF-derived cells populating 

108 the anterior SHF and the developing OFT at E10.5.  By genetic inducible fate mapping 

109 (GIFM), Hh-receiving cells fail to migrate properly into the OFT of Gata4 mutant mice.  

110 We have previously reported that Gata4 acts upstream of Hh-signaling for atrial septation 

111 [42]. Here we observed more severe OFT defects observed in embryos with SHF-specific 
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112 heterozygosity of Gata4 and Smo, the obligate Hh signaling receptor.  Furthermore, 

113 rescue of Gata4-mediated OFT misalignment by constitutive activation of Hh-signaling 

114 indicated a consistent epistatic relationship between Gata4 and Hh signaling in OFT 

115 development. Furthermore, upregulation of Gata6 in the Gata4 mutant SHF may provide 

116 an explanation for the severity of OFT defects observed in Gata4 mutant embryos. Our 

117 study thereby revealed Gata4-dependent pathways contributing to OFT development in 

118 Gata4 heterozygous mouse embryos.
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119 Results

120 GATA4 is required for OFT alignment 

121 Gata4 is strongly expressed in the heart, pSHF and OFT at E9.5 [27, 42, 50]. There 

122 is a gap in expression between the OFT and the pSHF at embryonic day 9.5 (Fig.1A, 

123 indicated by a “↓”).IHC staining for Gata4 at later stages during OFT development showed   

124 strong Gata4 expression in the heart, the developing OFT and the pSHF, but only in a 

125 limited subset of aSHF cells at E10.5 (Fig.1B, indicated by a “↓”). At E11.5, both the 

126 chamber myocardium and the developing OFT had strong Gata4 expression, however, 

127 Gata4 expression was absent from the cardiac neural crest (CNC)-derived distal OFT 

128 (Fig. 1C, indicated by a “↓”).

129 Gata4 was previously reported to be required for OFT alignment [27]. To study the 

130 role of Gata4 in OFT development, we re-examined Gata4 heterozygotes for OFT 

131 defects. As described previously [42], Gata4 heterozygotes were generated by crossing 

132 Gata4fl/+ with EllaCre, which drives Cre expression in the germline [51] to effect germline 

133 Gata4 deletion. The Gata4 germline deletion was ensured by genotyping using the 

134 embryo tail DNA. Whereas Gata4fl/+ (n = 13) and EllaCre/+ (n = 12) embryos demonstrated 

135 normal heart at E14.5 (Figs.2A and A’, 2B and B’), 61.1% of Gata4+/-; EllaCre/+ embryos 

136 demonstrated VSD and DORV (Figs.2C’, 11/18, P=0.0004). Consistent with our prior 

137 work, we observed primum ASDs with absence of the DMP in 8/18 Gata4+/-; EllaCre/+ 

138 embryos [42] (Figs. 2C).  

139 To determine the lineage requirement for Gata4 in AV septation, we analyzed mouse 

140 embryos haploinsufficient for Gata4 in the myocardium, CNC, endocardium or SHF.  We 

141 combined Tnt: Cre [52] with Gata4fl/+ to create Gata4  haploinsufficiency in the 
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142 myocardium.  Normal OFT alignment was observed in all TntCre/+; Gata4fl/+ (12/12) and 

143 littermate control Gata4fl/+ embryos (9/9) at E13.5 (P=1) (Figs. 2E and E’ vs. 2D and D’, 

144 P=1).   We combined Wnt1: Cre [53, 54] with Gata4fl/+ create Gata4 haploinsufficiency in 

145 the CNC.  Normal OFT alignment was observed in all Wnt1Cre/+; Gata4fl/+ mutant embryos 

146 (24/24) and littermate control Gata4fl/+ embryos (16/16) at E13.5 (Figs. 2F and F’ vs. 2D 

147 and D’, P=1).  We combined Nfat1c: Cre [53, 54] with Gata4fl/+ create Gata4 

148 haploinsufficiency in the endocardium.  Normal OFT alignment was observed in nearly all 

149 Nfatc1Cre/+; Gata4fl/+ mutant embryos (14/15) and littermate control Gata4fl/+ embryos 

150 (10/10) at E13.5 (Figs. 2G and G’ vs. 2D and D’, P=1).  These results demonstrated that 

151 Gata4 haploinsufficiency in the myocardium, CNC or endocardium supported normal OFT 

152 alignment.

