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Abstract

Genome duplication with hybridization, or allopolyploidization, occurs in animals, fungi, and plants, and

is especially common in crop plants. There is increasing interest in the study of allopolyploids due to

advances in polyploid genome assembly, however the high level of sequence similarity in duplicated gene

copies (homeologs) pose many challenges. Here we compared standard RNA-seq expression quantification

approaches used currently for diploid species against subgenome-classification approaches which maps reads

to each subgenome separately. We examined mapping error using our previous and new RNA-seq data in

which a subgenome is experimentally added (synthetic allotetraploid Arabidopsis kamchatica) or reduced

(allohexaploid wheat Triticum aestivum versus extracted allotetraploid) as ground truth. The error rates

in the two species were very similar. The standard approaches showed higher error rates (> 10% using

pseudo-alignment with Kallisto) while subgenome-classification approaches showed much lower error rates

(< 1% using EAGLE-RC, < 2% using HomeoRoq). Although downstream analysis may partly mitigate

mapping errors, the difference in methods was substantial in hexaploid wheat, where Kallisto appeared to

have systematic differences relative to other methods. Only approximately half of the differentially expressed

homeologs detected using Kallisto overlapped with those by any other method. In general, disagreement

in low expression genes was responsible for most of the discordance between methods, which is consistent

with known biases in Kallisto. We also observed that there exist uncertainties in genome sequences and

annotation which can affect each method differently. Overall, subgenome-classification approaches tend to

perform better than standard approaches with EAGLE-RC having the highest precision.
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1 Introduction

Genome duplication, termed polyploidization, is widespread in plants with up to 35% of land plants being

recent polyploids [1]. Many crop species in particular are allopolyploids [2], which involves the hybridization

of two different species with genome duplication. Thus, there is much interest in the study of genome

duplication and the advantages or disadvantages this phenomenon may convey. In order to explore the

underlying mechanisms that may provide adaptation, many gene expression studies have been conducted on

both natural and synthetic allopolyploid species [3, 4, 5, 6, 7, 8]. Allopolyploid species have traditionally

been difficult to analyze at the whole genome scale due to the large size of their genomes and the high levels

of sequence similarity between duplicated chromosomes. These duplicated gene copies, called homeologs,

are in general highly similar and pose challenges to gene expression analyses. However, these homeologs and

bias in their expression are of great interest because they potentially contribute to adaptation in polyploid

species [9, 10, 11].

Recent improvements in long sequencing read technologies and linkage strategies [12, 13, 14] have allowed

for breakthroughs in polyploid genome assembly. In plant biology especially, recent allopolyploid species such

as bread wheat [15] as well as many other agriculturally important plant species have benefited [16, 17]. Now

that de novo genome assembly for allopolyploids is no longer as formidable as it once was, a large number

of polyploid reference genomes are expected to become available in the near future to facilitate genome

wide studies. Accordingly, there is a need to evaluate expression quantification methods given the presence

of homeologs in allopolyploids. It is possible that the high level of sequence similarity between homeologs

may pose challenges to read mapping and consequently, expression quantification as well as other types of

sequence analysis. Currently, it is unclear whether the expression quantification methods in use currently

for diploids are suitable for allopolyploids due to the lack of studies examining this issue.

In this study we pose the question “can diploid RNA-seq methods be directly applied to allopolyploids?”

and evaluate different approaches and methods for homeolog expression quantification in allopolyploids. To

evaluate methods in polyploids, analysis on genetic materials with and without subgenomes is highly valuable

as a form of ground truth. Here we used synthetic allotetraploid Arabidopsis kamchatica (Fisch ex DC.)

K. Shimizu & Kudoh and performed tests with its two direct parental accessions of Arabidopsis halleri and

Arabidopsis lyrata. For hexaploid wheat Triticum aestivum Chinese Spring [18] with ABD subgenomes, we

performed tests with tetra-Chinese Spring (AB subgenomes) where the D subgenome was experimentally

removed [19] as well as Aegilops tauschii the diploid progenitor of the wheat D subgenome.

We test, to the best of our knowledge, all known approaches to quantify expression in polyploids with

four approaches:

1. A standard genome alignment based RNA-seq analysis on the full allopolyploid reference genome with

two different alignment tools STAR [20] and LAST [21, 22].

2. A pseudo-alignment based method with Kallisto [23] on the full allopolyploid transcriptome.

3. A subgenome-classification approach with HomeoRoq [7], which maps read sequences to each subgenome

separately.

