

1 Gata4 drives Hh-signaling for second heart field migration and outflow tract development

2 Jielin Liu^{1,4}, Henghui Cheng^{1,5}, Menglan Xiang^{2,3,4}, Lun Zhou^{4,5}, Ke Zhang^{2,3}, Ivan P.
3 Moskowitz^{6,7}, Linglin Xie^{1,4*}

4 ¹Department of Nutrition and Food Sciences, Texas A&M University, College Station,
5 Texas, United States of America

6 ²Department of Pathology, University of North Dakota, Grand Forks, North Dakota, United
7 States of America

8 ³ND-INBRE Bioinfomatic Core, University of North Dakota, Grand Forks, North Dakota,
9 United States of America

10 ⁴Department of Biomedical Sciences, University of North Dakota, Grand Forks, North
11 Dakota, United States of America

12 ⁵Tongji Hospital, Huazhang University of Science and Technology, Wuhan, Hubei, China

13 ⁶Department of Pathology, The University of Chicago, Chicago, Illinois, United States of
14 America.

15 ⁷Department of Pediatrics, The University of Chicago, Chicago, Illinois, United States of
16 America.

17

18 Running title: Gata4 regulates Hh-signaling and Gata6 for outflow tract alignment

19 Key words: Gata4, Hh-signaling, Gata6, outflow tract

20

21 * corresponding author

22 Linglin Xie, MD, PhD

23 Department of Nutrition and Food Sciences

24 Texas A&M University

25 TAMU 2253

26 College Station, TX 77843

27 Tel: 979-862-9141

28 Email: Linglin.xie@tamu.edu

29

30

31 **Abstract**

32 Dominant mutations of Gata4, an essential cardiogenic transcription factor (TF), cause
33 outflow tract (OFT) defects in both human and mouse. We investigated the molecular
34 mechanism underlying this requirement. Gata4 haploinsufficiency in mice caused OFT
35 defects including double outlet right ventricle (DORV) and conal ventricular septum
36 defects (VSDs). We found that Gata4 is required within Hedgehog (Hh)-receiving second
37 heart field (SHF) progenitors for normal OFT alignment. Increased Pten-mediated cell-
38 cycle transition, rescued atrial septal defects but not OFT defects in Gata4 heterozygotes.
39 SHF Hh-receiving cells failed to migrate properly into the proximal OFT cushion in Gata4
40 heterozygote embryos. We find that Hh signaling and Gata4 genetically interact for OFT
41 development. Gata4 and Smo double heterozygotes displayed more severe OFT
42 abnormalities including persistent truncus arteriosus (PTA) whereas restoration of
43 Hedgehog signaling rescued OFT defects in Gata4-mutant mice. In addition, enhanced
44 expression of the Gata6 was observed in the SHF of the Gata4 heterozygotes. These
45 results suggested a SHF regulatory network comprising of Gata4, Gata6 and Hh-signaling
46 for OFT development. This study indicates that *Gata4* potentiation of Hh signaling is a
47 general feature of *Gata4*-mediated cardiac morphogenesis and provides a model for the
48 molecular basis of CHD caused by dominant transcription factor mutations.

49

50 **Author Summary**

51 Gata4 is an important protein that controls the development of the heart. Human who
52 possess a single copy of Gata4 mutation display congenital heart defects (CHD),
53 including the double outlet right ventricle (DORV). DORV is an alignment problem in
54 which both the Aorta and Pulmonary Artery originate from the right ventricle, instead of
55 originating from the left and the right ventricles, respectively. To study how Gata4
56 mutation causes DORV, we used a Gata4 mutant mouse model, which displays DORV.
57 We showed that Gata4 is required in the cardiac precursor cells for the normal alignment
58 of the great arteries. Although Gata4 mutation inhibits the rapid increase in number of the
59 cardiac precursor cells, rescuing this defect does not recover the normal alignment of
60 the great arteries. In addition, there is a movement problem of the cardiac precursor cells
61 when migrating toward the great arteries during development. We further showed that a
62 specific molecular signaling, Hh-signaling, is responsible to the Gata4 action in the
63 cardiac precursor cells. Importantly, over-activating the Hh-signaling rescues the DORV
64 in the Gata4 mutant embryos. This study provides an explanation for the ontogeny of
65 CHD.

66

67 **Introduction**

68 Congenital Heart Defects (CHDs) CHDs occur in approximately 1% of live births [1]
69 and are the most common serious birth defects in humans [2, 3]. Approximately one third
70 of the CHDs involve malformations of the outflow tract (OFT), which leads to significant
71 morbidity and mortality of children and adults [4]. Multiple OFT abnormalities involve the
72 relationship of the Aorta and Pulmonary Artery to the underlying left and right ventricles.
73 For example, double-outlet right ventricle (DORV) is an anomaly in which the Aorta and
74 Pulmonary Artery originate from the right ventricle [4]. A key characteristic of DORV that
75 distinguishes it from other OFT defects is that the aorta and pulmonary trunk are well
76 separated but are improperly aligned over the right ventricle. The molecular basis of OFT
77 misalignment in DORV has remained unclear.

78 SHF-derived cells migrate into the developing poles of the heart tube, to effect
79 morphogenesis of the cardiac inflow and outflow. The anterior SHF is essential for OFT
80 and great artery development [5-9]. The failure of the anterior SHF-derived myocardial
81 and endocardial contributions to the arterial pole of the heart causes a shortened OFT
82 and arterial pole misalignment, resulting in inappropriate connections of the great arteries
83 to the ventricular mass [10-12]. Deletion of genes responsible for SHF morphogenesis,
84 such as *Isl1*, *Mef2c*, and *Jagged1*, leads to abnormal OFT formation including DORV [5,
85 6, 8, 12-19]. These observations lay the groundwork for investigating the molecular
86 pathways required for OFT development in SHF cardiac progenitor cells.

87 Gata4, a member of the GATA family of zinc finger transcription factors, is an essential
88 cardiogenic transcriptional regulator implicated in many aspects of cardiac development

89 and function [20-34]. Human genetic studies have implicated haploinsufficiency of
90 GATA4 in human CHDs, to date including atrial septal defects (ASD), ventral septal
91 defects (VSD), and tetralogy of Fallot (TOF) [21, 35-39]. In mouse models, decreased
92 expression of *Gata4* results in the development of common atrioventricular canal (CAVC),
93 DORV, and hypoplastic ventricular myocardium in a large proportion of mouse embryos
94 [27, 40]. Multiple studies have demonstrated the molecular requirement of *Gata4* in the
95 endocardium for normal cardiac valve formation [24, 30, 41]. Furthermore, we previously
96 demonstrated that *Gata4* is required in the posterior SHF for atrial septation. Both
97 Hedgehog (Hh) signaling and *Pten*-mediated cell-cycle progression were shown to be
98 downstream of *Gata4* in atrial septation [42]. However, the mechanistic requirement for
99 *Gata4* in OFT development is less clear. For example, from the multiple *Gata4*
100 transcriptional targets that have been identified in the context of heart development,
101 including *Nppa*, *α-MHC*, *α-CA*, *B-type natriuretic peptide (BNP)*, *Ccnd2*, and *Cyclin D2*,
102 and *Mef2c* [20, 23, 24, 26, 43, 44], only *Mef2c* has a functional role in OFT development
103 [12].

104 In this study, we investigated the mechanistic requirement for *Gata4* in OFT
105 development. We found that *Gata4* heterozygosity in SHF hedgehog (Hh)-receiving cells
106 recapitulates the OFT misalignment observed in *Gata4* germline heterozygotes in mice.
107 *Gata4* heterozygous embryos had decreased numbers of SHF-derived cells populating
108 the anterior SHF and the developing OFT at E10.5. By genetic inducible fate mapping
109 (GIFM), Hh-receiving cells fail to migrate properly into the OFT of *Gata4* mutant mice.
110 We have previously reported that *Gata4* acts upstream of Hh-signaling for atrial septation
111 [42]. Here we observed more severe OFT defects observed in embryos with SHF-specific

112 heterozygosity of *Gata4* and *Smo*, the obligate Hh signaling receptor. Furthermore,
113 rescue of *Gata4*-mediated OFT misalignment by constitutive activation of Hh-signaling
114 indicated a consistent epistatic relationship between *Gata4* and Hh signaling in OFT
115 development. Furthermore, upregulation of *Gata6* in the *Gata4* mutant SHF may provide
116 an explanation for the severity of OFT defects observed in *Gata4* mutant embryos. Our
117 study thereby revealed *Gata4*-dependent pathways contributing to OFT development in
118 *Gata4* heterozygous mouse embryos.

119 **Results**

120 **GATA4 is required for OFT alignment**

121 *Gata4* is strongly expressed in the heart, pSHF and OFT at E9.5 [27, 42, 50]. There
122 is a gap in expression between the OFT and the pSHF at embryonic day 9.5 (Fig.1A,
123 indicated by a “”). IHC staining for *Gata4* at later stages during OFT development showed
124 strong *Gata4* expression in the heart, the developing OFT and the pSHF, but only in a
125 limited subset of aSHF cells at E10.5 (Fig.1B, indicated by a “”). At E11.5, both the
126 chamber myocardium and the developing OFT had strong *Gata4* expression, however,
127 *Gata4* expression was absent from the cardiac neural crest (CNC)-derived distal OFT
128 (Fig. 1C, indicated by a “”).

129 *Gata4* was previously reported to be required for OFT alignment [27]. To study the
130 role of *Gata4* in OFT development, we re-examined *Gata4* heterozygotes for OFT
131 defects. As described previously [42], *Gata4* heterozygotes were generated by crossing
132 *Gata4*^{fl/+} with *Ella*^{Cre}, which drives Cre expression in the germline [51] to effect germline
133 *Gata4* deletion. The *Gata4* germline deletion was ensured by genotyping using the
134 embryo tail DNA. Whereas *Gata4*^{fl/+} (n = 13) and *Ella*^{Cre/+} (n = 12) embryos demonstrated
135 normal heart at E14.5 (Figs.2A and A', 2B and B'), 61.1% of *Gata4*^{+/−}; *Ella*^{Cre/+} embryos
136 demonstrated VSD and DORV (Figs.2C', 11/18, P=0.0004). Consistent with our prior
137 work, we observed primum ASDs with absence of the DMP in 8/18 *Gata4*^{+/−}; *Ella*^{Cre/+}
138 embryos [42] (Figs. 2C).

139 To determine the lineage requirement for *Gata4* in AV septation, we analyzed mouse
140 embryos haploinsufficient for *Gata4* in the myocardium, CNC, endocardium or SHF. We
141 combined *Tnt: Cre* [52] with *Gata4*^{fl/+} to create *Gata4* haploinsufficiency in the

142 myocardium. Normal OFT alignment was observed in all *Tnt*^{Cre/+}; *Gata4*^{fl/+} (12/12) and
143 littermate control *Gata4*^{fl/+} embryos (9/9) at E13.5 (P=1) (Figs. 2E and E' vs. 2D and D',
144 P=1). We combined *Wnt1*: *Cre* [53, 54] with *Gata4*^{fl/+} create *Gata4* haploinsufficiency in
145 the CNC. Normal OFT alignment was observed in all *Wnt1*^{Cre/+}; *Gata4*^{fl/+} mutant embryos
146 (24/24) and littermate control *Gata4*^{fl/+} embryos (16/16) at E13.5 (Figs. 2F and F' vs. 2D
147 and D', P=1). We combined *Nfat1c*: *Cre* [53, 54] with *Gata4*^{fl/+} create *Gata4*
148 haploinsufficiency in the endocardium. Normal OFT alignment was observed in nearly all
149 *Nfatc1*^{Cre/+}; *Gata4*^{fl/+} mutant embryos (14/15) and littermate control *Gata4*^{fl/+} embryos
150 (10/10) at E13.5 (Figs. 2G and G' vs. 2D and D', P=1). These results demonstrated that
151 *Gata4* haploinsufficiency in the myocardium, CNC or endocardium supported normal OFT
152 alignment.

