

1 Title:

2 A systematic review and standardized clinical validity assessment of male infertility genes

3 Running title:

4 Systematic review monogenic causes of male infertility

5 Authors:

⁶ Manon. S. Oud¹, Ludmila Volozonok^{2,3}, Roos M. Smits⁴, Lisenka E.L.M. Vissers¹, Liliana Ramos⁴, Joris

7 A. Veltman^{1,2}

8 Address:

⁹ 1. Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior,

10 Radboud University Medical Centre, 6500 HB, Nijmegen, The Netherlands

11 2. Institute of Genetic Medicine, Newcastle University, NE1 3BZ, Newcastle, United Kingdom

12 3. Scientific Laboratory of Molecular Genetics, Riga Stradiņš University, LV-1007, Riga, Latvia

13 4 Department of Obstetrics and Gynecology, Division of Reproductive Medicine, Radboud

14 University Medical Centre, 6500 HB, Nijmegen, The Netherlands

22. **INTERVIEW WITH THE CHIEF OF POLICE**

15

20

21 **Abstract:**

22 **Study question:** Which genes are confidently linked to human male infertility?

23 **Summary answer:** Our systematic literature search and clinical validity assessment reveals that a

24 total of 67 genes are currently confidently linked to 81 human male infertility phenotypes.

25 **What is known already:** The discovery of novel male infertility genes is rapidly accelerating with the

26 availability of Next-Generation Sequencing methods, but the quality of evidence for gene-disease

27 relationships varies greatly. In order to improve genetic research, diagnostics and counseling, there is

28 a need for an evidence-based overview of the currently known genes.

29 **Study design, size, duration:** We performed a systematic literature search and evidence assessment

30 for all publications in Pubmed until June 2018 covering genetic causes of male infertility and/or

31 defective male genitourinary development.

32 **Participants/materials, setting, methods:** Two independent reviewers conducted the literature

33 search and included papers on the monogenic causes of human male infertility and excluded papers

34 on genetic association or risk factors, karyotype anomalies and/or copy number variations affecting

35 multiple genes. Next, the quality and the extent of all evidence supporting selected genes was

36 weighed by a standardized scoring method and used to determine the clinical validity of each gene-

37 disease relationship as expressed by the following six categories: no evidence, limited, moderate,

38 strong, definitive or unable to classify.

39 **Main results and the role of chance:** From a total of 23,031 records, we included 1,286 publications

40 about monogenic causes of male infertility leading to a list of 471 gene-disease relationships. The

41 clinical validity of these gene-disease relationships varied widely and ranged from definitive (n=36) to

42 strong (n=12), moderate (n=33), limited (n=86) or no evidence (n=154). A total of 150 gene-disease
43 relationships could not be classified.

44 **Limitations, reasons for caution:** Our literature search was limited to Pubmed.

45 **Wider implications of the findings:** The comprehensive overview will aid researchers and clinicians in
46 the field to establish gene lists for diagnostic screening using validated gene-disease criteria and
47 identify gaps in our knowledge of male infertility. For future studies, the authors discuss the relevant
48 and important international guidelines regarding research related to gene discovery and provide
49 specific recommendations to the field of male infertility.

50 **Study funding/competing interest(s):** This work was supported by a VIDI grant from The Netherlands
51 Organisation for Scientific Research (918-15-667 to JAV).

52

53

54 **Keywords:**

55 Male infertility, spermatogenic failure, genetics, clinical validity, gene-disease relation, gene panel,
56 next-generation sequencing, systematic review

57

58 **Introduction**

59 Introduction

60 Infertility, a common disorder with a world-wide prevalence affecting 15% of all couples in the
61 reproductive age, is defined as the inability to conceive within one year of unprotected sexual
62 intercourse (Zegers-Hochschild et al. 2009). It is suggested that approximately 7% of the male
63 population is affected by a factor of infertility and that these collectively explain half of all infertile
64 couples (Krausz and Riera-Escamilla 2018; Irvine 1998; Winters and Walsh 2014).

65 The etiology of infertility is highly heterogeneous, which is not surprising when considering that both
66 male and female reproductive systems need to function in a combined and precisely coordinated
67 fashion in order to conceive a child. Appropriate genetic regulation is one of the most important and
68 indispensable prerequisites to control the coordination and timing of sexual development and
69 fertility. Because of the complexity of the gamete development, the interference of a genetic origin is
70 suspected. Studies aiming to elucidate the genetic basis of fertility defects in both human and mice
71 have defined numerous crucial pathways for male infertility, including sexual differentiation,
72 development of the genitourinary system and gametogenesis (Krausz and Riera-Escamilla 2018;
73 Jamsai and O'Bryan 2011). Currently more than 900 male infertility genes have been described in the
74 Jackson Laboratory's Mouse Genome Informatics (MGI) database (<http://www.informatics.jax.org/>),
75 and 2,300 testis-enriched genes are currently known in human (Schultz, Hamra, and Garbers 2003).

76 Genetic testing in infertility

77 It is currently thought that at least 15% of all human male infertility patients can be explained by
78 genetic defects (Krausz and Riera-Escamilla 2018). Since the discovery of an extra X chromosome in
79 Klinefelter patients (47,XXY) as the first genetic cause of infertility in the late 1950's (Ferguson-Smith
80 et al. 1957; Jacobs and Strong 1959), more than 3,500 papers have been published on the genetics of
81 male infertility, implicating various common genetic origins as well as hundreds of other genes in

82 male infertility. Despite these large numbers, genetic diagnostic testing is usually confined to
83 karyotyping, AZoospermia Factor (AZF) deletion screening and Cystic Fibrosis Transmembrane
84 conductance Regulator (*CFTR*) mutation analysis and leaves a vast majority of patients unexplained.
85 Currently a genetic diagnosis is reached in about 4% of all infertile males - a number that has not
86 increased since the late 1990's (Tuttmann, Ruckert, and Ropke 2018; Johnson 1998). This is in sharp
87 contrast to the increase in diagnostic yield seen for other conditions with a strong genetic
88 component and increase in large-scale technologies for genetic testing since then (Rehm 2017;
89 Tuttmann, Ruckert, and Ropke 2018). Importantly, the lack of a genetic diagnosis limits clinicians in
90 providing personalized information about the potential success of Assisted Reproductive
91 Technologies (ART), resulting in many couples undergoing these invasive procedures such as
92 TEsticular Sperm Extraction (TESE), without any chance of success. ART may lead to a situation where
93 infertility becomes an inherited condition. Therefore, a lack of genetic diagnosis limits counseling for
94 couples involved with regard to the reproductive health of offspring that can be conceived by ART
95 (Belva et al. 2016).

96 The diagnostic yield for genetic testing in male infertility remains low for several reasons. Firstly, the
97 condition is highly heterogeneous and thousands of genes are thought to play a role in
98 spermatogenesis (Schultz, Hamra, and Garbers 2003). High-impact mutations in any of these genes
99 will always remain at very low frequency in the population because of their impact on fitness. This
100 means that in order to find recurrently mutated genes and confidently linked novel genes to
101 infertility, one has to screen large cohorts of patients for pathogenic variants in large numbers of
102 genes. This has been laborious and expensive for a long time due to limitations of traditional genetic
103 assays such as Sanger sequencing. Since the first introduction of Next-Generation Sequencing (NGS)
104 in 2005, the technology has evolved to allow rapid and affordable sequencing of large amounts of
105 DNA (Metzker 2010). This has expedited sequencing of large gene panels, all coding genes (the
106 exome) and even whole genomes (Payne et al. 2018). In contrast to other fields in medical genetics
107 and oncology where NGS has revolutionized disease gene identification as well as genomic

108 diagnostics, the use of NGS in male infertility has only recently commenced and its use in routine
109 diagnostics is still very limited.

110 The second reason underlying a disappointingly low diagnostic yield for male infertility is that the
111 interpretation of genetic data is hampered by gaps in our understanding of the biology of male
112 spermatogenesis and (in)fertility. This urgent need for better understanding of cellular, molecular
113 biochemical and genetic mechanism(s) is highlighted by a recent study of the World Health
114 Organization, who listed this need as one of the key areas of research focus (Barratt et al. 2017).

115 Clinical validity assessment of gene-disease relationships

116 With the introduction and advances in genomics, the number of genes associated to male infertility
117 has expanded in recent years. However, the amount of genes confidently linked to disease is still very
118 limited in comparison to developments in other genetic diseases such as intellectual disability
119 (Tuttmann, Ruckert, and Ropke 2018; Vissers, Gilissen, and Veltman 2016). This is caused in part by
120 a lack of solid evidence linking variation in individual genes to human male infertility. The notion of
121 sub-optimal quality of evidence in male infertility research is not limited to genetic studies but is
122 considered a general concern in the field of reproductive biology (Barratt 2016; Evers 2013; Glušovský
123 et al. 2016).

124 In order to robustly link gene dysfunction to disease, one needs to consider multiple levels of
125 evidence. This is especially important since insufficient, inconclusive and low-quality evidence may
126 result in incorrect and misleading conclusions about gene-disease relationships. Moreover, if this
127 wrongful gene-disease relation is not identified and corrected, it may lead to inappropriate diagnoses
128 and even mismanagement and counseling of infertile couples involved. Furthermore, these
129 incorrectly characterized genes may complicate follow-up research by contaminating candidate
130 disease gene lists and pathway analyses.

131 To evaluate genetic variant pathogenicity, standard guidelines such as those provided by the
132 American College of Medical Genetics and Genomics (ACMG) are invaluable (Richards et al. 2015).
133 Their well-established framework combines variant allele frequency in control populations,
134 computational prediction programs such as SIFT (Kumar, Henikoff, and Ng 2009) and PolyPhen
135 (Adzhubei et al. 2010), as well as functional evidence and variant segregation evidence to classify
136 sequencing variants into (likely) benign, pathogenic or variants of uncertain significance (VUS). These
137 guidelines, however, have been developed for diagnostic purposes and are based on the assumption
138 that the causal link between the gene and the condition has already been established. So whereas
139 individual genetic variants may be considered pathogenic, unfortunately, the majority of candidate
140 genes in male infertility still have questionable evidence and cannot be confidently linked to human
141 disease.

142 Recently, the Clinical Genome Resource (ClinGen) has developed an extensive framework to assess
143 the clinical validity of a gene-disease relationship (Strande et al. 2017). However, the overall number
144 of validated disease genes is currently very limited (n=333) and does not contain any genes involved
145 in male infertility. Another, more simplified and pragmatic version of this framework was recently
146 published to more easily assess the clinical validity of gene-disease relationships (Smith et al. 2017).
147 In this study, we applied this latter gene-disease scoring system to curate all available information on
148 the genetics of human male infertility from 1958 up to June 2018. This analysis allowed us to
149 objectively classify the evidence for the involvement of genes in male infertility as non-existing,
150 limited, moderate, strong or definitive. The results from this work may be useful in both research and
151 diagnostics, for example for developing diagnostic gene panels and hopefully help to strengthen
152 genetic research in male infertility.

153 **Materials and methods**

154 Search strategy and study selection

155 Two independent reviewers conducted a literature search in Pubmed according to the PRISMA
156 guidelines (Moher et al. 2009) for English articles in peer-reviewed journals. The search was
157 performed on several occasions with the last search taking place on the 21st of June 2018 without
158 further restrictions on publication date. The search query and screening strategy aimed to collect all
159 records of genetics research in defective male reproductive development and function
160 (Supplemental Table S1). We excluded all papers that did not describe human patients. Since the
161 scope of our review is limited to monogenic causes of male infertility and/or defective male
162 genitourinary development, we excluded papers describing chromosomal aneuploidies, complex
163 chromosomal rearrangement or copy number variations not attributable to a single gene, polygenic
164 and multifactorial causes, as well as variants that are associated with infertility, but do not directly
165 influence gene function such as SNP or genome-wide association studies. We also excluded genetic
166 disorders causing severe syndromic forms of infertility, affecting multiple organ systems (in addition
167 to the reproductive system). This for instance excludes syndromes which compromise viability, or
168 cause physical or intellectual disabilities to such a degree that patients are unlikely to seek for help to
169 reproduce (Supplemental Table S1).

170 We included patients with delayed puberty, completely sex-reversed individuals with male
171 phenotype (46,XX maleness) and male patients with partial virilization and a Prader score of 4, or
172 more. We used reviews on the genetics of human male infertility to supplement our strategy with
173 papers that were not identified in our systematic search, but did report potential gene-disease
174 relationships. Publication inclusions of doubt were resolved by discussion and consensus between all
175 authors.

176

177 Data extraction and assessment of clinical validity

178 From eligible papers presenting original data, we extracted the gene names, patient phenotypes,
179 inheritance pattern, method of discovery and whether or not single nucleotide or copy number
180 variants were identified in the genes mentioned in infertile men. After extraction of the gene names
181 from all records, we employed a recently published gene-disease scoring system to establish the
182 strength of evidence for the relationship between a gene and male infertility (Smith et al. 2017).

183 A detailed description of the evidence assessment and a assessment template are described in
184 Supplemental Table S2 and S3. In short, for each gene, we collected evidence for the most likely
185 mode of inheritance (recessive, dominant, X-linked, Y-linked) of the infertility (sub)phenotype
186 primarily based on evidence provided in the original papers and from model organisms. If the human
187 mode of inheritance was unclear, we used computational methods based on statistical learning to
188 predict the most likely mode of inheritance (Quinodoz et al. 2017; Lek et al. 2016). All variants
189 described were re-classified using the standard ACMG guidelines for the interpretation of sequence
190 variants (Richards et al. 2015). Only patients who had a variant(s) that 1) match the expected or
191 proved inheritance pattern of the disease and 2) were classified as “Pathogenic”, “Likely pathogenic”
192 or “Uncertain significance” were eligible for scoring.

193 Except for variants in *CFTR* which may be more common due to founder effects in North European
194 populations (Bombieri, Seia, and Castellani 2015), we used a maximum allele frequency of 1% in the
195 general population as a threshold value. Variants causing fully penetrant monogenic severe male
196 infertility suffer from strong selection in the general population and are unlikely to reach higher allele
197 frequencies than 1% (Eilbeck, Quinlan, and Yandell 2017). Variants that were more common were
198 classified as (likely) benign. Next to various freely available population databases such as GnomAD
199 (Lek et al. 2016), we also used an anonymized local database with exome variants found in 3,347
200 fathers of children who have been referred for trio Whole Exome Sequencing (WES) in the Radboud

201 University Medical Centre. The healthy fathers reflect the general Dutch population and to our
202 knowledge conceived naturally.