4. A subgenome-classification approach with EAGLE-RC [24], which maps read sequences to each subgenome

separately and also explicitly uses genotype variations that discriminate between homeologs as con-

straints in analysis.
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Our results show that EAGLE-RC had the lowest error rate (A. kamchatica: 0.40%, hexaploid wheat:

0.49%) for alignments to the correct subgenome, while Kallisto had the highest error rate (A. kamchatica:

12.43%, hexaploid wheat: 13.44%). LAST and STAR had similar error rates in A. kamchatica but LAST

was more precise in hexaploid wheat. In general, performance between methods were comparable for A.

kamchatica but not for hexaploid wheat. We also observed systematic differences in low expression genes

that impacted the homeolog expression bias results. Other concerns include uncertainty in the completeness

and accuracy of the genome sequence and annotation, which affected each method differently due to differ-

ences in constraints. This may be especially relevant as polyploid species have only begun to be sequenced

and assembled in large numbers and the gene annotations are in their first iterations. In the face of this

uncertainty, EAGLE-RC is the most precise in our evaluations.

2 Methods

2.1 RNA sequence data and reference genomes

We evaluated methods on two allopolyploid species, tetraploid A. kamchatica and hexaploid wheat T. aes-

tivum.

The natural species A. kamchatica [25, 26] was derived from two diploid species A. halleri and A. lyrata

recently [27, 8]. It is a model polyploid with a broad distribution range, self-compatibility and transformation

technique [27, 28]. To construct synthetic polyploids, we used two highly homozygous parental accessions

used for genome assembly: A. halleri Tada mine W302 (ver 2.2, scaffolds N50 712 kb) [29] and A. lyrata

lyrpet4 (ver 2.2, scaffolds N50 1.2 Mb) [8]. The two genotypes were crossed then the genome doubling was

induced by colchicine treatment. Although synthetic polyploidization may occasionally activate transposable

elements or induce chromosomal rearrangements, the subgenomes of the synthetic polyploid were derived

from the merging of the two parental genomes and are highly or completely identical, providing a unique

opportunity to evaluate RNA-seq methods in allopolyploids.

In order to assess classification accuracy in synthetic A. kamchatica, we used data from the parental

species so that the ground truth of a read’s subgenome origin is known. A. halleri subsp. gemmifera and

A. lyrata subsp. patraea RNA-seq data [30] was obtained under DDBJ accession DRP003263 submission

DRA004364. Briefly, this dataset consists of four samples each for A. halleri and A. lyrata with 2 × 100

bp paired-end reads for a total of approximately 20 Gb and 21 Gb respectively. For differential homeolog

expression analysis, synthetic allotetraploid A. kamchatica RNA-seq data [7] was obtained under DDBJ

accession DRP01140. Briefly, this dataset consists of three biological replicates of A. kamchatica before and

after cold stress with 2×100 bp paired-end reads for a total of approximately 12 Gb and 10 Gb respectively.

The whole genome assembly and annotation for hexaploid wheat T. aestivum with ABD subgenomes

was obtained from the International Wheat Genome Sequencing Consortium [18] (assembly ver 1.0 and

annotation ver 1.0, N50 22.8 Mb). The assembly quality is at the chromosome level and the reference

genome was split into A, B and D subgenomes allowing for separate read mapping in subgenome-classification

methods.

In order to assess classification accuracy in wheat, we utilized tetra-Chinese Spring in which the AB

subgenomes were extracted by removing the D subgenome by repeated backcrossing [19]. Thus, the genome

sequence of tetra-Chinese Spring must be very close to the AB subgenomes of hexaploid Chinese Spring.
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Because there is no genetic material of extracted D genomes from hexaploid wheat, we used A. tauschii KU-

2076 (resource in Kyoto University, collected in Iran). The D subgenome of hexaploid wheat is known to be

derived from this species, thus it should be highly similar though there is divergence due to within-species

variations [31]. We obtained RNA-seq data of tetra-Chinese Spring and A. tauschii in triplicate for a total

of 2.1 Gb and 2.8 Gb respectively [data submission in progress]. For differential homeolog expression anal-

ysis, T. aestivum RNA-seq data was obtained from NCBI (BioProject PRJEB12358) with SRA accessions

ERR120175[2-4] and ERR120177[0-2] describing samples, in triplicate, 24 hours after inoculation of fungal

pathogen Fusarium graminearum and mock inoculation for a total of 17.3 Gb and 16.1 GB, respectively.

2.2 Plant growth, RNA isolation, and sequencing

The plants were grown at 16◦C in 8h light / 16h dark cycle with 60% relative humidity for two weeks and

leaf tissues were harvested. RNA was extracted from each tissue using RNeasy Plant Mini Kits (QIAGEN,

Hilden, Germany) in combination with DNase I treatment (QIAGEN). Illumina sequencing libraries were

made by TruSeq Stranded mRNA Library Prep Kit. RNA-seq was conducted using Illumina HiSeq 4000 at

the Functional Genomics Centre, Zurich.

2.3 Homeolog identification

To annotate homeologs in A. kamchatica, we constructed RNA transcripts from the gene models in the A.

halleri and A. lyrata gene annotations. Homeologs were then identified based on reciprocal best hit for each

subgenome’s transcripts. We required hits to have E-value less than 10−10 with at least 200 aligned bases

in both transcripts, resulting in 24, 329 homeolog pairs identified.

