

1 **A screen for genes that regulate synaptic growth reveals mechanisms that stabilize**
2 **synaptic strength**

3

4 Pragya Goel^{1,*}, Mehak Khan^{1,*}, Samantha Howard¹, Beril Kiragasi¹, Koto Kikuma¹, and Dion
5 Dickman^{1,#}

6

7 ¹Department of Neurobiology, University of Southern California, Los Angeles, CA, USA

8 *These authors contributed equally

9

10 Keywords: synaptic plasticity, synapse, neurotransmission, *Drosophila*, neuromuscular junction,
11 homeostasis

12

13 Running title: Synaptic growth and stability

14

15

16 [#]Correspondence:

17 Dion Dickman

18 Department of Neurobiology

19 University of Southern California

20 Los Angeles, CA 90089

21 Phone: (213) 740-7533

22 Fax: (877) 518-2393

23 dickman@usc.edu

24

25

26

27 **ABSTRACT**

28 Synapses grow, prune, and remodel throughout development, experience, and disease. This
29 structural plasticity can destabilize information transfer in the nervous system. However, neural
30 activity remains remarkably stable throughout life, implying that adaptive countermeasures exist
31 to stabilize neurotransmission. Aberrant synaptic structure and function has been associated
32 with a variety of neural diseases including Fragile X syndrome, autism, and intellectual disability.
33 We have screened disruptions in over 300 genes in *Drosophila* for defects in synaptic growth at
34 the neuromuscular junction. This effort identified 12 mutants with severe reductions or
35 enhancements in synaptic growth. Remarkably, electrophysiological recordings revealed
36 synaptic strength in all but one of these mutants was unchanged compared to wild type. We
37 utilized a combination of genetic, anatomical, and electrophysiological analyses to illuminate
38 three mechanisms that stabilize synaptic strength in the face of alterations in synaptic growth.
39 These include compensatory changes in 1) postsynaptic receptor abundance; 2) presynaptic
40 morphology; and 3) active zone structure. Together, this analysis identifies new genes that
41 regulate synaptic growth and the adaptive strategies that synapses employ to homeostatically
42 stabilize synaptic strength in response.

43

44

45

46

47

48

49

50

51

52

53 **AUTHOR SUMMARY**

54 Throughout development, maturation, experience, and disease, synapses undergo dramatic
55 changes in growth and remodeling. Although these processes are necessary for learning and
56 memory, they pose major challenges to stable function in the nervous system. However,
57 neurotransmission is typically constrained within narrow physiological ranges, implying the
58 existence of homeostatic mechanisms that maintain stable functionality despite drastic
59 alterations in synapse number. In this study we investigate the relationship between synaptic
60 growth and function across a variety of mutations in neural and synaptic genes in the fruitfly
61 *Drosophila melanogaster*. Using the neuromuscular junction as a model system, we reveal three
62 adaptive mechanisms that stabilize synaptic strength when synapses are dramatically under- or
63 over-grown. Together, these findings provide insights into the strategies employed at both pre-
64 and post-synaptic compartments to ensure stable functionality while allowing considerable
65 flexibility in overall synapse number.

66

67

68

69

70

71

72

73

74

75

76

77

78

79 **INTRODUCTION**

80 Dramatic changes in synapse number, morphology, and structure occur throughout nervous
81 system development and during various forms of plasticity and remodeling in the mature
82 nervous system. For example, expansion and retraction of synaptic terminals contributes to the
83 refinement of neural circuits during developmental pruning, sleep/wake behavior, and
84 experience-dependent plasticity [1-4]. While these dynamic changes enable the flexibility
85 necessary to wire the nervous system during development and to modify synapses during
86 learning and memory, they pose a major challenge to the stability of neural function. Indeed, it is
87 interesting to note that the period of highest susceptibility to seizures occurs during the first
88 years of life, a period of dramatic growth and pliability in the brain [5, 6]. However, despite the
89 potential for these processes to disrupt information transfer in the nervous system, homeostatic
90 mechanisms maintain physiologically stable levels of functionality [7, 8]. Although the genes and
91 molecular processes that enable synapse-specific control of Hebbian and homeostatic plasticity
92 have been intensively studied [9-11], how global levels of synaptic strength are stabilized and
93 integrated with local mechanisms remains enigmatic.

94 The *Drosophila* neuromuscular junction (NMJ) is a powerful model system to illuminate
95 the genes and mechanisms that regulate synaptic growth, function, and homeostatic plasticity.
96 At this model glutamatergic synapse, stereotyped levels of synaptic strength are consistently
97 observed despite a dramatic expansion of synaptic growth, where the NMJ rapidly enlarges by
98 ~100-fold during larval development [12, 13]. Remarkably, synaptic strength is maintained
99 within narrow physiological ranges during this process [14], implying that homeostatic processes
100 stabilize neurotransmission in coordination with synaptic growth. A variety of homeostatic
101 mechanisms are triggered at the *Drosophila* NMJ in response to excess glutamate release [15-
102 17], diminished postsynaptic neurotransmitter receptor functionality [18, 19], injury-related
103 signaling [20], and biased innervation [20, 21]. These mechanisms can operate with specificity
104 at a subset of synapses [21-23]. However, there is evidence that additional homeostatic

105 processes stabilize global synaptic strength when total synapse numbers are drastically altered
106 at the NMJ. For example, it has been estimated that as many as 44% of the genes encoded in
107 the *Drosophila* genome influence synaptic growth and structure [24], while far fewer genes
108 appear to be involved in neurotransmission [25, 26]. Despite these observations, the
109 mechanisms that stabilize global synaptic strength in the face of variations in synaptic growth
110 have yet to be defined.

111 Genes that have been linked to neurological and neuropsychiatric diseases are
112 attractive candidates screen for roles in regulating synaptic growth, structure, and plasticity.
113 Aberrant synaptic growth, structure, and plasticity is associated with a variety of neural diseases
114 including Fragile X Syndrome, autism spectrum disorder, schizophrenia, and intellectual
115 disability [27, 28]. For example, the Fragile X Mental Retardation protein (FMRP), an RNA
116 binding protein, modulates translation and targets hundreds of synaptic genes in both pre- and
117 post-synaptic compartments to sculpt synaptic structure and function [29-32]. Recent
118 biochemical and next-generation sequencing approaches have identified over 800 transcripts
119 that associate with FMRP [33, 34]. Further, emerging genetic linkage studies have implicated a
120 variety of synaptic genes associated with susceptibility to autism, schizophrenia, bipolar
121 disorder, and intellectual disability [35-37]. Hence, screening genes linked with neural diseases
122 provides a compelling foundation to define new genes with fundamental roles at synapses.

123 We have systematically screened a collection of genes with links to neural diseases for
124 roles in synaptic growth and transmission at the *Drosophila* NMJ. This analysis discovered
125 several new genes required for proper synaptic growth and transmission. Interestingly, this
126 approach also confirmed that while synaptic growth can vary considerably across mutations in
127 diverse genes, neurotransmission is constrained within much narrower physiological ranges.
128 Given these results, we chose not to characterize in detail the specific functions of individual
129 genes in regulating synaptic growth. Rather, we investigated synaptic structure and function in
130 the subset of mutants that exhibited the most extreme changes in synaptic growth but that,

131 remarkably, maintained stable synaptic strength. This effort defined three mechanisms that
132 targeted both pre- and post-synaptic structures for homeostatic modulation. Together, these
133 results elucidate adaptive strategies that can be employed by synapses to maintain set point
134 levels of synaptic strength when confronted with extreme alterations to synaptic growth.

135

136 **RESULTS**

137 **A forward genetic screen identifies genes that regulate synaptic growth and** 138 **transmission at the *Drosophila* NMJ.**

139 To systematically screen a collection of genes for roles in synaptic growth and function, we first
140 established a list of *Drosophila* homologs of mammalian genes linked to synaptic function and
141 neural disease. The initial list consisted of ~800 mammalian genes expressed at synapses
142 and/or linked with neural disease (S1 Table). These genes included putative transcripts
143 associated with FMRP [34, 38] and additional genes that have been associated with
144 schizophrenia and autism spectrum disorder [39-42]. From this list, we identified a final group of
145 300 *Drosophila* homologues - 132 putative FMRP targets and 168 genes associated with
146 synapses or other diseases. From this initial list, we obtained a collection of 109 putative genetic
147 mutations and 191 RNAi lines from public resources (S1 Table). Finally, we assessed the lethal
148 phase of homozygous mutants and RNAi lines crossed to NMJ drivers, removing any that failed
149 to survive to at least the third-instar larval stage. Together, this effort established a collection of
150 297 stocks to screen for defects in synaptic growth and function at the third-instar larval NMJ.

151 We first assessed synaptic growth in this collection of 297 mutants and RNAi lines.
152 Specifically, we characterized homozygous mutants or larvae in which RNAi transgenes were
153 driven in both motor neurons and muscle (see Methods; [43]). Immunostaining of synaptic
154 boutons at the *Drosophila* NMJ was used to quantify synaptic growth. Wild-type NMJs typically
155 exhibit ~30 boutons at the muscle 4 NMJ (Fig 1A and 1B and 1D). We immunostained the NMJ
156 with a markers for synaptic vesicles (vGlut) and the neuronal membrane (HRP), and considered

157 a single puncta of vGlut intensity to represent a synaptic bouton (Fig 1A and 1B). Quantification
158 of bouton numbers across all 297 mutants and RNAi lines revealed a broad distribution, with
159 31.2 boutons as the mean and a standard deviation of 6.8 (Fig 1D). From this analysis, we
160 selected the subset of mutants or RNAi lines that displayed the most extreme difference in
161 bouton number, using two standard deviations above or below the mean (>44% increase or
162 decrease; Fig 1C and 1D) as cutoffs for further study.

163 12 targets with extreme changes in synaptic growth at the NMJ were identified (Fig 1C
164 and 1D). All 12 were genetic mutants; four exhibited a reduction of over 44% in bouton number
165 and were termed “undergrowth mutants” (Fig 1C-1E; blue), while the other eight exhibited an
166 increase of over 44% in bouton number and were termed “overgrowth mutants” (Fig 1C-1E;
167 red). Of the 12 positive hits from our initial screen, three genes were previously reported to have
168 defects in synaptic growth (Fig 1D and 1E), serving to validate our approach. These include the
169 G-protein-coupled receptor *flamingo* [44], the serine-threonine kinase *Akt1* [45], and the
170 translation factor *eIF-4E* [46-48]. Thus, from this initial screen of 297 lines, we identified four
171 undergrowth and five overgrowth genes, which have not previously been reported to regulate
172 synaptic growth. The putative functions of these genes are detailed in S2 Table.

173 We also assayed synaptic transmission in the collection of 297 lines. We used
174 electrophysiology to quantify miniature excitatory postsynaptic potential (mEPSP) amplitude,
175 evoked excitatory postsynaptic potential (EPSP) amplitude, and to calculate the number of
176 synaptic vesicles released per stimulus (quantal content, a measure of neurotransmitter
177 release) from each mutant screened (S1 Table). Electrophysiological recordings from all mutant
178 and RNAi lines revealed a mean EPSP amplitude of 35.4 mV and a standard deviation of 6.5
179 mV (Fig 2B). We identified 40 mutant and RNAi lines with EPSP amplitudes over two standard
180 deviations below the mean (>36%; Fig 2A and 2B), while no targets exhibited an increase in
181 EPSP amplitude of >36% relative to the mean (Fig 2A; S1 Table). Quantification of bouton
182 numbers in the 40 synaptic transmission mutants or RNAi lines revealed values similar to wild

183 type (Fig 2C), consistent with previous studies that have shown aberrant synaptic function often
184 occurs without any major defects in synaptic growth [25, 49, 50]. This suggests defects in
185 synaptic function alone, independently of reduced growth, disrupts synaptic strength in these
186 lines.

187

188 **Synaptic strength remains constant despite variations in synaptic growth**

189 We focused on understanding how synaptic function remains stable across the broad variation
190 in synaptic growth by analyzing synaptic growth and structure in the 257 remaining mutants and
191 RNAi lines with relatively stable EPSP amplitudes. First, we considered two possible models to
192 describe the relationship between synaptic growth (bouton numbers) and synaptic strength
193 (EPSP amplitude). In a “scaling” model, each individual bouton functions as an independent unit
194 of synaptic function, with all boutons functionally equivalent (Fig 3A). Hence, synaptic strength
195 would be predicted to scale in amplitude in proportion to the total number of synaptic boutons,
196 with the number of individual synapses (active zone and glutamate receptor dyads) linearly
197 increasing with the number of boutons. Assuming the functionality of each dyad to be constant,
198 as bouton number increases or decreases, total synaptic strength would scale accordingly (Fig
199 3A). Alternatively, in a “homeostatic” model, synapses would be adaptively modulated to
200 counteract variations in synaptic growth and maintain stable levels of global synaptic strength
201 (Fig 3B). In this case, adaptations in total active zone number, presynaptic release probability,
202 and/or postsynaptic receptivity to neurotransmitter would compensate for altered bouton number
203 to tune synaptic strength and maintain constant levels of neurotransmission. We considered
204 whether a scaling or homeostatic model best described our data from the genetic screen.