203 In order to award points for statistical evidence in autosomal recessive (AR) forms of infertility
204 described in families, we used the Logarithm of the ODDs (LOD) scores from the original paper. If no
205 LOD score was given, we used a simplified formula as provided by the Clinical Genome Resource
206 Gene Curation Working Group (Strande et al. 2017). For dominant/X-linked diseases we used:

207 $Z(LOD\ score) = \log 10 \frac{1}{0.5 \text{ segregations}}$ and for recessive diseases we used: $Z(LOD\ score) =$
208 $\log 10 \frac{1}{0.25^{\# \text{ affected individuals}} - 0.75^{\# \text{ unaffected individuals}}}$. For gene function, disruption, protein interaction

209 and model organism evidence, we critically reviewed available information from the original articles,
210 cited papers, other (more recent) papers from Pubmed, the Protein Atlas database(Uhlen et al.

211 2015), the STRING database (Szklarczyk et al. 2017) and the Mouse Genome Informatics database
212 (Smith et al. 2018). The first paper describing a variant in a potential disease gene was used as the

213 index patient. In line with this, points for independent publications were only given from the second
214 publication on describing variants in the same gene in unrelated patients. We then calculated the

215 sum of the assigned points for each gene and determined the clinical validity category according to
216 the original method (Smith et al. 2017). All genes received a denomination based on the points
217 gathered; 1-2 points: "No evidence"; 3-8 points: "Limited"; 9-12: "Moderate"; 13-15: "Strong"; 16-17

218 points: "Definitive". Similar to the publication selection process, disagreements and debatable cases
219 were solved by consensus between all authors.

220 In order to prevent bias in gene-disease evaluation, a second and a third reviewer independently
221 reviewed and verified a random selection 12 and 16 gene-disease relationships, respectively. A
222 maximum difference of 1 point per gene-disease relationship was allowed if the classification was
223 not altered. All other cases were discussed and re-evaluated after consensus was obtained.

224 Overview of biological knowledge

225 From all genes with at least limited evidence, we also extracted I) the reported or expected results of
226 semen analysis (if available), II) whether the patients described are sporadic or familial cases, and III)
227 whether the type of infertility was isolated, a reproductive organ syndrome, endocrine disorder or
228 part of another syndrome. All genes with at least limited evidence were plotted according to their
229 biological function.

230

231 **Results:**

232 Search strategy and study selection

233 With our search strategy, we aimed to identify all publications covering the genetics of male
234 infertility, including those underlying syndromes affecting the endocrine system, disorders of sex
235 development and genitourinary anomalies. Our search yielded a grand total of 23,031 publications
236 that date from 1958 - 2018. Based on title and abstract, 18,095 studies were excluded because the
237 publication was not in written English, or the study topic did not match our inclusion criteria
238 (Supplemental Table S1). Although severe syndromes including male infertility phenotypes were
239 excluded because affected patients are unlikely to seek for help to reproduce because of severe
240 physical or intellectual disabilities, we included milder syndromes and syndromes affecting the
241 reproductive organs only. A total of 4,936 publications were left. Since the scope of our systematic
242 review is monogenic male infertility, we then excluded papers based on full-text screening which
243 described genetic association or risk factors (n=668), AZF deletions (n=469), CNVs affecting multiple
244 genes (n=28) or chromosomal anomalies (n=1,180). In addition, we excluded 803 publications that,
245 based on full-text analysis in retrospect, were not covering the topic of the genetics of male infertility
246 and we excluded 41 papers of which the full text was unavailable. We then screened the reference
247 lists from included reviews (n=576) and were able to add another 115 publications that were not
248 identified by our search strategy. In total, our search yielded 1,286 publications that met our
249 inclusion criteria (Figure 1).

250 The systematic literature search revealed a total of 150-200 publications per year in the past 10 years
251 and showed that the majority of publications from the last few years report on monogenic causes of
252 male infertility (46% in 2017), followed by genetic association or risk factor analysis (28% in 2017)
253 (Figure 2A and B). Furthermore, the absolute number of karyotype studies has been relatively stable
254 over the past 20 years at approximately 30 publications per year.

255 Data extraction and evaluation of evidence

256 From the 1,286 included publications, we extracted 438 unique HUGO approved gene names and 471
257 gene-disease relationships (Figure 1). The number of gene-disease relationships is higher than the
258 number of genes because several genes were described in multiple male infertility phenotypes. A
259 further look into the discovery method of these gene-disease relationships showed that DNA
260 sequencing has been the most commonly used technique for novel gene discovery and replication
261 studies (84% of all publications). At the moment a shift from Sanger sequencing to Next-Generation
262 Sequencing methods is taking place (Figure 2C).

263 We then assessed the clinical validity of each gene-disease relationship by using the simplified
264 scoring system designed to establish the strength of a relationship between a single gene and a
265 Mendelian disease (Smith et al. 2017) (Supplemental Table S2 and S3). In short, the scoring system
266 takes into account the total of unrelated patients, the number of papers that reproduced the initial
267 finding, the number of unique pathogenic variants and the evidence of gene disruption by the variant
268 and the phenotype of model organisms.

269 After excluding genes that did not contain any potentially pathogenic variant or were unable to be
270 classified, a total of 173 gene-disease relationships were curated and classified into the following
271 categories definitive (n=36), strong (n=12), moderate (n=33), limited (n=86) and no evidence (n=6).
272 We identified a total of 67 genes that can at least be moderately linked to a total of 81 male
273 infertility or abnormal genitourinary development phenotypes showing autosomal recessive (n=42),
274 autosomal dominant (n=26), X-linked (n=11) and Y-linked (n=2) inheritance patterns. Patients were
275 found sporadic (n=15), in families (n=10) or in both (n=56) and led to either isolated (n=18),
276 reproductive organ or endocrine syndrome (n=49) or a syndromic form of infertility (n=14). A
277 summary of the results is depicted in Table 1 and Supplemental Table S4; full scoring is available in
278 Supplemental Table S5. In 154 cases, no (likely) pathogenic variants were identified and were
279 therefore also classified as “No evidence” for involvement in human infertility without further
280 curation of other evidence (Supplemental Table S6). In 150 cases, we could not evaluate the gene-

281 disease relationship because either the inheritance pattern remains unclear or suggests polygenic
282 inheritance, the technical quality of the identification method was too poor or the exact variant
283 information could not be retrieved (Supplemental Table S7).

284 The results show that the total number of confidently linked genes is growing steadily at about 3
285 genes per year (Figure 2D). The increase of NGS methods being used has caused an exponential
286 growth in novel candidate genes. However, the vast majority of these are currently classified as
287 “Limited evidence”.

288 Overview of human genes involved in human male infertility

289 Taking into account that normal functioning of the male reproductive system is biologically mostly
290 dictated by the hypothalamic–pituitary–gonadal axis functioning, the origins of male infertility can be
291 divided in three major groups: pre-testicular, testicular and post-testicular. We grouped all genes
292 with at least limited evidence for an involvement in human male infertility into these three groups
293 based on their reported biological function (Figure 3) to assess whether the curated genes play a role
294 in these biological processes.

295 Our results show that pre-testicular forms of infertility are mostly syndromic and caused by
296 endocrine abnormalities, characterized by low levels of sex steroids and abnormal gonadotropin
297 levels. Post-testicular causes include ejaculatory disorders or obstructions, which impair the
298 transport of spermatozoa from the testis. These obstructions can be caused by a congenital
299 unilateral or bilateral absence of the vas deferens. The most common genetic cause of obstructive
300 azoospermia (OA) are biallelic variants in the *CFTR* gene (Anguiano et al. 1992; Culard et al. 1994;
301 Dumur et al. 1990; Oates and Amos 1994; Patrizio et al. 1993) and variants in the recently identified
302 X-linked gene *ADGRG2* (Patat et al. 2016).

303 Despite the fact that monomorphic forms of teratozoospermia are extremely rare, the majority of
304 genes known to cause isolated testicular forms of infertility are involved in such disorder (n=8, 53%

305 of all 15). The number of genes confidently linked to oligozoospermia or azoospermia when mutated
306 remains limited (n=7, 47% of all 15).

307

308 **Discussion**

309 Male infertility is a complex multifactorial condition which pathogenesis can be explained by
310 environmental causes, urological conditions such as retrograde ejaculation, defective endocrine
311 control of spermatogenesis such as hypogonadotropic hypogonadism or by the occurrence of genetic
312 alteration in genes important for proper reproductive functioning. This standardized clinical validity
313 assessment focused on the genetic causes of infertility and provides a systematic and comprehensive
314 overview of all genes implicated as a monogenic cause of male infertility. Our study aimed to provide
315 an overview of all currently available evidence and gene-disease relationships, as well as formulate a
316 set of recommendations for future studies involving the genetics of male infertility.

317 Clinical validity of gene-disease relationships in male infertility

318 In our literature search, we identified 471 gene-disease relationships that were subjected to critical
319 evaluation. Hereto we used a framework that was designed for interpretation of new research
320 findings in a clinical context in an unbiased way (Smith et al. 2017). The method that we used is a
321 simplified version of the extensive framework used by ClinGen to curate gene-disease relationships
322 and results in similar evidence categories. The method was previously described and proved to be
323 reliable, reproducible and similar to the conclusions of the ClinGen method which makes the method
324 suitable for robust and rapid evaluation of genes in both research and diagnostic sequencing settings
325 (Smith et al. 2017).

326 The clinical validity of the 471 gene-disease relationships varied widely and ranged from definitive
327 (n=36) to strong (n=12), moderate (n=33), limited (n=86) or no evidence (n=154). A total of 150 gene-
328 disease relationships could not be curated because the tool that we used was not suitable for the
329 type of inheritance pattern observed: we only assessed genes with highly penetrant Mendelian
330 inheritance patterns and excluded mitochondrial and polygenic inheritance patterns (n=45).
331 Furthermore, in several cases the quality of the variant detection was problematic (n=5), essential
332 information like variant information was missing (n=8), or there was insufficient evidence for

333 establishment of the inheritance pattern (n=92) in the original article(s). These results demonstrate
334 that the quality of evidence for gene-disease relationships and reporting of the results varies greatly -
335 a matter that is often not examined or acknowledged in original publications and/or literature
336 reviews.

337 The curation of all gene-disease relationships was performed with the currently available evidence
338 identified in this literature search. The results are not static and as knowledge increases over time
339 the outcome may be subjected to changes over time. Hence, we expect that a large number of the
340 genes that are currently classified as “Limited”, “No evidence” or “Unable to classify” may still play
341 an important role in male infertility and should therefore not be omitted from future genetic studies.

342 The number of candidate gene-disease relationships is growing exponentially as a result of the
343 availability of NGS methods and the first half of 2018 has already yielded more novel gene-disease
344 relationships than the full year of 2017 (Figure 2D). However, the number of confidently linked gene-
345 disease relationships is not growing at the same pace. The major reason for this is that most genes
346 have only been found mutated in single patients and functional evidence is lacking. We expect the
347 number of genes confidently linked to azoospermia to grow in the coming years by large-scale data
348 sharing, especially since this is a common form of infertility and genetic components are very likely to
349 play an important role in its etiology (Krausz and Riera-Escamilla 2018).

350 Importance of re-evaluation of evidence

351 The recent availability of large genetic population reference databases facilitates re-evaluation of
352 reported disease-associated variants and allows to determine whether the population frequency of
353 the variant is in line with a reported link to a disorder associated with reduced fitness such as male
354 infertility. Previous reports have shown that healthy participants on average have ~54 exonic variants
355 that were previously reported to be pathogenic, but based on their allele frequency were likely to be
356 misclassified (Lek et al. 2016).

357 The systematic re-classification of reported genetic sequencing variants in male infertility using this
358 information resulted in some interesting observations. For example, *PICK1* is regularly mentioned as
359 a gene that causes globozoospermia in human patients (De Braekeleer et al. 2015; Ray et al. 2017;
360 Krausz and Riera-Escamilla 2018). However, only one patient with one homozygous variant has ever
361 been described in the initial report of a Chinese globozoospermia patient, and no new patients were
362 published since (Liu, Shi, and Lu 2010). The article was published in 2010, six years before the release
363 of gnomAD which is currently the largest database with allelic information from 123,136 exomes and
364 15,496 genomes. The variant described in the original publication is present in 1.74% of the East
365 Asian population (<http://gnomad.broadinstitute.org/variant/22-38471068-G-A>). Calculating the
366 Hardy-Weinberg equilibrium using the incidence of globozoospermia (0.1 % of all male infertility
367 patients) (Holstein et al. 1973) suggests that the maximum allele frequency of this variant can be
368 0.026%, which is much lower than the observed frequency. Importantly, this maximum allele
369 frequency is still an overestimate as it assumes that all globozoospermia patients are explained by
370 this *PICK1* variant. Although the gnomAD database includes females, may contain male infertility
371 patients and the variant may have reduced penetrance, it is highly unlikely that this particular variant
372 is causing globozoospermia in this patient based on the allele frequency.

373 Despite the gene-disease relation being based on the wrong data, *PICK1* deficiency has been shown
374 to result in disruption of acrosome formation in mice and *PICK1* is expressed in human testis (Xiao et
375 al. 2009). Hence, based on these observations the gene remains an important candidate gene for
376 human male infertility. Similar discrepancies in originally published allele frequencies and currently
377 available allele frequencies were found in several other genes including *NLRP14*
378 (<http://gnomad.broadinstitute.org/variant/11-7060977-A-T>) (Westerveld et al. 2006), *SEPT12*
379 (<http://gnomad.broadinstitute.org/variant/16-4833970-C-T>) (Lin et al. 2012) and *RHOXF1*
380 (<http://gnomad.broadinstitute.org/variant/X-119243190-C-T>) (Borgmann et al. 2016).

381 Evidence from animal models was often strong and genetic studies clearly benefit from a wealth of
382 studies describing hundreds of well-characterized male infertility mouse models (de Boer, de Vries,
383 and Ramos 2015; Kherraf et al. 2018). However, caution is urged in drawing conclusions about gene
384 function and inheritance mode based on mouse models only. The mouse and human reproductive
385 system are not identical and genes may have (slightly) different functions or transmit disease through
386 different modes of inheritance (Lieschke and Currie 2007). For this reason, we included statistical
387 evidence from large human datasets to supplement the evidence from animal models (Lek et al.
388 2016; Quinodoz et al. 2017). In case the evidence for inheritance pattern was clearly contradictory
389 between mice and human, we did not evaluate the gene-disease relationship (n=92).

390 Recommendations for genetic testing in male infertility

391 During our study, we noted that international guidelines for nomenclature and interpretation of
392 sequencing variants were often not followed even long after the introduction and world-wide
393 acceptance of these guidelines (den Dunnen et al. 2016; Richards et al. 2015). We identified several
394 errors in nomenclature of sequencing variants and in some cases the variants were not named in a
395 meaningful and unequivocal manner rendering them unusable for assessment. This is in conflict with
396 the FAIR Data Principles for data management and stewardship (Wilkinson et al. 2016). Furthermore,
397 many publications did not mention the expected or proven inheritance pattern or made doubtful
398 conclusions about the mode of inheritance.