153 **Gata4 is required in the SHF Hedgehog (Hh) signal-receiving progenitors for OFT
154 alignment.**

155 We hypothesized that *Gata4* is required in the aSHF for OFT alignment in aSHF-
156 specific *Gata4* heterozygous mice. We tested this hypothesis by combining *Mef2cAHF*:
157 *Cre* with *Gata4*^{fl/+}. Surprisingly, OFT misalignment with DORV was only observed in 1 out
158 of 22 embryos and none in the littermate controls (Fig. 2I and I' vs. 2H and H', P=1). We
159 next tested if *Gata4* is required in the pSHF for OFT alignment in pSHF-
160 specific *Gata4* heterozygous mice by crossing *Osr1* ^{CreERT2/+} [46, 47] with *Gata4*^{fl/+}.
161 Similarly, neither *Gata4*^{fl/+}; *Osr1* ^{CreERT2/+} embryos (0/5) nor littermate
162 control *Gata4*^{fl/+} embryos (0/6) demonstrated OFT misalignments at E14.5 (Fig. 2J and J'
163 vs. 2H and H', P=1). These results demonstrated that *Gata4* haploinsufficiency in either
164 aSHF or pSHF supported normal OFT alignment.

165 Previous studies have shown that SHF Hh signal-receiving progenitors localized in
166 both the aSHF and the pSHF, and regulated the migration of SHF toward the OFT and
167 inflow tract (IFT) to form the pulmonary artery and the atrial septum separately [45, 55,
168 56]. We combined *Gli1*^{Cre-ERT2} with *Gata4*^{f/f} to create *Gata4* haploinsufficiency in SHF Hh
169 signal-receiving progenitors. CreERT2 was activated by tamoxifen (TM) administration at
170 E7.5 and E8.5 in *Gli1*^{Cre-ERT2}; *Gata4*^{f/f} embryos. With TM administration at E7.5 and E8.5,
171 66.7% of *Gli1*^{Cre-ERT2}; *Gata4*^{f/f} embryos displayed DORV, while the littermate control
172 *Gata4*^{f/f} embryos displayed normal OFT alignment (Figure 2K and K' vs. 2H, 2H', 8/12
173 vs. 0/15, P=0.0002). We concluded that *Gata4* is required in the SHF Hedgehog (Hh)
174 signal-receiving progenitors for OFT alignment.

175 **Gata6 was overexpressed in the SHF of the Gata4 heterozygotes**

176 *Gata4* and *Gata6* double mutant embryos display PTA [40]. We examined *Gata6*
177 expression in *Gata4* mutants. *Gata6* was expressed in the heart, the OFT and strongly
178 in the splanchnic mesoderm (Fig. 3A, arrow), but not neural crest cell derivatives (Fig.
179 3A, arrowhead) of the *Gata4*^{f/f} embryo at E9.5. In *Gata4* knockdown embryos specifically
180 in the Hh-receiving cells, *Gata6* expression domain was strongly enhanced in the OFT
181 and the splanchnic mesoderm. Consistently enhanced expression of *Gata6* in the OFT
182 and the SHF of the *Gata4*^{f/f}; *Gli1*^{Cre-ERT2/+} was further confirmed by the real-time PCR at
183 the mRNA level (Fig.3B). The *Gata4* expression in the SHF of *Gata4*^{f/f}; *Gli1*^{Cre-ERT2/+}
184 mouse embryo was 2.7-fold that observed in control *Gata4*^{f/f} embryos (P<0.05). *Gata6*
185 expression in the OFT of the *Gata4*^{f/f}; *Gli1*^{Cre-ERT2/+} mouse embryo was 4.4-fold that of
186 the littermate control (P<0.01). Our results suggested a negative association between the
187 expression of *Gata4* and *Gata6* in the SHF and developing OFT.

188

189 **Gata4 regulates cell proliferation in the OFT conal cushion**

190 We wonder if Gata4 is required for proliferation during the OFT cushion
191 development. Cell proliferation was examined by BrdU incorporation at E11.5. *Gata4*^{fl/+};
192 *Gli1*^{Cre-ERT2/+} embryos demonstrated 17% fewer BrdU-positive SHF cells in the OFT conal
193 cushion (Fig. 4C vs. 4A and 4E; $P = 0.0134$), but not the OFT truncal cushion (Fig. 4D vs.
194 4B and 4F; $P = 0.1998$), compared to the littermate *Gata4*^{fl/+} embryos at E11.5. This result
195 demonstrate that *Gata4* is required for normal cell proliferation in OFT conal cushion
196 development. We assessed cell death by TUNEL staining and observed no differences
197 in either the conal or truncal cushion between *Gata4*^{fl/+}; *Gli1*^{Cre-ERT2/+} and the
198 *Gata4*^{fl/+} embryos (Fig. 4G - 4J). Together, these findings define a requirement
199 for *Gata4* in the proliferation but not in the survival of OFT conal cushion cells.

200 **Rescue of SHF proliferation by disruption of *Pten* does not rescue DORV in *Gata4*
201 mutant embryos**

202 Our previous study demonstrated that *Gata4* regulates the cell cycle progression in
203 posterior SHF cardiac precursors and that genetically targeted disruption of *Pten* rescued
204 the proliferation defects in SHF of the *Gata4* heterozygotes [57]. Hence, we examined
205 whether proliferation rescue in SHF, by *Pten* downregulation (TMX at E7.5 and E8.5),
206 could rescue DORV in Hh-receiving cell-specific *Gata4* heterozygotes. We observed that
207 decreased *Pten* dose caused only one DORV, but no ASD, in 20 embryos (Fig. 5A-C).
208 Consistent with our previous report, although the ASD in *Gli1*^{Cre-ERT2/+}; *Gata4*^{fl/+} embryos
209 was rescued by *Pten* downregulation (Fig. 5C vs. 5B, 1/20 in *Gli1*^{Cre-ERT2/+}; *Gata4*^{fl/+}; *Pten*^{fl/+}
210 vs. 14/29 in *Gli1*^{Cre-ERT2/+}; *Gata4*^{fl/+}, $P = 0.0013$), *Gli1*^{Cre-ERT2/+}; *Gata4*^{fl/+}; *Pten*^{fl/+} embryos still

211 displayed DORV with an incidence rate unchanged from *Gli1*^{Cre-ERT2/+}; *Gata4*^{f/+} embryos
212 (Fig. 5E vs. 5F, 12/29 vs. 6/20, Table 1, P = 0.5495). This data suggested to us that
213 correction of the SHF proliferation defects was not able to rescue the OFT misalignment
214 of the *Gata4* mutant embryos.

215 **Gata4 acts upstream of Hh signaling in OFT development.**

216 We have previously reported that *Gata4* acts upstream of Hh-signaling for atrial
217 septation [42]. The requirement of *Gata4* in *Hh*-receiving cells for OFT alignment
218 suggested that *Gata4* and *Hh* signaling may interact genetically in the SHF for OFT
219 development. We tested this hypothesis in the *Gata4* and *Smo* compound heterozygotes
220 (*Gata4*^{f/+}; *Smo*^{f/+}; *Gli1*^{Cre-ERT2/+}) versus littermate controls (*Gata4*^{f/+}; *Gli1*^{Cre-ERT2/+} or
221 *Smo*^{f/+}; *Gli1*^{Cre-ERT2/+}). Consistent OFT defects were observed in compound *Gata4*; *Smo*
222 embryos (*Gata4*^{f/+}; *Smo*^{f/+}; *Gli1*^{Cre-ERT2/+}) (5/9, Fig 6C - 6E) whereas no OFT defects were
223 observed in *Smo*^{f/+}; *Gli1*^{Cre-ERT2/+} embryos (0/7, Fig 6B and B'; P= 0.0337). The total
224 incidence of OFT defects occurred in the *Gata4*^{f/+}; *Smo*^{f/+}; *Gli1*^{Cre-ERT2/+} was not different
225 than in the *Gata4*^{f/+}; *Gli1*^{Cre-ERT2/+} embryos (Fig 6C-E, 5/9 vs. 4/6, P= 0.7326). However,
226 more severe range of OFT defects was observed in *Gata4*^{f/+}; *Smo*^{f/+}; *Gli1*^{Cre-ERT2/+}
227 embryos, including DORV (3 out of 5, Figs. 6C and C'), OA (1 out of 5, Figs. 6D and D')
228 and persistent truncus arteriosus (PTA) (1 out of 5, Figs. 6E and E'). PTA, caused by a
229 combined defect of alignment and separation, was only observed in
230 *Gata4*^{f/+}; *Smo*^{f/+}; *Gli1*^{Cre-ERT2/+}. This result suggests an interaction between *Gata4* and Hh-
231 signaling in OFT development.

232 We tested the hypothesis that *Gata4* acts upstream of Hh-signaling for OFT
233 development using a genetic epistasis study. We tested whether increased Hh-signaling

234 via a constitutively activated Smo mutant, *SmoM2* [58], could rescue the OFT
235 misalignment in *Gata4*-heterozygotes. DORV was observed in 28.6% of littermate
236 control *Gli1*^{Cre-ERT2/+};R26-*SmoM2*^{f/+}embryos (2/7) (Fig. 6G and G') and 58.3% of littermate
237 control *Gli1*^{Cre-ERT2/+};*Gata4*^{f/+}embryos at E14.5 (7/12) (Fig. 6H and H'). In contrast, none
238 of *Gata4*^{f/+};*Gli1*^{Cre-ERT2/+};R26-*SmoM2*^{f/+} embryos showed DORV (Fig. 6I and I'), indicating
239 significant rescue by *R26-SmoM2*^{f/+}, *Gli1*^{Cre-ERT2/+}(Fig.6I vs Fig. 6H, P = 0.0071, Table 1).
240 This results demonstrated rescue of DORV in *Gata4*-mutant embryos by constitutive Hh
241 signaling.

242 ***Gata4* is required for the contribution of Hh-receiving cells to the OFT.**

243 Hh signaling has been reported to regulate the migration of SHF Hh-receiving cells
244 toward the arterial pole of the heart [45]. We therefore hypothesized that *Gata4* is required
245 for the SHF Hh-receiving cells migration toward the developing OFT. We tested this
246 hypothesis using genetic inducible fate mapping (GIFM) [59]. The Hh-receiving lineage
247 cells were marked in *R26R*^{f/+};*Gli1*^{Cre-ERT2/+}embryos by TM administration at E7.5 and E8.5
248 and β -gal expression was evaluated at E10.5 in *Gata4* heterozygotes. The total number
249 of β -gal positive cells was obtained by counting those on each individual sections and
250 adding up all through the SHF and the OFT. We have previously reported decreased
251 number of Hh-receiving cells in the pSHF at E9.5 associated with developing defects of
252 DMP in the *Gata4*^{f/+};*R26R*^{f/+};*Gli1*^{Cre-ERT2/+}embryos [57]. We observed that there were also
253 significantly less Hh-receiving cells within the aSHF region (Fig. 7A vs. 7D and Fig. 7G,
254 334.0 \pm 1.4 vs. 186.7 \pm 4.9, P=0.009) of the *Gata4*^{f/+};*R26R*^{f/+};*Gli1*^{Cre-ERT2/+}embryos. The
255 cells of Hh-receiving lineage were observed in the developing OFT at this stage. By
256 counting the number of β -galactosidase-expressing cells in the proximal half (Fig. 7B vs.