205 We plotted the average EPSP amplitude of each mutant screened as a function of total
206 bouton number for that specific mutant (Fig 3C). A scaling model would predict a linear
207 relationship in this plot, where synaptic strength (EPSP amplitude) is proportional to bouton
208 number (indicated by the dotted line in Fig 3C). However, this analysis found no significant

209 correlation between EPSP amplitude and bouton number ($R^2=0.0002$, p-value=0.7935). Rather,
210 the majority of mutants screened (86%) maintained EPSP amplitudes of 32-36 mV (Fig 3C),
211 more consistent with a homeostatic model. Next, we examined synaptic strength in the most
212 extreme four undergrowth and five overgrowth mutants discussed in Fig 1E. We plotted the
213 EPSP amplitude for each mutant as a function of bouton number (Fig 3D). Interestingly, all but
214 one of the nine mutants exhibited EPSP amplitudes consistent with a homeostatic model, while
215 one mutant, *pkc53E*, best fit with a scaling model. Finally, we considered that for a homeostatic
216 model to be truly “homeostatic”, presynaptic neurotransmitter release (quantal content) for each
217 individual bouton should inversely scale with total boutons per NMJ. Indeed, when the average
218 quantal content was normalized per bouton for all 257 mutants and RNAi lines, a robust scaling
219 of quanta released per bouton was observed (Fig 3E), consistent with a homeostatic tuning of
220 presynaptic release per bouton. Together, this analysis of synaptic growth and function in the
221 genes screened is consistent with the homeostatic model schematized in Fig 3B, suggesting
222 that presynaptic release is tuned at individual boutons to maintain stable global synaptic
223 strength despite variation in synaptic growth.

224

225 **Synaptic strength scales with synaptic growth in *pkc53E* mutants**

226 We next sought to characterize the relationship between synaptic growth and function in the
227 nine FMRP target mutants in more detail. In particular, we sought to illuminate how, or whether,
228 synaptic scaling or homeostasis was expressed. We first characterized synaptic function and
229 structure in the four undergrowth mutants. Mutations in the first gene, *protein kinase C 53E*
230 (*pkc53E*), exhibited reductions in synaptic strength that appeared to scale with synaptic growth
231 (Fig 3D). Bouton numbers were reduced by ~50% in homozygous mutants of *pkc53E* (S1 Table)
232 and in *pkc53E* mutants in trans to a deficiency that removed the entire locus (*pkc53E*¹/*pkc53E*^{Df};
233 Fig 4A and 4B; S3 Table). Correspondingly, EPSP amplitude was reduced to a similar extent in
234 both allelic combinations of *pkc53E* compared to wild type (Fig 4C and 4D). Synaptic strength,

235 indicated by EPSP amplitude, is determined by two parameters: The amount of presynaptic
236 neurotransmitter released and the postsynaptic response to neurotransmitter [51, 52]. A change
237 in mEPSP amplitude, which reflects the postsynaptic response to neurotransmitter released
238 from a single vesicle, would likely indicate a change in the number or functionality of
239 postsynaptic glutamate receptors in *pkc53E* mutants. However, we observed no significant
240 difference in mEPSP amplitude in *pkc53E* mutants compared to wild type (Fig 4D; S3 Table),
241 consistent with no postsynaptic adaptations in this mutant. Next, we calculated quantal content
242 in these mutants; a measure of the number of synaptic vesicles released in response to
243 synaptic stimulation, and found a reduction in this value proportional to the reduction in EPSP
244 amplitude (Fig 4C and 4D), as expected. If no adaptions to presynaptic structure occurred in
245 *pkc53E*, then the anatomical number of release sites (active zones) should be reduced in
246 proportion to the reduction in bouton number. We measured the number of puncta of the active
247 zone scaffold Bruchpilot (BRP) by immunostaining the NMJ, which represent individual releases
248 sites [49, 53]. We observed a reduction in BRP puncta number per NMJ proportional to the
249 reduction in bouton number in *pkc53E* mutants (Fig 4E and 4F), with no change in BRP puncta
250 density compared to wild type (Fig 4G). Thus, in *pkc53E* mutants, the number of active zones is
251 reduced in proportion to the number of boutons and no apparent changes are observed in
252 release probability or the postsynaptic sensitivity to neurotransmitter, consistent with a scaling of
253 synaptic strength with synaptic growth. Importantly, this implies that in the remaining eight
254 mutants in which synaptic strength remained constant despite increased or reduced growth,
255 some compensatory adaptions must have occurred.

256

257 **Enhanced postsynaptic receptor abundance compensates for reduced presynaptic
258 release in *WRNexo* mutants**

259 We next focused on the undergrowth mutant *WRNexo*. *WRNexo* encodes Werner's
260 exonuclease, so named because mutations in the human homolog cause the disease Werner's

261 Syndrome, a disease resulting in premature aging due to DNA damage [54-56]. Null mutations
262 in *WRNexo* have been generated and characterized in the context of DNA repair in *Drosophila*
263 [57]. However, roles for *WRNexo* in synaptic growth or function have not been reported, nor
264 have they been characterized at the NMJ. *WRNexo* mutants exhibit significant reductions in
265 synaptic growth, with bouton numbers reduced by ~50% compared to wild type controls (Fig 5A
266 and 5B). However, EPSP amplitude in *WRNexo* mutants was similar to wild type (Fig 5C and
267 5D). Quantification of mEPSP amplitude revealed a significant increase in *WRNexo* mutants
268 compared to wild type, resulting in a corresponding reduction in quantal content (Fig 5C and
269 5D). Together, this suggests that while presynaptic neurotransmitter release is reduced in
270 accordance to reduced synaptic growth in *WRNexo* mutants, an increase in the postsynaptic
271 responsiveness to neurotransmitter was sufficient to maintain normal synaptic strength.

272 At the *Drosophila* NMJ, two glutamate receptor subtypes, GluRIIA-containing and
273 GluRIIB-containing, mediate the response to synaptically released glutamate [58]. Three
274 essential glutamate receptors, GluRIIC, GluRIID, and GluRIIE are core components of both
275 receptor complexes and incorporate either GluRIIA or GluRIIB subunits [58, 59]. The majority of
276 neurotransmission is driven by GluRIIA-containing receptors due to their slower desensitization
277 kinetics and larger current amplitudes [19, 60, 61]. Given the increase in mEPSP amplitude
278 observed in *WRNexo* mutants, we examined the state of glutamate receptors in more detail. We
279 co-stained NMJs with antibodies against GluRIIA, GluRIIB, and GluRIID and assessed the
280 synaptic localization of these receptor subunits while also quantifying immunofluorescence
281 levels (Fig 5E and 5F). While we did not observe any major differences in the localization of
282 receptors at the NMJ, we did find a significant increase in GluRIIA, GluRIIB and GluRIID subunit
283 levels in *WRNexo* mutants (Fig 5E and 5F). This suggests that the additional abundance of
284 postsynaptic glutamate receptors at the postsynaptic density of *WRNexo* mutants increased
285 sensitivity to glutamate and compensated for reduced synaptic growth and glutamate release.

286

287 **Increased bouton area maintains stable synapse number in *cont* and *G_γ30a* mutants**

288 Next, we characterized the two remaining synaptic undergrowth mutants, *contactin* (*cont*), a cell
289 adhesion molecule involved in septate junction organization between glia and neurons [62], and
290 *G_γ30A*, the gamma subunit of a heterotrimeric G protein [63]. Interestingly, despite a ~60%
291 reduction in bouton number compared to wild type (Fig 6A and 6B), these two mutants
292 appeared to have no obvious changes in synaptic physiology (Fig 6C and 6D). mEPSP
293 amplitudes were similar to wild type in both mutants, which implies that a presynaptic change in
294 either active zone number and/or release probability likely compensated for reduced bouton
295 number to maintain stable levels of presynaptic neurotransmitter release.

296 We therefore quantified the number of BRP puncta per NMJ in *cont* and *G_γ30A* mutants.
297 Surprisingly, immunostaining of BRP revealed that total puncta number per NMJ were similar in
298 both *cont* and *G_γ30A* mutants to wild type (Fig 6E and 6F). Further analysis found that while
299 bouton numbers were indeed reduced, individual boutons were significantly enlarged in area in
300 these mutants (Fig 6E and 6F). Thus, although *cont* and *G_γ30A* were defined as synaptic
301 undergrowth mutants based on our bouton counting assay, increased bouton area conserved
302 total neuronal membrane area (Fig 6F). Consistently, quantification of BRP puncta per bouton
303 revealed a significant increase in both *cont* and *G_γ30A* (Fig 6E and 6F), demonstrating that
304 active zone number scaled with the enhanced NMJ membrane and area of individual boutons.
305 Thus, despite a reduction in overall bouton number, increased synapse number per bouton was
306 sufficient to maintain total synapse number per NMJ, and synaptic strength, in both *cont* and
307 *G_γ30A* undergrowth mutants.

308

309 **Reduced active zone area is observed in overgrowth mutants with increased active zone
310 numbers**

311 We next characterized synaptic function and structure in the five synaptic overgrowth mutants.
312 This category harbored mutations in diverse genes encoding the G-protein coupled receptor
313 *mangetout (mtt)*; the *WD repeat domain protein 62 (wdr62)*; the kainate receptor *ekar*; the
314 calcium-activated protein phosphatase *calcineurin B2 (canB2)*; and the endoplasmic reticulum
315 stress gene *receptor expression enhancing protein (reep)*. Despite the diverse functions of
316 these genes (S2 Table), they shared a common 40-50% increase in the number of synaptic
317 boutons per NMJ but stable synaptic strength (Fig 7A and 7C). Electrophysiological analysis
318 revealed no significant changes in mEPSP amplitude, EPSP amplitude, or quantal content (Fig
319 7B and 7E; S1 Table). This suggests the postsynaptic sensitivity to neurotransmitter was not
320 impacted in these mutants, and implies a change in synapse number and/or release probability
321 likely compensated for the increased bouton number shared in these mutants.

322 Next, we quantified the total number of BRP puncta per NMJ in these overgrowth
323 mutants. We found an increase in total BRP puncta number per NMJ that correlated with the
324 enhanced synaptic growth observed in each overgrowth mutant (Fig 7A and 7E).
325 Correspondingly, we observed no major differences in bouton size, leading to a parallel
326 increase in total neuronal membrane surface area per NMJ and no change in BRP puncta
327 density (S3 Table). Hence, BRP puncta number essentially scales with bouton number in the
328 overgrowth mutants, in contrast to the undergrowth mutants detailed in Fig 6. This suggests that
329 a reduction in release probability per active zone likely stabilized synaptic strength in these
330 mutants.

331 The size and abundance of material at individual active zones can vary considerably,
332 and several studies have found that these properties can correlate with release probability [64-
333 66]. At the *Drosophila* NMJ, there is considerable heterogeneity in the size and intensity of the
334 active zone scaffold BRP and other active zone components [67-69]. Furthermore, recent
335 studies have shown that active zones at this NMJ that are endowed with increased intensity and
336 size correlate with increased release probability during baseline transmission and plasticity [17,

337 70-73]. We therefore considered that while the total number of BRP puncta per NMJ was
338 increased in the overgrowth mutants, there might have been a corresponding change in the
339 area and/or intensity of each puncta that contributed to their modulation of release probability.
340 Analysis of individual BRP puncta revealed a significant reduction in the mean area of BRP
341 puncta in all five synaptic overgrowth mutants (Fig 8A and 8B; S3 Table). Indeed, the average
342 BRP puncta area scaled with total BRP puncta number per NMJ in wild type and in the synaptic
343 overgrowth mutants (Fig 8C; $R^2=0.27$, $p\text{-value}=0.0006$). While we did observe a significant
344 inverse correlation (R^2 value) between BRP puncta number and area, the curve fit of these data
345 points resulted in a lower correlation value, likely due to a narrower distribution. However, the
346 total abundance of BRP per NMJ, reflected in the sum fluorescence intensity of BRP puncta
347 across an entire NMJ, was not significantly different between wild type and the five overgrowth
348 mutants (Fig 8D; S3 Table). Thus, an apparent tuning of active zone size may have
349 compensated for increased number to reduce release probability per active zone and maintain
350 synaptic strength in the overgrowth mutants isolated from the genetic screen.

351

352 **DISCUSSION**

353 Through a forward genetic screen of ~300 mutants, we have identified genes required for
354 property regulation of synaptic growth and neurotransmission. This approach has revealed
355 several new mutations and RNAi lines that disrupt synaptic growth and function, while also
356 demonstrating that these processes are regulated through distinct pathways. This data implies
357 the existence of a homeostat that stabilizes global synaptic strength while permitting substantial
358 flexibility in synaptic growth. Our analysis has defined three adaptive mechanisms that operate
359 to maintain synaptic strength when synaptic growth is dramatically altered.

360

361 **Genes that promote or constrain synaptic growth**

362 A complex repertoire of genes work together to tune synaptic growth, structure, and function.
363 One node of control is the translational modulator FMRP, which has been clearly implicated in
364 the regulation of postsynaptic signaling, dendritic structure, and glutamate receptor dynamics
365 [29, 74-77]. Furthermore, FMRP has also emerged as an important regulator of presynaptic
366 glutamate release via modulation of potassium channels, calcium influx, short-term plasticity,
367 and synaptic vesicle recycling [78-84]. Similarly, genes associated with autism and
368 schizophrenia susceptibility have been shown to have parallel roles in regulating synaptic
369 growth and transmission [85, 86]. Consistent with these studies, our screen identified several
370 disease-linked genes required for proper synaptic growth and transmission. Although further
371 work will be necessary to understand how each gene regulates the growth or function of the
372 synapse, the strength of this large-scale screening approach lies in identifying and assigning
373 functions to individual genes.

374 There is emerging evidence that both homeostatic and Hebbian forms of plasticity share
375 common genes and signaling networks [8, 87-89]. While the *Drosophila* NMJ is built for stability
376 and has proven to be a powerful model to investigate glutamatergic transmission and
377 homeostatic plasticity, contrasting forms of Hebbian plasticity are less obvious at this synapse.
378 Hence, mutations of genes with specialized functions in non-glutamatergic synaptic
379 transmission or Hebbian plasticity are unlikely to reveal phenotypes using the screening
380 strategy we employed. However, a variety of genes were identified with significant and more
381 subtle roles in regulating synaptic growth and baseline function (S1 Table). Mutations in one
382 gene, *pkc53E*, exhibited reduced synaptic growth and a parallel reduction in transmission,
383 consistent with a scaling model of synaptic growth and transmission. However, our
384 characterization of the remaining synaptic growth mutants revealed evidence for homeostatic
385 adaptations that stabilized synaptic strength across variations in NMJ growth. In the case of the
386 undergrowth mutants *cont* and *Gγ30A*, increased size of individual boutons led to a
387 conservation of both neuronal membrane and active zone number to maintain synaptic strength.