399 In order to ensure efficient sharing and downstream use of newly identified sequencing variants and
400 genes, it is crucial to report variants in an unambiguous and standardized way. In adherence to the
401 standard ACMG guidelines and the best practice guideline of Dutch Genome Diagnostic Laboratories,
402 we have made a list of recommendations for future reporting of novel male infertility variants
403 (Supplemental Table S8). Furthermore, our literature study shows that the quality of evidence of a
404 gene-disease relationship varies greatly. We recommend the use of public and local genomic
405 reference databases, statistical and functional experiments to build evidence for causality

406 (Supplemental Table S9). Due to the sporadic nature of some forms of male infertility, it can be very
407 challenging to acquire multiple patients with variants in the same gene. There are multiple online
408 platforms such as Matchmaker Exchange available for researchers and clinicians which have proven
409 to successfully match patients and uncover rare and novel causes of disease (Philippakis et al. 2015).

410 The genetics of human male infertility: overview and future perspectives

411 Our work shows that the field of genetics of male infertility is rapidly expanding due to the
412 introduction of NGS methods (Figure 2). However, currently of all 471 gene-disease relationships
413 described, only 17% (n=81 gene-disease relationships involving 67 genes) have been at least
414 moderately linked to the disease and an additional 18% (n=86 gene-disease relationships involving 84
415 genes) are candidate gene-disease relationships with only limited evidence for involvement of the
416 gene in a male infertility phenotype (Table 1, Supplemental Table S4; Figure 3). Caution should be
417 warranted when using genes with limited or no evidence for diagnostic screening.

418 Similar to other fields in medical genetics, the field of genetics in male infertility has largely focused
419 on inherited variation. Our analysis indicates that 52% of all gene-disease relationships with at least
420 moderate evidence for an involvement in male infertility show an autosomal recessive inheritance
421 pattern (n=42 of 81 gene-disease relationships involving 40 genes). Importantly, many of these genes
422 have been identified in consanguineous families and many of these are associated with very specific
423 and rare sperm defects. It is therefore unlikely that these genes will play a major role in the more
424 common quantitative sperm defects encountered in outbred populations. In contrast, our analysis
425 revealed that only 32% of all gene-disease relationships (n=26 of 81, involving 20 genes) with at least
426 moderate evidence for causing male infertility has an autosomal dominant inheritance pattern, most
427 of which are syndromic presentations.

428 It may perhaps not be surprising that there is only a limited number of autosomal dominant genes
429 described for male infertility, as pathogenic variation in these genes can only be passed through the
430 maternal line. Importantly, however, studies in intellectual disability and developmental delay have

431 recently pointed to an important role for *de novo* germline mutations resulting in autosomal
432 dominant disease (Vissers, Gilissen, and Veltman 2016). The *de novo* mutation hypothesis for male
433 infertility is further underscored by the fact that *de novo* chromosomal and structural variations are
434 well-known causes of male infertility: Klinefelter syndrome (47,XXY) and AZF deletions almost
435 exclusively occur *de novo* (Lanfranco et al. 2004; Colaco and Modi 2018). The role of *de novo* point
436 mutations, however, remains unexplored in male infertility so far. At the moment, only 3 autosomal
437 dominant genes are moderately linked to isolated male infertility (*DMRT1*, *KLHL10*, *SYCP3*).
438 Unfortunately, for none of these genes parental samples were studied to find out whether the
439 variant was paternally or maternally inherited or occurred *de novo*.

440 Genetic testing in diagnostic settings

441 In clinics, genetic testing is offered to infertile men to establish a molecular diagnosis that can be
442 used predict the potential success of fertility treatment options, such as In Vitro Fertilization (IVF),
443 IntraCytoplasmic Sperm Injection (ICSI) combined with TEsticular Sperm Extraction (TESE) or
444 PErcutaneous Sperm Aspiration (PESA) and the risk of transmitting infertility to the next generation.
445 Several studies have shown that men with male factor infertility experience more negative emotional
446 impact such as depressive symptoms, stigma and reduced self-esteem, than men whose partners
447 were infertile or men of couples diagnosed with unexplained infertility (Fisher and Hammarberg
448 2012). The standard use of NGS in the diagnostic work-up of male infertility could lead to more men
449 receiving a diagnosis, or explanation, and therefore possibly influence this emotional burden in a
450 positive way.

451 The recommendations for genetic testing during the diagnostic work-up of male infertility have only
452 minimally changed over the last 20 years and most of these recommendations still focus on the well-
453 known and common causes of male infertility that were already known in the 1990's (Barratt et al.
454 2017; Jungwirth 2018). For cost-efficiency, there are guidelines to help stratify patient groups to
455 receive pre-conceptive genetic tests such as karyotype analysis, AZF deletion tests or a screening for

456 pathogenic variants in a single gene involved in a specific phenotype such as CBAVD or Kallmann
457 syndrome. A recent World Health Organization study on the diagnosis on male infertility suggested
458 to at least perform karyotyping and AZF deletion tests in men with non-obstructive azoospermia or
459 extreme oligoasthenoteratozoospermia (OAT) without a history of a known cause of spermatogenic
460 failure such as chemotherapy, varicocele, orchitis or bilateral cryptorchidism (Barratt et al. 2017).
461 However, after stratification, in approximately 40% of all male infertility patients no genetic cause is
462 found with the above mentioned tests (Krausz and Riera-Escamilla 2018) and this strongly suggests
463 that much more genetic research is required and at the same time the use of other diagnostic assays
464 should be considered.

465 Testing all patients for all genetic anomalies was very costly for a long time. However, in light of the
466 recent developments of novel sequencing technologies, it is now possible to consolidate one or
467 multiple tests in a single NGS assay which will help to cut the costs. The first examples of NGS-based
468 screening methods have been described for male infertility (Oud et al. 2017; Fakhro et al. 2018; Patel
469 et al. 2018). The European Society of Human Genetics (ESHG) and the European Society for Human
470 Reproduction and Embryology (ESHRE) have recently made a recommendation for developing and
471 introducing new tests, specifically for extended carrier screening (Harper et al. 2018). Genetic tests
472 should be designed to achieve high clinical validity, establish clinical utility, minimize secondary
473 findings such as carriership of cancer-predisposing variants as the capacity of follow-up counseling is
474 limited and furthermore they emphasized that providers should take into account that there are
475 inter- and intra-population and individual differences for genetic risk and disease. For example, when
476 considering the effect of immigration of non-European populations on counseling and interpretation
477 of uncommon disease-associated variants (Harper et al. 2018).

478 With the current rise of NGS in the field of male infertility, the number of novel pathogenic variants
479 and genes will grow rapidly (Figure 2). The identification of novel disease genes allows for selection
480 of genes for male infertility gene panels. For diagnostic purposes, gene panels should contain genes

481 with a minimal level of evidence of involvement with disease. We recommend to include genes with
482 an evidence classification of at least “Moderate” for the composition of diagnostic gene panels. We
483 recommend the inclusion of genes involved in syndromic forms of male infertility. The severity of
484 several syndromes relies on the damaging effect of the mutation(s) and the spectrum may span
485 combinations of recognizable associated features to isolated infertility. It is therefore possible that
486 patients referred to for infertility suffer from a mild syndrome which features were missed or not
487 present upon anamnesis.

488 Conclusion

489 In this clinical validity assessment, we evaluated a total of 471 gene-disease relationships involving
490 438 genes with reported monogenic association to male infertility and identified 81 gene-disease
491 relationships with at least moderate evidence for a role in male infertility. Both our results as well as
492 our objective approach and recommendations may aid the robust and rapid identification and
493 incorporation of novel genes in male infertility diagnostics.

494

495 **Author roles**

496 M.S.O., L.V., L.E.L.M.V. and J.A.V. designed this study and L.R., L.E.L.M.V. and J.A.V. supervised this
497 study. M.S.O. and L.V. selected studies for the inclusion and evaluation of quality. M.S.O. evaluated
498 the quality of all included publications and L.V. reviewed and verified the results. Disagreements in
499 the inclusion and evaluation process were solved by consensus between all authors. All authors
500 made substantial contributions to the interpretations of the results. M.S.O. and L.V. prepared the
501 figures and M.S.O., L.V. and R.M.S. wrote the first draft of the manuscript. All authors contributed to
502 the revision process.

503

504 **Acknowledgements**

505 This work was supported by The Netherlands Organisation for Scientific Research. The authors would
506 like to thank the members of the International Male Infertility Genomics Consortium for their
507 constructive comments.

508

509 **Funding:**

510 This work was supported by a VICI grant from The Netherlands Organisation for Scientific Research
511 (918-15-667 to JAV).

512

513 **Conflict of interest:**

514 The authors have nothing to disclose.

515

516 **References**

517 Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, and Sunyaev
518 SR. A method and server for predicting damaging missense mutations. *Nat Methods* 2010; **7**:
519 248-249.

520 Ahlgren R, Yanase T, Simpson ER, Winter JS, and Waterman MR. Compound heterozygous mutations
521 (Arg 239----stop, Pro 342----Thr) in the CYP17 (P45017 alpha) gene lead to ambiguous
522 external genitalia in a male patient with partial combined 17 alpha-hydroxylase/17,20-lyase
523 deficiency. *J Clin Endocrinol Metab* 1992; **74**: 667-672.

524 Akin JW, Behzadian A, Tho SP, and McDonough PG. Evidence for a partial deletion in the androgen
525 receptor gene in a phenotypic male with azoospermia. *Am J Obstet Gynecol* 1991; **165**: 1891-
526 1894.

527 Anguiano A, Oates RD, Amos JA, Dean M, Gerrard B, Stewart C, Maher TA, White MB, and Milunsky
528 A. Congenital bilateral absence of the vas deferens. A primarily genital form of cystic fibrosis.
529 *Jama* 1992; **267**: 1794-1797.

530 Assumpcao JG, Benedetti CE, Maciel-Guerra AT, Guerra G, Jr., Baptista MT, Scolfaro MR, and de
531 Mello MP. Novel mutations affecting SRY DNA-binding activity: the HMG box N65H
532 associated with 46,XY pure gonadal dysgenesis and the familial non-HMG box R30I
533 associated with variable phenotypes. *J Mol Med (Berl)* 2002; **80**: 782-790.

534 Baetens D, Stoop H, Peelman F, Todeschini AL, Rosseel T, Coppeters F, Veitia RA, Looijenga LH, De
535 Baere E, and Cools M. NR5A1 is a novel disease gene for 46,XX testicular and ovotesticular
536 disorders of sex development. *Genet Med* 2017; **19**: 367-376.

537 Barratt CL. Is there a robust future for research in reproduction? *Mol Hum Reprod* 2016; **22**: 1-2.

538 Barratt CLR, Bjorndahl L, De Jonge CJ, Lamb DJ, Osorio Martini F, McLachlan R, Oates RD, van der Poel
539 S, St John B, Sigman M, et al. The diagnosis of male infertility: an analysis of the evidence to
540 support the development of global WHO guidance-challenges and future research
541 opportunities. *Hum Reprod Update* 2017; **23**: 660-680.

542 Bashamboo A, Donohoue PA, Vilain E, Rojo S, Calvel P, Seneviratne SN, Buonocore F, Barseghyan H,
543 Bingham N, Rosenfeld JA, et al. A recurrent p.Arg92Trp variant in steroidogenic factor-1
544 (NR5A1) can act as a molecular switch in human sex development. *Hum Mol Genet* 2016; **25**:
545 3446-3453.

546 Baxter RM, Arboleda VA, Lee H, Barseghyan H, Adam MP, Fechner PY, Bargman R, Keegan C, Travers
547 S, Schelley S, et al. Exome sequencing for the diagnosis of 46,XY disorders of sex
548 development. *J Clin Endocrinol Metab* 2015; **100**: E333-344.

549 Belva F, Bonduelle M, Roelants M, Michielsen D, Van Steirteghem A, Verheyen G, and Tournaye H.
550 Semen quality of young adult ICSI offspring: the first results. *Hum Reprod* 2016; **31**: 2811-
551 2820.

552 Ben Khelifa M, Coutton C, Zouari R, Karaouzene T, Rendu J, Bidart M, Yassine S, Pierre V, Delaroche J,
553 Hennebicq S, et al. Mutations in DNAH1, which encodes an inner arm heavy chain dynein,
554 lead to male infertility from multiple morphological abnormalities of the sperm flagella. *Am J
555 Hum Genet* 2014; **94**: 95-104.

556 Bhoj EJ, Ramos P, Baker LA, Garg V, Cost N, Nordenskjold A, Elder FF, Bleyl SB, Bowles NE, Arrington
557 CB, et al. Human balanced translocation and mouse gene inactivation implicate Basonuclin 2
558 in distal urethral development. *Eur J Hum Genet* 2011; **19**: 540-546.

559 Bick D, Franco B, Sherins RJ, Heye B, Pike L, Crawford J, Maddalena A, Incerti B, Pragliola A, Meitinger
560 T, et al. Brief report: intragenic deletion of the KALIG-1 gene in Kallmann's syndrome. *N Engl J
561 Med* 1992; **326**: 1752-1755.

562 Blanchon S, Legendre M, Copin B, Duquesnoy P, Montantin G, Kott E, Dastot F, Jeanson L, Cachanado
563 M, Rousseau A, et al. Delineation of CCDC39/CCDC40 mutation spectrum and associated
564 phenotypes in primary ciliary dyskinesia. *J Med Genet* 2012; **49**: 410-416.

565 Bombieri C, Seia M, and Castellani C. Genotypes and phenotypes in cystic fibrosis and cystic fibrosis
566 transmembrane regulator-related disorders. *Semin Respir Crit Care Med* 2015; **36**: 180-193.

567 Borgmann J, Tuttelmann F, Dworniczak B, Ropke A, Song HW, Kliesch S, Wilkinson MF, Laurentino S,
568 and Gromoll J. The human RHOX gene cluster: target genes and functional analysis of gene
569 variants in infertile men. *Hum Mol Genet* 2016; **25**; 4898-4910.

570 Bouligand J, Ghervan C, Tello JA, Brailly-Tabard S, Salenave S, Chanson P, Lombes M, Millar RP,
571 Guiochon-Mantel A, and Young J. Isolated familial hypogonadotropic hypogonadism and a
572 GNRH1 mutation. *N Engl J Med* 2009; **360**; 2742-2748.

573 Cabrera MS, Vogiatzi MG, and New MI. Long term outcome in adult males with classic congenital
574 adrenal hyperplasia. *J Clin Endocrinol Metab* 2001; **86**; 3070-3078.

575 Carre-Eusebe D, Imbeaud S, Harbison M, New MI, Josso N, and Picard JY. Variants of the anti-
576 Mullerian hormone gene in a compound heterozygote with the persistent Mullerian duct
577 syndrome and his family. *Hum Genet* 1992; **90**; 389-394.

578 Chabre O, Portrat-Doyen S, Chaffanjon P, Vivier J, Liakos P, Labat-Moleur F, Chambaz E, Morel Y, and
579 Defaye G. Bilateral laparoscopic adrenalectomy for congenital adrenal hyperplasia with
580 severe hypertension, resulting from two novel mutations in splice donor sites of CYP11B1. *J
581 Clin Endocrinol Metab* 2000; **85**; 4060-4068.