257 7E and 7H, 49.7 ± 9.6 vs. 26.7 ± 6.7 , $P=0.097$) and the distal half of the OFT (Fig.7C vs.
258 7F and 7I, 91.7 ± 9.2 vs. 57.0 ± 1.4 , $P=0.0362$), we found that both of the regions of the
259 *Gata4* heterozygotes had less β -galactosidase-expressing cells than the littermate
260 controls (Figs. 7E and 7F).

261 To examine if *Gata4* haploinsufficiency influenced the SHF cell recruitment within
262 the proximal OFT, we analyzed the fate map of SHF lineage cells in the OFT of the *Gata4*
263 heterozygotes. Defined by *Mef2cAHF:Cre* expression: β -galactosidase-expressing cells,
264 the total number of the SHF lineage cells within the proximal half and the distal half of the
265 OFT were compared between the *Mef2cAHF:Cre;Gata4^{fl/+}*; *R24R^{fl/+}* and the
266 *Mef2cAHF:Cre;R24R^{fl/+}*embryos at E10. The number of SHF lineage cells populating the
267 proximal OFT of the *Mef2cAHF:Cre;Gata4^{+/−}*; *R24R^{fl/+}* embryos was significantly less
268 than that those in control *Mef2cAHF:Cre; R24R^{fl/+}* embryos (Fig. 7J vs. 7M); however,
269 this decrement was not observed in the distal OFT (Fig. 7K vs. 7N). The distribution
270 pattern of the SHF lineage was not different in the *Mef2cAHF:Cre;Gata4^{+/−}*; *R24R^{fl/+}* and
271 the *Mef2cAHF:Cre;R24R^{fl/+}*embryos (Figs. 7L vs. 7O). AS a control, we observed fewer
272 cells populating the developing dorsal mesocardium protrusion (DMP) in
273 *Mef2cAHF:Cre;Gata4^{+/−}*; *R24R^{fl/+}*(red arrow, Fig.7L vs. 7O), consistent with our previous
274 report that *Gata4* is required in the SHF for the DMP [42]. These results demonstrated
275 the requirement of *Gata4* for the SHF lineage cells populating in the developing OFT.

276

277

278 **Discussion**

279 The requirement of Gata4 for OFT development has been reported in mice and
280 human, and mouse Gata4 mutations cause DORV [22, 27, 40]. Here we demonstrate
281 that Gata4 is required in the SHF Hh-receiving cells for OFT alignment in the SHF. Our
282 previous study has demonstrated that Gata4 is required for Hh signaling in the SHF for
283 cell proliferation. However, the current study suggested that the cell proliferation defects
284 in the SHF caused by Gata4 mutation may not directly associate with the OFT
285 misalignment; instead, the migration defects of the SHF cells is. And the migration defects
286 were associated with disrupted Hh-signaling, because the OFT misalignment was
287 rescued by over-activating of Hh-signaling. In addition, our data suggested breaking down
288 the threshold of GATA including *Gata4* and *Gata6*, and Hh signaling tone might be
289 associated with the severity of OFT defects.

290 The SHF was initially described as a progenitor field for the cardiac OFT and a rich
291 literature has established the requirement of anterior SHF contributions for OFT
292 development [5, 10-19, 60-63]. More recently, the contribution of posterior SHF cardiac
293 progenitors to the OFT and the future subpulmonary myocardium has been reported,
294 however, the mechanistic requirement for this contribution is not well understood [45, 64-
295 66]. The cell lineage in which Gata4 is required for OFT development has not been
296 reported. Gata4 is expressed in both the aSHF and pSHF, although its expression is
297 much stronger in the pSHF than in the aSHF [57]. The decreased number of *Mef2C-*
298 *AHF::Cre* positive cells in the proximal OFT cushion of E10.5 *Gata4*^{-/+} embryos
299 demonstrated that Gata4 plays a role in adding the SHF progenitor cells to the developing
300 OFT. However, surprisingly, OFT defects were not observed in either aSHF-specific or
301 pSHF-specific Gata4 haploinsufficiency. Instead, we found that OFT defects severity

302 and incidence rate in embryos with *Gata4* haploinsufficiency in *Hh*-receiving cells were
303 identical to those in *Gata4*^{+/+} embryos. Because *Hh*-receiving cells are located throughout
304 the SHF, these observations suggest *Gata4* is required in both pSHF and aSHF
305 progenitor cells for OFT alignment.

306 We provided evidence that *Gata4* acts upstream of *Hh*-signaling in the SHF for OFT
307 development. The *Gata4*^{+/+} embryos have combined phenotypes of ASD and DORV [57].
308 We previously reported the *Gata4*-*Hh*-signaling regulation in atrial septation and identified
309 *Gli1* as the direct target of GATA4 [42]. Here, our data of less percentile of BrdU+ cells in
310 the conal cushion of the OFT at E11.5 of the *Gata4*^{fl/fl}; *Gli1*^{Cre-ERT2/+} embryos, suggesting
311 a role of *Gata4* in regulating the OFT cushion cell proliferation. In the posterior SHF,
312 *Gata4*-*Hh*-signaling controls cell cycle progression and thereby the proliferation of the
313 cardiac progenitors. Diminished *Gata4*-*Hh* signaling causes a failure of development of
314 the DMP, the anlage of the atrial septum, resulting in ASDs [57]. The effect of this pathway
315 on the cell cycle is balanced by *Pten* via transcriptional inhibition of Cyclin D4 and Cdk4
316 [20, 57], as DMP hypoplasia and SHF cell cycle defects are rescued by *Pten* knockdown
317 [57]. In the current study, *Pten* knockdown was unable to rescue DORV or OA defects in
318 *Gata4* heterozygous mutants. This observation suggests that correction of SHF cell
319 proliferation is not sufficient to support a normal OFT development in *Gata4* mutants, and
320 that *Gata4* plays a distinct role in the anterior SHF.

321 Endodermal *Hh* signaling is required for the survival of the pharyngeal endoderm,
322 which cell non-autonomously affects SHF survival and OFT lengthening [55]. In our study,
323 increased apoptosis was not observed in the SHF of *Gata4* heterozygote mutant embryos
324 [57]. However, fate mapping of the SHF using either *Mef2c::Cre* or the *Gli1Cre:ERT2*

325 disclosed less SHF-derived cells in the distal OFT in *Gata4* mutant embryos. Specifically,
326 there was decreased number of SHF Hh-receiving cells throughout the migration route
327 from the SHF into the OFT: from the dorsal mesocardium through the rostral splanchnic
328 mesoderm, past the distal OFT to the proximal OFT. Hh-receiving progenitors have been
329 found to migrate from the aSHF to populate the pulmonary trunk between E9.5 to E11.5
330 [45], suggesting that Hh-signaling is required for SHF cell migration. The observation that
331 DORV in *Gata4* mutant embryos can be rescued by constitutive Hh-signaling implies
332 correction of both the proliferation and the migration defects of the SHF cardiac
333 progenitors, not proliferation defects only. Overall, here we provide cellular, molecular
334 and genetic evidence that *Gata4*-Hh signaling hierarchy is required in OFT alignment,
335 with specific regulation of both proliferation and migration of SHF progenitors.

336 Although important *Gata4* transcriptional targets in the heart have been identified
337 [20, 26, 44], *Gata4*-dependent molecular pathways required for OFT development have
338 remained unknown. We previously identified *Gli1* as a downstream target of *Gata4* in the
339 posterior SHF for atrial septation [42]. In the current study we further demonstrated that
340 *Gata4* regulated Hh-signaling via transcriptional regulation through *Gli1* in the anterior
341 SHF for cell migration and OFT alignment. In addition, we provide evidence that *Gata6*
342 expression is negatively regulated by *Gata4* in the OFT. Enhanced *Gata6* expression in
343 *Gata4* mutants might illustrate a compensatory feedback loop, given that *Gata6* and
344 *Gata4* are redundant for cardiac myocyte differentiation [67, 68]. *Gata4/Gata6* compound
345 heterozygotes displayed persistent truncus arteriosus (PTA), a severe OFT defect caused
346 by combined alignment and OFT septation defects (40). Here we find that *Gata4/Smo*
347 compound heterozygotes show a similar phenotype. *Gata4* heterozygotes alone do not

348 display PTA, which might be due to the partial recovery of GATA function from enhanced
349 *Gata6* expression. Together with previous study [40], these data suggest a threshold of
350 *Gata4*, *Gata6*, and *Hh* signaling and that is required for OFT development. This suggests
351 that GATA TFs may be essential for the quantitative regulation of *Hh* signaling, and that
352 strongly diminished GATA function or diminished GATA and *Hh* signaling together may
353 cause worse OFT defects through regulation of OFT *Hh* signaling. Future studies will
354 focus on the quantitative relationship between GATA tone and *Hh* signaling tone and on
355 the *Gata4* dependent gene regulatory network (GRN) [69] for OFT development.

356

357

358 **Materials and methods**

359 **Mouse lines**

360 All mouse experiments were performed in a mixed B6/129/SvEv background. *Gata4*^{f/+},
361 *Gli1*^{CreERT2/+}, *Mef2cAHF::Cre*, *Tie2*^{Cre/+}, *Smo*^{f/+} mouse lines were kind gifts from Dr. Ivan
362 Moskowitz lab (University of Chicago, Chicago). *TnT*^{Cre/+} mouse line was from Dr. Yiping
363 Chen lab (Tulane University, New Orleans). *Nfat1c*^{Cre/+} mouse line was from Dr. Bin Zhou
364 lab (Albert Einstein College of Medicine, Bronx, NY). The *SmoM2*^{f/+}, *Osr1*^{Cre-ERT2/+} and
365 *Ella*^{cre/+} mouse lines were purchased from the Jackson Laboratory. Mouse experiments
366 were completed according to a protocol reviewed and approved by the Institutional Animal
367 Care and Use Committee of the Texas A&M University and the University of North
368 Dakota, in compliance with the USA Public Health Service Policy on Humane Care and
369 Use of Laboratory Animals.

370 **Tamoxifen administration and X-gal staining**

371 Tamoxifen (TM) -induced activation of *CreERT2* was accomplished by oral gavage with
372 two doses of 75 mg/kg TM at E7.5 and E8.5 [45, 46]. X-gal staining of embryos was
373 performed as described [45].

374 **BrdU incorporation and Immunohistochemistry Staining (IHC)**

375 Standard procedures were used for histology and IHC. IHC was performed using the
376 following antibodies: anti-Gata4 (Abcam), anti-Gata6 (Abcam). For BrdU incorporation,
377 pregnant mice were given 100mg BrdU per kg bodyweight at 10mg/mL concentration
378 solutions at E11.25 with two doses, 3 hours and 6 hours before sacrifice, respectively.
379 The BrdU staining was performed using a BrdU In-Situ detection kit (EMD Millipore). For

380 TUNNEL staining, an ApopTag plus peroxidase In-Situ apoptosis detection kit was used
381 (EMD Millipore).

382 **Micro-dissection of pSHF and RNA extraction**

383 To obtain the pSHF splanchnic mesoderm for use in quantitative realtime-PCR, E9.5
384 embryos were dissected as described before [47, 48]. The heart, aSHF, and pSHF were
385 collected separately in RNA-later, and then stored at -20°C until genotyping was
386 completed.