388 Interestingly, there is evidence from studies of other mutants that the size of individual boutons
389 at the *Drosophila* NMJ are inversely correlated with total numbers per NMJ [90-93]. Therefore,
390 adjusting the morphology and size of individual boutons is one adaptive strategy that may
391 generally serve to enable flexibility in synaptic growth while maintaining stable total synapse
392 numbers.

393

394 **Homeostatic scaling of glutamate receptor abundance and active zone size**

395 We identified a homeostatic scaling of postsynaptic glutamate receptor abundance that offset
396 reduced presynaptic neurotransmitter release in one synaptic undergrowth mutant. Specifically,
397 *WRNexo* mutants exhibited reduced synaptic growth with a concomitant reduction in
398 presynaptic active zone number and neurotransmitter release. However, this diminished
399 presynaptic efficacy was offset by a compensatory increase in GluRIIA-containing postsynaptic
400 receptors. This phenomenon parallels homeostatic receptor scaling of postsynaptic glutamate
401 receptors following manipulations to activity in mammalian central neurons [94-97]. While
402 glutamate receptors are rapidly and dynamically regulated in central neurons during both
403 Hebbian and homeostatic forms of plasticity [10, 98, 99], receptors at the NMJ are much less
404 dynamic. Glutamate receptors have half lives of ~24 hr at the *Drosophila* NMJ [100], which
405 parallels the relatively slow dynamics of cholinergic receptors at the mammalian NMJ [101].
406 However, there is intriguing evidence that postsynaptic receptors at the NMJ can be dynamically
407 regulated in response to changes in presynaptic activity [102, 103], following injury and disease
408 [20, 104-106], and in response to hypo-innervation [20, 21] and similar phenomena occur
409 following injury in the central nervous system [107]. Thus, NMJs may be endowed with an
410 underappreciated degree of latent receptor plasticity mechanisms that can be revealed in
411 response to homeostatic challenges, including synaptic undergrowth.

412 We identified an apparent homeostatic scaling of active zone size in all five synaptic
413 overgrowth mutants. In contrast to the undergrowth mutants, no changes in bouton size or the

414 postsynaptic sensitivity to neurotransmitter was observed, and active zone number scaled with
415 enhanced synaptic growth. In principle, a variety of compensatory changes in postsynaptic
416 receptors, presynaptic morphology, and/or synapse number could have been homeostatically
417 regulated to maintain synaptic strength. However, all five mutants shared an apparent reduction
418 in the size and intensity of the active zone scaffold BRP, indicative of a functional reduction in
419 release probability of individual active zones. Interestingly, active zone scaffold proteins
420 (CAST/ELKS/BRP) are known to regulate presynaptic release probability by stabilizing calcium
421 channels and the size of the readily releasable synaptic vesicle pool [49, 108-111]. Furthermore,
422 BRP can be rapidly remodeling during homeostatic plasticity to enhance the RRP and promote
423 calcium influx [17, 18, 71, 72, 112]. Finally, a positive correlation between the size and intensity
424 of active zone components and release probability has been observed at the *Drosophila* NMJ
425 [68-70] as well as at vertebrate central synapses [64-66, 113]. Therefore, the reduction in active
426 zone size observed in the overgrowth mutants likely reduces release probability at individual
427 release sites to maintain global NMJ function. More generally, remodeling of active zone
428 structure is an attractive mechanism that might homeostatically tune presynaptic efficacy to
429 stabilize synaptic strength while still permitting flexibility during synaptic growth and pruning.

430 In the central nervous system, a variety of mechanisms homeostatically scale axonal
431 and dendritic structure and arborization to compensate for altered activity. For example, a
432 homeostatic remodeling of dendritic arborization in the fly visual system is observed in response
433 to chronically elevated or reduced activity [114], and adaptive structural alterations at synapses
434 have been observed during the sleep/wake cycle [4, 115, 116]. Similarly, adaptive changes in
435 the structure and number of dendritic spines are observed in response to imbalances in
436 excitation and inhibition in the central nervous system [2, 117-120]. Parallel adaptations to the
437 axon initial segment and release probability at presynaptic terminals have been demonstrated
438 that counteract homeostatic challenges [65, 89, 121]. Our findings on the interplay between

439 synaptic growth and function underscore the diverse mechanisms that homeostatically stabilize
440 global synaptic strength while permitting dynamic flexibility in the growth of synapses.

441

442 MATERIALS AND METHODS

443 **Fly Stocks:** *Drosophila* stocks were raised at 25°C on standard molasses food. The *w*¹¹¹⁸ strain
444 is used as the wild type control unless otherwise noted, as this is the genetic background of the
445 genetic mutants used in this study. For experiments with the transgenic RNAi lines, control
446 larvae were generated by crossing C15 (*c155-Gal4;Sca-Gal4;BG57-Gal4*; [43]) to *UAS-RFP* (BL
447 32218). Since the average synaptic growth and electrophysiological values for the mutant
448 control (*w*¹¹¹⁸) and RNAi control (*c155-Gal4;Sca-Gal4/+;BG57-Gal4/UAS-RFP*) were not
449 significantly different (S1 Table), we pooled all mutant and RNAi line data shown in Figures 1-3.
450 The *WRNexo* null mutants (*WRNexo*⁴) were previously described [57]. All genetic mutants and
451 transgenic RNAi lines were obtained from the Bloomington *Drosophila* Stock Center. A
452 complete list of all stocks used in this study, their full genotypes, and their origin can be found in
453 S1 Table.

454

455 **Immunocytochemistry:** Third-instar larvae were dissected in ice cold 0 Ca²⁺ HL-3 and fixed in
456 Bouin's fixative for 5 min. Larvae were washed with PBS containing 0.1% Triton X-100 (PBST)
457 for 30 min, and then blocked for an hour with 5% normal donkey serum in PBST. Larvae were
458 incubated overnight in primary antibodies at 4°C followed by a 30 min wash in PBST, 2.5 hour
459 incubation in secondary antibodies at room temperature (20-22°C), a final 30 min wash in
460 PBST, and equilibration in 70% glycerol. Blocking was done with 5% normal donkey serum in
461 PBST. Samples were mounted in VectaShield (Vector Laboratories). The following antibodies
462 were used: mouse anti-Bruchpilot (nc82; 1:100; Developmental Studies Hybridoma Bank;
463 DSHB); rabbit anti-DLG ((1:10,000; [122]); guinea pig anti-vGlut ((1:2000; generated by

464 Cocalico Biologicals using the peptide described in [15]); mouse anti-GluRIIA (8B4D2; 1:100;
465 DSHB); rabbit anti-GluRIIB ((1:1000; generated by Cocalico Biologicals using the peptide
466 described in [59]); guinea pig anti-GluRIID ((1:1000; generated by Cocalico Biologicals using the
467 peptide described in [123]). Donkey anti-mouse, anti-guinea pig, and anti-rabbit Alexa Fluor
468 488-, Cyanine 3 (Cy3)-, and Dy Light 405- conjugated secondary antibodies (Jackson
469 Immunoresearch) were used at 1:400. Alexa Fluor 647 conjugated goat anti-HRP (Jackson
470 ImmunoResearch) was used at 1:200.

471

472 **Imaging and analysis:** Samples were imaged using a Nikon A1R Resonant Scanning Confocal
473 microscope equipped with NIS Elements software and a 100x APO 1.4NA oil immersion
474 objective using separate channels with three laser lines (488 nm, 561 nm, and 637 nm). For
475 fluorescence quantifications of BRP intensity levels, z-stacks were obtained using identical
476 settings for all genotypes with z-axis spacing between 0.15 μ m to 0.2 μ m within an experiment
477 and optimized for detection without saturation of the signal. Boutons were counted using vGlut
478 and HRP-stained NMJ terminals on muscle 6/7 and muscle 4 of segment A3, considering each
479 vGlut puncta to be a bouton. The general analysis toolkit in the NIS Elements software was
480 used for image analysis as described [124]. Neuronal surface area was calculated by creating a
481 mask around the HRP channel that labels the neuronal membrane. BRP puncta number, area,
482 and mean intensity (average intensity of individual BRP puncta) and sum intensity (total
483 intensity of individual BRP puncta) were quantified by applying intensity thresholds and filters to
484 binary layers on the BRP labeled 488 channel. GluRIIA, GluRIIB, and GluRIID puncta intensities
485 were quantified by measuring the total sum intensity of each individual GluR puncta and these
486 values were then averaged per NMJ to get one reading (n). Measurements based on confocal
487 images were taken from at least twelve synapses acquired from at least six different animals.

488

489 **Electrophysiology:** All dissections and recordings were performed in modified HL-3 saline
490 [125-127] containing (in mM): 70 NaCl, 5 KCl, 10 MgCl₂, 10 NaHCO₃, 115 Sucrose, 5
491 Trehelose, 5 HEPES, and 0.4 CaCl₂ (unless otherwise specified), pH 7.2. All recordings were
492 performed in 0.4 mM extracellular calcium. Neuromuscular junction sharp electrode (electrode
493 resistance between 10-30 MΩ) recordings were performed on muscles 6 and 7 of abdominal
494 segments A2 and A3 in wandering third-instar larvae. Larvae were dissected and loosely
495 pinned; the guts, trachea, and ventral nerve cord were removed from the larval body walls with
496 the motor nerve cut, and the preparation was perfused several times with HL-3 saline.
497 Recordings were performed on an Olympus BX61 WI microscope using a 40x/0.80 water-
498 dipping objective, and acquired using an Axoclamp 900A amplifier, Digidata 1440A acquisition
499 system and pClamp 10.5 software (Molecular Devices). Electrophysiological sweeps were
500 digitized at 10 kHz and filtered at 1 kHz. Data were analyzed using Clampfit (Molecular
501 devices), MiniAnalysis (Synaptosoft), Excel (Microsoft), and SigmaPlot (Systat) software.

502 Miniature excitatory postsynaptic potentials (mEPSPs) were recorded in the absence of
503 any stimulation, and cut motor axons were stimulated to elicit excitatory postsynaptic potentials
504 (EPSPs). An ISO-Flex stimulus isolator (A.M.P.I.) was used to modulate the amplitude of
505 stimulatory currents. Intensity was adjusted for each cell, set to consistently elicit responses
506 from both neurons innervating the muscle segment, but avoiding overstimulation. Average
507 mEPSP, EPSP, and quantal content were calculated for each genotype by dividing EPSP
508 amplitude by mEPSP amplitude. Muscle input resistance (R_{in}) and resting membrane potential
509 (V_{rest}) were monitored during each experiment. Recordings were rejected if the V_{rest} was above -
510 60 mV, if the R_{in} was less than 5 MΩ, or if either measurement deviated by more than 10%
511 during the course of the experiment.

512

513 **Experimental Design and Statistical Analysis:** For electrophysiological and immunostaining
514 experiments, each NMJ terminal (muscle 6 for physiology, and muscle 4 for immunostaining

515 analyses of synaptic terminals and active zones) is considered an n of 1 since each presynaptic
516 motor neuron terminal is confined to its own muscular hemisegment. For these experiments,
517 muscles 4 or 6 were analyzed from hemisegments A3 for each larvae, and thus each larvae
518 contributes 2 NMJs per experiment. To control for variability between larvae within a genotype,
519 for immunostaining experiments involving BRP and GluRIII, NMJs were analyzed from no less
520 than 6 individual larvae.

521 Statistical analysis was performed using GraphPad Prism software. Data were tested for
522 normality using a D'Agostino-Pearson omnibus normality test. Normally distributed data were
523 analyzed for statistical significance using a t-test (pairwise comparison), or an analysis of
524 variance (ANOVA) and Tukey's test for multiple comparisons. For non-normally distributed data,
525 Wilcoxon rank-sum test or Dunn's multiple comparisons after nonparametric ANOVA were used.
526 All data are presented as mean +/-SEM. with varying levels of significance assessed as p<0.05
527 (*), p<0.01 (**), p<0.001 (***), p<0.0001 (****), ns=not significant. See S3 Table for additional
528 statistical details and values.

529

530 **ACKNOWLEDGEMENTS**

531 We thank the Dr. Mitch McVey (Department of Biology, Tufts University, USA) for sharing
532 *WRNexo* mutants. We acknowledge the Developmental Studies Hybridoma Bank (Iowa, USA)
533 for antibodies used in this study, and the Bloomington Drosophila Stock Center (NIH
534 P4OD018537) for fly stocks. We also acknowledge Andrew Tung, Andrew An, Luke Nunnely,
535 and Michelle Chee for contributions during early phases of this project. MK and SH were
536 supported by USC Undergraduate Research Awards, and PG and KK were supported in part by
537 USC Provost Graduate Research Fellowships. This work was supported by a grant from the
538 National Institutes of Health (NS091546) to DD.

539

540 **AUTHOR CONTRIBUTIONS**

541 PG, MK, and SH obtained all experimental data. BK and KK organized and supervised early
542 phases of the FMRP screen. MK and PG analyzed all data. The manuscript was written by PG
543 and DD with comments from MK.