To annotate homeologs in T. aestivum, we constructed RNA transcripts from high confidence gene

models belonging to the A, B, and D subgenomes, including the UTR regions. We then identified pair-wise

homeologs through reciprocal best hit for combinations AB, AD, BD and then triple copy homeologs by

checking for genes in AB that share the same hit for D in their respective AD and BD hits, resulting in

21, 196 triple copy homeologs identified.

2.4 Standard RNA-seq analysis

We tested a standard genome alignment based RNA-seq expression quantification approach (Figure 1a)

aimed at differential expression analysis [32] that is often used for diploids:

1. Map reads to the allopolyploid reference genome (STAR (ver 2.5.2b) [20], LAST (ver 809) [21, 22]).

2. Count reads using featureCounts [33] at the transcript level.

3. Extract homeolog specific read counts.

To construct the reference genome of A. kamchatica, we concatenated the reference genomes of its two

parental species, A. halleri and A. lyrata, to obtain an allopolyploid reference. For LAST, we also filtered

out read alignments with MAPQ scores less than 20, while STAR MAPQ scores are not as useful for

thresholding. In T. aestivum, we excluded all reads that mapped to chrUn.

We tested a pseudo-alignment RNA expression quantification workflow (Figure 1b) using Kallisto [23],

which is also often used for diploids. The built-in expression quantification in Kallisto was used to count
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Figure 1: We compare different four approaches for quantifying homeolog expression: a) a standard genome

alignment based RNA-seq analysis on an allopolyploid (concatenated) reference genome using alignment tools

STAR and LAST. b) a pseudo-alignment workflow using Kallisto that is performed on the (concatenated)

transcripts of the allopolyploid. c) a subgenome-classification analysis that performs alignment on each

subgenome’s reference separately, then performs read classification based on number of mismatches using

HomeoRoq. d) a subgenome-classification analysis that performs read alignment on each subgenome’s

reference separately, then performs read classification based on the likelihood of the read to the genotype

using EAGLE-RC, discarding common reads.
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reads (est counts) at the transcript level. When evaluating classification accuracy, we used the pseudobam

option in Kallisto to output read assignments and evaluate the proportion which were misassigned.

2.5 Subgenome-classification analysis

We tested a subgenome-classification approach where, in contrast to the standard approach, the sequencing

reads are mapped separately to each subgenome of an allopolyploid’s reference genome (Figures 1c, 1d)

using STAR. Then we utilized a read classifier (HomeoRoq, EAGLE-RC) to assign reads to their subgenome

origin, if possible.

HomeoRoq [7] (Figure 1c) classifies reads based on the number of mismatches, up to a maximum

of 10, between the read and the genome sequence of each subgenome, where reads must be mappable

to both subgenomes in order to be considered. In contrast with EAGLE-RC, which requires computing

the subgenome-discriminating variants, HomeoRoq does not require comparative analysis between different

subgenomes in advance of classification.

The basic EAGLE model [24] is a generative model for read sequences used to calculate the likelihood

of a read given a reference genotype hypothesis and an alternative genotype hypothesis. In EAGLE-RC

(Figure 1d), the basic model was extended to perform read classification using the variants that discriminate

between homeologs. During homeolog identification, subgenome specific genotype differences (i.e. variants)

that discriminate between homeologs are determined. For A. kamchatica, reads are mapped to the reference

genomes of A. halleri, H, and A. lyrata, L, separately. EAGLE-RC then calculates the probability given

each subgenome as the reference hypothesis Gref and the other subgenome as the alternative hypothesis Galt:

P [r ∈ Gref] =
P [r|Gref]

P [r|Gref] + P [r|Galt]
,

where the classification is determined by the reference with the highest probability, requiring the winning

hypothesis to be at least probability 0.95 with marginal probability at least 0.51, otherwise it is “unknown”,

where the marginal probability is the proportion of the winning hypothesis over the sum of all subgenome

as the reference hypotheses.

For hexaploid T. aestivum subgenome-classification, we performed a bottom-up workflow using a series

of pair-wise classifications (Figure 2). For HomeoRoq, we determined, if possible, the consensus classification

from pair-wise classifications. For example, a read is classified as A if there is a consensus A classification in

both AB and AD pair-wise classifications comparisons.

Figure 2: We perform read classification on hexaploid T. aestivum using a bottom-up approach from a series

of pair-wise classifications with the A, B, and D subgenomes. A final classification from pair-wise analysis

is obtained via consensus for HomeoRoq and via highest probability for EAGLE-RC.

For hexaploid subgenome-classification with EAGLE-RC, the pair-wise likelihoods per read were calcu-

lated, where for each reference hypothesis Gref, there are two alternative genome hypotheses Galt1 and Galt2.
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The probability of a read belonging to a given reference is then:

P [r ∈ Gref] =
P [r|Gref]

P [r|Gref] + P [r|Galt1] + P [r|Galt2]
,

where the classification is determined by the reference with the highest probability, requiring the winning

hypothesis to be at least probability 0.95 with marginal probability at least 0.51, otherwise it is “unknown”.