387 **Realtime-PCR**

388 Total RNA was extracted from the PSHF regions of mouse embryos hearts using RNeasy
389 Mini Kit (QIAGEN), according to the manufacturer's instructions. Two hundred ng of total
390 RNA was reverse transcribed using a SuperScript™ III Reverse Transcriptase kit from
391 Invitrogen. qPCR was performed using a POWER SYBER Green PCR mater mix from
392 Applied Biosystems. Results were analyzed using the delta-delta Ct method with *GAPDH*
393 as a normalization control [49].

394

395

396

397

398 **Acknowledgements**

399 We would specifically like to acknowledge the support of Dr. Boon Chew for the study.

400

402 **FIGURE LEGEND**

403 **Figure 1. Gata4 is strongly expressed in the developing heart, the OFT and the**
404 **pSHF.** Gata4 expression was detected in *wildtype* mouse embryos by IHC at (A) E9.5,
405 (B) E10.5 and (C) E11.5. Red arrows indicate anterior second heart field at E9.5 or E10.5
406 (A and B), and proximal outflow tract at E11.5 (C).

407 Magnificence: A: 40X; B and C: 100X

408 **Figure 2. Gata4 is required in Hh-receiving cells for OFT development.**

409 (A-G') Histology of Gata4 transgenic mouse embryo heart at E14.5. Statistics were
410 summarized in table 1. Histology of Gata4 transgenic mouse embryo heart at E13.5. . LV,
411 left ventricle; RV, right ventricle; ao, aorta artery, PT, pulmonary trunk. Magnificence: 40X
412 (H-K') Histology of Gata4 transgenic mouse embryo heart at E14.5. Histology of Gata4
413 transgenic mouse embryo heart at E13.5. LV, left ventricle; RV, right ventricle; ao, aorta
414 artery, PT, pulmonary trunk.

415 **Figure 3. Gata6 was overexpressed in the OFT and the SHF of the Gata4 mutant**
416 **embryos at E9.5.**

417 (A) IHC of the Gata6 in *Gata4^{fl/+}* and *Gata4^{fl/+}; Gli1^{Cre-ERT2/+}* embryos at E9.5. the
418 arrowhead indicated the NCCs-derived cells and the arrow indicates the splanchnic
419 mesoderm. Magnificence: 200X.

420 (B) Gata6 was measured by realtime-PCR in the micro-dissected SHF and the OFT
421 of the *Gata4^{fl/+}* and *Gata4^{fl/fl}; Gli1^{Cre-ERT2/+}* embryos at E9.5. *p<0.1, **p<0.05, n=3

422

423 **Figure 4. Gata4 regulates cell proliferation in conal OFT.**

424 (A-D) BrdU staining in conal OFT and truncal OFT in *Gata4*^{f/f}; *Gli1*^{Cre-ERT2/+} embryos and
425 control embryos at E10.5. Magnificence: 400X.

426 (E and F) Quantification of BrdU labelled cells. Data is presented as mean \pm SE, *p<0.05,
427 n=3, One-way ANOVA.

428 (G-J) TUNEL staining in both *Gata4*^{f/f}; *Gli1*^{Cre-ERT2/+} embryos and control embryos at
429 E10.5. Magnificence: 100X

430 **Figure 5. Genetically targeted ablation of Pten rescues atrioventricular septal
431 defect.**

432 (A-I) Histology of Gata4 transgenic mouse embryo heart at E13.5. . LV, left ventricle; RV,
433 right ventricle; ao, aorta artery, PT, pulmonary trunk. Magnificence: 40X.

434 **Figure 6. Gata4 acts upstream of Hh signaling pathway.**

435 (A-I') Histology of Gata4 transgenic mouse embryo heart at E14.5. LV, left ventricle; RV,
436 right ventricle; ao, aorta artery, PT, pulmonary trunk; CAT, common artery trunk.
437 Magnificence: 40X.

438 **Figure 7. Gata4 is required for the contribution of Hh-receiving cells to the OFT.**

439 (A-F) LacZ staining of Gli1-expressing cells in Gata4 transgenic mouse embryos at E10.5
440 focusing on aSHF (E and H), dOFT (F, I) and pOFT (G, J).

441 (G-I) Quantification of stained cells within selected regions. Data is presented as
442 mean \pm SE, *p<0.05, ** p<0.1, n=3, One-way ANOVA.

443 (J-O) LacZ staining of cells with Mef2cAHF:Cre expression in Gata4 transgenic mouse

444 embryos at E10.5. The red arrow indicated a developing DMP region.

445 Magnificence: A-D and A'-D' 40X; E-J: 100X; N-S: 100X

446

447

448

449 Reference

450 1. Jain R, Rentschler S, Epstein JA. Notch and cardiac outflow tract development. *Ann N Y Acad Sci.*
451 2010;1188:184-90. Epub 2010/03/06. doi: 10.1111/j.1749-6632.2009.05099.x. PubMed PMID:
452 20201902; PubMed Central PMCID: PMC2975619.

453 2. van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, et al. Birth
454 prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. *J Am Coll
455 Cardiol.* 2011;58(21):2241-7. Epub 2011/11/15. doi: 10.1016/j.jacc.2011.08.025. PubMed PMID:
456 22078432.

457 3. Dolk H, Loane MA, Abramsky L, de Walle H, Garne E. Birth prevalence of congenital heart
458 disease. *Epidemiology.* 2010;21(2):275-7; author reply 7. Epub 2010/02/18. doi:
459 10.1097/EDE.0b013e3181c2979b. PubMed PMID: 20160570.

460 4. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke
461 statistics--2014 update: a report from the American Heart Association. *Circulation.* 2014;129(3):e28-
462 e292. Epub 2013/12/20. doi: 10.1161/01.cir.0000441139.02102.80. PubMed PMID: 24352519.

463 5. Roux M, Laforest B, Capecchi M, Bertrand N, Zaffran S. Hoxb1 regulates proliferation and
464 differentiation of second heart field progenitors in pharyngeal mesoderm and genetically interacts with
465 Hoxa1 during cardiac outflow tract development. *Dev Biol.* 2015;406(2):247-58. doi:
466 10.1016/j.ydbio.2015.08.015. PubMed PMID: 26284287.

467 6. High FA, Jain R, Stoller JZ, Antonucci NB, Lu MM, Loomes KM, et al. Murine Jagged1/Notch
468 signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during
469 outflow tract development. *J Clin Invest.* 2009;119(7):1986-96. Epub 2009/06/11. doi:
470 10.1172/JCI38922. PubMed PMID: 19509466; PubMed Central PMCID: PMC2701882.

471 7. Liang S, Li HC, Wang YX, Wu SS, Cai YJ, Cui HL, et al. Pulmonary endoderm, second heart field
472 and the morphogenesis of distal outflow tract in mouse embryonic heart. *Dev Growth Differ.*
473 2014;56(4):276-92. Epub 2014/04/05. doi: 10.1111/dgd.12129. PubMed PMID: 24697670.

474 8. Rochais F, Dandonneau M, Mesbah K, Jarry T, Mattei MG, Kelly RG. *Hes1* is expressed in the
475 second heart field and is required for outflow tract development. *PLoS One.* 2009;4(7):e6267. Epub
476 2009/07/18. doi: 10.1371/journal.pone.0006267. PubMed PMID: 19609448; PubMed Central PMCID:
477 PMCPMC2707624.

478 9. Yang YP, Li HR, Cao XM, Wang QX, Qiao CJ, Ya J. Second heart field and the development of the
479 outflow tract in human embryonic heart. *Dev Growth Differ.* 2013;55(3):359-67. Epub 2013/03/16. doi:
480 10.1111/dgd.12050. PubMed PMID: 23488909.

481 10. Neeb Z, Lajiness JD, Bolanis E, Conway SJ. Cardiac outflow tract anomalies. *Wiley Interdiscip Rev*
482 *Dev Biol.* 2013;2(4):499-530. Epub 2013/09/10. doi: 10.1002/wdev.98. PubMed PMID: 24014420;
483 PubMed Central PMCID: PMC4021394.

484 11. Keyte A, Hutson MR. The neural crest in cardiac congenital anomalies. *Differentiation.*
485 2012;84(1):25-40. Epub 2012/05/19. doi: 10.1016/j.diff.2012.04.005. PubMed PMID: 22595346;
486 PubMed Central PMCID: PMC3389200.

487 12. Barnes RM, Harris IS, Jaehnig EJ, Sauls K, Sinha T, Rojas A, et al. *MEF2C* regulates outflow tract
488 alignment and transcriptional control of *Tdgf1*. *Development.* 2016;143(5):774-9. Epub 2016/01/27. doi:
489 10.1242/dev.126383. PubMed PMID: 26811383; PubMed Central PMCID: PMCPMC4813332.

490 13. Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, et al. *Isl1* identifies a cardiac progenitor
491 population that proliferates prior to differentiation and contributes a majority of cells to the heart. *Dev*
492 *Cell.* 2003;5(6):877-89. Epub 2003/12/12. PubMed PMID: 14667410.

493 14. Lin Q, Lu J, Yanagisawa H, Webb R, Lyons GE, Richardson JA, et al. Requirement of the MADS-box
494 transcription factor MEF2C for vascular development. *Development*. 1998;125(22):4565-74. Epub
495 1998/10/21. PubMed PMID: 9778514.

496 15. Bi W, Drake CJ, Schwarz JJ. The transcription factor MEF2C-null mouse exhibits complex vascular
497 malformations and reduced cardiac expression of angiopoietin 1 and VEGF. *Dev Biol*. 1999;211(2):255-
498 67. Epub 1999/07/09. doi: 10.1006/dbio.1999.9307. PubMed PMID: 10395786.

499 16. Milgrom-Hoffman M, Harrelson Z, Ferrara N, Zelzer E, Evans SM, Tzahor E. The heart
500 endocardium is derived from vascular endothelial progenitors. *Development*. 2011;138(21):4777-87.
501 Epub 2011/10/13. doi: 10.1242/dev.061192. PubMed PMID: 21989917; PubMed Central PMCID:
502 PMC3190386.

503 17. von Both I, Silvestri C, Erdemir T, Lickert H, Walls JR, Henkelman RM, et al. Foxh1 is essential for
504 development of the anterior heart field. *Dev Cell*. 2004;7(3):331-45. Epub 2004/09/15. doi:
505 10.1016/j.devcel.2004.07.023. PubMed PMID: 15363409.

506 18. Seo S, Kume T. Forkhead transcription factors, Foxc1 and Foxc2, are required for the
507 morphogenesis of the cardiac outflow tract. *Dev Biol*. 2006;296(2):421-36. Epub 2006/07/15. doi:
508 10.1016/j.ydbio.2006.06.012. PubMed PMID: 16839542.

509 19. Li P, Pashmforoush M, Sucov HM. Retinoic acid regulates differentiation of the secondary heart
510 field and TGFbeta-mediated outflow tract septation. *Dev Cell*. 2010;18(3):480-5. Epub 2010/03/17. doi:
511 10.1016/j.devcel.2009.12.019. PubMed PMID: 20230754; PubMed Central PMCID: PMC2841063.