153 Gata4 is required in the SHF Hedgehog (Hh) signal-receiving progenitors for OFT 

154 alignment.

155 We hypothesized that Gata4 is required in the aSHF for OFT alignment in aSHF-

156 specific Gata4 heterozygous mice. We tested this hypothesis by combining Mef2cAHF: 

157 Cre with Gata4fl/+. Surprisingly, OFT misalignment with DORV was only observed in 1 out 

158 of 22 embryos and none in the littermate controls (Fig. 2I and I’ vs. 2H and H’,   P=1). We 

159 next tested if Gata4 is required in the pSHF for OFT alignment in in pSHF-

160 specific Gata4 heterozygous mice by crossing Osr1 CreERT2/+ [46, 47] with Gata4fl/+. 

161 Similarly, neither Gata4fl/+; Osr1 CreERT2/+ embryos (0/5) nor littermate 

162 control Gata4fl/+ embryos (0/6) demonstrated OFT misalignments at E14.5 (Fig. 2J and J’ 

163 vs. 2H and H’, P=1). These results demonstrated that Gata4 haploinsufficiency in either 

164 aSHF or pSHF supported normal OFT alignment.
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165 Previous studies have shown that SHF Hh signal-receiving progenitors localized in 

166 both the aSHF and the pSHF, and regulated the migration of SHF toward the OFT and 

167 inflow tract (IFT) to form the pulmonary artery and the atrial septum separately [45, 55, 

168 56]. We combined Gli1Cre-ERT2 with Gata4fl/+ to create Gata4 haploinsufficiency in SHF Hh 

169 signal-receiving progenitors. CreERT2 was activated by tamoxifen (TM) administration at 

170 E7.5 and E8.5 in Gli1Cre-ERT2; Gata4fl/+ embryos. With TM administration at E7.5 and E8.5, 

171 66.7% of Gli1Cre-ERT2; Gata4fl/+ embryos displayed DORV, while the littermate control 

172 Gata4fl/+ embryos displayed normal OFT alignment (Figure 2K and K’ vs. 2H, 2H’, 8/12 

173 vs. 0/15, P=0.0002). We concluded that Gata4 is required in the SHF Hedgehog (Hh) 

174 signal-receiving progenitors for OFT alignment.

175 Gata6 was overexpressed in the SHF of the Gata4 heterozygotes

176 Gata4 and Gata6 double mutant embryos display PTA [40]. We examined Gata6 

177 expression in Gata4 mutants.  Gata6 was expressed in the heart, the OFT and strongly 

178 in the splanchnic mesoderm (Fig. 3A, arrow), but not neural crest cell derivatives (Fig. 

179 3A, arrowhead) of the Gata4fl/+ embryo at E9.5. In Gata4 knockdown embryos specifically 

180 in the Hh-receiving cells, Gata6 expression domain was strongly enhanced in the OFT 

181 and the splanchnic mesoderm. Consistently enhanced expression of Gata6 in the OFT 

182 and the SHF of the Gata4fl/fl; Gli1Cre-ERT2/+ was further confirmed by the real-time PCR at 

183 the mRNA level (Fig.3B). The Gata4 expression in the SHF of Gata4fl/fl; Gli1Cre-ERT2/+ 

184 mouse embryo was 2.7-fold that observed in control Gata4fl/+ embryos (P<0.05). Gata6 

185 expression in the OFT of the Gata4fl/fl; Gli1Cre-ERT2/+ mouse embryo was 4.4-fold that of 

186 the littermate control (P<0.01). Our results suggested a negative association between the 

187 expression of Gata4 and Gata6 in the SHF and developing OFT.
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188

189 Gata4 regulates cell proliferation in the OFT conal cushion 

190 We wonder if Gata4 is required for proliferation during the OFT cushion 

191 development.  Cell proliferation was examined by BrdU incorporation at E11.5.  Gata4fl/+; 

192 Gli1Cre-ERT2/+ embryos demonstrated 17% fewer BrdU-positive SHF cells in the OFT conal 

193 cushion (Fig. 4C vs. 4A and 4E; P =0.0134), but not the OFT truncal cushion (Fig. 4D vs. 