2.6 Differentially expressed homeologs

To identify differentially expressed homeologs (DEH) in A. kamchatica, we used DESeq2 [34] on the read

count data for the A. halleri -derived subgenome and A. lyrata-derived subgenome separately. We required a

homeolog to be differentially expressed with 0.05 or better False Discovery Rate (FDR) in at least one of the

subgenomes. We then performed Fisher’s exact test on the combined read counts to determine significant

differential homeolog expression ratio (p-value < 0.05 and fold change ≥ 2). This definition of differential

expression requires significant change in gene expression in at least one subgenome along with the homeolog

expression ratio under different conditions.

To find DEH in hexaploid T. aestivum, we used DESeq2 on the read count data for each A, B, and D

subgenomes separately, requiring a gene to be differentially expressed with 0.05 or better FDR in at least

one of the subgenomes. We then performed a series of Fisher’s exact test on the combined read counts (A

vs BD, B vs AD, D vs AB) to test for differential homeolog expression ratio. A homeolog is differentially

expressed if at least one test has p-value < 0.05/3 and fold change ≥ 2.

3 Results

3.1 A. kamchatica read classification

Generally, sequence analysis is based on how accurately read sequences can be mapped to the reference. In

the case of allopolyploids, read alignment must deal with a higher degree of repetitiveness than in diploids

due to homeologs.

We tested the standard genome alignment approach using the widely used RNA-seq read mapping tool,

STAR. Though this tool is often used in diploid read mapping, it is unclear whether it will be suitable

for allopolyploids. Unfortunately, the mapping quality score from STAR is not suitable for thresholding

“uniqueness” due to how it assigns scores in an almost binary manner. Thus we also tested LAST, a general

sequence alignment tool that can estimate the probability that an alignment represents the genomic source

of the read. For example, a given read aligns to a single location with no mismatches, but aligns to five

other locations with one mismatch each. This read may be deemed a unique best hit, but there may be

a reasonable probability, depending on read length, that it came from any of the other alignments with a

single base-calling error. LAST allows us to set a degree of uniqueness (i.e. 0.05 mismap probability) as a

cut-off threshold that is convenient for handling this type of uncertainty.

We examined tetraploid A. kamchatica first because it may be less complicated than hexaploid wheat,

which we describe later in this study. Here, we evaluated the accuracy of each tool and each approach by

how well they assigned reads to the correct subgenome. For A. kamchatica, the ground truth is known by

testing with pure A. halleri and A. lyrata RNA-seq data. Table 1 shows the classification performance of
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each approach for A. kamchatica. One point to note is that the mapping rate is affected by alignments to

non-homeologs, thus we also showed the number of homeologs with detected expression in our evaluations.

Table 1: Classification performance for A. kamchatica. Results are averaged across 8 samples, 4 each for A.

halleri and A. lyrata. The percent mapped refers to the number of reads that were mappable and in the case

of subgenome-classification, the number of reads mappable to any subgenome. The classification error refers

to the proportion of mapped reads which were assigned to the wrong subgenome. The number of expressed

homeologs with > 1 read in any sample are also shown for each subgenome.

Classification error A. halleri A. lyrata

Mapped H to L L to H Homeologs Homeologs

STAR 93.40% 11.09% 11.40% 21979 22030

LAST 71.59% 2.87% 2.50% 21918 21990

Kallisto 92.22% 12.42% 12.44% 23195 23234

HomeoRoq 93.67% 1.64% 1.23% 21722 19653

EAGLE-RC 93.67% 0.48% 0.33% 21385 21555

We calculated the precision by using classification error rate as the criteria. It is clear that subgenome-

classification approaches (HomeoRoq and EAGLE-RC) performed better than the standard alignment based

approaches (STAR, LAST, Kallisto) using a concatenated genome. In the standard alignment based approach

using a concatenated reference genome, LAST’s mismap probability model was seen to be beneficial to read

classification showing a much lower classification error rate than STAR.

Kallisto showed the lowest precision among all methods, though it showed the highest number of expressed

homeologs detected. That Kallisto’s performance was the most affected by the presence of homeologs is

perhaps due to a reduction in the number of unique kmers, relative to diploid analysis, which is essential

for the method to find unique read to gene associations. To quantify the reduction in the number of unique

kmers in a tetraploid reference relative to diploid reference, we performed a simulation with 1000 trials of 100

randomly selected A. halleri genes with randomly assigned SNPs at varying degrees of sequence divergence

(Table S1). This analysis shows that there is a large reduction in the number of unique kmers given one

extra gene copy depending on the pair-wise sequence divergence. For a point of reference, A. kamchatica is

estimated to have approximately 2-3% divergence between homeologs [7].

EAGLE-RC showed the highest precision in read classification though it had a lower number of ex-

pressed homeologs detected. HomeoRoq was less precise than EAGLE-RC while having a similar number of

expressed homeologs detected. The main difference in methodology between EAGLE-RC and HomeoRoq is

that EAGLE-RC utilizes genotype information explicitly while HomeoRoq relies on comparing the number

of mismatches, implicitly comparing genotype differences. However, simply comparing the number of mis-

matches is susceptible to spurious mappings, because a read alignment with 9 versus 10 mismatches favors

the one with 9 mismatches to the same degree as it would favor an alignment with 0 versus 1 mismatch.