544

545 **FIGURE LEGENDS**

546 **Fig 1. A forward genetic screen identifies genes that regulate synaptic growth at the**
547 ***Drosophila* NMJ. (A)** Schematic illustrating synaptic boutons, numbers of which are a measure
548 of NMJ growth. **(B)** Images of larval muscle 4 NMJs immunostained with anti-HRP (neuronal
549 membrane marker) and anti-vGlut (synaptic vesicle marker). Examples of NMJs in undergrowth
550 and overgrowth mutants are shown. **(C)** Flow diagram of synaptic growth screen strategy and
551 outcome. Mutants with increases or decreases in synaptic growth that were over 2 standard
552 deviations from controls (~44% increase or decrease) are indicated. **(D)** Histogram of average
553 bouton number per mutant or RNAi line quantified in the synaptic growth screen. Average
554 bouton numbers in control (black arrow), overgrowth mutants (red), and undergrowth mutants
555 (blue) are indicated. Three genes previously reported to exhibit synaptic overgrowth are
556 indicated. **(E)** Bouton numbers of the identified overgrowth and undergrowth mutants shown as
557 a percentage of wild-type values. No significant differences in bouton numbers were observed
558 between the mutant control (w^{1118}) and RNAi line control (C15xUAS-RFP; S1 Table), so all
559 values were pooled. Error bars indicate \pm SEM. *** $p \leq 0.001$. Additional details of all mutants and
560 RNAi lines screened and statistical information (mean values, SEM, n, p) are shown in S1
561 Table.

562

563 **Fig 2. Presynaptic neurotransmitter release does not scale with synaptic growth in the**
564 **mutants screened. (A)** Flow diagram of electrophysiology-based synaptic transmission screen
565 strategy and outcome. **(B)** Histogram of average EPSP amplitude quantified for each mutant
566 and RNAi line in the screen. Although no mutants or RNAi lines with EPSP amplitudes > two

567 standard deviations above the average EPSP amplitude in wild type were found (~36%
568 increase), several lines with EPSP amplitudes below this threshold were identified (indicated in
569 blue). **(C)** Graph showing the total bouton number of each synaptic transmission mutant or RNAi
570 line identified as a function of EPSP amplitude. The best-fit line to this data (solid black line;
571 slope = -0.788) indicates that bouton numbers do not correlate with EPSP amplitude ($R^2= 0.045$,
572 p value=0.186). Additional details of all mutant and RNAi lines screened and statistical
573 information (mean values, SEM, n , p) are shown in S1 Table.

574

575 **Fig 3. Stable synaptic strength is observed despite variation in synaptic growth in the**
576 **mutants screened. (A)** Schematic illustrating a “scaling” model in which presynaptic
577 neurotransmitter release scales with synaptic growth. Note that in this scenario, EPSP
578 amplitude correlates with bouton number. **(B)** Schematic illustrating an alternative “homeostatic”
579 model, in which synaptic strength remains constant across changes in bouton number. **(C)**
580 Graph plotting the EPSP amplitude of the genes screened (with the mutants and RNAi lines
581 defective in synaptic transmission removed) plotted as a function of bouton number. The
582 dashed diagonal line represents the ideal “scaling” model, where EPSP amplitude correlates
583 with bouton numbers. The horizontal solid line represents the idealized “homeostatic” model,
584 where no such correlation is observed. The data shows that EPSP amplitudes do not correlate
585 with bouton numbers (Pearson’s correlation coefficient $R^2= 0.0002$, p value=0.789), a closer fit
586 to a “homeostatic” model. **(D)** Graph plotting EPSP amplitude of the synaptic overgrowth and
587 undergrowth mutants as a function of bouton number. Only a single undergrowth mutant
588 (indicated as a square data point) fits the “scaling” model, with EPSP amplitude reduced to a
589 similar extent as the reduction in bouton number. All other synaptic growth mutants maintained
590 stable EPSP amplitude, consistent with a “homeostatic” model (solid horizontal line; Pearson’s
591 correlation coefficient $R^2= 0.012$, p value=0.718). **(E)** Average quanta released per bouton
592 calculated for each mutant is plotted as a function of bouton number for the mutants shown in

593 (C). A curve fit of this data provides a Goodness of Fit R^2 value of 0.65 and a p value of
594 <0.0001, indicating an inverse correlation between quanta released per bouton with total bouton
595 number. Additional details of the mutants screened and statistical information (mean values,
596 SEM, n, p) are shown in S1 Table.

597

598 **Fig 4. Presynaptic neurotransmitter release scales with reduced bouton and active zone**
599 **number in *pkc53E* mutants. (A)** Representative muscle 4 NMJ images of wild type (w^{1118}) and
600 *pkc53E* mutants *in trans* with a deficiency ($pkc53E^1/pkc53E^{Df(2R)P803-Delta15}$) immunostained with
601 anti-HRP and anti-vGlut. **(B)** Quantification of bouton number in the indicated genotypes
602 normalized to wild-type values. **(C)** Schematic and representative electrophysiological traces of
603 mEPSPs and EPSPs in the indicated genotypes illustrating reduced synaptic strength and no
604 evidence for compensatory adaptions to presynaptic neurotransmitter release or postsynaptic
605 sensitivity to neurotransmitter. **(D)** Quantification of mEPSP, EPSP, and quantal content values
606 in *pkc53E* mutants normalized as a percentage of wild type. **(E)** Representative images of NMJs
607 immunostained with anti-HRP and the anti-bruchpilot (BRP; presynaptic active zone marker),
608 with individual boutons shown at higher magnification (insets below). **(F)** Quantification of total
609 BRP puncta number per NMJ shows a concomitant reduction with bouton number and no
610 significant change in BRP puncta density. Error bars indicate \pm SEM. One-way analysis of
611 variance (ANOVA) test was performed, followed by a Tukey's multiple-comparison test.
612 ***p≤0.001; ****p≤0.0001; ns=not significant, p>0.05. Detailed statistical information (mean
613 values, SEM, n, p) is shown in S3 Table.

614

615 **Fig 5. Increased postsynaptic receptor levels compensate for reduced presynaptic**
616 **neurotransmitter release in *WRNexo* mutants. (A)** Representative images of muscle 4 NMJs
617 in wild type, *WRNexo* mutants ($WRNexo^{MI13095}$), and *WRNexo* null mutants ($WRNexo^D$),
618 immunostained with anti-HRP and anti-vGlut. **(B)** Quantification of bouton numbers in *WRNexo*

619 mutants normalized as a percentage of wild type. **(C)** Representative mEPSP and EPSP traces
620 in the indicated genotypes. The schematic illustrates that enhanced levels of postsynaptic
621 glutamate receptor levels offset reduced presynaptic release in *WRNexo* mutants. **(D)**
622 Quantification of mEPSP, EPSP, and quantal content values in the indicated genotypes
623 normalized as a percentage of wild type. **(E)** Representative images of boutons immunostained
624 with antibodies against three postsynaptic glutamate receptor subunits (GluRIIA; GluRIIB;
625 GluRIID). **(F)** Quantification of sum puncta fluorescence intensity of each receptor subunit
626 reveals enhanced levels of all postsynaptic receptors in *WRNexo*. Error bars indicate \pm SEM.
627 One-way analysis of variance (ANOVA) test was performed, followed by a Tukey's multiple-
628 comparison test. ** $p \leq 0.01$; *** $p \leq 0.001$; **** $p \leq 0.0001$; ns=not significant, $p > 0.05$. Detailed
629 statistical information (mean values, SEM, n, p) is shown in S3 Table.

630

631 **Fig 6. Increased bouton size compensates for reduced bouton number in *cont* and *Gy30A***
632 **mutants. (A)** Representative images of muscle 4 NMJs in wild type, *cont* and *Gy30A* mutants *in*
633 *trans* with deficiencies (*cont*: *cont*^{*Df(3R)BSC146*} and *Gy30A*: *Gy30A*^{*1*}/*Gy30A*^{*Df(2L)ED680*})
634 immunostained with anti-HRP and anti-vGlut. **(B)** Bouton numbers per NMJ in the indicated
635 genotypes normalized as a percentage of wild-type values. **(C)** Representative mEPSP and
636 EPSP traces in the indicated genotypes. The schematic illustrates an enhancement in bouton
637 area resulting in more release sites per bouton, with no apparent change in postsynaptic
638 sensitivity to glutamate in *cont* and *Gy30A* mutants. **(D)** Quantification of mEPSP, EPSP, and
639 quantal content values in the indicated genotypes normalized as a percentage of wild type
640 values. **(E)** Representative images of individual boutons from the indicated genotypes
641 immunostained with anti-BRP and anti-HRP. The white circle outlines a single bouton. The
642 increased area of individual boutons and number of BRP puncta within each bouton is apparent
643 in *cont* and *Gy30A* mutants. **(F)** Quantification of the indicated synaptic parameters in the

644 indicated genotypes normalized as a percentage of wild-type values. Note that total neuronal
645 membrane area is unchanged in *cont* and *Gy30A* mutants due to an increase in the average
646 area of individual boutons. Hence, a significant increase in the number of BRP puncta per
647 bouton is observed. Error bars indicate \pm SEM. One-way analysis of variance (ANOVA) test was
648 performed, followed by a Tukey's multiple-comparison test. * $p\leq 0.05$; ** $p\leq 0.01$; **** $p\leq 0.0001$;
649 ns=not significant, $p>0.05$. Detailed statistical information (mean values, SEM, n, p) is shown in
650 S3 Table.

651

652 **Fig 7. Mutants with enhanced synaptic growth exhibit a concomitant increase in active**
653 **zone number yet stable levels of synaptic strength. (A)** Representative images of muscle 4
654 NMJs in wild type, *mangetout* (*mtt*: *mtt*¹/*mtt*^{Df(2R)H3D3}), *WD repeat domain 62* (*wdr62*:
655 *wdr62*¹/*wdr62*^{Df(2L)Exel8005}), *eye-enriched kainate receptor* (*ekar*: *ekar*¹), *calcineurin B2* (*canB2*:
656 *canB2*¹/*canB2*^{Df(2R)BSC265}), and *receptor expression enhancing protein* (*reep*: *reep*¹/*reep*^{Df(2R)WI345})
657 mutants immunostained with anti-HRP and anti-vGlut. **(B)** Representative EPSP and mEPSP
658 traces showing no significant changes in the overgrowth mutants compared to wild type.
659 Quantification of bouton numbers **(C)** and BRP puncta number per NMJ **(D)** in the indicated
660 genotypes reveals a significant increase in both parameters compared to wild type. **(E)**
661 Quantification of mEPSP, EPSP, and quantal content values in the indicated genotypes
662 normalized as a percentage of wild type. Despite enhanced bouton and active zone number per
663 NMJ in the overgrowth mutants, no significant change in presynaptic neurotransmitter release
664 (quantal content) is observed. Error bars indicate \pm SEM. One-way analysis of variance
665 (ANOVA) test was performed, followed by a Tukey's multiple-comparison test. ** $p\leq 0.01$;
666 **** $p\leq 0.0001$; ns=not significant, $p>0.05$. Detailed statistical information (mean values, SEM, n,
667 p) is shown in S3 Table.

668

669 **Fig 8. Active zone area is reduced in mutants with enhanced synaptic growth. (A)**
670 Representative images of individual boutons from wild type and the overgrowth mutants
671 immunostained with anti-BRP and anti-HRP. **(B)** Quantification of BRP puncta number and BRP
672 puncta area in the indicated genotypes normalized to wild-type values. While both bouton and
673 BRP puncta numbers are increased in the overgrowth mutants, a reduction in the average area
674 of each BRP puncta is observed. **(C)** Average BRP puncta area plotted as a function of average
675 BRP puncta number per NMJ in the indicated genotypes demonstrates a homeostatic scaling of
676 BRP puncta area with total number per NMJ, represented by the curve fitted to the data points
677 ($R^2=0.27$, p value=0.0006; ***). **(D)** Quantification of total BRP puncta fluorescence intensity per
678 NMJ in the indicated genotypes, suggesting that the total abundance of BRP per NMJ remains
679 unchanged in the overgrowth mutants compared to wild type. **(E)** Schematic illustrating that
680 although both bouton and BRP puncta numbers are increased in overgrowth mutants, a
681 reduction in the area of individual BRP puncta results in reduced release probability per active
682 zone and per bouton to stabilize synaptic strength. Error bars indicate \pm SEM. One-way analysis
683 of variance (ANOVA) test was performed, followed by a Tukey's multiple-comparison test.
684 ** $p\leq 0.01$; *** $p\leq 0.001$; ns=not significant, $p>0.05$. Detailed statistical information (mean values,
685 SEM, n , p) is shown in S3 Table.

686
687 **S1 Table. Quantification of synaptic growth and function in all genes, mutants, and RNAi**
688 **lines screened.** The Flybase ID, CG number, gene name, putative function, full mutant or RNAi
689 genotype, and source (BDSC stock number) for each fly stock screened is noted. Further,
690 quantification of bouton number, mEPSP amplitude, EPSP amplitude, and quantal content for
691 each line is shown.

692

693 **S2 Table. Putative functions of synaptic undergrowth and overgrowth genes.** Putative
694 functions of each synaptic undergrowth and overgrowth gene is shown along with related
695 references.

696

697 **S3 Table. Absolute values for normalized data and additional statistics.** The figure and
698 panel, genotype, and experimental conditions are noted. For electrophysiological recordings,
699 average mEPSP, EPSP, quantal content (QC), resting potential, input resistance, number of
700 data samples (n), p values, and significance values are shown, with standard error noted in
701 parentheses. For analysis of confocal images, average fluorescence intensity values and
702 related parameters are shown. Standard error values are noted in parentheses. Rows
703 highlighted in blue are the respective controls or baseline values for the particular experiment
704 being referenced.