512 20. Rojas A, Kong SW, Agarwal P, Gilliss B, Pu WT, Black BL. GATA4 is a direct transcriptional
513 activator of cyclin D2 and Cdk4 and is required for cardiomyocyte proliferation in anterior heart field-
514 derived myocardium. *Mol Cell Biol*. 2008;28(17):5420-31. Epub 2008/07/02. doi: 10.1128/MCB.00717-
515 08. PubMed PMID: 18591257; PubMed Central PMCID: PMC2519727.

516 21. Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, et al. GATA4 mutations cause
517 human congenital heart defects and reveal an interaction with TBX5. *Nature*. 2003;424(6947):443-7.
518 Epub 2003/07/08. doi: 10.1038/nature01827. PubMed PMID: 12845333.

519 22. Maitra M, Schluterman MK, Nichols HA, Richardson JA, Lo CW, Srivastava D, et al. Interaction of
520 Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. *Dev Biol*. 2009;326(2):368-77.
521 Epub 2008/12/17. doi: 10.1016/j.ydbio.2008.11.004. PubMed PMID: 19084512; PubMed Central PMCID:
522 PMC2651674.

523 23. Misra C, Chang SW, Basu M, Huang N, Garg V. Disruption of myocardial Gata4 and Tbx5 results
524 in defects in cardiomyocyte proliferation and atrioventricular septation. *Hum Mol Genet*. 2014. Epub
525 2014/05/27. doi: 10.1093/hmg/ddu215. PubMed PMID: 24858909.

526 24. Misra C, Sachan N, McNally CR, Koenig SN, Nichols HA, Guggilam A, et al. Congenital heart
527 disease-causing Gata4 mutation displays functional deficits in vivo. *PLoS Genet*. 2012;8(5):e1002690.
528 Epub 2012/05/17. doi: 10.1371/journal.pgen.1002690. PubMed PMID: 22589735; PubMed Central
529 PMCID: PMC3349729.

530 25. Rajagopal SK, Ma Q, Obler D, Shen J, Manichaikul A, Tomita-Mitchell A, et al. Spectrum of heart
531 disease associated with murine and human GATA4 mutation. *J Mol Cell Cardiol*. 2007;43(6):677-85. Epub
532 2007/07/24. doi: 10.1016/j.yjmcc.2007.06.004. PubMed PMID: 17643447; PubMed Central PMCID:
533 PMC2573470.

534 26. Dodou E, Verzi MP, Anderson JP, Xu SM, Black BL. Mef2c is a direct transcriptional target of ISL1
535 and GATA factors in the anterior heart field during mouse embryonic development. *Development*.
536 2004;131(16):3931-42. Epub 2004/07/16. doi: 10.1242/dev.01256. PubMed PMID: 15253934.

537 27. Pu WT, Ishiwata T, Juraszek AL, Ma Q, Izumo S. GATA4 is a dosage-sensitive regulator of cardiac
538 morphogenesis. *Dev Biol*. 2004;275(1):235-44. Epub 2004/10/07. doi: 10.1016/j.ydbio.2004.08.008.
539 PubMed PMID: 15464586.

540 28. Zeisberg EM, Ma Q, Juraszek AL, Moses K, Schwartz RJ, Izumo S, et al. Morphogenesis of the
541 right ventricle requires myocardial expression of Gata4. *J Clin Invest.* 2005;115(6):1522-31. Epub
542 2005/05/20. doi: 10.1172/JCI23769. PubMed PMID: 15902305; PubMed Central PMCID: PMC1090473.

543 29. Bisping E, Ikeda S, Kong SW, Tarnavski O, Bodyak N, McMullen JR, et al. Gata4 is required for
544 maintenance of postnatal cardiac function and protection from pressure overload-induced heart failure.
545 *Proc Natl Acad Sci U S A.* 2006;103(39):14471-6. Epub 2006/09/20. doi: 10.1073/pnas.0602543103.
546 PubMed PMID: 16983087; PubMed Central PMCID: PMC1636702.

547 30. Rivera-Feliciano J, Lee KH, Kong SW, Rajagopal S, Ma Q, Springer Z, et al. Development of heart
548 valves requires Gata4 expression in endothelial-derived cells. *Development.* 2006;133(18):3607-18.
549 Epub 2006/08/18. doi: 10.1242/dev.02519. PubMed PMID: 16914500; PubMed Central PMCID:
550 PMC2735081.

551 31. Kobayashi S, Lackey T, Huang Y, Bisping E, Pu WT, Boxer LM, et al. Transcription factor gata4
552 regulates cardiac BCL2 gene expression in vitro and in vivo. *Faseb J.* 2006;20(6):800-2. Epub 2006/02/14.
553 doi: 10.1096/fj.05-5426fje. PubMed PMID: 16469847.

554 32. Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, et al. GATA4 transcription
555 factor is required for ventral morphogenesis and heart tube formation. *Genes Dev.* 1997;11(8):1048-60.
556 Epub 1997/04/15. PubMed PMID: 9136932.

557 33. Ip HS, Wilson DB, Heikinheimo M, Leiden JM, Parmacek MS. The GATA-4 transcription factor
558 transactivates the cardiac-specific troponin C promoter-enhancer in non-muscle cells. *Adv Exp Med Biol.*
559 1995;382:117-24. Epub 1995/01/01. PubMed PMID: 8540389.

560 34. Ip HS, Wilson DB, Heikinheimo M, Tang Z, Ting CN, Simon MC, et al. The GATA-4 transcription
561 factor transactivates the cardiac muscle-specific troponin C promoter-enhancer in nonmuscle cells. *Mol
562 Cell Biol.* 1994;14(11):7517-26. Epub 1994/11/01. PubMed PMID: 7935467; PubMed Central PMCID:
563 PMC359288.

564 35. Rajagopal SK, Ma Q, Obler D, Shen J, Manichaikul A, Tomita-Mitchell A, et al. Spectrum of heart
565 disease associated with murine and human GATA4 mutation. *J Mol Cell Cardiol.* 2007;43(6):677-85. Epub
566 2007/07/24. doi: 10.1016/j.yjmcc.2007.06.004. PubMed PMID: 17643447; PubMed Central PMCID:
567 PMCPMC2573470.

568 36. Reamon-Buettner SM, Borlak J. GATA4 zinc finger mutations as a molecular rationale for
569 septation defects of the human heart. *J Med Genet.* 2005;42(5):e32. Epub 2005/05/03. doi:
570 10.1136/jmg.2004.025395. PubMed PMID: 15863664; PubMed Central PMCID: PMCPMC1736044.

571 37. Nemer G, Fadlalah F, Usta J, Nemer M, Dbaibo G, Obeid M, et al. A novel mutation in the GATA4
572 gene in patients with Tetralogy of Fallot. *Hum Mutat.* 2006;27(3):293-4. Epub 2006/02/14. doi:
573 10.1002/humu.9410. PubMed PMID: 16470721.

574 38. Yang YQ, Gharibeh L, Li RG, Xin YF, Wang J, Liu ZM, et al. GATA4 loss-of-function mutations
575 underlie familial tetralogy of fallot. *Hum Mutat.* 2013;34(12):1662-71. Epub 2013/09/04. doi:
576 10.1002/humu.22434. PubMed PMID: 24000169.

577 39. Zhang W, Li X, Shen A, Jiao W, Guan X, Li Z. GATA4 mutations in 486 Chinese patients with
578 congenital heart disease. *Eur J Med Genet.* 2008;51(6):527-35. Epub 2008/08/02. doi:
579 10.1016/j.ejmg.2008.06.005. PubMed PMID: 18672102.

580 40. Xin M, Davis CA, Molkentin JD, Lien CL, Duncan SA, Richardson JA, et al. A threshold of GATA4
581 and GATA6 expression is required for cardiovascular development. *Proc Natl Acad Sci U S A.*
582 2006;103(30):11189-94. Epub 2006/07/19. doi: 10.1073/pnas.0604604103. PubMed PMID: 16847256;
583 PubMed Central PMCID: PMCPMC1544063.

584 41. Moskowitz IP, Wang J, Peterson MA, Pu WT, Mackinnon AC, Oxburgh L, et al. Transcription
585 factor genes Smad4 and Gata4 cooperatively regulate cardiac valve development. [corrected]. *Proc Natl
586 Acad Sci U S A.* 2011;108(10):4006-11. Epub 2011/02/19. doi: 10.1073/pnas.1019025108. PubMed
587 PMID: 21330551; PubMed Central PMCID: PMC3053967.

588 42. Zhou L, Liu J, Xiang M, Olson P, Guzzetta A, Zhang K, et al. Gata4 potentiates second heart field
589 proliferation and Hedgehog signaling for cardiac septation. *Proc Natl Acad Sci U S A.* 2017;114(8):E1422-
590 E31. Epub 2017/02/09. doi: 10.1073/pnas.1605137114. PubMed PMID: 28167794; PubMed Central
591 PMCID: PMCPMC5338429.

592 43. Yamak A, Latinkic BV, Dali R, Temsah R, Nemer M. Cyclin D2 is a GATA4 cofactor in
593 cardiogenesis. *Proc Natl Acad Sci U S A.* 2014;111(4):1415-20. Epub 2014/01/30. doi:
594 10.1073/pnas.1312993111. PubMed PMID: 24474767; PubMed Central PMCID: PMC3910654.

595 44. Morin S, Charron F, Robitaille L, Nemer M. GATA-dependent recruitment of MEF2 proteins to
596 target promoters. *Embo J.* 2000;19(9):2046-55. Epub 2000/05/03. doi: 10.1093/emboj/19.9.2046.
597 PubMed PMID: 10790371; PubMed Central PMCID: PMC305697.

598 45. Hoffmann AD, Peterson MA, Friedland-Little JM, Anderson SA, Moskowitz IP. sonic hedgehog is
599 required in pulmonary endoderm for atrial septation. *Development.* 2009;136(10):1761-70. Epub
600 2009/04/17. doi: 10.1242/dev.034157. PubMed PMID: 19369393; PubMed Central PMCID:
601 PMCPMC2673765.

602 46. Zhou L, Liu J, Olson P, Zhang K, Wynne J, Xie L. Tbx5 and Osr1 interact to regulate posterior
603 second heart field cell cycle progression for cardiac septation. *J Mol Cell Cardiol.* 2015;85:1-12. doi:
604 10.1016/j.yjmcc.2015.05.005. PubMed PMID: 25986147; PubMed Central PMCID: PMCPMC4530064.

605 47. Xie L, Hoffmann AD, Burnicka-Turek O, Friedland-Little JM, Zhang K, Moskowitz IP. Tbx5-
606 hedgehog molecular networks are essential in the second heart field for atrial septation. *Dev Cell.*
607 2012;23(2):280-91. Epub 2012/08/18. doi: 10.1016/j.devcel.2012.06.006. PubMed PMID: 22898775.

608 48. Zhang KK, Xiang M, Zhou L, Liu J, Curry N, Heine Suner D, et al. Gene network and familial
609 analyses uncover a gene network involving Tbx5/Osr1/Pcsk6 interaction in the second heart field for
610 atrial septation. *Hum Mol Genet.* 2016;25(6):1140-51. doi: 10.1093/hmg/ddv636. PubMed PMID:
611 26744331; PubMed Central PMCID: PMCPMC4764195.