Another point to consider is that the quality of the reference may differ between subgenomes and there

may be uncertainty from missing regions or erroneous annotations. HomeoRoq requires reads to be mappable

to both references, which constrains read counting to genome regions that exist in both subgenomes. However,

this comes with the disadvantage that more divergent regions may be excluded due to reads being mappable to

only one homeolog. EAGLE-RC require reads to be mapped to regions that are different between homeologs
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and thus can be classified based on those differences, which is constrained to regions in the homeologs’ gene

models that can be pair-wise aligned in order to compute the genotype differences between homeologs. We

performed a simulation analysis where reads were simulated using ART [35] from annotated gene models

with no divergence from the reference and calculated the classification performance (Table S2). The results

show that even in this ideal scenario, there were reads which could not be classified with certainty by LAST,

HomeoRoq, and EAGLE-RC due to reads mapping equivalently to both subgenomes. It also shows that in

ideal conditions, STAR and Kallisto, despite higher error rates, were excellent in their true positive rates.

However, the ideal condition of data with no divergence from reference, no sequences outside of annotated

genes, and perfectly reflect gene models is not realistic in practice.

3.2 A. kamchatica homeolog expression quantification

Though read mapping is the foundation, downstream read counting methods and differential expression

analysis may potentially be able to correct for artifacts or ambiguity in read alignments. We revisited

classification error using the quantified read counts for homeologs in A. kamchatica (Table 2), although

we suggest some caution in the interpretation of the number of reads quantified and thus the classification

error rate in this result as HomeoRoq and EAGLE-RC have additional expression quantification processes

to count subgenome-common reads. For Kallisto, we used the estimated read count from its output while

for all other methods, we obtained read counts using featureCounts.

Table 2: Error rate for A. kamchatica using quantified read counts, averaged across 3 samples each for A.

halleri (H) and A. lyrata (L).

Classification error

H to L L to H Reads quantified

STAR 1.16% 1.36% 74149312

LAST 0.90% 1.26% 67015253

Kallisto 0.90% 1.21% 87667382

HomeoRoq 1.32% 1.64% 60946109

EAGLE-RC 0.54% 0.80% 57254486

Here, error is represented as a proportion of quantified reads rather than the proportion of mappable

reads in the earlier analysis. Our results show that error decreased in STAR, LAST, and Kallisto as the

quantification process accounted for ambiguously mapped reads in some fashion (dropped by featureCounts

and distributed by Kallisto). HomeoRoq and EAGLE-RC error rate increased slightly due to these meth-

ods discarding reads that are deemed unclassifiable. However, a large number of unclassifiable reads are

due to equivalent alignments to both subgenomes, deemed subgenome-common, which can be used to es-

timate expression levels such as RPKM by distributing proportionally to each subgenome. This has been

demonstrated previously for HomeoRoq [30] and is also applicable to EAGLE-RC. Thus the number of reads

quantified for subgenome-classification approaches in Table 2 may not be directly comparable to standard

genome alignment approaches. It turns out that for tetraploid A. kamchatica, all methods had comparable

error rates, where EAGLE-RC was the most precise.

Next, we examined the ratio of homeologous pairs. We are interested in any shifts in expression between
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homeologs across conditions, so we analyzed RNA-seq data from A. kamchatica and quantified the A. halleri

read count proportion p̂ as follows:

p̂ =
A. halleri reads

A. halleri reads + A. lyrata reads

While we do not know the ground truth expression levels, we can evaluate the concordance between the

different methods to describe how results might differ depending on which approach was used. To compare

the results between different methods, we calculated the pairwise root mean squared distance (RMSD) and

coefficient of determination (r2) between the results for all methods. The RMSD is a measure of the average

distance between two sets X and Y :

RMSD =

√∑n
i=1(xi − yi)2

n

The r2 describes how well one variable X can be used to predict another variable Y by calculating the

proportion of variability that can be explained:

r2 =
(
∑n

i=1(xi − x̄)(yi − ȳ))
2∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

Though both measures describe the similarity between the results of different methods, the RMSD quantifies

the magnitude of difference with units while the r2 quantifies the proportion of similar elements.

We examined the ratio of homeologous pairs using RNA-seq data from A. kamchatica samples before

and after cold stress. The r2 (Table 3) and RMSD (Table S3) for p̂ show that in general, the results from

the standard genome alignment based approach were concordant (average r2 = 0.9505, RMSD of 6.96%).

HomeoRoq was also concordant (average r2 = 0.9084) with STAR and LAST. This is consistent with the

error rates in the classification results.

Table 3: r2 of the proportion of reads derived from the A. halleri subgenome between different quantification

approaches for homeologs in A. kamchatica.