194 4B and 4F; P =0.1998), compared to the littermate Gata4fl/+embryos at E11.5. This result 

195 demonstrate that Gata4 is required for normal cell proliferation in OFT conal cushion 

196 development. We assessed cell death by TUNEL staining and observed no differences 

197 in either the conal or truncal cushion between Gata4fl/+; Gli1Cre-ERT2/+and the 

198 Gata4fl/+embryos (Fig. 4G - 4J). Together, these findings define a requirement 

199 for Gata4 in the proliferation but not in the survival of OFT conal cushion cells. 

200 Rescue of SHF proliferation by disruption of Pten  does not rescue DORV in Gata4 

201 mutant embryos

202 Our previous study demonstrated that Gata4 regulates the cell cycle progression in 

203 posterior SHF cardiac precursors and that genetically targeted disruption of Pten  rescued 

204 the proliferation defects in SHF of the Gata4 heterozygotes [57]. Hence, we examined 

205 whether proliferation rescue in SHF, by Pten downregulation (TMX at E7.5 and E8.5), 

206 could rescue DORV in Hh-receiving cell-specific Gata4 heterozygotes. We observed that 

207 decreased Pten dose caused only one DORV, but no ASD, in 20 embryos (Fig. 5A-C).  

208 Consistent with our previous report, although the ASD in Gli1Cre-ERT2/+;Gata4fl/+ embryos  

209 was rescued by Pten downregulation (Fig. 5C vs. 5B, 1/20 in Gli1Cre-ERT2/+;Gata4fl/+;Ptenfl/+ 

210 vs. 14/29 in Gli1Cre-ERT2/+;Gata4fl/+, P = 0.0013), Gli1Cre-ERT2/+;Gata4fl/+;Ptenfl/+ embryos still 
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211 displayed DORV with an incidence rate unchanged from Gli1Cre-ERT2/+;Gata4fl/+ embryos 

212 (Fig. 5E vs. 5F,  12/29 vs. 6/20, Table 1, P = 0.5495). This data suggested to us that 

213 correction of the SHF proliferation defects was not able to rescue the OFT misalignment 

214 of the Gata4 mutant embryos. 

215 Gata4 acts upstream of Hh signaling in OFT development.

216 We have previously reported that Gata4 acts upstream of Hh-signaling for atrial 

217 septation [42]. The requirement of Gata4 in Hh-receiving cells for OFT alignment 

218 suggested that Gata4 and Hh signaling may interact genetically in the SHF for OFT 

219 development. We tested this hypothesis in the Gata4 and Smo compound heterozygotes 

220 (Gata4fl/+;Smofl/+;Gli1Cre-ERT2/+) versus littermate controls (Gata4fl/+; Gli1Cre-ERT2/+ or 

221 Smofl/+;Gli1Cre-ERT2/+). Consistent OFT defects were observed in compound Gata4; Smo 

222 embryos (Gata4fl/+;Smofl/+;Gli1Cre-ERT2/+) (5/9, Fig 6C - 6E) whereas no OFT defects were 

223 observed in Smofl/+;Gli1Cre-ERT2/+embryos (0/7, Fig  6B and B’; P= 0.0337). The total 

224 incidence of OFT defects occured in the Gata4fl/+;Smofl/+;Gli1Cre-ERT2/+ was not different 

225 than in the Gata4fl/+; Gli1Cre-ERT2/+ embryos (Fig6C-E, 5/9 vs. 4/6, P=  0.7326). However, 

226 more severe range of OFT defects was observed in Gata4fl/+;Smofl/+;Gli1Cre-ERT2/+ 

227 embryos,  including DORV (3 out of 5, Figs. 6C and C’), OA (1 out of 5, Figs. 6D and D’) 

228 and persistent truncus arteriosus (PTA) (1 out of 5, Figs. 6E and E’). PTA, caused by a 

229 combined defect of alignment and separation, was only observed in 

230 Gata4fl/+;Smofl/+;Gli1Cre-ERT2/+.  This result suggest an interaction between Gata4 and Hh-

231 signaling in OFT development.