612 49. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. *Nat*
613 *Protoc.* 2008;3(6):1101-8. Epub 2008/06/13. PubMed PMID: 18546601.

614 50. Molkentin JD, Lin Q, Duncan SA, Olson EN. Requirement of the transcription factor GATA4 for
615 heart tube formation and ventral morphogenesis. *Genes Dev.* 1997;11(8):1061-72. Epub 1997/04/15.
616 PubMed PMID: 9136933.

617 51. Lakso M, Pichel JG, Gorman JR, Sauer B, Okamoto Y, Lee E, et al. Efficient in vivo manipulation of
618 mouse genomic sequences at the zygote stage. *Proc Natl Acad Sci U S A.* 1996;93(12):5860-5. Epub
619 1996/06/11. PubMed PMID: 8650183; PubMed Central PMCID: PMC39152.

620 52. Jiao K, Kulessa H, Tompkins K, Zhou Y, Batts L, Baldwin HS, et al. An essential role of Bmp4 in the
621 atrioventricular septation of the mouse heart. *Genes Dev.* 2003;17(19):2362-7. Epub 2003/09/17. doi:
622 10.1101/gad.1124803

623 1124803 [pii]. PubMed PMID: 12975322.

624 53. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M. Tie2-Cre
625 transgenic mice: a new model for endothelial cell-lineage analysis in vivo. *Dev Biol.* 2001;230(2):230-42.
626 Epub 2001/02/13. doi: 10.1006/dbio.2000.0106

627 S0012160600901064 [pii]. PubMed PMID: 11161575.

628 54. Goddeeris MM, Rho S, Petiet A, Davenport CL, Johnson GA, Meyers EN, et al. Intracardiac
629 septation requires hedgehog-dependent cellular contributions from outside the heart. *Development.*
630 2008;135(10):1887-95. Epub 2008/04/29. doi: 10.1242/dev.016147. PubMed PMID: 18441277; PubMed
631 Central PMCID: PMC2746050.

632 55. Goddeeris MM, Schwartz R, Klingensmith J, Meyers EN. Independent requirements for
633 Hedgehog signaling by both the anterior heart field and neural crest cells for outflow tract development.
634 *Development.* 2007;134(8):1593-604. Epub 2007/03/09. doi: 10.1242/dev.02824. PubMed PMID:
635 17344228.

636 56. Dyer LA, Kirby ML. Sonic hedgehog maintains proliferation in secondary heart field progenitors
637 and is required for normal arterial pole formation. *Dev Biol.* 2009;330(2):305-17. doi:
638 10.1016/j.ydbio.2009.03.028. PubMed PMID: 19361493; PubMed Central PMCID: PMCPMC2810612.

639 57. Zhou L, Liu J, Xiang M, Olson P, Guzzetta A, Zhang K, et al. Gata4 potentiates second heart field
640 proliferation and Hedgehog signaling for cardiac septation. *Proc Natl Acad Sci U S A.* 2017. doi:
641 10.1073/pnas.1605137114. PubMed PMID: 28167794.

642 58. Mao J, Ligon KL, Rakhlis EY, Thayer SP, Bronson RT, Rowitch D, et al. A novel somatic mouse
643 model to survey tumorigenic potential applied to the Hedgehog pathway. *Cancer Res.*
644 2006;66(20):10171-8. Epub 2006/10/19. doi: 10.1158/0008-5472.CAN-06-0657. PubMed PMID:
645 17047082.

646 59. Joyner AL, Zervas M. Genetic inducible fate mapping in mouse: establishing genetic lineages and
647 defining genetic neuroanatomy in the nervous system. *Dev Dyn.* 2006;235(9):2376-85. doi:
648 10.1002/dvdy.20884. PubMed PMID: 16871622.

649 60. Leung C, Liu Y, Lu X, Kim M, Drysdale TA, Feng Q. Rac1 Signaling Is Required for Anterior Second
650 Heart Field Cellular Organization and Cardiac Outflow Tract Development. *J Am Heart Assoc.* 2015;5(1).
651 Epub 2016/01/02. doi: 10.1161/JAHA.115.002508. PubMed PMID: 26722124; PubMed Central PMCID:
652 PMCPMC4859369.

653 61. Sinha T, Li D, Theveniau-Ruissy M, Hutson MR, Kelly RG, Wang J. Loss of Wnt5a disrupts second
654 heart field cell deployment and may contribute to OFT malformations in DiGeorge syndrome. *Hum Mol
655 Genet.* 2015;24(6):1704-16. Epub 2014/11/21. doi: 10.1093/hmg/ddu584. PubMed PMID: 25410658;
656 PubMed Central PMCID: PMCPMC4381755.

657 62. Chen L, Fulcoli FG, Ferrentino R, Martucciello S, Illingworth EA, Baldini A. Transcriptional control
658 in cardiac progenitors: Tbx1 interacts with the BAF chromatin remodeling complex and regulates Wnt5a.

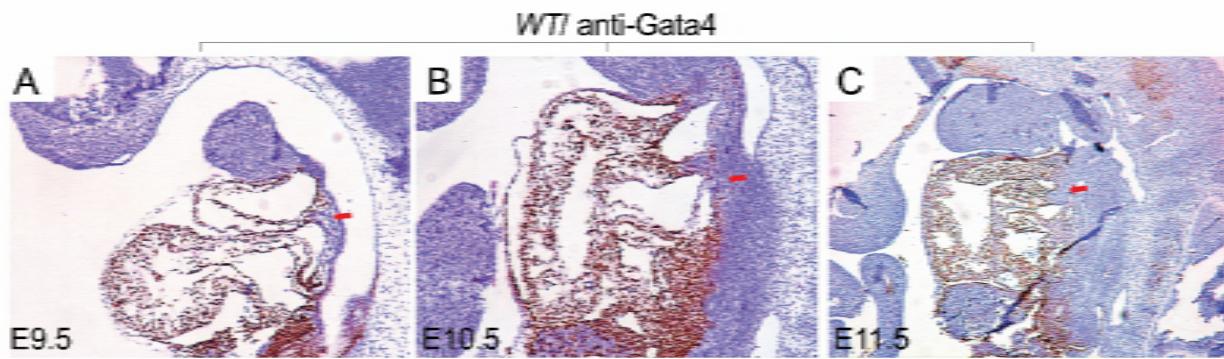
659 PLoS Genet. 2012;8(3):e1002571. Epub 2012/03/23. doi: 10.1371/journal.pgen.1002571. PubMed PMID: 22438823; PubMed Central PMCID: PMCPMC3305383.

660 63. Li P, Pashmforoush M, Sucov HM. Retinoic acid regulates differentiation of the secondary heart field and TGFbeta-mediated outflow tract septation. Dev Cell. 2010;18(3):480-5. Epub 2010/03/17. doi: 10.1016/j.devcel.2009.12.019. PubMed PMID: 20230754; PubMed Central PMCID: PMCPMC2841063.

661 64. Bertrand N, Roux M, Ryckebusch L, Niederreither K, Dolle P, Moon A, et al. Hox genes define 662 distinct progenitor sub-domains within the second heart field. Dev Biol. 2011;353(2):266-74. Epub 663 2011/03/10. doi: 10.1016/j.ydbio.2011.02.029. PubMed PMID: 21385575; PubMed Central PMCID: 664 PMCPMC3115524.

665 65. Dominguez JN, Meilhac SM, Bland YS, Buckingham ME, Brown NA. Asymmetric fate of the 666 posterior part of the second heart field results in unexpected left/right contributions to both poles of 667 the heart. Circ Res. 2012;111(10):1323-35. Epub 2012/09/08. doi: 10.1161/CIRCRESAHA.112.271247. 668 PubMed PMID: 22955731.

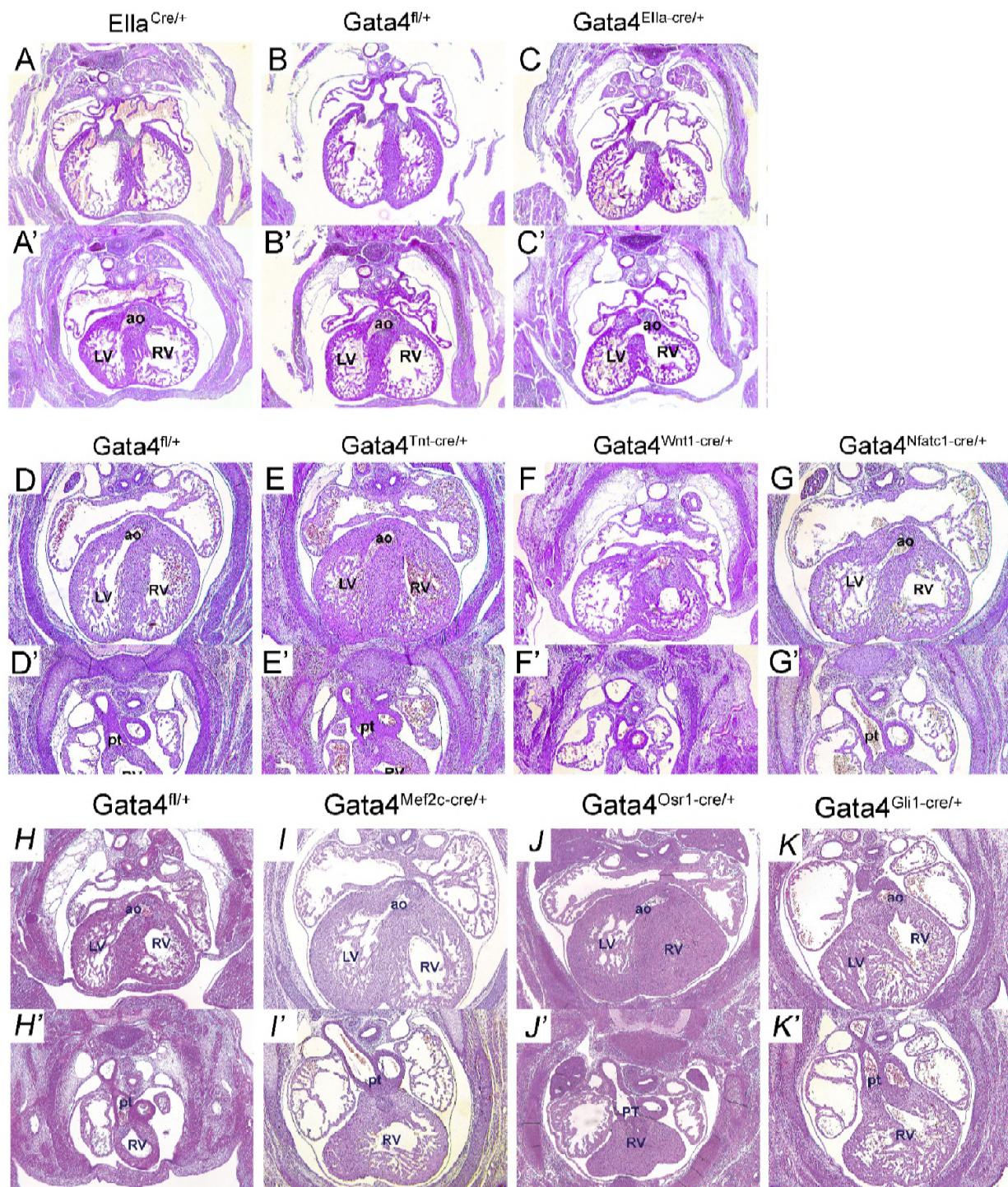
669 66. Lescroart F, Mohun T, Meilhac SM, Bennett M, Buckingham M. Lineage tree for the venous pole 670 of the heart: clonal analysis clarifies controversial genealogy based on genetic tracing. Circ Res. 671 2012;111(10):1313-22. Epub 2012/08/03. doi: 10.1161/CIRCRESAHA.112.271064. PubMed PMID: 672 22855565.