705

706 **REFERENCES**

- 707 1. Cohen-Cory S. The developing synapse: construction and modulation of synaptic
708 structures and circuits. *Science*. 2002;298:770-6.
- 709 2. Holtmaat A, Svoboda K. Experience-dependent structural synaptic plasticity in the
710 mammalian brain. *Nat Rev Neurosci*. 2009;10:647-58.
- 711 3. Riccomagno MM, Kolodkin AL. Sculpting Neural Circuits by Axon and Dendrite Pruning.
712 *Annu Rev Cell Dev Biol*. 2015;31:779-805.
- 713 4. Vivo L, Bellesi M, Marshall W, Bushong EA, Ellisman MH, Tononi G, et al. Ultrastructural
714 evidence for synaptic scaling across the wake/sleep cycle. *Science*. 2017;355:507-10.
- 715 5. Holmes GL, Ben-Ari Y. Seizures in the Developing Brain. *Neuron*. 1998;21:1231-4.
- 716 6. Baram TZ. The Brain, Seizures and Epilepsy Throughout Life: Understanding a Moving
717 Target. *Epilepsy Curr*. 2012;12:7-12.
- 718 7. Pozo K, Goda Y. Unraveling mechanisms of homeostatic synaptic plasticity. *Neuron*.
719 2010;66:337-51.
- 720 8. Turrigiano GG. The dialectic of Hebb and homeostasis. *Philos Trans R Soc Lond B Biol
721 Sci*. 2017;372(1715).
- 722 9. Davis GW. Homeostatic signaling and the stabilization of neural function. *Neuron*.
723 2013;80(3):718-28.
- 724 10. Herring BE, Nicoll RA. Long-Term Potentiation: From CaMKII to AMPA Receptor
725 Trafficking. *Annu Rev Physiol*. 2016;78:351-65.
- 726 11. Turrigiano G. Homeostatic Synaptic Plasticity: Local and Global Mechanisms for
727 Stabilizing Neuronal Function. *Cold Spring Harb Perspect Biol*. 2012;4:a005736.
- 728 12. Atwood HL, Govind CK, Wu CF. Differential ultrastructure of synaptic terminals on
729 ventral longitudinal abdominal muscles in *Drosophila* larvae. *J Neurobiol* 1993;24:1008–24.

730 13. Schuster CM, Davis GW, Fetter RD, Goodman CS. Genetic Dissection of Structural and
731 Functional Components of Synaptic Plasticity. II. Fasciclin II Controls Presynaptic Structural
732 Plasticity. *Neuron*. 1996;17:655-67.

733 14. Davis GW, Goodman CS. Genetic analysis of synaptic development and plasticity:
734 homeostatic regulation of synaptic efficacy. *Curr Opin Neurobiol*. 1998;8:149-56.

735 15. Daniels RW, Collins CA, Gelfand MV, Dant J, Brooks ES, Krantz DE, et al. Increased
736 expression of the *Drosophila* vesicular glutamate transporter leads to excess glutamate release
737 and a compensatory decrease in quantal content. *J Neurosci*. 2004;24:10466-74.

738 16. Gavino MA, Ford KJ, Archila S, Davis GW. Homeostatic synaptic depression is achieved
739 through a regulated decrease in presynaptic calcium channel abundance. *eLife*. 2015;4:e05473.

740 17. Li X, Goel P, Wondolowski J, Paluch J, Dickman D. A Glutamate Homeostat Controls
741 the Presynaptic Inhibition of Neurotransmitter Release. *Cell Rep*. 2018;23:1716-27.

742 18. Frank CA, Kennedy MJ, Goold CP, Marek KW, Davis GW. Mechanisms underlying the
743 rapid induction and sustained expression of synaptic homeostasis. *Neuron*. 2006;52:663-77.

744 19. Petersen SA, Fetter RD, Noordermeer JN, Goodman CS, DiAntonio A. Genetic analysis
745 of glutamate receptors in *Drosophila* reveals a retrograde signal regulating presynaptic
746 transmitter release. *Neuron*. 1997;19:1237-48.

747 20. Goel P, Dickman D. Distinct homeostatic modulations stabilize reduced postsynaptic
748 receptivity in response to presynaptic DLK signaling. *Nat Commun*. 2018;9:1856.

749 21. Davis GW, Goodman CS. Synapse-specific control of synaptic efficacy at the terminals
750 of a single neuron. *Nature*. 1998;392(March 1998):82-6.

751 22. Li X, Goel P, Chen C, Angajala V, Chen X, Dickman D. Synapse-specific and
752 compartmentalized expression of presynaptic homeostatic potentiation. *eLife*. 2018;7:e34338.

753 23. Newman ZL, Hoagland A, Aghi K, Worden K, Levy SL, Son JH, et al. Input-Specific
754 Plasticity and Homeostasis at the *Drosophila* Larval Neuromuscular Junction. *Neuron*.
755 2017;93(6):1388-404.

756 24. Liebl FLW, Kristen M, Werner QS, Karr JE, McCabe BD, Featherstone DE. Genome-
757 Wide P-Element Screen for *Drosophila* Synaptogenesis Mutants. *J Neurobiol*. 2006;66:332-47.

758 25. Dickman DK, Davis GW. The schizophrenia susceptibility gene dysbindin controls
759 synaptic homeostasis. *Science*. 2009;326(5956):1127-30.

760 26. Muller M, Pym EC, Tong A, Davis GW. Rab3-GAP controls the progression of synaptic
761 homeostasis at a late stage of vesicle release. *Neuron*. 2011;69(4):749-62.

762 27. Forrest MP, Parnell E, Penzes P. Dendritic structural plasticity and neuropsychiatric
763 disease. *Nat Rev Neurosci*. 2018;19:215-34.

764 28. Zoghbi HY, Bear MF. Synaptic dysfunction in neurodevelopmental disorders associated
765 with autism and intellectual disabilities. *Cold Spring Harb Perspect Biol*. 2012;4:a009886.

766 29. Bagni C, Greenough WT. From mRNP trafficking to spine dysmorphogenesis: the roots
767 of fragile X syndrome. *Nat Rev Neurosci*. 2005;6:376-87.

768 30. Bassell GJ, Warren ST. Fragile X syndrome: loss of local mRNA regulation alters
769 synaptic development and function. *Neuron*. 2008;60:201-14.

770 31. Darnell JC, Klann E. The translation of translational control by FMRP: therapeutic targets
771 for FXS. *Nat Neurosci*. 2013;16:1530-6.

772 32. Antar LN, Bassell GJ. Sunrise at the Synapse: The FMRP mRNP Shaping the Synaptic
773 Interface. *Neuron*. 2003;37:555-8.

774 33. Ascano MJ, Mukherjee N, Bandaru P, Miller JB, Nusbaum JD, Corcoran DL, et al. FMRP
775 targets distinct mRNA sequence elements to regulate protein expression. *Nature*.
776 2012;492:382-6.

777 34. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, et al. FMRP stalls
778 ribosomal translocation on mRNAs linked to synaptic function and autism. *Cell*.
779 2011;146(2):247-61.

780 35. De Rubeis S HX, Goldberg AP, Poultnay CS, Samocha K, Cicek AE, Kou Y, Liu L,
781 Fromer M, Walker S, Singh T, Klei L, Kosmicki J, Shih-Chen F, Aleksic B, Biscaldi M, Bolton PF,
782 Brownfeld JM, Cai J, Campbell NG, Carracedo A, Chahrour MH, Chiocchetti AG, Coon H,
783 Crawford EL, Curran SR, Dawson G, Duketis E, Fernandez BA, Gallagher L, Geller E, Guter SJ,
784 Hill RS, Ionita-Laza J, Jimenz Gonzalez P, Kilpinen H, Klauck SM, Kolevzon A, Lee I, Lei I, Lei
785 J, Lehtimäki T, Lin CF, Ma'ayan A, Marshall CR, McInnes AL, Neale B, Owen MJ, Ozaki N,
786 Parellada M, Parr JR, Purcell S, Puura K, Rajagopalan D, Rehnström K, Reichenberg A, Sabo
787 A, Sachse M, Sanders SJ, Schafer C, Schulte-Rüther M, Skuse D, Stevens C, Szatmari P,
788 Tammimies K, Valladares O, Voran A, Li-San W, Weiss LA, Willsey AJ, Yu TW, Yuen RK; DDD
789 Study; Homozygosity Mapping Collaborative for Autism; UK10K Consortium, Cook EH, Freitag
790 CM, Gill M, Hultman CM, Lehner T, Palotie A, Schellenberg GD, Sklar P, State MW, Sutcliffe
791 JS, Walsh CA, Scherer SW, Zwick ME, Barrett JC, Cutler DJ, Roeder K, Devlin B, Daly MJ,
792 Buxbaum JD. Synaptic, transcriptional and chromatin genes disrupted in autism. *Nature*.
793 2014;515:209-15.

794 36. Wang X, Christian KM, Song H, Ming GL. Synaptic dysfunction in complex psychiatric
795 disorders: from genetics to mechanisms. *Genome Med*. 2018;10:9.

796 37. Sullivan PF, Daly MJ, O'Donovan M. Genetic architectures of psychiatric disorders: the
797 emerging pictures and its implications. *Nat Rev Genet*. 2012;13:537-51.

798 38. Thomson SR, Seo SS, Barnes SA, Louros SR, Muscas M, Dando O, et al. Cell-Type-
799 Specific Translation Profiling Reveals a Novel Strategy for Treating Fragile X Syndrome.
800 *Neuron*. 2017;95:550-63.

801 39. Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D. Rare de novo variants
802 associated with autism implicate a large functional network of genes involved in formation and
803 function of synapses. *Neuron*. 2011;(70):898-907.

804 40. Sando Rr, Gounko N, Pieraut S, Liao L, Yates Jr, Maximov A. HDAC4 governs a
805 transcriptional program essential for synaptic plasticity and memory. *Cell*. 2012;151:821-34.

806 41. Serretti A, Fabbri C. Shared genetics among major psychiatric disorders. *Lancet*.
807 2013;381:1339-41.

808 42. Jurado S, Goswami D, Zhang Y, Molina AJ, Südhof TC, Malenka RC. LTP requires a
809 unique postsynaptic SNARE fusion machinery. *Neuron*. 2013;77:542-58.

810 43. Brusich DJ, Spring AM, Frank CA. A single-cross, RNA interference-based genetic tool
811 for examining the long-term maintenance of homeostatic plasticity. *Front Cell Neurosci*.
812 2015;9:107.

813 44. Bao H, Berlanga ML, Xue M, Hapip SM, Daniels RW, Mendenhall JM, et al. The Atypical
814 Cadherin Flamingo Regulates Synaptogenesis and Helps Prevent Axonal and Synaptic
815 Degeneration in Drosophila. *Mol Cell Neurosci*. 2007;34:662-78.

816 45. Natarajan R, Trivedi-Vyas D, Waikar YP. Tuberous sclerosis complex regulates
817 Drosophila neuromuscular junction growth via the TORC2/Akt pathway. *Human Mol Genet*.
818 2013;22:2010-23.

819 46. Sigrist SJ, Reiff DF, Philippe RT, Steinert JR, Schuster CM. Experience-Dependent
820 Strengthening of Drosophila Neuromuscular Junctions. *J Neurosci*. 2003;23(16):6546-56.

821 47. Menon KP, Carillo RA, Zinn K. The translational regulator Cup controls NMJ presynaptic
822 terminal morphology. *Mol Cell Neurosci*. 2016;67:126-36.

823 48. Menon KP, Sanyal S, Habara Y, Sanchez R, Wharton RP, Ramaswami M, et al. The
824 Translational Repressor Pumilio Regulates Presynaptic Morphology and Controls Postsynaptic
825 Accumulation of Translation Factor eIF-4E. *Neuron*. 2004;44:663-76.

826 49. Kittel RJ, Wichmann C, Rasse TM, Fouquet W, Schmidt M, Schmid A, et al. Bruchpilot
827 promotes active zone assembly, Ca²⁺ channel clustering, and vesicle release. *Science*.
828 2006;312(5776):1051-4.

829 10.1126/science.1126308. PubMed PMID: 16614170.

830 50. Reddy-Alla S, Böhme MA, Reynolds E, Beis C, Grasskamp AT, Mampell MM, et al.
831 Stable Positioning of Unc13 Restricts Synaptic Vesicle Fusion to Defined Release Sites to
832 Promote Synchronous Neurotransmission. *Neuron*. 2017;95:1350-64.

833 51. Castillo JL, Katz B. Quantal components of the end-plate potential. *J Physiol*.
834 1954;124:560-73.

835 52. Lisman JE, Raghavachari S, Tsien RW. The sequence of events that underlie quantal
836 transmission at central glutamatergic synapses. *Nat Rev Neurosci*. 2007;8:597-609.

837 53. Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Durrbeck H, et al. Bruchpilot,
838 a protein with homology to ELKS/CAST, is required for structural integrity and function of
839 synaptic active zones in *Drosophila*. *Neuron*. 2006;49(6):833-44.

840 54. Muftuoglu M, Oshima J, von Kobbe C, Cheng WH, Leisitz DF, Bohr VA. The clinical
841 characteristics of Werner syndrome: molecular and biochemical diagnosis. *Human Genet*.
842 2008;124:369-77.

843 55. Epstein CJ, Martin GM, Schultz A, Motulsky AG. Werner's syndrome: a review of its
844 symptomatology, natural history, pathologic features, genetics and relationship to the natural
845 aging process. *Medicine*. 1966;45:5893-7.

846 56. Oshima J, Sidorova JM, Monnat RJJ. Werner syndrome: Clinical features, pathogenesis
847 and potential therapeutic interventions. *Ageing Res Rev*. 2017;33:105-14.

848 57. Bolterstein E, Rivero R, Marquez M, McVey M. The *Drosophila* Werner exonuclease
849 participates in an exonuclease-independent response to replication stress. *Genetics*.
850 2014;197:643-52.

851 58. DiAntonio A. Glutamate receptors at the *Drosophila* neuromuscular junction. *Intl Rev*
852 *Neurobiol*. 2006;75:165-79.

853 59. Qin G, Schwarz T, Kittel RJ, Schmid A, Rasse TM, Kappei D, et al. Four different
854 subunits are essential for expressing the synaptic glutamate receptor at neuromuscular
855 junctions of *Drosophila*. *J Neurosci*. 2005;25(12):3209-18.

856 60. DiAntonio A, Petersen SA, Heckmann M, Goodman CS. Glutamate receptor expression
857 regulates quantal size and quantal content at the *Drosophila* neuromuscular junction. *J*
858 *Neurosci*. 1999;19(8):3023-32.