582 Chan YM, de Guillebon A, Lang-Muritano M, Plummer L, Cerrato F, Tsiaras S, Gaspert A, Lavoie HB,
583 Wu CH, Crowley WF, Jr., et al. GNRH1 mutations in patients with idiopathic
584 hypogonadotropic hypogonadism. *Proc Natl Acad Sci U S A* 2009; **106**; 11703-11708.

585 Clarkson PA, Davies HR, Williams DM, Chaudhary R, Hughes IA, and Patterson MN. Mutational
586 screening of the Wilms's tumour gene, WT1, in males with genital abnormalities. *J Med
587 Genet* 1993; **30**; 767-772.

588 Colaco S and Modi D. Genetics of the human Y chromosome and its association with male infertility.
589 *Reprod Biol Endocrinol* 2018; **16**; 14.

590 Costa-Barbosa FA, Balasubramanian R, Keefe KW, Shaw ND, Al-Tassan N, Plummer L, Dwyer AA, Buck
591 CL, Choi JH, Seminara SB, et al. Prioritizing genetic testing in patients with Kallmann
592 syndrome using clinical phenotypes. *J Clin Endocrinol Metab* 2013; **98**; E943-953.

593 Cox JJ, Willatt L, Homfray T, and Woods CG. A SOX9 duplication and familial 46,XX developmental
594 testicular disorder. *N Engl J Med* 2011; **364**; 91-93.

595 Culard JF, Desgeorges M, Costa P, Laussel M, Razakatzara G, Navratil H, Demaille J, and Claustres M.
596 Analysis of the whole CFTR coding regions and splice junctions in azoospermic men with
597 congenital bilateral aplasia of epididymis or vas deferens. *Hum Genet* 1994; **93**; 467-470.

598 Dam AH, Koscinski I, Kremer JA, Moutou C, Jaeger AS, Oudakker AR, Tournaye H, Charlet N, Lagier-
599 Tourenne C, van Bokhoven H, et al. Homozygous mutation in SPATA16 is associated with
600 male infertility in human globozoospermia. *Am J Hum Genet* 2007; **81**; 813-820.

601 de Boer P, de Vries M, and Ramos L. A mutation study of sperm head shape and motility in the
602 mouse: lessons for the clinic. *Andrology* 2015; **3**; 174-202.

603 De Braekeleer M, Nguyen MH, Morel F, and Perrin A. Genetic aspects of monomorphic
604 teratozoospermia: a review. *J Assist Reprod Genet* 2015; **32**; 615-623.

605 de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, and Milgrom E. Hypogonadotropic
606 hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. *Proc Natl
607 Acad Sci U S A* 2003; **100**; 10972-10976.

608 de Roux N, Young J, Misrahi M, Genet R, Chanson P, Schaison G, and Milgrom E. A family with
609 hypogonadotropic hypogonadism and mutations in the gonadotropin-releasing hormone
610 receptor. *N Engl J Med* 1997; **337**; 1597-1602.

611 Demura M, Martin RM, Shozu M, Sebastian S, Takayama K, Hsu WT, Schultz RA, Neely K, Bryant M,
612 Mendonca BB, et al. Regional rearrangements in chromosome 15q21 cause formation of
613 cryptic promoters for the CYP19 (aromatase) gene. *Hum Mol Genet* 2007; **16**; 2529-2541.

614 den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, Roux AF, Smith
615 T, Antonarakis SE, and Taschner PE. HGVS Recommendations for the Description of Sequence
616 Variants: 2016 Update. *Hum Mutat* 2016; **37**; 564-569.

617 Dieterich K, Soto Rifo R, Faure AK, Hennebicq S, Ben Amar B, Zahi M, Perrin J, Martinez D, Sele B, Jouk
618 PS, *et al.* Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and
619 causes male infertility. *Nat Genet* 2007; **39**; 661-665.

620 Dieterich K, Zouari R, Harbuz R, Vialard F, Martinez D, Bellayou H, Prisant N, Zoghmar A, Guichaoua
621 MR, Koscinski I, *et al.* The Aurora Kinase C c.144delC mutation causes meiosis I arrest in men
622 and is frequent in the North African population. *Hum Mol Genet* 2009; **18**; 1301-1309.

623 DiLauro SL, Behzadian A, Tho SP, and McDonough PG. Probing genomic deoxyribonucleic acid for
624 gene rearrangement in 14 patients with androgen insensitivity syndrome. *Fertil Steril* 1991;
625 **55**; 481-485.

626 Dode C, Levilliers J, Dupont JM, De Paepe A, Le Du N, Soussi-Yanicostas N, Coimbra RS, Delmaghani S,
627 Compain-Nouaille S, Baverel F, *et al.* Loss-of-function mutations in FGFR1 cause autosomal
628 dominant Kallmann syndrome. *Nat Genet* 2003; **33**; 463-465.

629 Dode C, Teixeira L, Levilliers J, Fouveaut C, Bouchard P, Kottler ML, Lespinasse J, Lienhardt-Roussie A,
630 Mathieu M, Moerman A, *et al.* Kallmann syndrome: mutations in the genes encoding
631 prokineticin-2 and prokineticin receptor-2. *PLoS Genet* 2006; **2**; e175.

632 Domenice S, Yumie Nishi M, Correia Billerbeck AE, Latronico AC, Aparecida Medeiros M, Russell AJ,
633 Vass K, Marino Carvalho F, Costa Frade EM, Prado Arnhold IJ, *et al.* A novel missense
634 mutation (S18N) in the 5' non-HMG box region of the SRY gene in a patient with partial
635 gonadal dysgenesis and his normal male relatives. *Hum Genet* 1998; **102**; 213-215.

636 Dong FN, Amiri-Yekta A, Martinez G, Saut A, Tek J, Stouvenel L, Lores P, Karaouzene T, Thierry-Mieg
637 N, Satre V, *et al.* Absence of CFAP69 Causes Male Infertility due to Multiple Morphological
638 Abnormalities of the Flagella in Human and Mouse. *Am J Hum Genet* 2018; **102**; 636-648.

639 Dumur V, Gervais R, Rigot JM, Lafitte JJ, Manouvrier S, Biserte J, Mazeman E, and Roussel P.
640 Abnormal distribution of CF delta F508 allele in azoospermic men with congenital aplasia of
641 epididymis and vas deferens. *Lancet* 1990; **336**; 512.

642 Eilbeck K, Quinlan A, and Yandell M. Settling the score: variant prioritization and Mendelian disease.
643 *Nat Rev Genet* 2017; **18**; 599-612.

644 Ellnati E, Fossard C, Okutman O, Ghedir H, Ibala-Romdhane S, Ray PF, Saad A, Hennebicq S, and
645 Viville S. A new mutation identified in SPATA16 in two globozoospermic patients. *J Assist
646 Reprod Genet* 2016; **33**; 815-820.

647 Elkhatib RA, Paci M, Longepied G, Saias-Magnan J, Courbiere B, Guichaoua MR, Levy N, Metzler-
648 Guillemain C, and Mitchell MJ. Homozygous deletion of SUN5 in three men with decapitated
649 spermatozoa. *Hum Mol Genet* 2017; **26**; 3167-3171.

650 Evers JL. The wobbly evidence base of reproductive medicine. *Reprod Biomed Online* 2013; **27**; 742-
651 746.

652 Ezquieta B, Alonso M, Alvarez E, Arnao DR, Rodriguez A, and Siguero JP. Should 21-hydroxylase
653 deficiency genotyping be considered in assisted reproductive technology programs? *Fertil
654 Steril* 2007; **88**; 1437.e1435-1411.

655 Fakhro KA, Elbardisi H, Arafa M, Robay A, Rodriguez-Flores JL, Al-Shakaki A, Syed N, Mezey JG, Abi
656 Khalil C, Malek JA, *et al.* Point-of-care whole-exome sequencing of idiopathic male infertility.
657 *Genet Med* 2018.

658 Falardeau J, Chung WC, Beenken A, Raivio T, Plummer L, Sidis Y, Jacobson-Dickman EE, Eliseenkova
659 AV, Ma J, Dwyer A, *et al.* Decreased FGF8 signaling causes deficiency of gonadotropin-
660 releasing hormone in humans and mice. *J Clin Invest* 2008; **118**; 2822-2831.

661 Fechner PY, Marcantonio SM, Jaswaney V, Stetten G, Goodfellow PN, Migeon CJ, Smith KD, Berkovitz
662 GD, Amrhein JA, Bard PA, *et al.* The role of the sex-determining region Y gene in the etiology
663 of 46,XX maleness. *J Clin Endocrinol Metab* 1993; **76**; 690-695.

664 Ferguson-Smith MA, Lennox B, Mack WS, and Stewart JS. Klinefelter's syndrome; frequency and
665 testicular morphology in relation to nuclear sex. *Lancet* 1957; **273**; 167-169.

666 Fisher JR and Hammarberg K. Psychological and social aspects of infertility in men: an overview of the
667 evidence and implications for psychologically informed clinical care and future research.
668 *Asian J Androl* 2012; **14**; 121-129.

669 Franca MM, Lerario AM, Funari MFA, Nishi MY, Narcizo AM, de Mello MP, Guerra-Junior G, Maciel-
670 Guerra AT, and Mendonca BB. A Novel Homozygous Missense FSHR Variant Associated with
671 Hypergonadotropic Hypogonadism in Two Siblings from a Brazilian Family. *Sex Dev* 2017; **11**;
672 137-142.

673 Franco B, Guioli S, Pragliola A, Incerti B, Bardoni B, Tonlorenzi R, Carrozzo R, Maestrini E, Pieretti M,
674 Taillon-Miller P, et al. A gene deleted in Kallmann's syndrome shares homology with neural
675 cell adhesion and axonal path-finding molecules. *Nature* 1991; **353**; 529-536.

676 Fukami M, Wada Y, Miyabayashi K, Nishino I, Hasegawa T, Nordenskjold A, Camerino G, Kretz C, Buj-
677 Bello A, Laporte J, et al. CXorf6 is a causative gene for hypospadias. *Nat Genet* 2006; **38**;
678 1369-1371.

679 Glujsovsky D, Sueldo CE, Borghi C, Nicotra P, Andreucci S, and Ciapponi A. Misleading reporting and
680 interpretation of results in major infertility journals. *Fertil Steril* 2016; **105**; 1301-1306.

681 Guran T, Tolhurst G, Bereket A, Rocha N, Porter K, Turan S, Gribble FM, Kotan LD, Akcay T, Atay Z, et
682 al. Hypogonadotropic hypogonadism due to a novel missense mutation in the first
683 extracellular loop of the neurokinin B receptor. *J Clin Endocrinol Metab* 2009; **94**; 3633-3639.

684 Hanchate NK, Giacobini P, Lhuillier P, Parkash J, Espy C, Fouveaut C, Leroy C, Baron S, Campagne C,
685 Vanacker C, et al. SEMA3A, a gene involved in axonal pathfinding, is mutated in patients with
686 Kallmann syndrome. *PLoS Genet* 2012; **8**; e1002896.

687 Harbuz R, Zouari R, Pierre V, Ben Khelifa M, Kharouf M, Coutton C, Merdassi G, Abada F, Escoffier J,
688 Nikas Y, et al. A recurrent deletion of DPY19L2 causes infertility in man by blocking sperm
689 head elongation and acrosome formation. *Am J Hum Genet* 2011; **88**; 351-361.

690 Harper JC, Aittomaki K, Borry P, Cornel MC, de Wert G, Dondorp W, Geraedts J, Gianaroli L, Ketterson
691 K, Liebaers I, et al. Recent developments in genetics and medically assisted reproduction:
692 from research to clinical applications. *Eur J Hum Genet* 2018; **26**; 12-33.

693 Hiort O, Willenbring H, Albers N, Hecker W, Engert J, Dibbelt L, and Sinnecker GH. Molecular genetic
694 analysis and human chorionic gonadotropin stimulation tests in the diagnosis of prepubertal
695 patients with partial 5 alpha-reductase deficiency. *Eur J Pediatr* 1996; **155**; 445-451.

696 Holstein AF, Schirren CG, Schirren C, and Mauss J. [Round headed spermatozoa: a cause of male
697 infertility]. *Dtsch Med Wochenschr* 1973; **98**; 61-62.

698 Hutchins BI, Kotan LD, Taylor-Burds C, Ozkan Y, Cheng PJ, Gurbuz F, Tiong JD, Mengen E, Yuksel B,
699 Topaloglu AK, et al. CCDC141 Mutation Identified in Anosmic Hypogonadotropic
700 Hypogonadism (Kallmann Syndrome) Alters GnRH Neuronal Migration. *Endocrinology* 2016;
701 **157**; 1956-1966.

702 Igarashi M, Mizuno K, Kon M, Narumi S, Kojima Y, Hayashi Y, Ogata T, and Fukami M. GATA4
703 mutations are uncommon in patients with 46,XY disorders of sex development without heart
704 anomaly. *Asian J Androl* 2018.

705 Imai T, Yanase T, Waterman MR, Simpson ER, and Pratt JJ. Canadian Mennonites and individuals
706 residing in the Friesland region of The Netherlands share the same molecular basis of 17
707 alpha-hydroxylase deficiency. *Hum Genet* 1992; **89**; 95-96.

708 Imbeaud S, Belville C, Messika-Zeitoun L, Rey R, di Clemente N, Josso N, and Picard JY. A 27 base-pair
709 deletion of the anti-mullerian type II receptor gene is the most common cause of the
710 persistent mullerian duct syndrome. *Hum Mol Genet* 1996; **5**; 1269-1277.

711 Imbeaud S, Faure E, Lamarre I, Mattei MG, di Clemente N, Tizard R, Carre-Eusebe D, Belville C,
712 Tragethon L, Tonkin C, et al. Insensitivity to anti-mullerian hormone due to a mutation in the
713 human anti-mullerian hormone receptor. *Nat Genet* 1995; **11**; 382-388.

714 Imtiaz A, Belyantseva IA, Beirl AJ, Fenollar-Ferrer C, Bashir R, Bukhari I, Bouzid A, Shaukat U, Azaiez H,
715 Booth KT, et al. CDC14A phosphatase is essential for hearing and male fertility in mouse and
716 human. *Hum Mol Genet* 2018; **27**; 780-798.

717 Irvine DS. Epidemiology and aetiology of male infertility. *Hum Reprod* 1998; **13 Suppl 1**; 33-44.

718 Izumi Y, Suzuki E, Kanzaki S, Yatsuga S, Kinjo S, Igarashi M, Maruyama T, Sano S, Horikawa R, Sato N,
719 et al. Genome-wide copy number analysis and systematic mutation screening in 58 patients
720 with hypogonadotropic hypogonadism. *Fertil Steril* 2014; **102**; 1130-1136.e1133.