232 We tested the hypothesis that Gata4 actis upstream of Hh-signaling for OFT 

233 development using a genetic epistasis study. We tested whether increased Hh-signaling 
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234 via a constitutively activated Smo mutant, SmoM2 [58], could rescue the OFT 

235 misalignment in Gata4-heterozygotes. DORV was observed in 28.6% of littermate 

236 control Gli1Cre-ERT2/+;R26-SmoM2fl/+embryos (2/7) (Fig. 6G and G’) and 58.3% of littermate 

237 control Gli1Cre-ERT2/+;Gata4fl/+embryos at E14.5 (7/12) (Fig. 6H and H’). In contrast, none 

238 of Gata4fl/+;Gli1Cre-ERT2/+;R26-SmoM2fl/+ embryos showed DORV (Fig. 6I and I’), indicating 

239 significant rescue by R26-SmoM2fl/+, Gli1Cre-ERT2/+(Fig.6I vs Fig. 6H, P = 0.0071, Table 1). 

240 This results demonstrated rescue of DORV in Gata4-mutant embryos by constitutive Hh 

241 signaling. 

242 Gata4 is required for the contribution of Hh-receiving cells to the OFT.

243 Hh signaling has been reported to regulate the migration of SHF Hh-receiving cells 

244 toward the arterial pole of the heart [45]. We therefore hypothesized that Gata4 is required 

245 for the SHF Hh-receiving cells migration toward the developing OFT. We tested this 

246 hypothesis using genetic inducible fate mapping (GIFM) [59]. The Hh-receiving lineage 

247 cells were marked in R26Rfl/+;Gli1Cre-ERT2/+embryos by TM administration at E7.5 and E8.5 

248 and β-gal expression was evaluated at E10.5 in Gata4 heterozygotes. The total number 

249 of β-gal positive cells was obtained by counting those on each individual sections and 

250 adding up all through the SHF and the OFT. We have previously reported decreased 

251 number of Hh-receiving cells in the pSHF at E9.5 associated with developing defects of 

252 DMP in the Gata4fl/+;R26Rfl/+;Gli1Cre-ERT2/+embryos [57]. We observed that there were also 

253 significantly less Hh-receiving cells within the aSHF region (Fig. 7A vs. 7D and Fig. 7G, 

254 334.0 ± 1.4 vs. 186.7 ± 4.9, P=0.009) of the Gata4fl/+;R26Rfl/+;Gli1Cre-ERT2/+embryos. The 

255 cells of Hh-receiving lineage were observed in the developing OFT at this stage. By 

256 counting the number of β-galactosidase-expressing cells in the proximal half (Fig. 7B vs. 
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257 7E and 7H, 49.7 ± 9.6 vs. 26.7 ± 6.7, P=0.097) and the distal half of the OFT (Fig.7C vs. 

258 7F and 7I, 91.7 ± 9.2 vs. 57.0 ± 1.4, P=0.0362), we found that both of the regions of the 

259 Gata4 heterozygotes had less β-galactosidase-expressing cells than the littermate 

260 controls (Figs. 7E and 7F). 

261 To examine if Gata4 haploinsufficency influenced the SHF cell recruitment within 

262 the proximal OFT, we analyzed the fate map of SHF lineage cells in the OFT of the Gata4 

263 heterozygotes.  Defined by Mef2cAHF:Cre expression: β-galactosidase-expressing cells, 

264 the total number of the SHF lineage cells within the proximal half and the distal half of the 

265 OFT were compared between the Mef2cAHF::Cre;Gata4fl/+; R24Rfl/+ and the 

266 Mef2cAHF::Cre;R24Rfl/+embryos at E10. The number of SHF lineage cells populating the 

267 proximal OFT of the Mef2cAHF::Cre;Gata4+/-; R24Rfl/+ embryos was significantly less 

268 than that those in control Mef2cAHF::Cre; R24Rfl/+ embryos (Fig.  7J vs. 7M ); however, 

269 this decrement was not observed in the distal OFT (Fig. 7K vs. 7N). The distribution 

270 pattern of the SHF lineage was not different in the Mef2cAHF::Cre;Gata4+/-; R24Rfl/+ and 

271 the Mef2cAHF::Cre;R24Rfl/+embryos (Figs. 7L vs. 7O). AS a control, we observed fewer 

272 cells populating the developing dorsal mesocardium protrusion (DMP) in 

273 Mef2cAHF::Cre;Gata4+/-; R24Rfl/+(red arrow, Fig.7L vs. 7O), consistent with our previous 

274 report that Gata4 is required in the SHF for the DMP [42].  These results demonstrated 

275 the requirement of Gata4 for the SHF lineage cells populating in the developing OFT.