859 61. Han TH, Dharkar P, Mayer ML, Serpe M. Functional reconstitution of *Drosophila*
860 melanogaster NMJ glutamate receptors. *PNAS*. 2015;112(19):6182-7.

861 62. Faivre-Sarrailh C, Banerjee S, Li J, Hortsch M, Laval M, Bhat MA. *Drosophila* contactin,
862 a homolog of vertebrate contactin, is required for septate junction organization and paracellular
863 barrier function. *Development*. 2004;131:4931-42.

864 63. Schillo S, Belusic G, Hartmann K, Franz C, Kühl B, Brenner-Weiss G, et al. Targeted
865 mutagenesis of the farnesylation site of *Drosophila* Ggammae disrupts membrane association
866 of the G protein betagamma complex and affects the light sensitivity of the visual system. *J Biol*
867 *Chem*. 2004;279:36309-16.

868 64. Holderith N, Lorincz A, Katona G, Rozsa B, Kulik A, Watanabe M, et al. Release
869 probability of hippocampal glutamatergic terminals scales with the size of the active zone.
870 *Nature neuroscience*. 2012;15(7):988-97.

871 65. Murthy VN, Schikorski T, Stevens CF, Zhu Y. Inactivity produces increases in
872 neurotransmitter release and synapse size. *Neuron*. 2001;32(4):673-82.

873 66. Matz J, Gilyan A, Kolar A, McCarvill T, Krueger SR. Rapid structural alterations of the
874 active zone lead to sustained changes in neurotransmitter release. *Proc Natl Acad Sci U S A*.
875 2010;107(19):8836-41.

876 67. Ehmann N, van de Linde S, Alon A, Ljaschenko D, Keung XZ, Holm T, et al. Quantitative
877 super-resolution imaging of Bruchpilot distinguishes active zone states. *Nat Commun*.
878 2014;5:4650.

879 68. Guerrero G, Reiff DF, Agarwal G, Ball RW, Borst A, Goodman CS, et al. Heterogeneity
880 in synaptic transmission along a *Drosophila* larval motor axon. *Nat Neurosci*. 2005;8:1188-96.

881 69. Peled ES, Isacoff EY. Optical quantal analysis of synaptic transmission in wild-type and
882 rab3-mutant *Drosophila* motor axons. *Nat Neurosci*. 2011;14:519-26.

883 70. Akbergenova J, Cunningham KL, Zhang YV, Weiss S, Littleton JT. Characterization of
884 developmental and molecular factors underlying release heterogeneity at *Drosophila* synapses.
885 *eLife*. 2018;7:e38268.

886 71. Goel P, Li X, Dickman D. Disparate Postsynaptic Induction Mechanisms Ultimately
887 Converge to Drive the Retrograde Enhancement of Presynaptic Efficacy. *Cell Rep*.
888 2017;21(9):2339-47.

889 72. Gratz SJ, Bruckner JJ, Hernandez RX, Khateeb K, Macleod G, O'Connor-Giles KM.
890 Calcium channel levels at single synapses predict release probability and are upregulated in
891 homeostatic potentiation. *BioRxiv*. 2018. doi: 10.1101/240051.

892 73. Weyhersmuller A, Hallermann S, Wagner N, Eilers J. Rapid active zone remodeling
893 during synaptic plasticity. *J Neurosci*. 2011;31(16):6041-52.

894 74. Dictenberg JB, Swanger SA, Antar LN, Singer RH, Bassell GJ. A Direct Role for FMRP
895 in Activity-Dependent Dendritic mRNA Transport Links Filopodial-Spine Morphogenesis to
896 Fragile X Syndrome. *Dev Cell*. 2008;14:926-39.

897 75. Lee HY, Ge W, Huang W, He Y, Wang GX, Rowson-Baldwin A, et al. Bidirectional
898 Regulation of Dendritic Voltage-Gated Potassium Channels by the Fragile X Mental Retardation
899 Protein. *Neuron*. 2011;72:630-42.

900 76. Todd PK, Mack KJ, Malter JS. The fragile X mental retardation protein is required for
901 type-I metabotropic glutamate receptor-dependent translation of PSD-95. *PNAS*.
902 2003;100:14374-8.

903 77. Soden ME, Chen L. Fragile-X protein FMRP is required for homeostatic plasticity and
904 regulation of synaptic strength by retinoic acid. *J Neurosci*. 2010;30:16910-21.

905 78. Ferron L, Nieto-Rostro M, Cassidy JS, Dolphin ACF. Fragile X mental retardation protein
906 controls synaptic vesicle exocytosis by modulating N-type calcium channel density. *Nat
907 Commun*. 2014;5:3628.

908 79. Broek JAC, Lin Z, Martijn de Gruiter H, van 't Spijker H, Haasdijk ED, Cox D, et al.
909 Synaptic vesicle dynamic changes in a model of fragile X. *Mol Autism*. 2016;7:17.

910 80. Contractor A, Klyachko VA, Portera-Cailliau C. Altered Neuronal and Circuit Excitability
911 in Fragile X Syndrome. *Neuron*. 2015;87(4):699-715.

912 81. Deng PY, Klyachko VA. Genetic upregulation of BK channel activity normalizes multiple
913 synaptic and circuit defects in a mouse model of fragile X syndrome. *J Physiol*. 2016;594:83-97.

914 82. Deng PY, Sojka D, Klyachko VA. Abnormal presynaptic short-term plasticity and
915 information processing in a mouse model of fragile x syndrome. *J Neurosci*. 2011;31:10971-82.

916 83. P.Y. D, Rotman Z, Blundon JA, Cho Y, Cui J, Cavalli V, et al. FMRP regulates
917 neurotransmitter release and synaptic information transmission by modulating action potential
918 duration via BK channels. *Neuron*. 2013;77:696-711.

919 84. Wang XS, Peng CZ, Cai WJ, Xia J, Jin D, Dai Y, et al. Activity-dependent regulation of
920 release probability at excitatory hippocampal synapses: a crucial role of fragile X mental
921 retardation protein in neurotransmission. *Eur J Neurosci*. 2014;39:1602-12.

922 85. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM. Dendritic spine
923 pathology in neuropsychiatric disorders. *Nat Rev Neurosci*. 2011;14:285-93.

924 86. Yin DM, Chen YJ, Sathyamurthy A, Xiong WC, Mei L. Synaptic dysfunction in
925 schizophrenia. *Adv Exp Med Biol*. 2012;970:493-516.

926 87. Li J, Park E, Zhong LR, Chen L. Homeostatic synaptic plasticity as a metaplasticity
927 mechanism - a molecular and cellular perspective. *Curr Opin Neurobiol*. 2018;54:44-53.

928 88. Keck T, Toyoizumi T, Chen L, Doiron B, Feldman DE, Fox K, et al. Integrating Hebbian
929 and homeostatic plasticity: the current state of the field and future research directions. *Philos
930 Trans R Soc Lond B Biol Sci*. 2017;372.

931 89. Vitureira N, Goda Y. The interplay between Hebbian and homeostatic synaptic plasticity.
932 *J Cell Biol.* 2013;203:175.

933 90. Miech C, Pauer H, He X, Schwarz TL. Presynaptic Local Signaling by a Canonical
934 Wingless Pathway Regulates Development of the *Drosophila* Neuromuscular Junction. *J
935 Neurosci.* 2009;28:10875-84.

936 91. Mosca TJ, Hong W, Dani VS, Favaloro V, Luo L. Trans-synaptic Teneurin signalling in
937 neuromuscular synapse organization and target choice. *Nature.* 2012;484:237-41.

938 92. Pawson C, Eaton BA, Davis GW. Formin-Dependent Synaptic Growth; Evidence that
939 Dlar Signals via Diaphanous to Modulate Synaptic Actin and Dynamic Pioneer Microtubules. *J
940 Neurosci.* 2008;28:11111-23.

941 93. Pennetta G, Hiesinger PR, Fabian-Fine R, Meinertzhagen IA, Bellen HJ. *Drosophila*
942 VAP-33A Directs Bouton Formation at Neuromuscular Junctions in a Dosage-Dependent
943 Manner. *Neuron.* 2002;35:291-306.

944 94. Turrigiano G, Leslie KR, Desai SD, Rutherford LC, Nelson SB. Activity-dependent
945 scaling of quantal amplitude in neocortical neurons. *Nature.* 1998;391(February, 1998):892-5.

946 95. Turrigiano GG. The self-tuning neuron: synaptic scaling of excitatory synapses. *Cell.*
947 2008;135:422-35.

948 96. Chen L, Lau AG, Sarti F. Synaptic retinoic acid signaling and homeostatic synaptic
949 plasticity. *Neuropharmacology.* 2014;78:3-12.

950 97. Aoto J, Nam CI, Poon MM, Ting P, Chen L. Synaptic Signaling by All-Trans Retinoic
951 Acid in Homeostatic Synaptic Plasticity. *Neuron.* 2008;60:308-20.

952 98. Chowdhury D, Hell JW. Homeostatic synaptic scaling: molecular regulators of synaptic
953 AMPA-type glutamate receptors. *F1000Res.* 2018;7.

954 99. Perez-Otano I, Ehlers MD. Homeostatic plasticity and NMDA receptor trafficking. *Trends
955 Neurosci.* 2005;28:p229-38.

956 100. Rasse TM, Fouquet W, Schmid A, Kittel RJ, Mertel S, Sigrist CB, et al. Glutamate
957 receptor dynamics organizing synapse formation in vivo. *Nat Neurosci.* 2005;8:898-905.

958 101. Salpeter MM, Harris R. Distribution and turnover rate of acetylcholine receptors
959 throughout the junction folds at a vertebrate neuromuscular junction. *J Cell Biol.* 1983;96:1781-
960 5.

961 102. Ljaschenko D, Ehmann N, Kittel RJ. Hebbian plasticity guides maturation of glutamate
962 receptor fields in vivo. *Cell Rep.* 2013;3:1407-13.

963 103. Schmid A, Hallermann S, Kittel RJ, Khorramshahi O, Frölich AM, Quentin C, et al.
964 Activity-dependent site-specific changes of glutamate receptor composition in vivo. *Nat
965 Neurosci.* 2008;11:659-66.

966 104. Xiong X, Collins CA. A Conditioning Lesion Protects Axons from Degeneration via the
967 Wallenda/DLK MAP Kinase Signaling Cascade. *J Neurosci.* 2012;32:610-5.

968 105. Palma E, Inghilleri M, Conti L, Deflorio C, Frasca V, Manteca A, et al. Physiological
969 characterization of human muscle acetylcholine receptors from ALS patients. *PNAS.*
970 2011;108:20184-8.

971 106. Rich MM, Lichtman JW. In vivo visualization of pre- and postsynaptic changes during
972 synapse elimination in reinnervated mouse muscle. *J Neurosci.* 1989;5:1781-805.

973 107. Dunn FA. Photoreceptor ablation initiates the immediate loss of glutamate receptors in
974 postsynaptic bipolar cells in retina. *J Neurosci.* 2015;35:2423-31.

975 108. Matkovic T, Siebert M, Knoche E, Depner H, Mertel S, Owald D, et al. The Bruchpilot
976 cytomatrix determines the size of the readily releasable pool of synaptic vesicles. *J Cell Biol.*
977 2013;202(4):667-83.

978 109. Held RG, Liu C, Kaeser PS. ELKS controls the pool of readily releasable vesicles at
979 excitatory synapses through its N-terminal coiled-coil domains. *eLife.* 2016;5:e14862.

980 110. Dong W, Radulovic T, Goral RO, Thomas C, Suarez Montesinos M, Guerrero-Given D,
981 et al. CAST/ELKS Proteins Control Voltage-Gated Ca(2+) Channel Density and Synaptic
982 Release Probability at a Mammalian Central Synapse. *Cell Rep.* 2018;24:284-93.

983 111. Liu C, Bickford LS, Held RG, Nyitrai H, Sudhof TC, Kaeser PS. The active zone protein
984 family ELKS supports Ca2+ influx at nerve terminals of inhibitory hippocampal neurons. *J
985 Neurosci.* 2014;34:12289-303.

986 112. Muller M, Davis GW. Transsynaptic control of presynaptic Ca(2)(+) influx achieves
987 homeostatic potentiation of neurotransmitter release. *Curr Biol.* 2012;22:1102-8.

988 113. Glebov OO, Jackson RE, Winterflood CM, Owen DM, Barker EA, Doherty P, et al.
989 Nanoscale Structural Plasticity of the Active Zone Matrix Modulates Presynaptic Function. *Cell
990 Rep.* 2017;18:2715-28.

991 114. Yuan Q, Xiang Y, Yan Z, Han C, Jan LY, Jan YN. Light-Induced Structural and
992 Functional Plasticity in Drosophila Larval Visual System. *Science.* 2011;333:1458-62.

993 115. Bushey D, Tononi G, Cirelli C. Sleep and Synaptic Homeostasis: Structural Evidence in
994 Drosophila. *Science.* 2011;332:1576-81.

995 116. Diering GH, Nirujogi RS, Roth RH, Worley PF, Pandey A, Huganir RL. Homer1a drives
996 homeostatic scaling-down of excitatory synapses during sleep. *Science.* 2017;355:511-5.

997 117. Bosch M, Hayashi Y. Structural plasticity of dendritic spines. *Curr Opin Neurobiol.*
998 2012;22:383-8.

999 118. Butz M, Worgotter F, van Ooyen A. Activity-dependent structural plasticity. *Brain Res
1000 Rev.* 2009;60:287-305.