673 67. Borok MJ, Papaioannou VE, Sussel L. Unique functions of Gata4 in mouse liver induction and 674 heart development. Dev Biol. 2016;410(2):213-22. Epub 2015/12/22. doi: 10.1016/j.ydbio.2015.12.007. 675 PubMed PMID: 26687508; PubMed Central PMCID: PMCPMC4758879.

676 68. Zhao R, Watt AJ, Battle MA, Li J, Bondow BJ, Duncan SA. Loss of both GATA4 and GATA6 blocks 677 cardiac myocyte differentiation and results in acardia in mice. Dev Biol. 2008;317(2):614-9. Epub 678 2008/04/11. doi: 10.1016/j.ydbio.2008.03.013. PubMed PMID: 18400219; PubMed Central PMCID: 679 PMCPMC2423416.

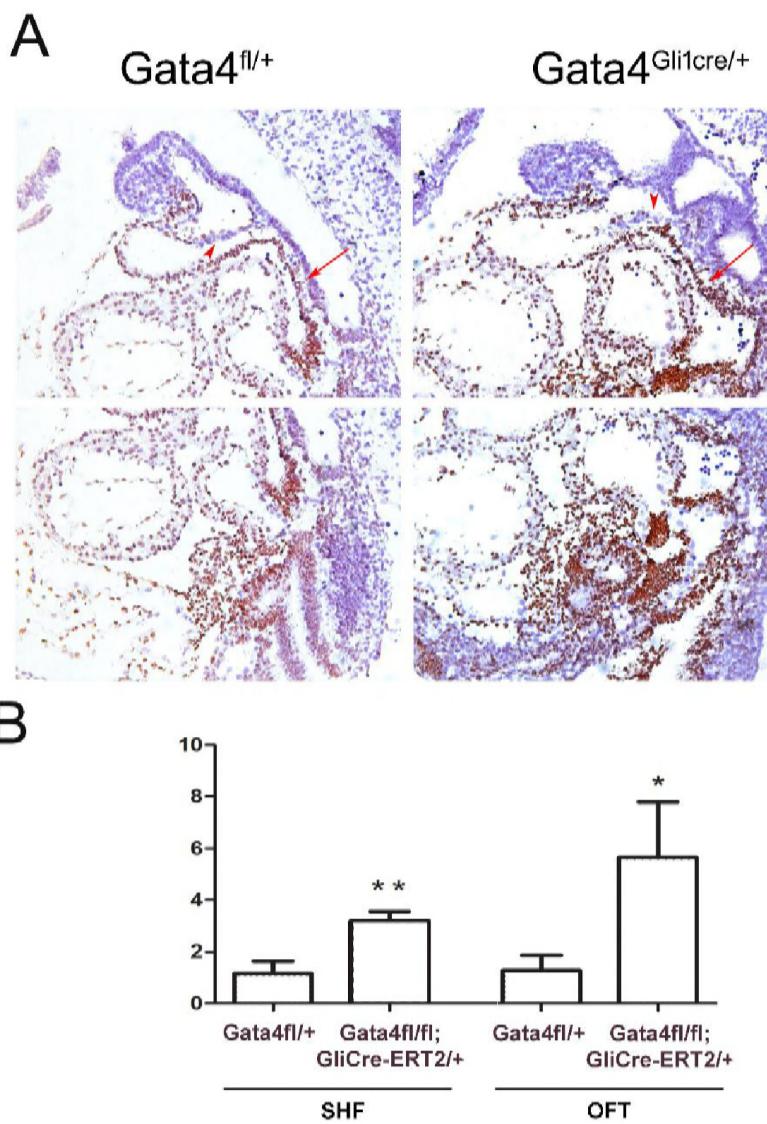
683 69. Davidson EH, Erwin DH. Gene regulatory networks and the evolution of animal body plans.
684 Science. 2006;311(5762):796-800. Epub 2006/02/14. doi: 10.1126/science.1113832. PubMed PMID:
685 16469913.