276

277
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278 Discussion
279 The requirement of Gata4 for OFT development has been reported in mice and 

280 human, and mouse Gata4 mutations cause DORV [22, 27, 40].  Here we demonstrate 

281 that Gata4 is required in the SHF Hh-receiving cells for OFT alignment in the SHF. Our 

282 previous study has demonstrated that Gata4 is required for Hh signaling in the SHF for 

283 cell proliferation. However, the current study suggested that the cell proliferation defects 

284 in the SHF caused by Gata4 mutation may not directly associate with the OFT 

285 misalignment; instead, the migration defects of the SHF cells is. And the migration defects 

286 were associated with disrupted Hh-signaling, because the OFT misalignment was 

287 rescued by over-activating of Hh-signaling. In addition, our data suggested breaking down 

288 the threshold of GATA including Gata4 and Gata6, and Hh signaling tone might be 

289 associated with the severity of OFT defects.

290 The SHF was initially described as a progenitor field for the cardiac OFT and a rich 

291 literature has established the requirement of anterior SHF contributions for OFT 

292 development [5, 10-19, 60-63]. More recently, the contribution of posterior SHF cardiac 

293 progenitors to the OFT and the future subpulmonary myocardium has been reported, 

294 however, the mechanistic requirement for this contribution is not well understood [45, 64-

295 66]. The cell lineage in which Gata4 is required for OFT development has not been 

296 reported. Gata4 is expressed in both the aSHF and pSHF, although its expression is 

297 much stronger in the pSHF than in the aSHF [57]. The decreased number of Mef2C-

298 AHF::Cre positive cells in the proximal OFT cushion of E10.5 Gata4−/+ embryos 

299 demonstrated that Gata4 plays a role in adding the SHF progenitor cells to the developing 

300 OFT.  However, surprisingly, OFT defects were not observed in either aSHF-specific or 

301 pSHF-specific Gata4 happloinsufficiency. Instead, we found that OFT defects severity 
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302 and incidence rate in embryos with Gata4 haploinsufficienc in Hh-receiving cells were 

303 identical to those in Gata4−/+ embryos. Because Hh-receiving cells are located throughout 

304 the SHF, these observations suggest Gata4 is required in both pSHF and aSHF 

305 progenitor cells for OFT alignment.

306 We provided evidence that Gata4 acts upstream of Hh-signaling in the SHF for OFT 

307 development. The Gata4−/+ embryos have combined phenotypes of ASD and DORV [57]. 

308 We previously reported the Gata4-Hh-signaling regulation in atrial septation and identified 

309 Gli1 as the direct target of GATA4 [42]. Here, our data of less percentile of BrdU+ cells in 

310 the conal cushion of the OFT at E11.5 of the Gata4fl/+; Gli1Cre-ERT2/+ embryos, suggesting 

311 a role of Gata4 in regulating the OFT cushion cell proliferation. In the posterior SHF, 

312 Gata4-Hh-signaling controls cell cycle progression and thereby the proliferation of the 

313 cardiac progenitors. Diminished Gata4-Hh signaling causes a failure of development of 

314 the DMP, the anlage of the atrial septum, resulting in ASDs [57]. The effect of this pathway 

315 on the cell cycle is balanced by Pten via transcriptional inhibition of Cyclin D4 and Cdk4 

316 [20, 57], as DMP hypoplasia and SHF cell cycle defects are rescued by Pten knockdown 

317 [57]. In the current study, Pten knockdown was unable to rescue DORV or OA defects in 

318 Gata4 heterozygous mutants. This observation suggests that correction of SHF cell 

319 proliferation is not sufficient to support a normal OFT development in Gata4 mutants, and 

320 that Gata4 plays a distinct role in the anterior SHF. 