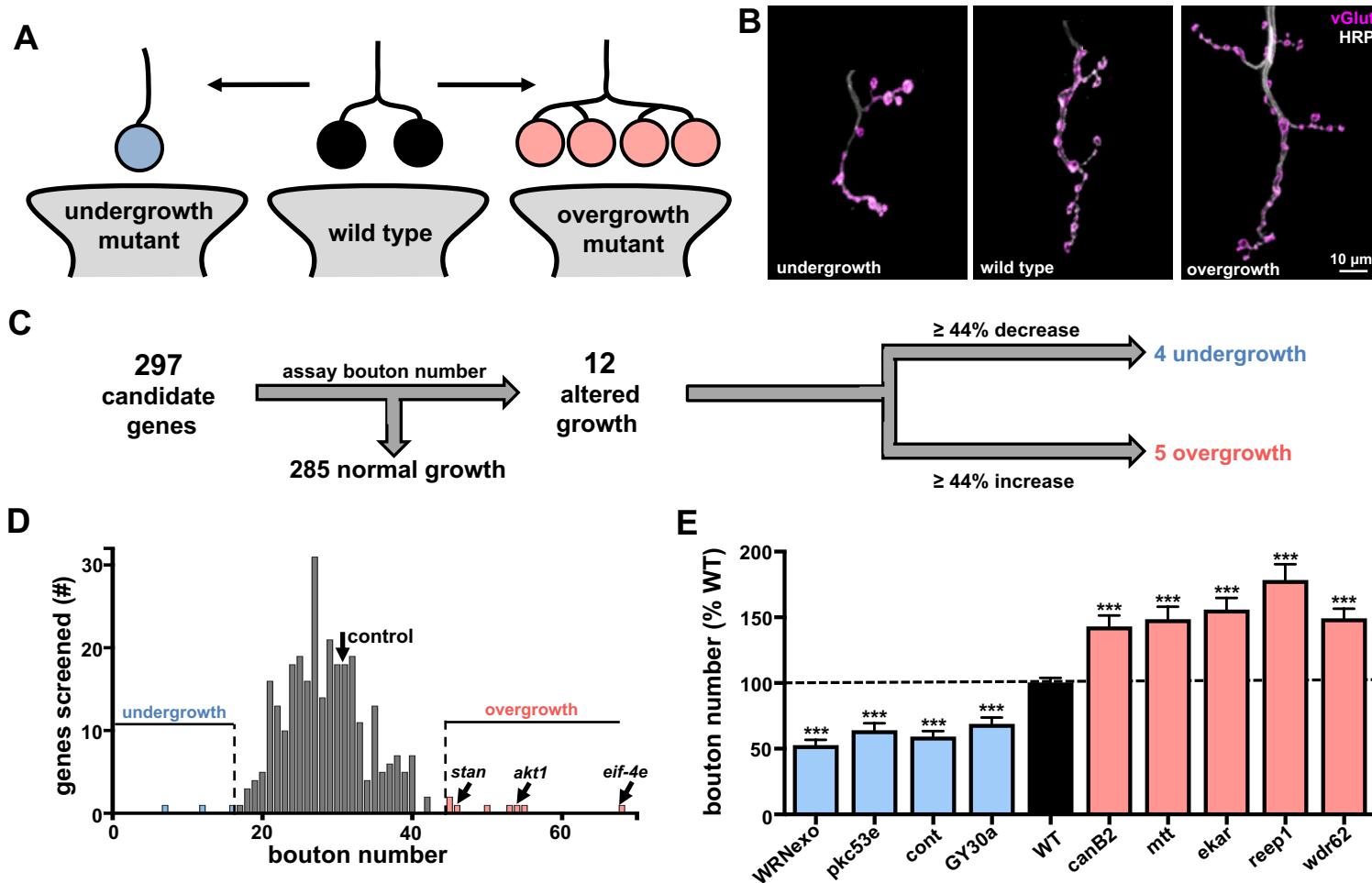
1001 119. Fu M, Zuo Y. Experience-dependent structural plasticity in the cortex. *Trends Neurosci.*
1002 2011;34:177-87.

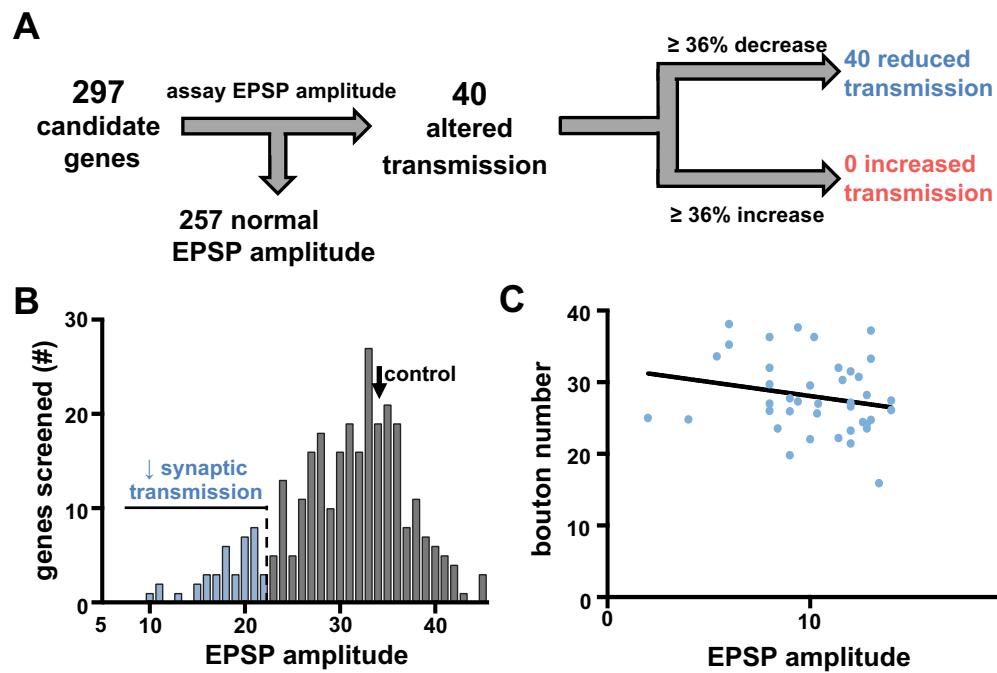
1003 120. Wong M, Guo D. Dendritic spine pathology in epilepsy: cause or consequence?
1004 *Neuroscience.* 2013;251:141-50.

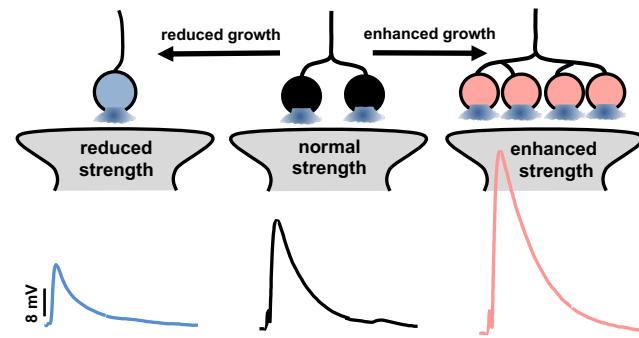
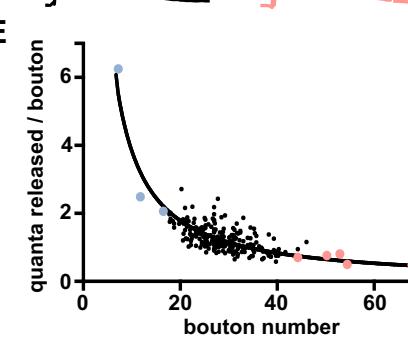
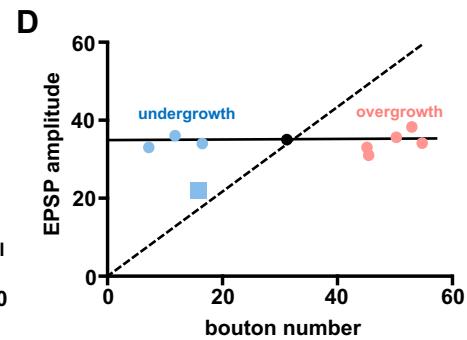
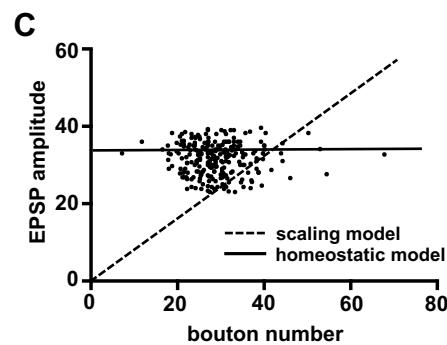
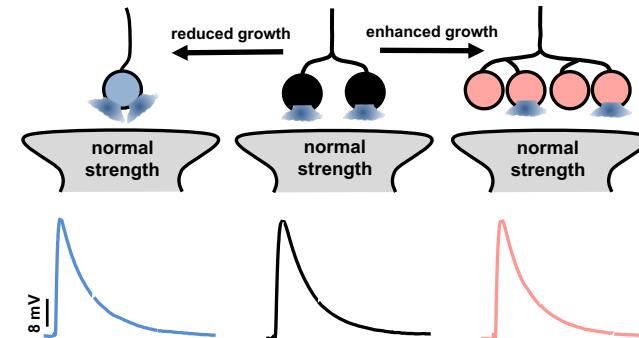
1005 121. Kuba H, Oichi Y, Ohmori H. Presynaptic activity regulates Na(+) channel distribution at
1006 the axon initial segment. *Nature.* 2010;465:1075-8.

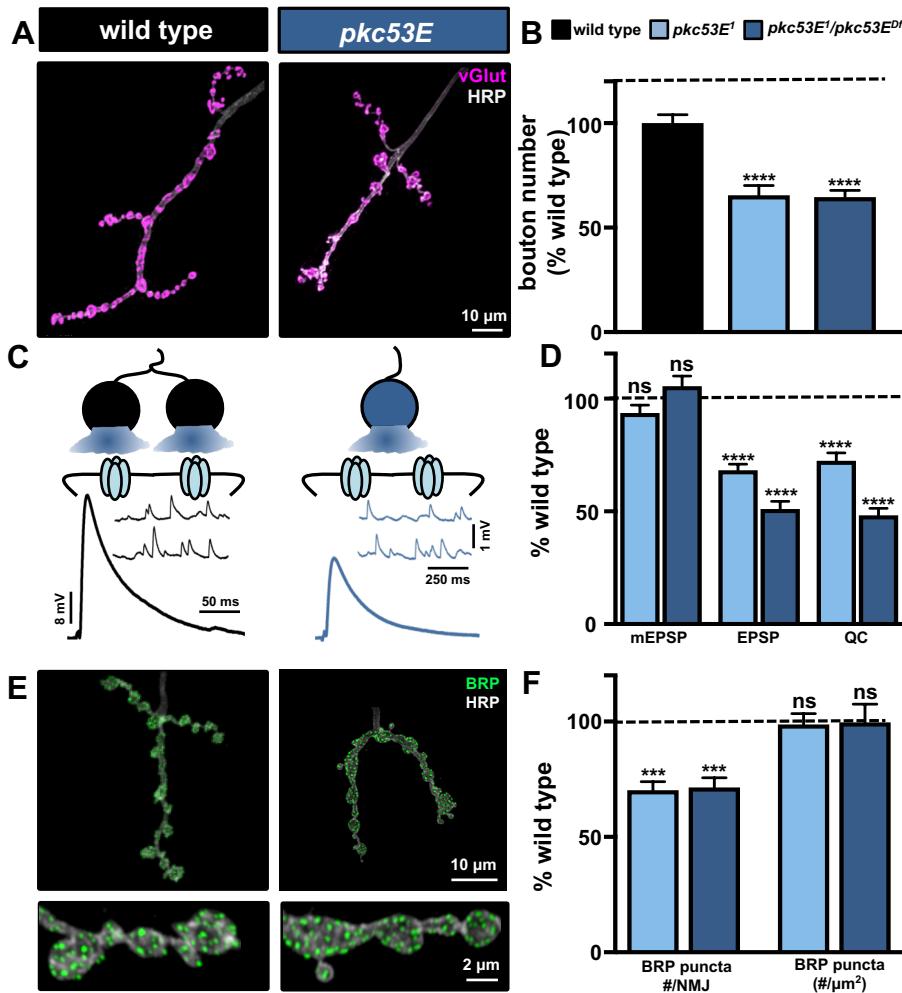
1007 122. Pielage J, Fetter RD, Davis GW. Presynaptic Spectrin Is Essential for Synapse
1008 Stabilization. *Curr Biol.* 2005;15:918-28.