STAR LAST Kallisto HomeoRoq EAGLE-RC

STAR -

LAST 0.9505 -

Kallisto 0.6886 0.6852 -

HomeoRoq 0.9214 0.8953 0.6472 -

EAGLE-RC 0.8201 0.8003 0.5791 0.8325 -

The generally high r2 between methods showed that though read mapping precision can vary greatly,

downstream read counting methods were somewhat able to correct for artifacts or ambiguity in read align-

ment to arrive at a similar quantified expression. Kallisto was discordant from all other methods with an

average RMSD of 18.88%. This may be due to its built-in read counting method using Expectation Maxi-

mization (EM) whereas all other methods used featureCounts, which does not consider multi-mapped reads.

There were also issues with low expression genes where 420 and 447 A. halleri and A. lyrata homeologs

respectively, were reported to have near zero expression (< 10 reads) by all other methods in all samples

but Kallisto reported > 100 reads. The homeolog expression ratio scatter plots reflect this potential arti-

fact (Figure S1). Though the cause is unclear, Kallisto tends to over-estimate some low expression genes

compared to other methods.
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EAGLE-RC also showed less concordance in r2 and RMSD than HomeoRoq to standard genome align-

ment approaches, where it reported some high expression genes as low expression compared to other methods.

More detailed examination revealed that because EAGLE-RC required reads to cross genotype differences

between homeologs, it excluded reads in exons which were not able to be pair-wise aligned. There may

exist uncertainty in the annotation, as there are 552 homeologs that had at least a 40% difference in the

proportion of the gene model aligned between A. halleri and A. lyrata. The majority of these cases were

A. halleri homeologs having a smaller proportion than A. lyrata homeologs due to being much longer. The

exclusion of regions which were not aligned between homeologs accounted for a large portion of the difference

in EAGLE-RC. For example, the homeolog annotated as AT4G25110 in A. kamchatica with 12 exons in A.

halleri and 5 exons in A. lyrata and an aligned region between homeologs of 46% and 61% in A. halleri

and A. lyrata respectively, had almost all (99.89%) of the reads assigned to A. halleri mapped to regions

that were not aligned between homeologs (Figure S2), leading to a large difference between EAGLE-RC and

other methods (Table S4).

The subgenome-classification approach with HomeoRoq or EAGLE-RC tries to account for potentially

missing reference genome regions in one subgenome, through consideration of read mappability and explicitly

utilizing genotype variation respectively. For example, the homeolog annotated as AT5G45850 in A. kam-

chatica had reads that mapped to the A. lyrata reference that did not map at all to the A. halleri reference

and was thus discarded by HomeoRoq. Similarly, missing reference genome regions in homeologs cannot be

pair-wise aligned, thus EAGLE-RC discarded reads that map to these regions. In other methods, a naive

counting of reads could be reference biased (Table S5). In this case, the average p̂ for a sample with the

subgenome-classification approach was 0.90 compared to 0.44 with STAR, LAST, and Kallisto.

Next, we examined differentially expressed homeologs (DEH) using RNA-seq data from A. kamchatica

samples before and after cold stress. The results of different methods (Figure 3) showed that in general,

there was high overlap between the different methods tested where Kallisto was the least concordant among

the methods tested. This is consistent with the results when we examined the ratio of homeologous pairs .

Intuitively, genes with lower expression are expected to be more affected by uncertainties due to read

count differences having more of an effect on the proportion (Table 4). Indeed, our results show that the

concordance between methods was lower for genes with lower expression with a significant increase (paired

t-test p-value 6.767×10−06) in RMSD. This may be due to a higher proportion of reads being ambiguous and

each method’s difference in handling these ambiguously mapped reads. This may have large implications if

the goal is to determine homeolog expression bias.

Table 4: RMSD of the proportion of reads derived from the A. halleri subgenome for homeologs with read

counts ≤ 100 (lower triangular matrix) versus > 200 (upper triangular matrix) in A. kamchatica.

STAR LAST Kallisto HomeoRoq EAGLE-RC

STAR - 0.0213 0.1008 0.0324 0.0457

LAST 0.1092 - 0.1008 0.0380 0.0499

Kallisto 0.2301 0.2301 - 0.1026 0.1076

HomeoRoq 0.1329 0.1529 0.2460 - 0.0380

EAGLE-RC 0.1897 0.2010 0.2725 0.1867 -
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Figure 3: Overlap of differentially expressed homeologs from different methods in A. kamchatica.

3.3 Hexaploid wheat read classification

For hexaploid wheat T. aestivum, the three homeolog copies compared to two in tetraploids further com-

plicates read mapping and also requires a more complex workflow for subgenome-classification. To test

classification performance, we used RNA-seq data of a tetraploid wheat line (tetra-Chinese Spring) with A

and B subgenomes, and a diploid A. tauschii line (accession KU-2076) with D subgenome as the ground

truth. Table 5 shows the classification performance of each approach.