321 Endodermal Hh signaling is required for the survival of the pharyngeal endoderm, 

322 which cell non-autonomously affects SHF survival and OFT lengthening [55]. In our study, 

323 increased apoptosis was not observed in the SHF of Gata4 heterozygote mutant embryos 

324 [57]. However, fate mapping of the SHF using either Mef2c::Cre or the Gli1Cre:ERT2 
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325 disclosed less SHF-derived cells in the distal OFT in Gata4 mutant embryos. Specifically, 

326 there was decreased number of SHF Hh-receiving cells throughout the migration route 

327 from the SHF into the OFT: from the dorsal mesocardium through the rostral splanchnic 

328 mesoderm, past the distal OFT to the proximal OFT. Hh-receiving progenitors have been 

329 found to migrate from the aSHF to populate the pulmonary trunk between E9.5 to E11.5 

330 [45], suggesting that Hh-signaling is required for SHF cell migration. The observation that 

331 DORV in Gata4 mutant embryos can be rescued by constitutive Hh-signaling implies 

332 correction of both the proliferation and the migration defects of the SHF cardiac 

333 progenitors, not proliferation defects only. Overall, here we provide cellular, molecular 

334 and genetic evidence that Gata4-Hh signaling hierarchy is required in OFT alignment, 

335 with specific regulation of both proliferation and migration of SHF progenitors.

336 Although important Gata4 transcriptional targets in the heart have been identified 

337 [20, 26, 44], Gata4-dependent molecular pathways required for OFT development have 

338 remained unknown. We previously identified Gli1 as a downstream target of Gata4 in the 

339 posterior SHF for atrial septation [42]. In the current study we further demonstrated that 

340 Gata4 regulated Hh-signaling via transcriptional regulation through Gli1 in the anterior 

341 SHF for cell migration and OFT alignment. In addition, we provide evidence that Gata6 

342 expression is negatively regulated by Gata4 in the OFT. Enhanced Gata6 expression in 

343 Gata4 mutants might illustrate a compensatory feedback loop, given that Gata6 and 

344 Gata4 are redundant for cardiac myocyte differentiation [67, 68]. Gata4/Gata6 compound 

345 heterozygotes displayed persistnat truncus ateriosus (PTA), a severe OFT defect caused 

346 by combined alignment and OFT septation defects (40). Here we find that Gata4/Smo 

347 compound heterozygotes show a similar phenotype. Gata4 heterozygotes alone do not 
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348 display PTA, which might be due to the partial recovery of GATA function from enhanced 

349 Gata6 expression. Together with previous study [40], these data suggest a threshold of 

350 Gata4, Gata6, and Hh signaling and that is required for OFT development. This suggests 

351 that GATA TFs may be essential for the quantitative regulation of Hh signaling, and that 

352 strongly diminished GATA function or diminished GATA and Hh signaling together may 

353 cause worse OFT defects through regulation of OFT Hh signaling. Future studies will 

354 focus on the quantitative relationship between GATA tone and Hh signaling tone and on 

355 the Gata4 dependent gene regulatory network (GRN) [69] for OFT development.  

356

357
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358 Materials and methods
359 Mouse lines 

360 All mouse experiments were performed in a mixed B6/129/SvEv background.  Gata4fl/+, 

361 Gli1CreERT2/+, Mef2cAHF::Cre, Tie2Cre/+, Smofl/+ mouse lines were kind gifts from Dr. Ivan 

362 Moskowitz lab (University of Chicago, Chicago). TnTCre/+ mouse line was from Dr. Yiping 

363 Chen lab (Tulane University, New Orleans). Nfat1cCre/+ mouse line was from Dr. Bin Zhou 

364 lab (Albert Einstein College of Medicine, Bronx, NY). The SmoM2fl/+, Osr1Cre-ERT2/+ and 

365 EIIacre/+mouse lines were purchased from the Jackson Laboratory.  Mouse experiments 

366 were completed according to a protocol reviewed and approved by the Institutional Animal 

367 Care and Use Committee of the Texas A&M University and the University of North 

368 Dakota, in compliance with the USA Public Health Service Policy on Humane Care and 

369 Use of Laboratory Animals.

370 Tamoxifen administration and X-gal staining

371 Tamoxifen (TM) -induced activation of CreERT2 was accomplished by oral gavage with 

372 two doses of 75 mg/kg TM at E7.5 and E8.5 [45, 46]. X-gal staining of embryos was 

373 performed as described [45].