686


688 Figure 1.

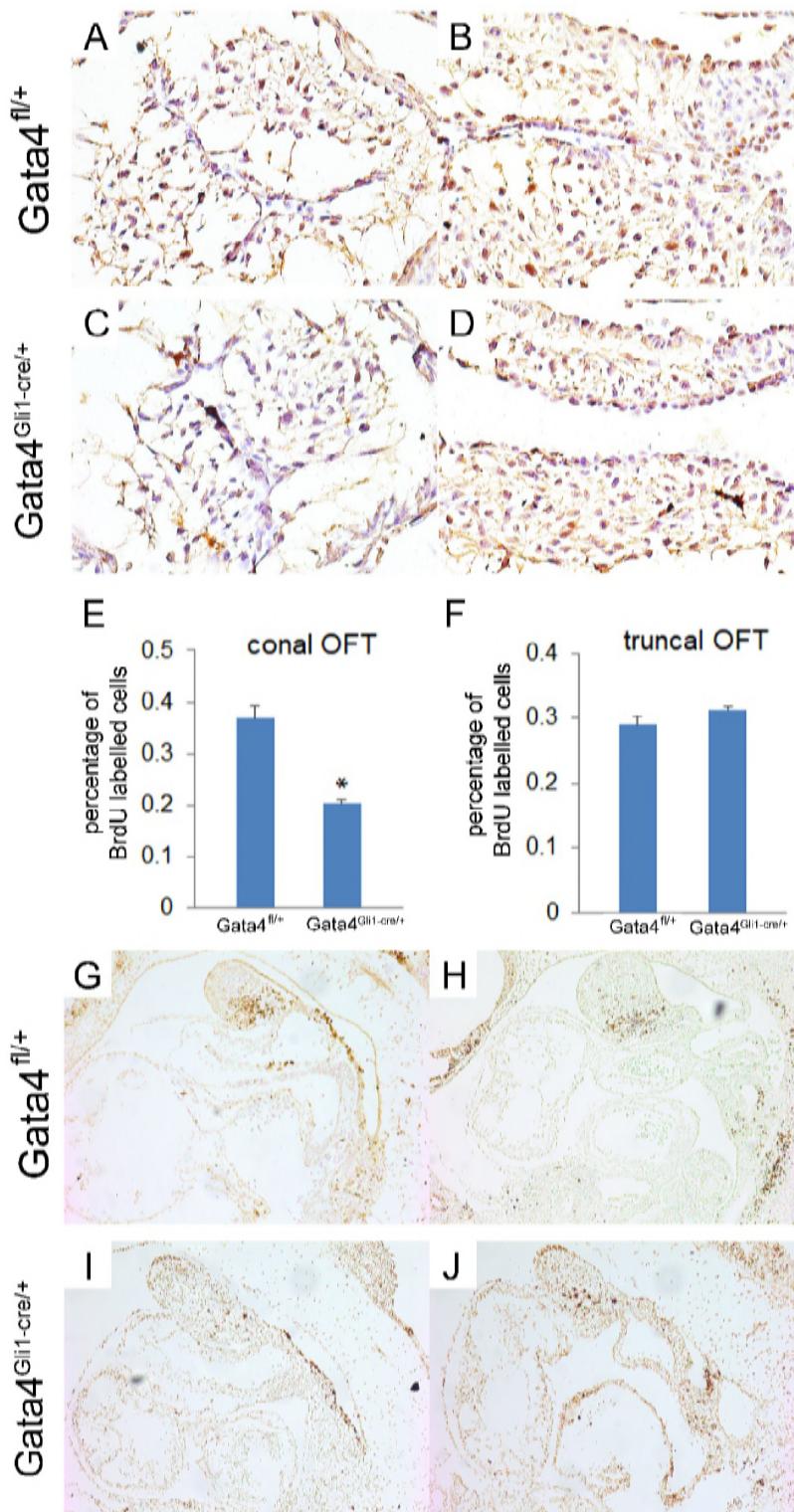
689

690


691 Figure 2.

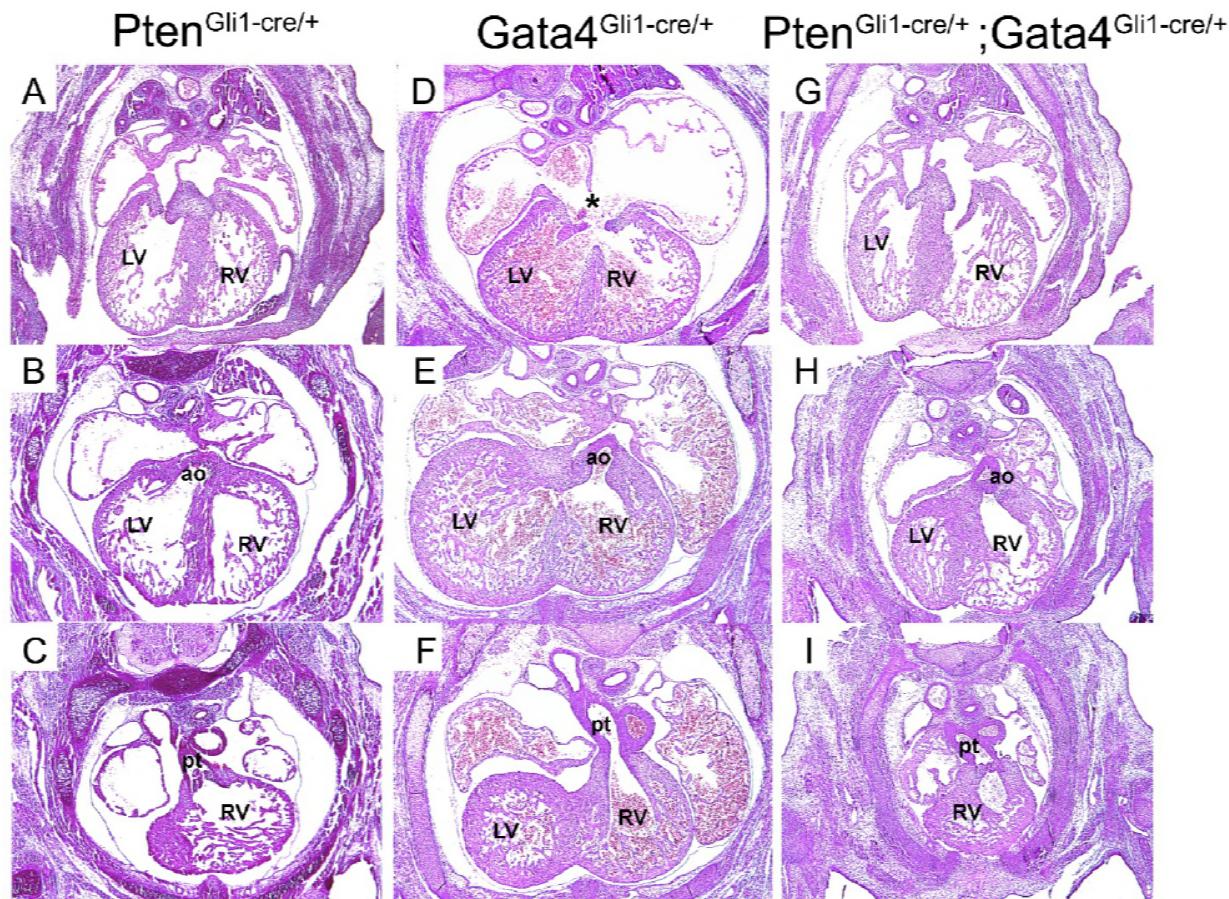
692

693


694 Figure 3.

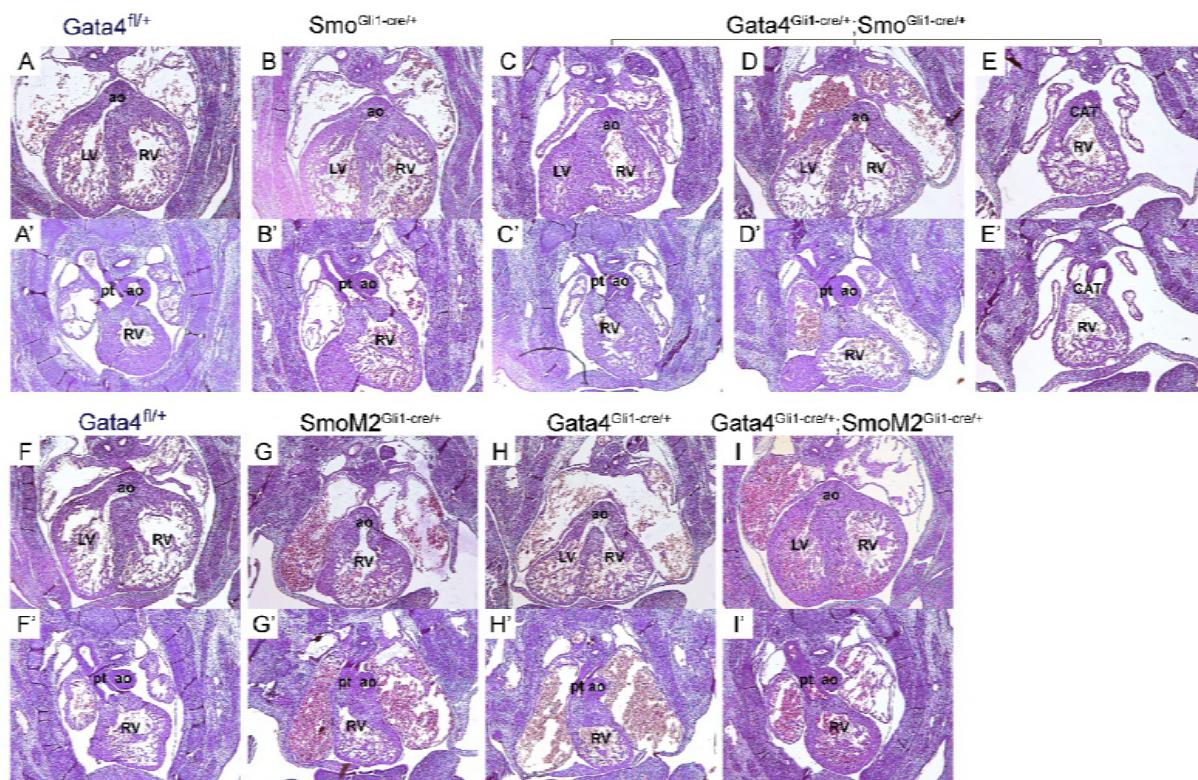
695

696


697 Figure 4.

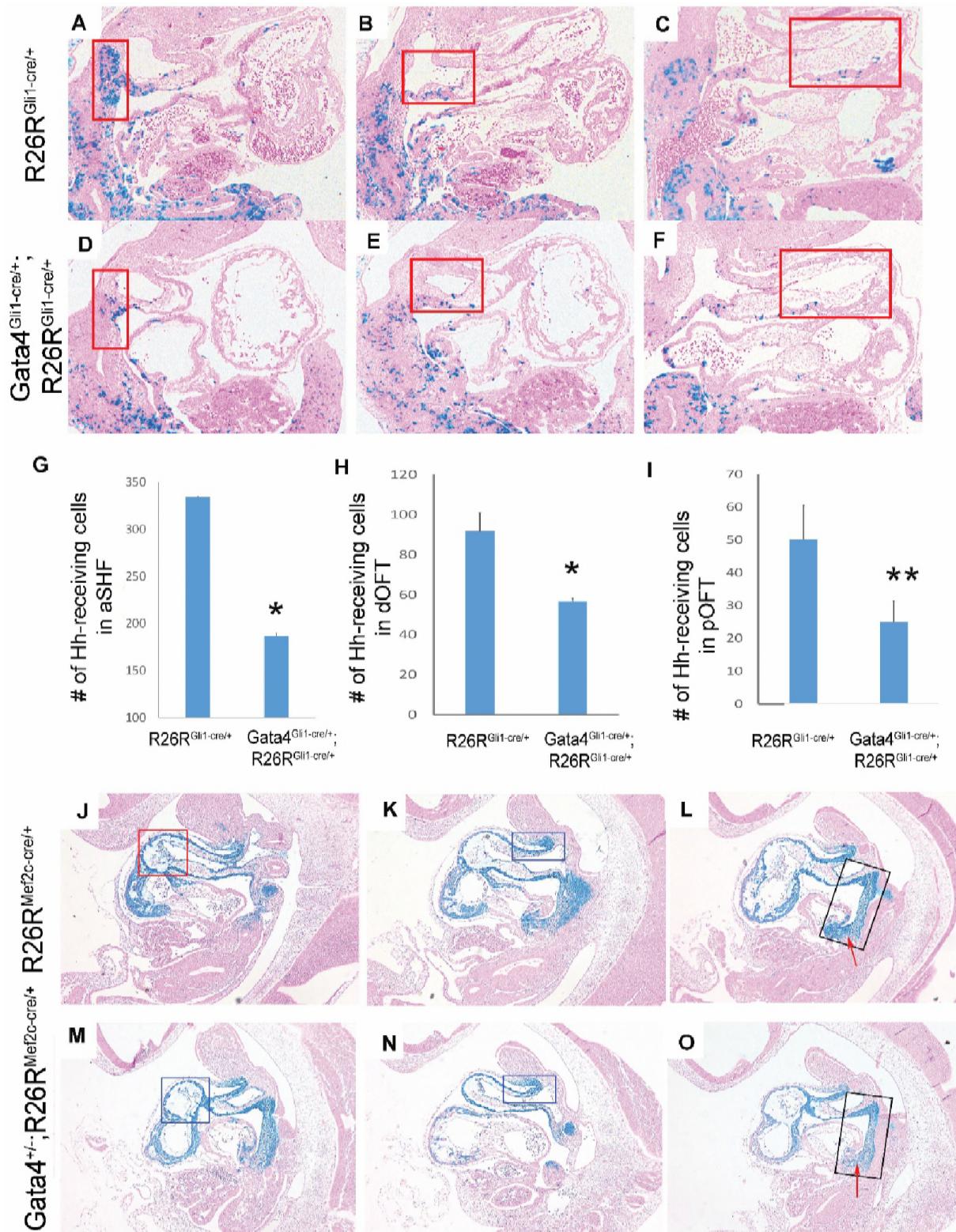
698

699


700 Figure 5.

701

702


703 Figure 6.

704

705

706 Figure 7.

707

709 **Table 1. Incidence of OFT defect in Gata4 mutant embryos**

Genotype	OFT defect	Total	Type	vs. control	p value
Conditional Gata4 mutant embryos					
<i>Gata4^{fl/fl};Ella^{cre/+}</i>	11	18	DORV, OA	<i>Gata4^{fl/+} (0/13)</i>	0.0004
<i>Gata4^{fl/+};Tnt^{cre/+}</i>	0	12	—	<i>Gata4^{fl/+} (0/9)</i>	1
<i>Gata4^{fl/+};Mef2c^{cre/+}</i>	1	22	—	<i>Gata4^{fl/+} (0/15)</i>	1
<i>Gata4^{fl/fl};Mef2c^{cre/+}</i>	13	13	DORV, OA	<i>Gata4^{fl/+};Mef2c^{cre/+} (1/7)</i>	0.0002
<i>Gata4^{fl/+};Wnt1^{cre/+}</i>	0	24	—	<i>Gata4^{fl/+} (0/16)</i>	1
<i>Gata4^{fl/+};Osr1^{cre/+}</i>	0	5	—	<i>Gata4^{fl/+} (0/6)</i>	1
<i>Gata4^{fl/+};Nfatc1^{cre/+}</i>	1	15	DORV	<i>Gata4^{fl/+} (0/10)</i>	1
<i>Gata4^{fl/+};Gli1^{cre/+} (TMX E7.5+8.5)</i>	8	12	DORV, OA	<i>Gata4^{fl/+} (0/15)</i>	0.0002
<i>Gata4^{fl/+};Gli1^{cre/+} (TMX E8.5+9.5)</i>	0	9	—	<i>Gata4^{fl/+} (0/9)</i>	1
<i>Tbx5</i> - <i>Gata4</i> compound mutant embryos					
<i>Gata4^{fl/+};Tbx5^{fl/+}</i>	7	10	DORV, OA	<i>Tbx5^{fl/+} (1/15)</i> <i>Gata4^{fl/+} (4/8)</i>	0.0017 0.6305
<i>Gata4^{fl/+};Tbx5^{fl/+};Mef2c^{cre/+}</i>	4	9	DORV	<i>Tbx5^{fl/+};Mef2c^{cre/+} (0/10)</i> <i>Gata4^{fl/+};Mef2c^{cre/+} (0/13)</i>	0.0325 0.0172
<i>Pten</i> - <i>Gata4</i> compound mutant embryos					
<i>Gata4^{fl/+};Pten^{fl/+};Gli1^{cre/+}</i>	6	20	DORV	<i>Pten^{fl/+};Gli1^{cre/+} (1/20)</i> <i>Gata4^{fl/+};Gli1^{cre/+} (12/29)</i>	0.0915 0.5495
<i>Smo</i> - <i>Gata4</i> compound mutant embryos					
<i>Gata4^{fl/+};Smo^{fl/+};Gli1^{cre/+}</i>	5	9	DORV, OA, PTA	<i>Smo^{fl/+};Gli1^{cre/+} (0/7)</i> <i>Gata4^{fl/+};Gli1^{cre/+} (4/6)</i>	0.0337 1
<i>Gata4^{fl/+};SmoM2^{fl/+};Gli1^{cre/+}</i>	0	9	—	<i>SmoM2^{fl/+};Gli1^{cre/+} (2/7)</i> <i>Gata4^{fl/+};Gli1^{cre/+} (7/12)</i>	0.1750 0.0071
<i>Gata4^{fl/+};Smo^{fl/+};Mef2c^{cre/+}</i>	3	15	DORV	<i>Smo^{fl/+};Mef2c^{cre/+} (0/12)</i> <i>Gata4^{fl/+};Mef2c^{cre/+} (0/14)</i>	0.2308 0.2241
<i>Gata4^{fl/+};Smo^{fl/+}</i>	5	7	DORV, OA	<i>Gata4^{fl/+} (1/5)</i> <i>Smo^{fl/+} (0/4)</i>	0.2424 0.0606

710
711
712