721 Jacobs PA and Strong JA. A case of human intersexuality having a possible XXY sex-determining
722 mechanism. *Nature* 1959; **183**; 302-303.

723 Jamsai D and O'Bryan MK. Mouse models in male fertility research. *Asian J Androl* 2011; **13**; 139-151.

724 Johnson MD. Genetic risks of intracytoplasmic sperm injection in the treatment of male infertility:
725 recommendations for genetic counseling and screening. *Fertil Steril* 1998; **70**; 397-411.

726 Jongmans MC, van Ravenswaaij-Arts CM, Pitteloud N, Ogata T, Sato N, Claahsen-van der Grinten HL,
727 van der Donk K, Seminara S, Bergman JE, Brunner HG, *et al.* CHD7 mutations in patients
728 initially diagnosed with Kallmann syndrome--the clinical overlap with CHARGE syndrome. *Clin
729 Genet* 2009; **75**; 65-71.

730 Jungwirth AD, T.; Kopa, Z.; Krausz, C.; Minhas, S.; Tournaye, H. European Association of Urology
731 guidelines on Male Infertility Edn. presented at the EAU Annual Congress Copenhagen 2018
732 ISBN 978-94-92671-01-1. 2018.

733 Kandemir N and Yordam N. Congenital adrenal hyperplasia in Turkey: a review of 273 patients. *Acta
734 Paediatr* 1997; **86**; 22-25.

735 Karlberg S, Toppari J, Karlberg N, Nurmio M, Karikoski R, Jalanko H, and Lipsanen-Nyman M.
736 Testicular failure and male infertility in the monogenic Mulibrey nanism disorder. *J Clin
737 Endocrinol Metab* 2011; **96**; 3399-3407.

738 Katoh-Fukui Y, Igarashi M, Nagasaki K, Horikawa R, Nagai T, Tsuchiya T, Suzuki E, Miyado M, Hata K,
739 Nakabayashi K, *et al.* Testicular dysgenesis/regression without campomelic dysplasia in
740 patients carrying missense mutations and upstream deletion of SOX9. *Mol Genet Genomic
741 Med* 2015; **3**; 550-557.

742 Kelberman D, Rizzoti K, Avilion A, Bitner-Glindzicz M, Cianfarani S, Collins J, Chong WK, Kirk JM,
743 Achermann JC, Ross R, *et al.* Mutations within Sox2/SOX2 are associated with abnormalities
744 in the hypothalamo-pituitary-gonadal axis in mice and humans. *J Clin Invest* 2006; **116**; 2442-
745 2455.

746 Kherraf ZE, Conne B, Amiri-Yekta A, Kent MC, Coutton C, Escoffier J, Nef S, Arnoult C, and Ray PF.
747 Creation of knock out and knock in mice by CRISPR/Cas9 to validate candidate genes for
748 human male infertility, interest, difficulties and feasibility. *Mol Cell Endocrinol* 2018.

749 Kim HG, Ahn JW, Kurth I, Ullmann R, Kim HT, Kulharya A, Ha KS, Itokawa Y, Meliciani I, Wenzel W, *et
750 al.* WDR11, a WD protein that interacts with transcription factor EMX1, is mutated in
751 idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. *Am J Hum Genet* 2010;
752 **87**; 465-479.

753 Kim HG, Herrick SR, Lemyre E, Kishikawa S, Salisz JA, Seminara S, MacDonald ME, Bruns GA, Morton
754 CC, Quade BJ, *et al.* Hypogonadotropic hypogonadism and cleft lip and palate caused by a
755 balanced translocation producing haploinsufficiency for FGFR1. *J Med Genet* 2005; **42**; 666-
756 672.

757 Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH, Kang GB, Rosenberger G, Tekin M, Ozata M, *et
758 al.* Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic
759 hypogonadotropic hypogonadism and Kallmann syndrome. *Am J Hum Genet* 2008; **83**; 511-
760 519.

761 Knebelmann B, Boussin L, Guerrier D, Legeai L, Kahn A, Josso N, and Picard JY. Anti-Mullerian
762 hormone Bruxelles: a nonsense mutation associated with the persistent Mullerian duct
763 syndrome. *Proc Natl Acad Sci U S A* 1991; **88**; 3767-3771.

764 Kohler B, Schumacher V, l'Allemand D, Royer-Pokora B, and Gruters A. Germline Wilms tumor
765 suppressor gene (WT1) mutation leading to isolated genital malformation without Wilms
766 tumor or nephropathy. *J Pediatr* 2001; **138**; 421-424.

767 Koscinski I, Elinati E, Fossard C, Redin C, Muller J, Velez de la Calle J, Schmitt F, Ben Khelifa M, Ray PF,
768 Kilani Z, *et al.* DPY19L2 deletion as a major cause of globozoospermia. *Am J Hum Genet* 2011;
769 **88**; 344-350.

770 Kotan LD, Hutchins BI, Ozkan Y, Demirel F, Stoner H, Cheng PJ, Esen I, Gurbuz F, Bicakci YK, Mengen E,
771 *et al.* Mutations in FEZF1 cause Kallmann syndrome. *Am J Hum Genet* 2014; **95**; 326-331.

772 Kott E, Duquesnoy P, Copin B, Legendre M, Dastot-Le Moal F, Montantin G, Jeanson L, Tamalet A,
773 Papon JF, Siffroi JP, *et al.* Loss-of-function mutations in LRRC6, a gene essential for proper
774 axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. *Am J*
775 *Hum Genet* 2012; **91**: 958-964.

776 Krausz C and Riera-Escamilla A. Genetics of male infertility. *Nat Rev Urol* 2018.

777 Krausz C, Riera-Escamilla A, Chianese C, Moreno-Mendoza D, Ars E, Rajmil O, Pujol R, Bogliolo M,
778 Blanco I, Rodriguez I, *et al.* From exome analysis in idiopathic azoospermia to the
779 identification of a high-risk subgroup for occult Fanconi anemia. *Genet Med* 2018.

780 Kremer H, Mariman E, Otten BJ, Moll GW, Jr., Stoelinga GB, Wit JM, Jansen M, Drop SL, Faas B,
781 Ropers HH, *et al.* Cosegregation of missense mutations of the luteinizing hormone receptor
782 gene with familial male-limited precocious puberty. *Hum Mol Genet* 1993; **2**: 1779-1783.

783 Kumar P, Henikoff S, and Ng PC. Predicting the effects of coding non-synonymous variants on protein
784 function using the SIFT algorithm. *Nat Protoc* 2009; **4**: 1073-1081.

785 Lanfranco F, Kamischke A, Zitzmann M, and Nieschlag E. Klinefelter's syndrome. *Lancet* 2004; **364**:
786 273-283.

787 Laue LL, Wu SM, Kudo M, Bourdony CJ, Cutler GB, Jr., Hsueh AJ, and Chan WY. Compound
788 heterozygous mutations of the luteinizing hormone receptor gene in Leydig cell hypoplasia.
789 *Mol Endocrinol* 1996; **10**: 987-997.

790 Layman LC, Cohen DP, Jin M, Xie J, Li Z, Reindollar RH, Bolbolan S, Bick DP, Sherins RR, Duck LW, *et al.*
791 Mutations in gonadotropin-releasing hormone receptor gene cause hypogonadotropic
792 hypogonadism. *Nat Genet* 1998; **18**: 14-15.

793 Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill
794 AJ, Cummings BB, *et al.* Analysis of protein-coding genetic variation in 60,706 humans.
795 *Nature* 2016; **536**: 285-291.

796 Leroy C, Fouveaut C, Leclercq S, Jacquemont S, Boullay HD, Lespinasse J, Delpech M, Dupont JM,
797 Hardelin JP, and Dode C. Biallelic mutations in the prokineticin-2 gene in two sporadic cases
798 of Kallmann syndrome. *Eur J Hum Genet* 2008; **16**: 865-868.

799 Li J, Li N, Ding Y, Huang X, Shen Y, Wang J, and Wang X. Clinical characteristics and follow-up of 5
800 young Chinese males with gonadotropin-releasing hormone deficiency caused by mutations
801 in the KAL1 gene. *Meta Gene* 2016; **7**: 64-69.

802 Lieschke GJ and Currie PD. Animal models of human disease: zebrafish swim into view. *Nat Rev Genet*
803 2007; **8**: 353-367.

804 Lin L, Philibert P, Ferraz-de-Souza B, Kelberman D, Homfray T, Albanese A, Molini V, Sebire NJ,
805 Einaudi S, Conway GS, *et al.* Heterozygous missense mutations in steroidogenic factor 1
806 (SF1/Ad4BP, NR5A1) are associated with 46,XY disorders of sex development with normal
807 adrenal function. *J Clin Endocrinol Metab* 2007; **92**: 991-999.

808 Lin YH, Wang YY, Chen HI, Kuo YC, Chiou YW, Lin HH, Wu CM, Hsu CC, Chiang HS, and Kuo PL.
809 SEPTIN12 genetic variants confer susceptibility to teratozoospermia. *PLoS One* 2012; **7**:
810 e34011.

811 Lindstedt G, Nystrom E, Matthews C, Ernest I, Janson PO, and Chatterjee K. Follitropin (FSH)
812 deficiency in an infertile male due to FSHbeta gene mutation. A syndrome of normal puberty
813 and virilization but underdeveloped testicles with azoospermia, low FSH but high lutropin
814 and normal serum testosterone concentrations. *Clin Chem Lab Med* 1998; **36**: 663-665.

815 Liu G, Shi QW, and Lu GX. A newly discovered mutation in PICK1 in a human with globozoospermia.
816 *Asian J Androl* 2010; **12**: 556-560.

817 Liu L and Luo H. Whole-Exome Sequencing Identified a Novel Compound Heterozygous Mutation of
818 LRRC6 in a Chinese Primary Ciliary Dyskinesia Patient. *Biomed Res Int* 2018; **2018**: 1854269.

819 Lobaccaro JM, Belon C, Chaussain JL, Job JC, Toublanc JE, Battin J, Rochiccioli P, Bernasconi S, Bost M,
820 Bozzola M, *et al.* Molecular analysis of the androgen receptor gene in 52 patients with
821 complete or partial androgen insensitivity syndrome: a collaborative study. *Horm Res* 1992;
822 **37**: 54-59.

823 Lopes AM, Aston KI, Thompson E, Carvalho F, Goncalves J, Huang N, Matthiesen R, Noordam MJ,
824 Quintela I, Ramu A, *et al.* Human spermatogenic failure purges deleterious mutation load
825 from the autosomes and both sex chromosomes, including the gene DMRT1. *PLoS Genet*
826 2013; **9**; e1003349.

827 Lourenco D, Brauner R, Rybczynska M, Nihoul-Fekete C, McElreavey K, and Bashamboo A. Loss-of-
828 function mutation in GATA4 causes anomalies of human testicular development. *Proc Natl
829 Acad Sci U S A* 2011; **108**; 1597-1602.

830 Mallet D, Bretones P, Michel-Calemard L, Dijoud F, David M, and Morel Y. Gonadal dysgenesis
831 without adrenal insufficiency in a 46, XY patient heterozygous for the nonsense C16X
832 mutation: a case of SF1 haploinsufficiency. *J Clin Endocrinol Metab* 2004; **89**; 4829-4832.

833 Mantovani G, Ozisik G, Achermann JC, Romoli R, Borretta G, Persani L, Spada A, Jameson JL, and
834 Beck-Peccoz P. Hypogonadotropic hypogonadism as a presenting feature of late-onset X-
835 linked adrenal hypoplasia congenita. *J Clin Endocrinol Metab* 2002; **87**; 44-48.

836 Marin P, Ferlin A, Moro E, Rossi A, Bartoloni L, Rossato M, and Foresta C. Novel insulin-like 3 (INSL3)
837 gene mutation associated with human cryptorchidism. *Am J Med Genet* 2001; **103**; 348-349.

838 Marino R, Perez Garrido N, Costanzo M, Guercio G, Juanes M, Rocco C, Ramirez P, Warman DM,
839 Ciaccio M, Pena G, *et al.* Five new cases of 46,XX aromatase deficiency: clinical follow-up
840 from birth to puberty, a novel mutation, and a founder effect. *J Clin Endocrinol Metab* 2015;
841 **100**; E301-307.

842 Mazen I, McElreavey K, Elaidy A, Kamel AK, and Abdel-Hamid MS. Aromatase Deficiency due to a
843 Homozygous CYP19A1 Mutation in a 46,XX Egyptian Patient with Ambiguous Genitalia. *Sex
844 Dev* 2017; **11**; 275-279.

845 Meloni A, Meloni A, Cao A, and Rosatelli MC. New frameshift mutation in the DAX-1 gene in a patient
846 with X-linked adrenal hypoplasia and hypogonadotropic hypogonadism. *Hum Mutat* 1996; **8**;
847 183-184.

848 Merveille AC, Davis EE, Becker-Heck A, Legendre M, Amirav I, Bataille G, Belmont J, Beydon N, Billen
849 F, Clement A, *et al.* CCDC39 is required for assembly of inner dynein arms and the dynein
850 regulatory complex and for normal ciliary motility in humans and dogs. *Nat Genet* 2011; **43**;
851 72-78.

852 Metzker ML. Sequencing technologies - the next generation. *Nat Rev Genet* 2010; **11**; 31-46.

853 Micali G, Nasca MR, Innocenzi D, Frasin LA, Radi O, Parma P, Camerino G, and Schwartz RA.
854 Association of palmoplantar keratoderma, cutaneous squamous cell carcinoma, dental
855 anomalies, and hypogenitalism in four siblings with 46,XX karyotype: a new syndrome. *J Am
856 Acad Dermatol* 2005; **53**; S234-239.

857 Misrahi M, Meduri G, Pissard S, Bouvattier C, Beau I, Loosfelt H, Jolivet A, Rappaport R, Milgrom E,
858 and Bougnères P. Comparison of immunocytochemical and molecular features with the
859 phenotype in a case of incomplete male pseudohermaphroditism associated with a mutation
860 of the luteinizing hormone receptor. *J Clin Endocrinol Metab* 1997; **82**; 2159-2165.

861 Miyamoto T, Hasuike S, Yogev L, Maduro MR, Ishikawa M, Westphal H, and Lamb DJ. Azoospermia in
862 patients heterozygous for a mutation in SYCP3. *Lancet* 2003; **362**; 1714-1719.

863 Moalem S, Babul-Hirji R, Stavropoulos DJ, Wherrett D, Bagli DJ, Thomas P, and Chitayat D. XX male
864 sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication. *Am
865 J Med Genet A* 2012; **158a**; 1759-1764.

866 Moher D, Liberati A, Tetzlaff J, and Altman DG. Preferred reporting items for systematic reviews and
867 meta-analyses: the PRISMA statement. *PLoS Med* 2009; **6**; e1000097.