374 BrdU incorporation and Immunohistochemistry Staining (IHC)

375 Standard procedures were used for histology and IHC. IHC was performed using the 

376 following antibodies: anti-Gata4 (Abcam), anti-Gata6 (Abcam). For BrdU incorporation, 

377 pregnant mice were given 100mg BrdU per kg bodyweight at 10mg/mL concentration 

378 solutions at E11.25 with two doses, 3 hours and 6 hours before sacrifice, respectively. 

379 The BrdU staining was performed using a BrdU In-Situ detection kit (EMD Millipore). For 
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380 TUNNEL staining, an ApopTag plus peroxidase In-Situ apoptosis detection kit was used 

381 (EMD Millipore). 

382 Micro-dissection of pSHF and RNA extraction

383 To obtain the pSHF splanchnic mesoderm for use in quantitative realtime-PCR, E9.5 

384 embryos were dissected as described before [47, 48].  The heart, aSHF, and pSHF were 

385 collected separately in RNA-later, and then stored at −20°C until genotyping was 

386 completed. 

387 Realtime-PCR

388 Total RNA was extracted from the PSHF regions of mouse embryos hearts using RNeasy 

389 Mini Kit (QIAGEN), according to the manufacturer’s instructions. Two hundred ng of total 

390 RNA was reverse transcribed using a SuperScriptTM III Reverse Transcriptase kit from 

391 Invitrogen. qPCR was performed using a POWER SYBER Green PCR mater mix from 

392 Applied Biosystems. Results were analyzed using the delta-delta Ct method with GAPDH 

393 as a normalization control [49].

394

395

396
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402 FIGURE LEGEND

403 Figure 1.  Gata4 is strongly expressed in the developing heart, the OFT and the 

404 pSHF. Gata4 expression was detected in wildtype mouse embryos by IHC at (A) E9.5, 

405 (B) E10.5 and (C) E11.5.  Red arrows indicate anterior second heart field at E9.5 or E10.5 

406 (A and B), and proximal outflow tract at E11.5 (C).

407 Magnificence: A: 40X; B and C: 100X

408 Figure 2.  Gata4 is required in Hh-receiving cells for OFT development. 

409 (A-G’) Histology of Gata4 transgenic mouse embryo heart at E14.5.  Statistics were 

410 summarized in table 1. Histology of Gata4 transgenic mouse embryo heart at E13.5. . LV, 

411 left ventrium; RV, right ventrium; ao, aorta artery, PT, pulmonary trunk. Magnificence: 40X

412  (H-K’) Histology of Gata4 transgenic mouse embryo heart at E14.5. Histology of Gata4 

413 transgenic mouse embryo heart at E13.5.  LV, left ventrium; RV, right ventrium; ao, aorta 

414 artery, PT, pulmonary trunk.

415 Figure 3.  Gata6 was overexpressed in the OFT and the SHF of the Gata4 mutant 

416 embryos at E9.5.  

417 (A) IHC of the Gata6 in Gata4fl/+ and Gata4fl/+; Gli1Cre-ERT2/+ embryos at E9.5. the 

418 arrowhead indicated the NCCs-derived cells and the arrow indicates the splanchnic 

419 mesoderm. Magnificence: 200X.

420 (B) Gata6 was measured by realtime-PCR in the micro-dissected SHF and the OFT 

421 of the Gata4fl/+ and Gata4fl/fl; Gli1Cre-ERT2/+ embryos at E9.5. *p<0.1, **p<0.05, n=3

422
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423 Figure 4.  Gata4 regulates cell proliferation in conal OFT. 

424 (A-D) BrdU staining in conal OFT and truncal OFT in Gata4fl/+; Gli1Cre-ERT2/+ embryos and 

425 control embryos at E10.5. Magnificence: 400X.

426 (E and F) Quantification of BrdU labelled cells. Data is presented as mean+SE, *p<0.05, 

427 n=3, One-way ANOVA. 

428 (G-J) TUNEL staining in both Gata4fl/+; Gli1Cre-ERT2/+ embryos and control embryos at 

429 E10.5. Magnificence: 100X

430 Figure 5.  Genetically targeted ablation of Pten rescues atrioventricular septal 

431 defect. 

432 (A-I) Histology of Gata4 transgenic mouse embryo heart at E13.5. . LV, left ventrium; RV, 

433 right ventrium; ao, aorta artery, PT, pulmonary trunk. Magnificence: 40X.