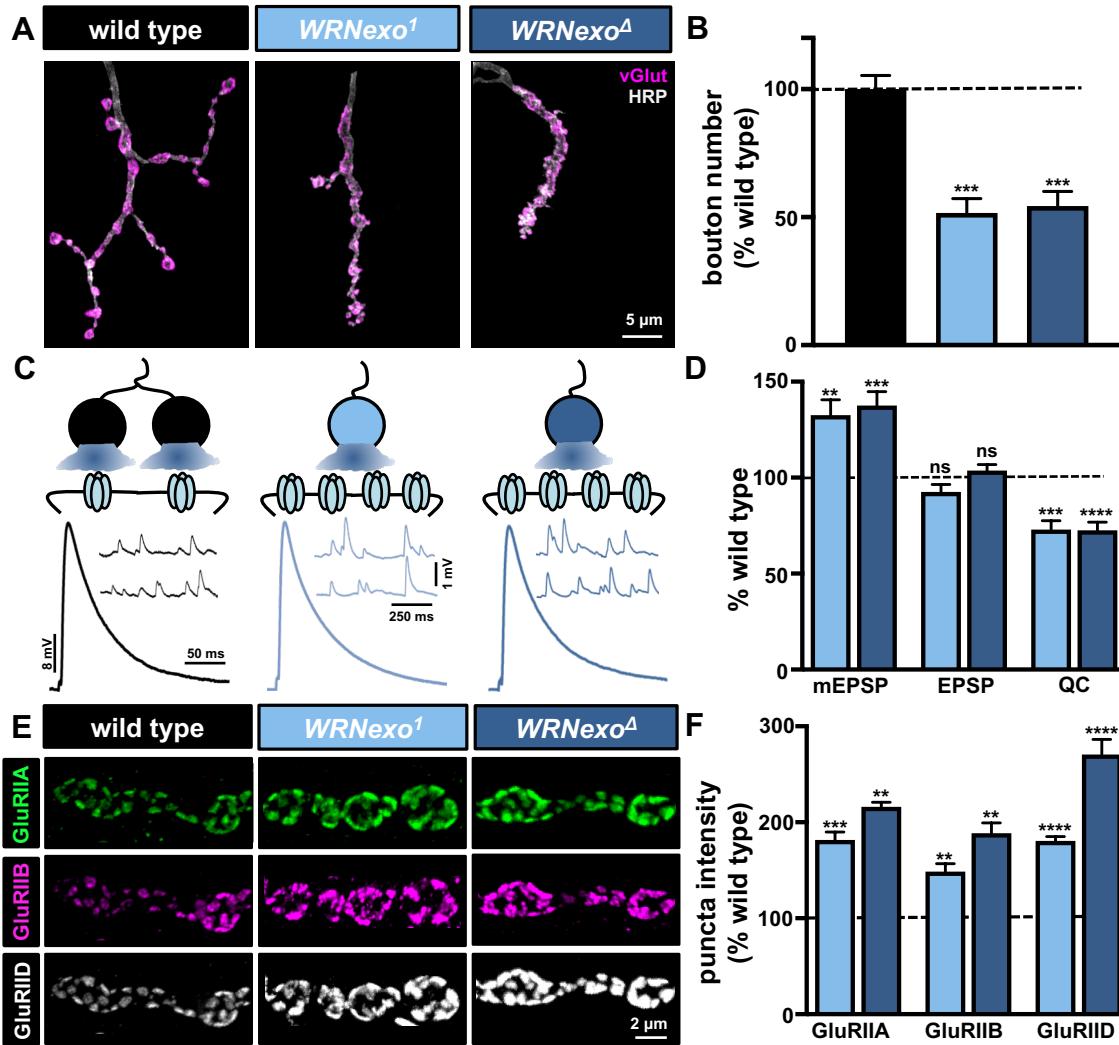
1009 123. Marrus SB, Portman SL, Allen MJ, Moffat KG, DiAntonio A. Differential localization of
1010 glutamate receptor subunits at the Drosophila neuromuscular junction. *J Neurosci.*
1011 2004;24:1406-15.

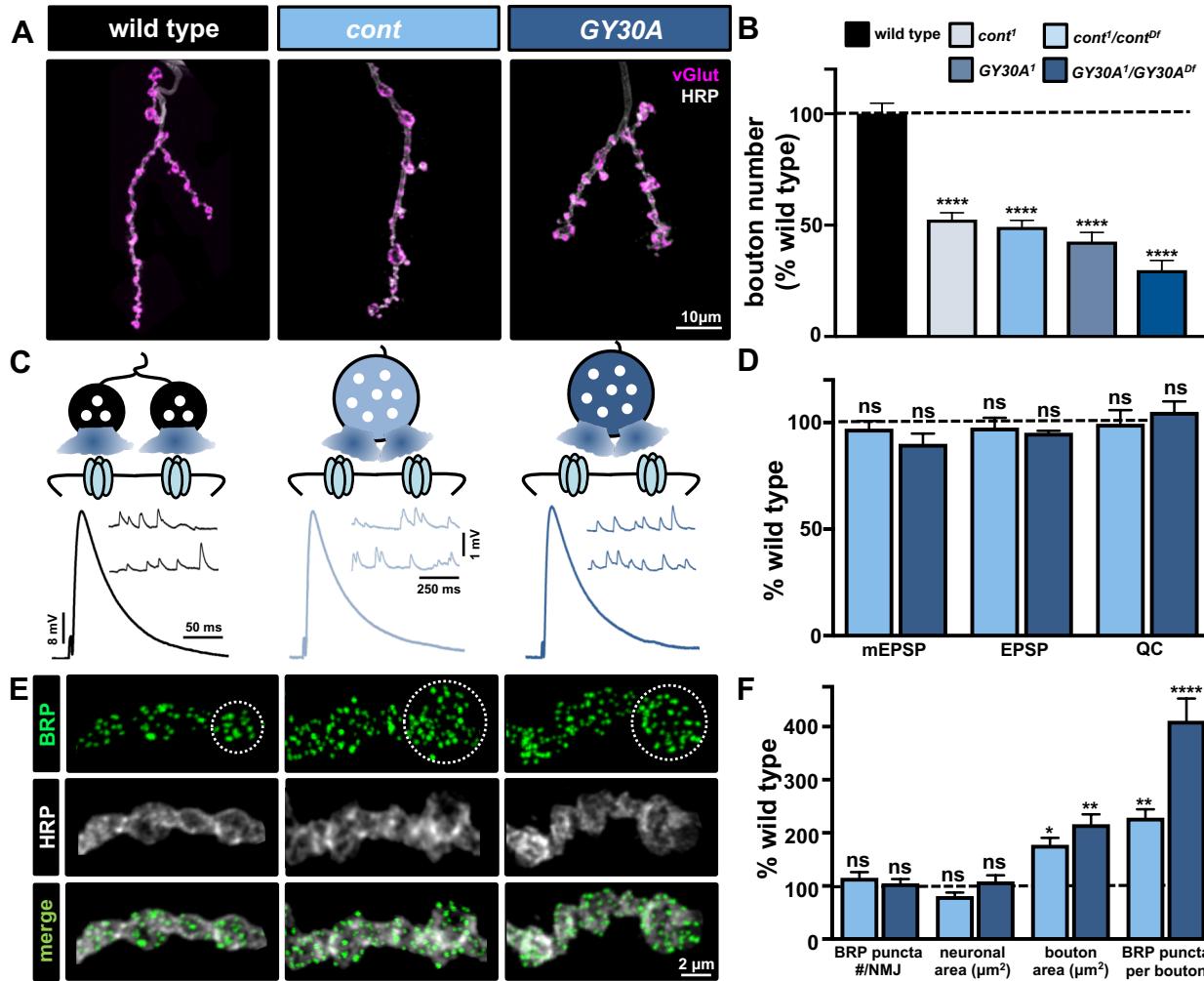

1012 124. Kikuma K, Li X, Kim D, Sutter D, Dickman DK. Extended Synaptotagmin Localizes to
1013 Presynaptic ER and Promotes Neurotransmission and Synaptic Growth in Drosophila. *Genetics.*
1014 2017;207:993-1006.

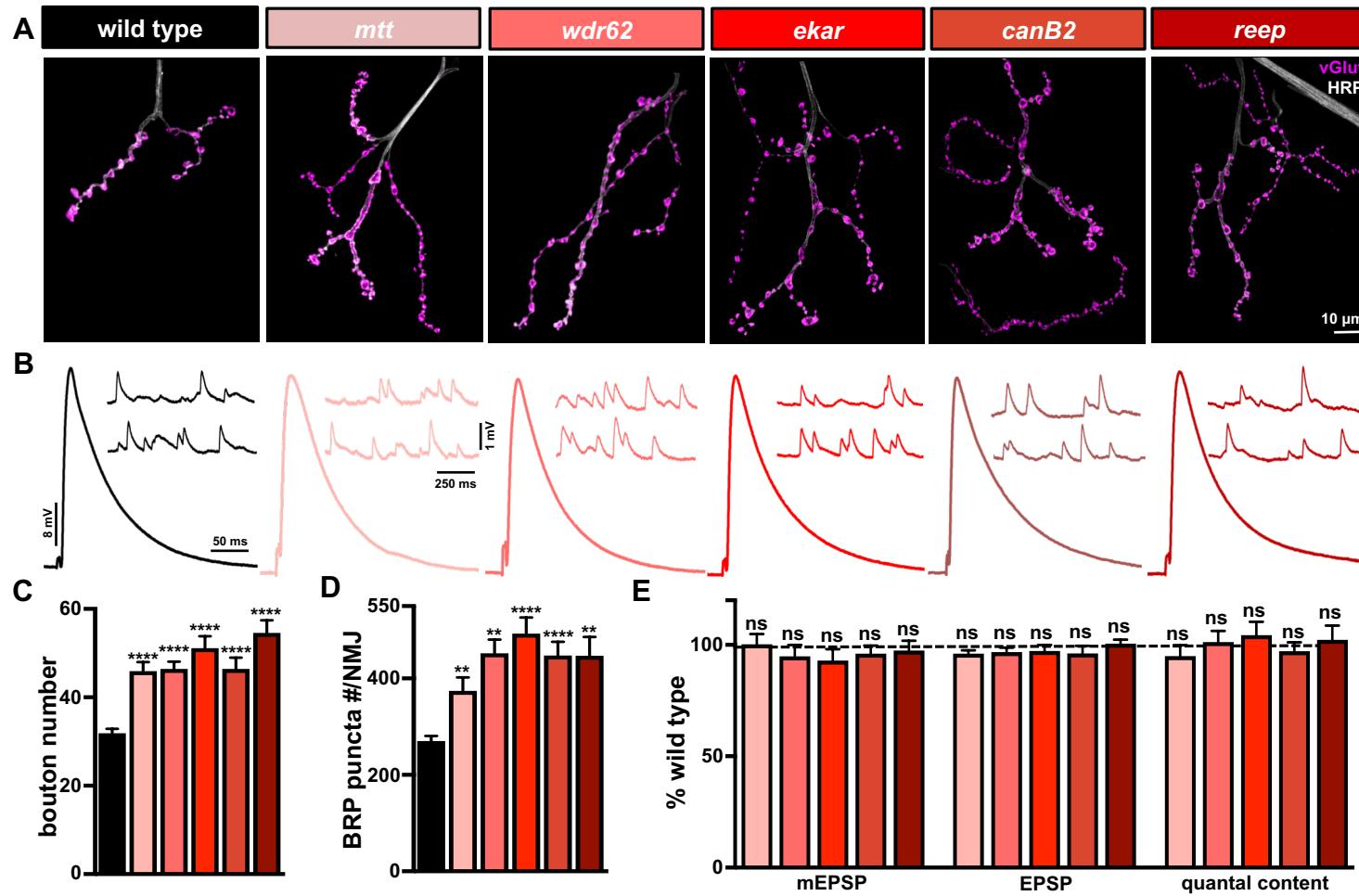

1015 125. Stewart BA, Atwood HL, Renmger JJ, Wang J, Wu CF. Improved stability of Drosophila
1016 larval neuromuscular preparations in haemolymph-like physiological solutions. *J Comp
1017 Physiol.* 1994;175:179-91.

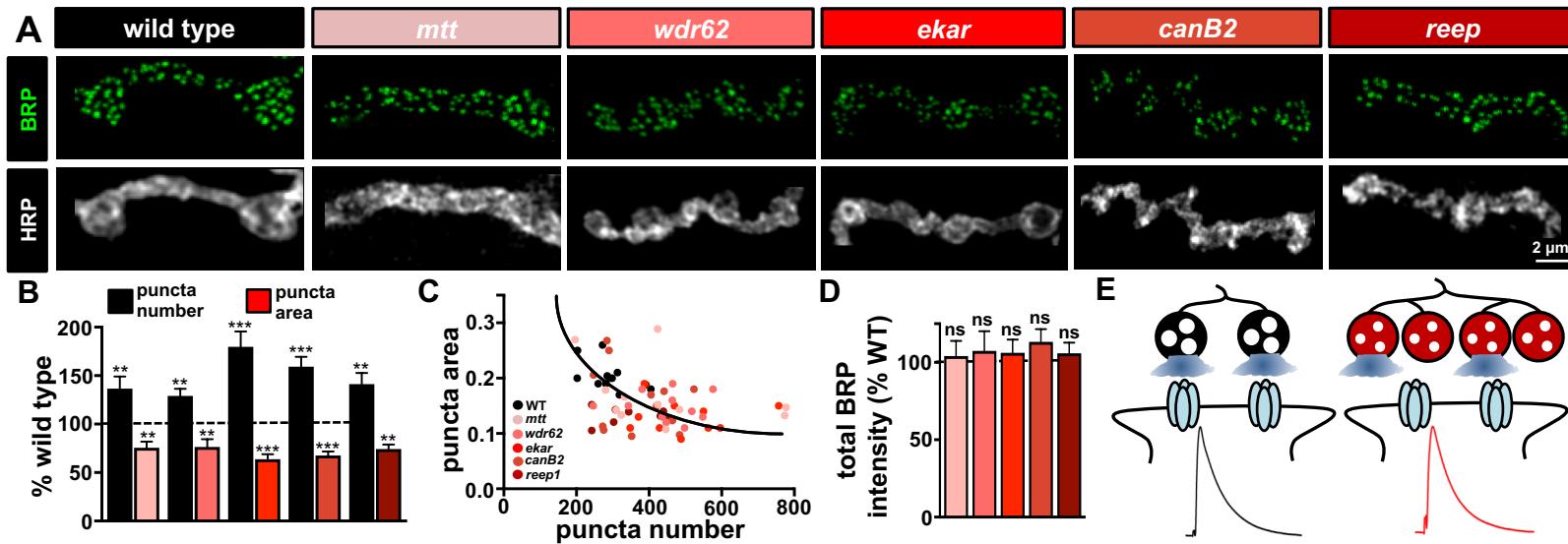





1018 126. Dickman DK, Horne JA, Meinertzhausen IA, Schwarz TL. A Slowed Classical Pathway
1019 Rather Than Kiss-and-Run Mediates Endocytosis at Synapses Lacking Synaptotagmin and
1020 Endophilin. *Cell.* 2005;123:521-33.


1021 127. Kiragasi B, Wondolowski J, Li Y, Dickman DK. A Presynaptic Glutamate Receptor
1022 Subunit Confers Robustness to Neurotransmission and Homeostatic Potentiation. *Cell Rep.*
1023 2017;19:2694-706.


1024






A Neurotransmitter release scales with bouton number**B Homeostatic adaptations stabilize neurotransmission**