Table 5: Classification performance for T. aestivum. Results are averaged across 3 samples for each of

diploid A. tauschii (D) and tetraploid Chinese Spring (AB). The percent mapped refers to the number of

reads that were mappable and in the case of subgenome-classification, the number of reads mappable to any

subgenome. The classification error refers to the proportion of classified reads which were assigned to the

wrong subgenome. The number of expressed homeologs with > 1 read in any sample are also shown for each

subgenome.

Classification error chrA chrB chrD

Mapped AB to D D to AB Homeologs Homeologs Homeologs

STAR 75.83% 9.12% 14.85% 11366 11333 12530

LAST 77.21% 1.62% 2.78% 11505 11437 12847

Kallisto 78.17% 10.17% 16.71% 14794 14847 16032

HomeoRoq 79.73% 0.97% 1.54% 10224 10217 11539

EAGLE-RC 79.73% 0.33% 0.66% 10350 10285 11766

Our results show that the misclassification rate of all methods were strikingly similar for allotetraploid

A. kamchatica and allohexaploid wheat (Figure 4). This suggests that it was mainly the difference in meth-
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ods rather than taxon-specific features that affected the error rate where subgenome-classification methods

showed a higher precision than standard methods using the concatenated genome. Higher precision was

obtained in the order of EAGLE-RC, HomeoRoq, LAST, STAR, and Kallisto. For the number of expressed

homeologs detected by these methods, Kallisto showed higher counts, which may be spurious because Kallisto

tended to overestimate low expression genes relative to other methods as discussed above. Among the other

four methods, the subgenome-classification methods showed a slightly lower number of expressed homeologs

detected than the standard genome alignment approach, though we do not know which one is closer to the

ground truth. EAGLE-RC still maintained a sub 1% error rate, the best among all methods, though it

deemed an average of ∼20% of mapped reads as unable to be classified with confidence due to ambiguity

between homeolog pairs. There was also a higher cost in computation time for the higher precision (Table

S6).

Figure 4: Overall classification error rate in tetraploid A. kamchatica and hexaploid wheat T. aestivum for

all methods.

Another point of interest is that the more divergent D diploid line had much higher error rates than

the AB line directly extracted from Chinese Spring, which is the reference genome line (Table 5). In this

case, STAR and Kallisto performed quite poorly compared to other methods. Divergence from the reference

genome appears to be a multiplier for error rate, thus less precise methods will be more affected.

3.4 Hexaploid wheat homeolog expression quantification

We evaluated the classification error using the quantified read counts for homeologs in T. aestivum (Table 6).

As described in the previous section, note that the number of reads quantified are not directly comparable

among different methods. Again, for Kallisto we used the estimated read count from its output while for all

other methods we obtained read counts using featureCounts.

As expected, the error rate was higher in hexaploid wheat than in A. kamchatica though with similar

trends. In AB classification error, STAR had over ∼200% higher rate of error, LAST and Kallisto had ∼60%

higher error, and HomeoRoq and EAGLE-RC were the most robust with ∼20% higher error. Similar to the

alignment error analysis, the more distant A. tauschii (D) reads had much higher error rates, propagated

from errors in the alignment. Again, STAR and Kallisto were the most affected by the increased distance in

these samples.

Next we examined homeolog expression shifts across conditions and quantified the homeolog expression

ratio in T. aestivum by calculating the proportion of subgenome A reads p̂ as follows:

p̂ =
chrA reads

chrA reads + chrB reads + chrD reads
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Table 6: Classification performance for T. aestivum using quantified read counts. Results are averaged across

3 samples for each of diploid A. tauschii (D) and tetraploid Chinese Spring (AB).

Classification error

AB to D D to AB Reads quantified

STAR 2.83% 5.13% 2632463

LAST 1.46% 1.80% 3324633

Kallisto 1.45% 3.07% 4922150

HomeoRoq 1.50% 2.26% 1929797

EAGLE-RC 0.67% 1.32% 1892448

We examined the homeolog expression ratio using RNA-seq data from T. aestivum samples 24h after

fungal inoculation and after mock inoculation. The r2 (Table 7) and RMSD (Table S7) show that relative to

other methods, Kallisto exhibited a large drop in concordance in hexaploid wheat compared to A. kamchatica.

The homeolog expression ratios (Figure 5) show that the discordance was largely due to systematic differences

in low expression homeologs, which was also a trend for other methods (Figure S3-S5) though not to the

degree of Kallisto. Also similar to A. kamchatica, there was some discordance between EAGLE-RC and

other methods. In hexaploid wheat, there are 1689 AB, 1549 BD, and 1661 AD pair-wise homeologs that

have at least a 40% difference in the proportion of the gene model aligned, which may account for much of

the discordance between EAGLE-RC and other methods.

Table 7: r2 of the proportion of reads derived from subgenome A between different quantification approaches

for homeologs in T. aestivum.