868 Muscatelli F, Strom TM, Walker AP, Zanaria E, Recan D, Meindl A, Bardoni B, Guioli S, Zehetner G,
869 Rabl W, *et al.* Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia
870 congenita and hypogonadotropic hypogonadism. *Nature* 1994; **372**; 672-676.

871 Nandagopal R, Sinaii N, Avila NA, Van Ryzin C, Chen W, Finkelstein GP, Mehta SP, McDonnell NB, and
872 Merke DP. Phenotypic profiling of parents with cryptic nonclassic congenital adrenal
873 hyperplasia: findings in 145 unrelated families. *Eur J Endocrinol* 2011; **164**; 977-984.

874 Neocleous V, Sismani C, Shammas C, Efstathiou E, Alexandrou A, Ioannides M, Argyrou M, Patsalis PC,
875 Phylactou LA, and Skordis N. Duplication of exons 3-10 of the HSD17B3 gene: a novel type of
876 genetic defect underlying 17beta-HSD-3 deficiency. *Gene* 2012; **499**: 250-255.

877 Numabe H, Nagafuchi S, Nakahori Y, Tamura T, Kiuchi H, Namiki M, Kohda N, Fukushima Y, Fuse H,
878 Kusano M, et al. DNA analyses of XX and XX-hypospadiac males. *Hum Genet* 1992; **90**: 211-
879 214.

880 Oates RD and Amos JA. The genetic basis of congenital bilateral absence of the vas deferens and
881 cystic fibrosis. *J Androl* 1994; **15**: 1-8.

882 Obici L, Palladini G, Giorgetti S, Bellotti V, Gregorini G, Arbustini E, Verga L, Marciano S, Donadei S,
883 Perfetti V, et al. Liver biopsy discloses a new apolipoprotein A-I hereditary amyloidosis in
884 several unrelated Italian families. *Gastroenterology* 2004; **126**: 1416-1422.

885 Ogata T, Fukami M, and Wada Y. MAMLD1 (CXorf6) is a New Gene for Hypospadias. *Clin Pediatr
886 Endocrinol* 2008; **17**: 87-93.

887 Okutman O, Muller J, Baert Y, Serdarogullari M, Gultomruk M, Piton A, Rombaut C, Benkhalifa M,
888 Teletin M, Skory V, et al. Exome sequencing reveals a nonsense mutation in TEX15 causing
889 spermatogenic failure in a Turkish family. *Hum Mol Genet* 2015; **24**: 5581-5588.

890 Omran H, Kobayashi D, Olbrich H, Tsukahara T, Loges NT, Hagiwara H, Zhang Q, Leblond G, O'Toole E,
891 Hara C, et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. *Nature*
892 2008; **456**: 611-616.

893 Oud MS, Ramos L, O'Bryan MK, McLachlan RI, Okutman O, Viville S, de Vries PF, Smeets D,
894 Lugtenberg D, Hehir-Kwa JY, et al. Validation and application of a novel integrated genetic
895 screening method to a cohort of 1,112 men with idiopathic azoospermia or severe
896 oligozoospermia. *Hum Mutat* 2017; **38**: 1592-1605.

897 Paff T, Loges NT, Aprea I, Wu K, Bakey Z, Haarman EG, Daniels JMA, Sistermans EA, Bogunovic N,
898 Dougherty GW, et al. Mutations in PIH1D3 Cause X-Linked Primary Ciliary Dyskinesia with
899 Outer and Inner Dynein Arm Defects. *Am J Hum Genet* 2017; **100**: 160-168.

900 Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, Valentini S, Guerra L, Schedl A, and Camerino
901 G. R-spondin1 is essential in sex determination, skin differentiation and malignancy. *Nat
902 Genet* 2006; **38**: 1304-1309.

903 Patat O, Pagin A, Siegfried A, Mitchell V, Chassaing N, Faguer S, Monteil L, Gaston V, Bujan L,
904 Courtade-Saidi M, et al. Truncating Mutations in the Adhesion G Protein-Coupled Receptor
905 G2 Gene ADGRG2 Cause an X-Linked Congenital Bilateral Absence of Vas Deferens. *Am J Hum
906 Genet* 2016; **99**: 437-442.

907 Patel B, Parets S, Akana M, Kellogg G, Jansen M, Chang C, Cai Y, Fox R, Niknazar M, Shraga R, et al.
908 Comprehensive genetic testing for female and male infertility using next-generation
909 sequencing. *J Assist Reprod Genet* 2018.

910 Patrizio P, Ord T, Silber SJ, and Asch RH. Cystic fibrosis mutations impair the fertilization rate of
911 epididymal sperm from men with congenital absence of the vas deferens. *Hum Reprod* 1993;
912 **8**: 1259-1263.

913 Payne K, Gavan SP, Wright SJ, and Thompson AJ. Cost-effectiveness analyses of genetic and genomic
914 diagnostic tests. *Nat Rev Genet* 2018; **19**: 235-246.

915 Philippakis AA, Azzariti DR, Beltran S, Brookes AJ, Brownstein CA, Brudno M, Brunner HG, Buske OJ,
916 Carey K, Doll C, et al. The Matchmaker Exchange: a platform for rare disease gene discovery.
917 *Hum Mutat* 2015; **36**: 915-921.

918 Phillip M, Arbelle JE, Segev Y, and Parvari R. Male hypogonadism due to a mutation in the gene for
919 the beta-subunit of follicle-stimulating hormone. *N Engl J Med* 1998; **338**: 1729-1732.

920 Pingault V, Bodereau V, Baral V, Marcos S, Watanabe Y, Chaoui A, Fouveaut C, Leroy C, Verier-Mine
921 O, Francannet C, et al. Loss-of-function mutations in SOX10 cause Kallmann syndrome with
922 deafness. *Am J Hum Genet* 2013; **92**: 707-724.

923 Pitteloud N, Acierno JS, Jr., Meysing A, Eliseenkova AV, Ma J, Ibrahim OA, Metzger DL, Hayes FJ,
924 Dwyer AA, Hughes VA, et al. Mutations in fibroblast growth factor receptor 1 cause both

925 Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. *Proc Natl Acad Sci U S A* 2006; **103**; 6281-6286.

926

927 Pitteloud N, Zhang C, Pignatelli D, Li JD, Raivio T, Cole LW, Plummer L, Jacobson-Dickman EE, Mellon

928 PL, Zhou QY, et al. Loss-of-function mutation in the prokineticin 2 gene causes Kallmann

929 syndrome and normosmic idiopathic hypogonadotropic hypogonadism. *Proc Natl Acad Sci U*

930 *S A* 2007; **104**; 17447-17452.

931 Quinodoz M, Royer-Bertrand B, Cisarova K, Di Gioia SA, Superti-Furga A, and Rivolta C. DOMINO:

932 Using Machine Learning to Predict Genes Associated with Dominant Disorders. *Am J Hum*

933 *Genet* 2017; **101**; 623-629.

934 Ray PF, Toure A, Metzler-Guillemain C, Mitchell MJ, Arnoult C, and Coutton C. Genetic abnormalities

935 leading to qualitative defects of sperm morphology or function. *Clin Genet* 2017; **91**; 217-

936 232.

937 Rehm HL. Evolving health care through personal genomics. *Nat Rev Genet* 2017; **18**; 259-267.

938 Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et

939 al. Standards and guidelines for the interpretation of sequence variants: a joint consensus

940 recommendation of the American College of Medical Genetics and Genomics and the

941 Association for Molecular Pathology. *Genet Med* 2015; **17**; 405-424.

942 Ropke A, Tewes AC, Gromoll J, Kliesch S, Wieacker P, and Tuttelmann F. Comprehensive sequence

943 analysis of the NR5A1 gene encoding steroidogenic factor 1 in a large group of infertile

944 males. *Eur J Hum Genet* 2013; **21**; 1012-1015.

945 Rubtsov P, Karmanov M, Sverdlova P, Spirin P, and Tiulpakov A. A novel homozygous mutation in

946 CYP11A1 gene is associated with late-onset adrenal insufficiency and hypospadias in a 46,XY

947 patient. *J Clin Endocrinol Metab* 2009; **94**; 936-939.

948 Safari S, Zare-Abdollahi D, Mirfakhraie R, Ghafouri-Fard S, Pouresmaeili F, Movafagh A, and Omrani

949 MD. An Iranian family with azoospermia and premature ovarian insufficiency segregating

950 NR5A1 mutation. *Climacteric* 2014; **17**; 301-303.

951 Sahakitrungruang T, Tee MK, Blackett PR, and Miller WL. Partial defect in the cholesterol side-chain

952 cleavage enzyme P450scc (CYP11A1) resembling nonclassic congenital lipoid adrenal

953 hyperplasia. *J Clin Endocrinol Metab* 2011; **96**; 792-798.

954 Sato N, Katsumata N, Kagami M, Hasegawa T, Hori N, Kawakita S, Minowada S, Shimotsuka A,

955 Shishiba Y, Yokozawa M, et al. Clinical assessment and mutation analysis of Kallmann

956 syndrome 1 (KAL1) and fibroblast growth factor receptor 1 (FGFR1, or KAL2) in five families

957 and 18 sporadic patients. *J Clin Endocrinol Metab* 2004; **89**; 1079-1088.

958 Scalvini T, Martini PR, Obici L, Tardanico R, Biasi L, Gregorini G, Scolari F, and Merlini G. Infertility and

959 hypergonadotropic hypogonadism as first evidence of hereditary apolipoprotein A-I

960 amyloidosis. *J Urol* 2007; **178**; 344-348.

961 Schultz N, Hamra FK, and Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic

962 spermatogenic cells offers a myriad of contraceptive targets. *Proc Natl Acad Sci U S A* 2003;

963 **100**; 12201-12206.

964 Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS, Jr., Shagoury JK, Bo-Abbas Y,

965 Kuohung W, Schwinnof KM, Hendrick AG, et al. The GPR54 gene as a regulator of puberty. *N Engl J Med* 2003; **349**; 1614-1627.

966

967 Sha YW, Wang X, Xu X, Su ZY, Cui Y, Mei LB, Huang XJ, Chen J, He XM, Ji ZY, et al. Novel Mutations in

968 CFAP44 and CFAP43 Cause Multiple Morphological Abnormalities of the Sperm Flagella

969 (MMAF). *Reprod Sci* 2017; 1933719117749756.

970 Shenker A, Laue L, Kosugi S, Merendino JJ, Jr., Minegishi T, and Cutler GB, Jr. A constitutively

971 activating mutation of the luteinizing hormone receptor in familial male precocious puberty.

972 *Nature* 1993; **365**; 652-654.

973 Shozu M, Sebastian S, Takayama K, Hsu WT, Schultz RA, Neely K, Bryant M, and Bulun SE. Estrogen

974 excess associated with novel gain-of-function mutations affecting the aromatase gene. *N Engl J Med* 2003; **348**; 1855-1865.

975

976 Sinisi AA, Asci R, Bellastella G, Maiione L, Esposito D, Elefante A, De Bellis A, Bellastella A, and Iolascon
977 A. Homozygous mutation in the prokineticin-receptor2 gene (Val274Asp) presenting as
978 reversible Kallmann syndrome and persistent oligozoospermia: case report. *Hum Reprod*
979 2008; **23**; 2380-2384.

980 Smith CL, Blake JA, Kadin JA, Richardson JE, and Bult CJ. Mouse Genome Database (MGD)-2018:
981 knowledgebase for the laboratory mouse. *Nucleic Acids Res* 2018; **46**; D836-d842.

982 Smith ED, Radtke K, Rossi M, Shinde DN, Darabi S, El-Khechen D, Powis Z, Helbig K, Waller K, Grange
983 DK, et al. Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease
984 Associations Aids Diagnostic Exome Analysis and Reclassifications. *Hum Mutat* 2017; **38**; 600-
985 608.

986 Stark Z, Storen R, Bennetts B, Savarirayan R, and Jamieson RV. Isolated hypogonadotropic
987 hypogonadism with SOX2 mutation and anophthalmia/microphthalmia in offspring. *Eur J
988 Hum Genet* 2011; **19**; 753-756.

989 Stouffs K, Vandermaelen D, Tournaye H, Liebaers I, and Lissens W. Mutation analysis of three genes
990 in patients with maturation arrest of spermatogenesis and couples with recurrent
991 miscarriages. *Reprod Biomed Online* 2011; **22**; 65-71.

992 Strande NT, Riggs ER, Buchanan AH, Ceyhan-Birsoy O, DiStefano M, Dwight SS, Goldstein J, Ghosh R,
993 Seifert BA, Sneddon TP, et al. Evaluating the Clinical Validity of Gene-Disease Associations: An
994 Evidence-Based Framework Developed by the Clinical Genome Resource. *Am J Hum Genet*
995 2017; **100**; 895-906.

996 Sugino Y, Usui T, Okubo K, Nagahama K, Takahashi T, Okuno H, Hatayama H, Ogawa O, Shimatsu A,
997 and Nishiyama H. Genotyping of congenital adrenal hyperplasia due to 21-hydroxylase
998 deficiency presenting as male infertility: case report and literature review. *J Assist Reprod
999 Genet* 2006; **23**; 377-380.

1000 Sui W, Hou X, Che W, Ou M, Sun G, Huang S, Liu F, Chen P, Wei X, and Dai Y. CCDC40 mutation as a
1001 cause of primary ciliary dyskinesia: a case report and review of literature. *Clin Respir J* 2016;
1002 **10**; 614-621.

1003 Sutton E, Hughes J, White S, Sekido R, Tan J, Arboleda V, Rogers N, Knower K, Rowley L, Eyre H, et al.
1004 Identification of SOX3 as an XX male sex reversal gene in mice and humans. *J Clin Invest*
1005 2011; **121**; 328-341.

1006 Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A,
1007 Bork P, et al. The STRING database in 2017: quality-controlled protein-protein association
1008 networks, made broadly accessible. *Nucleic Acids Res* 2017; **45**; D362-d368.

1009 Tabarin A, Achermann JC, Recan D, Bex V, Bertagna X, Christin-Maitre S, Ito M, Jameson JL, and
1010 Bouchard P. A novel mutation in DAX1 causes delayed-onset adrenal insufficiency and
1011 incomplete hypogonadotropic hypogonadism. *J Clin Invest* 2000; **105**; 321-328.

1012 Tang S, Wang X, Li W, Yang X, Li Z, Liu W, Li C, Zhu Z, Wang L, Wang J, et al. Biallelic Mutations in
1013 CFAP43 and CFAP44 Cause Male Infertility with Multiple Morphological Abnormalities of the
1014 Sperm Flagella. *Am J Hum Genet* 2017; **100**; 854-864.

1015 Tapanainen JS, Aittomaki K, Min J, Vaskivuo T, and Huhtaniemi IT. Men homozygous for an
1016 inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present
1017 variable suppression of spermatogenesis and fertility. *Nat Genet* 1997; **15**; 205-206.

1018 Tewes AC, Ledig S, Tuttelmann F, Kliesch S, and Wieacker P. DMRT1 mutations are rarely associated
1019 with male infertility. *Fertil Steril* 2014; **102**; 816-820.e813.