434 Figure 6.  Gata4 acts upstream of Hh signaling pathway.  

435 (A-I’) Histology of Gata4 transgenic mouse embryo heart at E14.5. LV, left ventrium; RV, 

436 right ventrium; ao, aorta artery, PT, pulmonary trunk; CAT, common artery trunk. 

437 Magnificence: 40X.

438 Figure 7. Gata4 is required for the contribution of Hh-receiving cells to the OFT.

439 (A-F) LacZ staining of Gli1-expressing cells in Gata4 transgenic mouse embryos at E10.5 

440 focusing on aSHF (E and H), dOFT (F, I) and pOFT (G, J). 

441 (G-I) Quantification of stained cells within selected regions. Data is presented as 

442 mean+SE, *p<0.05, ** p<0.1, n=3, One-way ANOVA. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2018. ; https://doi.org/10.1101/427336doi: bioRxiv preprint 

https://doi.org/10.1101/427336
http://creativecommons.org/licenses/by/4.0/


24

443 (J-O) LacZ staining of cells with Mef2cAHF:Cre expression in Gata4 transgenic mouse 

444 embryos at E10.5.  The red arrow indicated a developing DMP region.

445 Magnificence: A-D and A’-D’ 40X; E-J: 100X; N-S: 100X

446

447

448
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709 Table 1.  Incidence of OFT defect in Gata4 mutant embryos

710
711
712

Genotype OFT defect Total Type vs. control p value

Conditional Gata4 mutant embryos

        Gata4+/-;EIIacre/+ 11 18 DORV, OA Gata4fl/+ (0/13) 0.0004

        Gata4fl/+;Tntcre/+ 0 12 —— Gata4fl/+ (0/9) 1

        Gata4fl/+;Mef2ccre/+ 1 22 —— Gata4fl/+ (0/15) 1

        Gata4fl/fl;Mef2ccre/+ 13 13 DORV, OA Gata4fl/+;Mef2ccre/+ (1/7) 0.0002

        Gata4fl/+;Wnt1cre/+ 0 24 —— Gata4fl/+ (0/16) 1

        Gata4fl/+;Osr1cre/+ 0 5 —— Gata4fl/+ (0/6) 1

        Gata4fl/+;Nfatc1cre/+ 1 15 DORV Gata4fl/+ (0/10) 1

        Gata4fl/+;Gli1cre/+ (TMX E7.5+8.5) 8 12 DORV, OA Gata4fl/+ (0/15) 0.0002

        Gata4fl/+;Gli1cre/+ (TMX E8.5+9.5) 0 9 —— Gata4fl/+ (0/9) 1

Tbx5 - Gata4 compound mutant 
embryos

        Gata4+/-;Tbx5+/- 7 10 DORV, OA Tbx5+/- (1/15)

Gata4+/- (4/8)

0.0017

0.6305

        Gata4fl/+;Tbx5fl/+;Mef2ccre/+ 4 9 DORV Tbx5fl/+;Mef2ccre/+  (0/10)

Gata4fl/+;Mef2ccre/+ (0/13)

0.0325

0.0172

Pten - Gata4 compound mutant 
embryos

        Gata4fl/+;Ptenfl/+;Gli1cre/+ 6 20 DORV Ptenfl/+;Gli1cre/+ (1/20)

Gata4fl/+;Gli1cre/+ (12/29)

0.0915

0.5495

Smo - Gata4 compound mutant 
embryos

        Gata4fl/+;Smofl/+;Gli1cre/+ 5 9 DORV, OA, 
PTA

Smofl/+;Gli1cre/+ (0/7)

Gata4fl/+;Gli1cre/+ (4/6)

0.0337

1

        Gata4fl/+;SmoM2fl/+;Gli1cre/+ 0 9

——

SmoM2fl/+;Gli1cre/+ (2/7)

Gata4fl/+;Gli1cre/+ (7/12)

0.1750

0.0071

        Gata4fl/+;Smofl/+;Mef2ccre/+ 3 15 DORV Smofl/+;Mef2ccre/+ (0/12)

Gata4fl/+;Mef2ccre/+ (0/14)

0.2308

0.2241

        Gata4+/-;Smo+/- 5 7 DORV, OA Gata4+/- (1/5)

Smo+/- (0/4)

0.2424

0.0606
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