STAR LAST Kallisto HomeoRoq EAGLE-RC

STAR -

LAST 0.9174 -

Kallisto 0.3257 0.3342 -

HomeoRoq 0.8612 0.8107 0.2787 -

EAGLE-RC 0.8310 0.7931 0.2814 0.7958 -

Next, we examined differentially expressed homeologs using RNA-seq data from T. aestivum samples

24h after fungal inoculation and after mock inoculation. The DEH results for hexaploid wheat between

different methods (Figure 6) show that there was less concordance between methods compared to tetraploid

A. kamchatica. Notably, only 51% of 304 DEH detected by Kallisto were supported by any of the other

four methods (47% by STAR, 45% by LAST, 38% by HomeoRoq, 41% by EAGLE-RC). The results here

reiterate that discordance was systematic, where Kallisto’s tendency to overestimate low expression reads

led to significant differences in the homeolog expression ratio.

4 Discussion

Recent improvements in sequencing technology has reduced the difficulty in constructing allopolyploid refer-

ence genomes [12, 13, 14] and there should be a corresponding increase in genome wide studies for allopoly-
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Figure 5: Homeolog expression scatter plots for Kallisto versus other methods in hexaploid wheat, quantified

as the expression proportion of subgenome A over the total (A+B+D) per homeolog.
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Figure 6: Overlap of differentially expressed homeologs from different methods in T. aestivum.

ploids [3, 4, 5, 6, 7, 8]. As such, there is a need to evaluate expression quantification methods given the

presence of homeologs in allopolyploids. Unlike expression quantification in diploids, homeolog expression

quantification evaluates multiple highly similar gene copies concurrently and it would be ideal if all copies

are at a similar level of completeness. This includes the genome annotation, which may be a non-trivial

source of uncertainty [36, 37].

It is well known that the presence of repetitive sequences in diploids (paralogs) present technical challenges

for read alignment [38, 39] and can bias RNA-seq expression quantification [40]. For polyploids, with the

presence of homeologs, there are even more repetitive sequences due to an increase in the number of gene

copies. In this study, we saw that applying a standard diploid RNA-seq workflow to allopolyploids may

have issues in terms of assigning reads to the wrong subgenome, particularly in hexaploid wheat. In general,

low expression genes accounted for most of the discordance between methods. Kallisto especially, often

overestimated the number of reads in low expression genes which has been observed in previous studies [41].

If the goal is to determine homeolog expression bias, then accurate quantification of low expression genes

is important because small errors can result in large shifts in the expression ratio between homeologs. In

addition, the accuracy of expression levels in such genes is especially important if we wish to identify ON

and OFF states of gene expression in response to stimuli in time course analyses.

There has long been a discussion and dispute about the bias of expression between homeologs and

subgenomes because different species show different patterns [42]. In this study we found that different

methods showed different biases, depending on the types of uncertainty they consider. In particular, gene

annotation can affect the detection of homeolog expression bias because the exon regions of homeologs are

typically annotated using RNA-seq reads on each copy separately and thus may be annotated differently,

especially when the expression level of one of the copies is low. To obtain general conclusions on the biased

expression in polyploids, we would suggest that analysis be performed with comparable and accurate methods
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in corresponding exonic regions. EAGLE-RC attempts to do this by considering only corresponding exonic

regions between homeologs.

In our evaluations, we presented results both at the read mapping stage and after expression quantifica-

tion. It is difficult to be completely fair when evaluating the accuracy of read mapping due to differences

in each of the four approaches. Kallisto does not attempt to identify primary versus secondary alignments,

thus a primary alignment only evaluation is not suitable. The standard genome alignment approach may

have secondary alignments due to the presence of homeologs, which can be indistinguishable from the pri-

mary alignment in terms of alignment score, in which case a primary alignment is picked randomly. The

subgenome-classification approach of mapping reads to each subgenome separately inherently has less sec-

ondary alignments, which is an advantage of this approach. Thus we evaluated the classification accuracy

with all alignments, as secondary alignment errors are a factor in all approaches though to different degrees.

The results after read counting then presents the performance of each approach after potentially accounting

for ambiguous alignments. In this way we show the performance at both major steps in the RNA-seq ex-

pression quantification process, though there are many other read counting methods that we were not able

test. Read counting methods may also benefit from the higher precision of the subgenome-classification ap-

proach by utilizing classified reads in lieu of unique mapped reads and distributing ambiguous reads through

Expectation Maximization.

5 Conclusion

In this study, we evaluated methods for homeolog expression quantification in tetraploid A. kamchatica

and hexaploid wheat T. aestivum using RNA-seq. We examined the standard genome alignment based

approach with STAR and LAST, the subgenome-classification approach with HomeoRoq and EAGLE-RC,

and a pseudo-alignment approach with Kallisto.

The presence of homeologs had the largest affect on STAR and Kallisto, resulting in higher read classifi-

cation error. We observed that discordance occurred mostly in low expression genes in a systematic manner

and can result in large shifts in the homeolog expression ratio. The explicit use of genotype differences

between homeologs in EAGLE-RC seems to be a factor in reducing uncertainties in the reference genome

and annotation and our results show that EAGLE-RC was the most precise method in both tetraploid A.

kamchatica and hexaploid wheat.
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