1020 Thigpen AE, Davis DL, Gautier T, Imperato-McGinley J, and Russell DW. Brief report: the molecular
1021 basis of steroid 5 alpha-reductase deficiency in a large Dominican kindred. *N Engl J Med*
1022 1992; **327**; 1216-1219.

1023 Tomboc M, Lee PA, Mitwally MF, Schneck FX, Bellinger M, and Witchel SF. Insulin-like 3/relaxin-like
1024 factor gene mutations are associated with cryptorchidism. *J Clin Endocrinol Metab* 2000; **85**;
1025 4013-4018.

1026 Tommiska J, Kansakoski J, Christiansen P, Jorgensen N, Lawaetz JG, Juul A, and Raivio T. Genetics of
1027 congenital hypogonadotropic hypogonadism in Denmark. *Eur J Med Genet* 2014; **57**; 345-
1028 348.

1029 Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, Serin A, Mungan NO, Cook JR,
1030 Imamoglu S, et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism
1031 reveal a key role for Neurokinin B in the central control of reproduction. *Nat Genet* 2009; **41**;
1032 354-358.

1033 Tran TA, Kone-Paut I, Marie I, Ninet J, Cuisset L, and Meinzer U. Muckle-Wells syndrome and male
1034 hypofertility: a case series. *Semin Arthritis Rheum* 2012; **42**; 327-331.

1035 Trarbach EB, Abreu AP, Silveira LF, Garmes HM, Baptista MT, Teles MG, Costa EM, Mohammadi M,
1036 Pitteloud N, Mendonca BB, et al. Nonsense mutations in FGF8 gene causing different degrees
1037 of human gonadotropin-releasing deficiency. *J Clin Endocrinol Metab* 2010; **95**; 3491-3496.

1038 Tuttelmann F, Ruckert C, and Ropke A. Disorders of spermatogenesis: Perspectives for novel genetic
1039 diagnostics after 20 years of unchanged routine. *Med Genet* 2018; **30**; 12-20.

1040 Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C,
1041 Sjostedt E, Asplund A, et al. Proteomics. Tissue-based map of the human proteome. *Science*
1042 2015; **347**; 1260419.

1043 Vaaralahti K, Tommiska J, Tillmann V, Liivak N, Kansakoski J, Laitinen EM, and Raivio T. De novo
1044 SOX10 nonsense mutation in a patient with Kallmann syndrome and hearing loss. *Pediatr Res*
1045 2014; **76**; 115-116.

1046 Valdes-Socin H, Salvi R, Daly AF, Gaillard RC, Quatresooz P, Tebeu PM, Pralong FP, and Beckers A.
1047 Hypogonadism in a patient with a mutation in the luteinizing hormone beta-subunit gene. *N
1048 Engl J Med* 2004; **351**; 2619-2625.

1049 Vetro A, Ciccone R, Giorda R, Patricelli MG, Della Mina E, Forlino A, and Zuffardi O. XX males SRY
1050 negative: a confirmed cause of infertility. *J Med Genet* 2011; **48**; 710-712.

1051 Vissers LE, Gilissen C, and Veltman JA. Genetic studies in intellectual disability and related disorders.
1052 *Nat Rev Genet* 2016; **17**; 9-18.

1053 Wambergue C, Zouari R, Fourati Ben Mustapha S, Martinez G, Devillard F, Hennebicq S, Satre V,
1054 Brouillet S, Halouani L, Marrakchi O, et al. Patients with multiple morphological abnormalities
1055 of the sperm flagella due to DNAH1 mutations have a good prognosis following
1056 intracytoplasmic sperm injection. *Hum Reprod* 2016; **31**; 1164-1172.

1057 Wang X, Jin HR, Cui YQ, Chen J, Sha YW, and Gao ZL. Case study of a patient with cryptozoospermia
1058 associated with a recessive TEX15 nonsense mutation. *Asian J Androl* 2018; **20**; 101-102.

1059 Weiss J, Axelrod L, Whitcomb RW, Harris PE, Crowley WF, and Jameson JL. Hypogonadism caused by
1060 a single amino acid substitution in the beta subunit of luteinizing hormone. *N Engl J Med*
1061 1992; **326**; 179-183.

1062 Welzel M, Wustemann N, Simic-Schleicher G, Dorr HG, Schulze E, Shaikh G, Clayton P, Grotzinger J,
1063 Holterhus PM, and Riepe FG. Carboxyl-terminal mutations in 3beta-hydroxysteroid
1064 dehydrogenase type II cause severe salt-wasting congenital adrenal hyperplasia. *J Clin
1065 Endocrinol Metab* 2008; **93**; 1418-1425.

1066 Westerveld GH, Korver CM, van Pelt AM, Leschot NJ, van der Veen F, Repping S, and Lombardi MP.
1067 Mutations in the testis-specific NALP14 gene in men suffering from spermatogenic failure.
1068 *Hum Reprod* 2006; **21**; 3178-3184.

1069 Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW,
1070 da Silva Santos LB, Bourne PE, et al. The FAIR Guiding Principles for scientific data
1071 management and stewardship. *Sci Data* 2016; **3**; 160018.

1072 Winters BR and Walsh TJ. The epidemiology of male infertility. *Urol Clin North Am* 2014; **41**; 195-204.

1073 Xiao N, Kam C, Shen C, Jin W, Wang J, Lee KM, Jiang L, and Xia J. PICK1 deficiency causes male
1074 infertility in mice by disrupting acrosome formation. *J Clin Invest* 2009; **119**; 802-812.

1075 Yang B, Wang J, Zhang W, Pan H, Li T, Liu B, Li H, and Wang B. Pathogenic role of ADGRG2 in CBAVD
1076 patients replicated in Chinese population. *Andrology* 2017; **5**; 954-957.

1077 Yang F, Silber S, Leu NA, Oates RD, Marszalek JD, Skaletsky H, Brown LG, Rozen S, Page DC, and Wang
1078 PJ. TEX11 is mutated in infertile men with azoospermia and regulates genome-wide
1079 recombination rates in mouse. *EMBO Mol Med* 2015; **7**; 1198-1210.

1080 Yatsenko AN, Georgiadis AP, Ropke A, Berman AJ, Jaffe T, Olszewska M, Westernstroer B, Sanfilippo
1081 J, Kurpisz M, Rajkovic A, *et al.* X-linked TEX11 mutations, meiotic arrest, and azoospermia in
1082 infertile men. *N Engl J Med* 2015; **372**; 2097-2107.

1083 Yatsenko AN, Roy A, Chen R, Ma L, Murthy LJ, Yan W, Lamb DJ, and Matzuk MM. Non-invasive
1084 genetic diagnosis of male infertility using spermatozoal RNA: KLHL10 mutations in
1085 oligozoospermic patients impair homodimerization. *Hum Mol Genet* 2006; **15**; 3411-3419.

1086 Yong EL, Ng SC, Roy AC, Yun G, and Ratnam SS. Pregnancy after hormonal correction of severe
1087 spermatogenic defect due to mutation in androgen receptor gene. *Lancet* 1994; **344**; 826-
1088 827.

1089 Young J, Metay C, Bouligand J, Tou B, Francou B, Maione L, Tosca L, Sarfati J, Brioude F, Esteva B, *et*
1090 *al.* SEMA3A deletion in a family with Kallmann syndrome validates the role of semaphorin 3A
1091 in human puberty and olfactory system development. *Hum Reprod* 2012; **27**; 1460-1465.

1092 Yzer S, Hollander AI, Lopez I, Pott JW, de Faber JT, Cremers FP, Koenekoop RK, and van den Born LI.
1093 Ocular and extra-ocular features of patients with Leber congenital amaurosis and mutations
1094 in CEP290. *Mol Vis* 2012; **18**; 412-425.

1095 Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, Sullivan E, and van
1096 der Poel S. The International Committee for Monitoring Assisted Reproductive Technology
1097 (ICMART) and the World Health Organization (WHO) Revised Glossary on ART Terminology,
1098 2009. *Hum Reprod* 2009; **24**; 2683-2687.

1099 Zhang L, Mason JI, Naiki Y, Copeland KC, Castro-Magana M, Gordon-Walker TT, Chang YT, and Pang S.
1100 Characterization of two novel homozygous missense mutations involving codon 6 and 259 of
1101 type II 3beta-hydroxysteroid dehydrogenase (3betaHSD) gene causing, respectively, nonsalt-
1102 wasting and salt-wasting 3betaHSD deficiency disorder. *J Clin Endocrinol Metab* 2000; **85**;
1103 1678-1685.

1104 Zhu F, Wang F, Yang X, Zhang J, Wu H, Zhang Z, Zhang Z, He X, Zhou P, Wei Z, *et al.* Biallelic SUN5
1105 Mutations Cause Autosomal-Recessive Acephalic Spermatozoa Syndrome. *Am J Hum Genet*
1106 2016; **99**; 942-949.

1107

1108

1109 **Figure descriptions:**

1110 **Figure 1: PRISMA flow chart.** Our search and screening strategy to identify publications and genes
1111 eligible for clinical validity assessment. AR: Autosomal Recessive; AD: Autosomal Dominant; XL: X-
1112 linked; YL: Y-linked

1113 **Figure 2: Genetic studies in male infertility.** A) Graphical overview of genetic studies in male
1114 infertility. B) Graphical representation of type of genetic research in male infertility. C) The use of
1115 Sanger Sequencing and Next Generation Sequencing for the discovery of genes in male infertility. D)
1116 Increase of genes linked to human male infertility.

1117 **Figure 3: Biological overview of the genetics of male infertility.** The color of each gene indicates the
1118 amount of evidence: Brown: Definitive; Red: Strong; Orange: Moderate.

1119 **Table 1: Results gene-disease relationships; only showing at least moderate evidence**

1120

1121

Identification

Screening

Eligibility

Inclusion

Evidence assessment

Records identified through Pubmed search on the 21st of June 2018:
n= 23,031

Abstract and title screening:
n= 23,031

Excluded
n=18,095

1. Publication not in English: 2,505
2. Study not in humans: 4,562
3. Study topic irrelevant: 11,028

Full-text screening:
n=4,936

Excluded
n=3,189

4. Association study: 668
5. AZF deletion: 469
6. Multiple genes affected: 28
7. Karyotype anomaly: 1,180
8. Irrelevant: 803
9. Full text unavailable: 41

Reviews included:
n=576

Additional articles from reference lists:
n=115

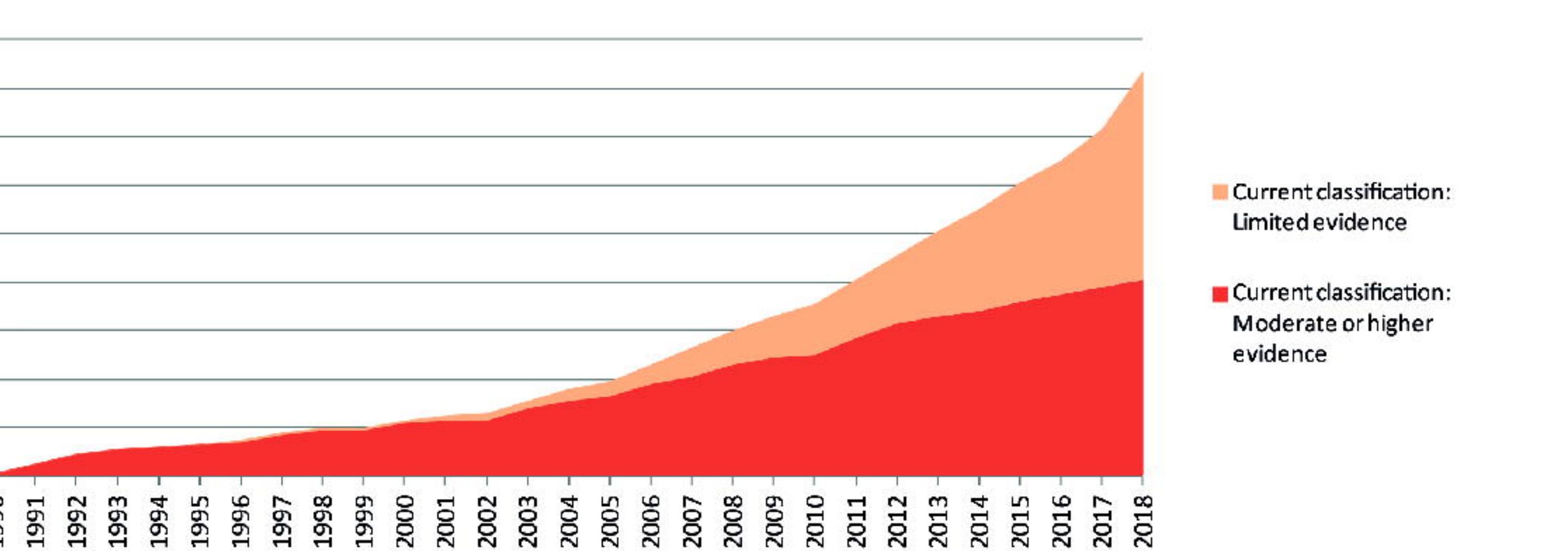
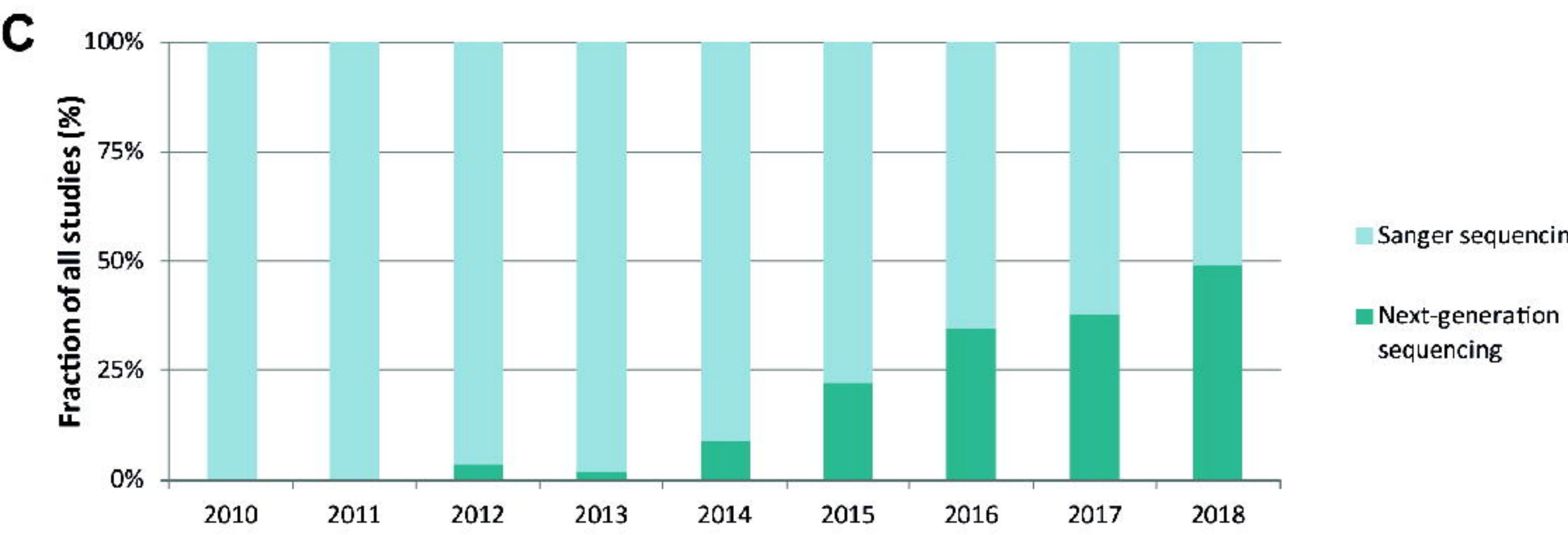
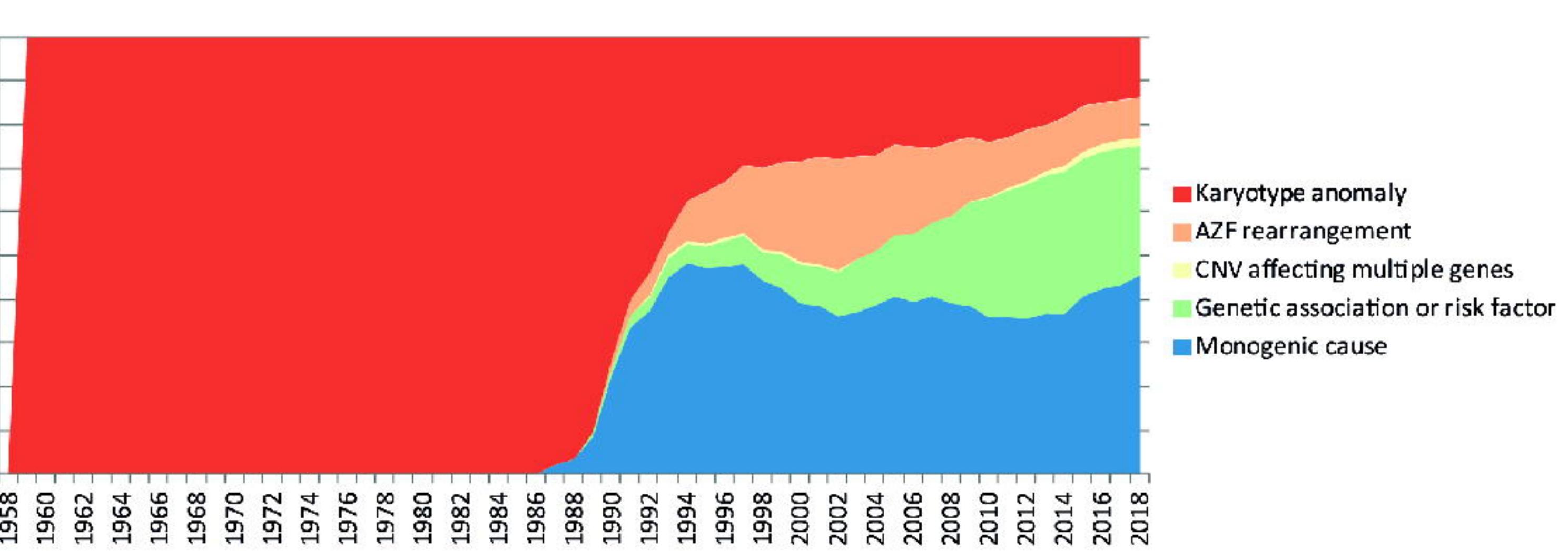
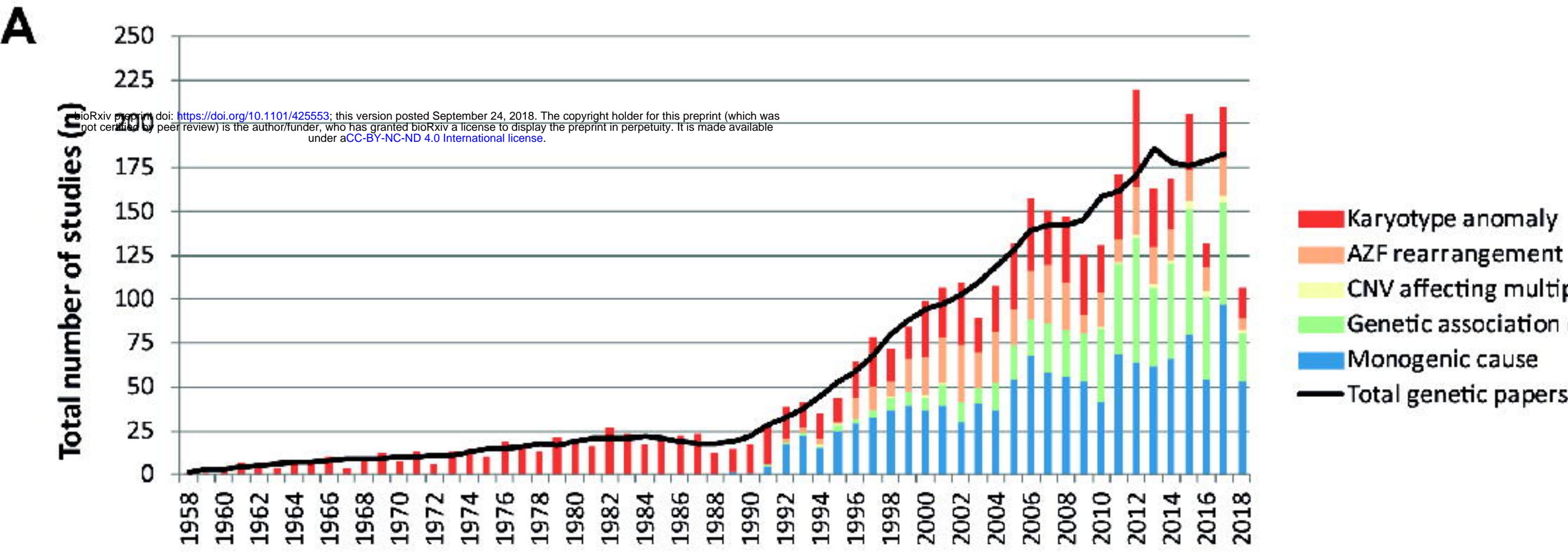
Papers included:
n=1,286

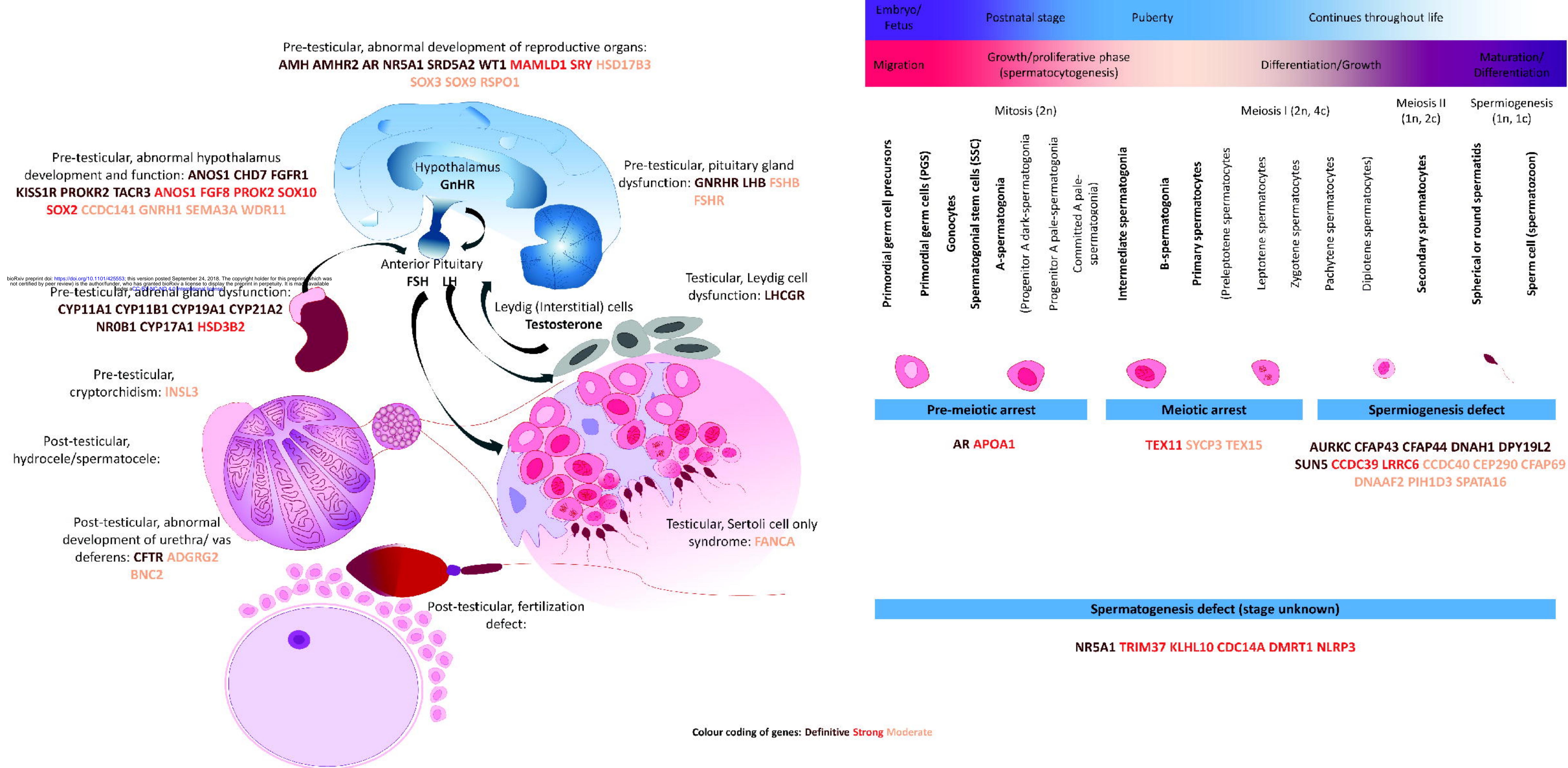
Gene names and disease names extracted from publication:
Number of genes=438
Number of gene-disease relationships: 471

Definitive:
n=36

Strong:
n=12

Moderate:
n=33





Limited
n=86


No evidence:
n=154

Not evaluated:
n=150

AR	22	4	16	51	95
AD	8	4	14	27	45
XL	5	3	3	7	14
YL	1	1	0	1	1

N/A

Table 1: Results gene-disease relationships; only showing at least moderate evidence

HGNC gene name	Synonyms	Gene locus	Broad category	Disease category	Disorder	Expected result seen in analysis	Cases	Type of infertility	Inheritance pattern in human	Score *	Conclusion *	First 2 references **
ADGRG2		Xp22.13	Post-testicular	Abnormal development of vas deferens	Congenital Bilateral Absence of the Vas Deferens; OMIM: 300985	Azoospermia	Sporadic	Isolated infertility	XL	10	Moderate	(Patat et al. 2016; Yang et al. 2017)
AMH		19p13.3	Pre-testicular	Abnormal development of reproductive organs	Persistent Müllerian Duct Syndrome; OMIM: 261550	Oligoasthenoteratozoospermia, hematospermia	Familial/sporadic	Reproductive system syndrome	AR	17	Definitive	(Knebelmann et al. 1991; Carre-Eusebe et al. 1992)**
AMHR2		12q13.13	Pre-testicular	Abnormal development of reproductive organs	Persistent Müllerian Duct Syndrome; OMIM: 261550	Oligoasthenoteratozoospermia, hematospermia	Familial/sporadic	Reproductive system syndrome	AR	17	Definitive	(Imbeaud et al. 1995; Imbeaud et al. 1996)**
ANOS1	KAL1	Xp22.31	Pre-testicular	Abnormal hypothalamus development and function	Kallmann syndrome; OMIM: 308700	Azoospermia, oligozoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	XL	18	Definitive	(Franco et al. 1991; Bick et al. 1992)**
					Isolated Hypogonadotropic Hypogonadism (normosmic); OMIM: 308700	Azoospermia, oligozoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	XL	15	Strong	(Sato et al. 2004; Li et al. 2016)**
APOA1		11q23.3	Testicular	Pre-meiotic arrest	Testicular amyloidosis; OMIM: 105200	Azoospermia, oligozoospermia	Familial/sporadic	Syndromic infertility	AD	12	Moderate	(Obici et al. 2004; Scalvini et al. 2007)**
AR		Xq12	Pre-testicular	Abnormal development of reproductive organs	Partial androgen insensitivity syndrome; OMIM: 312300/300633	Azoospermia, oligozoospermia	Familial/sporadic	Reproductive system syndrome	XL	17	Definitive	(DiLauro et al. 1991; Lobaccaro et al. 1992)**
			Testicular	Pre-meiotic arrest/Meiotic arrest	Non-obstructive azoospermia; OMIM: NA	Azoospermia, oligozoospermia	Familial/sporadic	Isolated infertility	XL	17	Definitive	(Akin et al. 1991; Yong et al. 1994)**
AURKC		19q13.43	Testicular	Spermiogenesis defect	Macrozoospermia; OMIM: 243060	Teratozoospermia: Macrozoospermia	Familial	Isolated infertility	AR	17	Definitive	(Dieterich et al. 2007; Dieterich et al. 2009)**
BNC2		9p22.3-p22.2	Post-testicular	Abnormal development of urethra	Hypospadias; OMIM: NA (PS300633)	Normozoospermia, oligozoospermia	Sporadic	Reproductive system syndrome	AD	10	Moderate	(Bhoy et al. 2011; Baxter et al. 2015)**
CCDC141		2q31.2	Pre-testicular	Abnormal hypothalamus development and function	Kallmann syndrome; OMIM: NA (PS147950)	Oligozoospermia, azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AR	9	Moderate	(Kotan et al. 2014; Hutchins et al. 2016)**
CCDC39		3q26.33	Testicular	Spermiogenesis defect	Primary ciliary dyskinesia; OMIM: 613807	Oligoasthenozoospermia	Familial/sporadic	Syndromic infertility	AR	14	Strong	(Merveille et al. 2011;

													Blanchon et al. 2012)
CCDC40		17q25.3	Testicular	Spermiogenesis defect	Primary ciliary diskinesia; OMIM: 613808	Asthenozoospermia	Familial/sporadic	Syndromic infertility	AR	11	Moderate	(Blanchon et al. 2012; Sui et al. 2016)	
CDC14A		1p21.2	Testicular	Pre-meiotic arrest/Meiotic arrest/Spermiogenesis defect	Oligoasthenoteratozoospermia OMIM: NA (PS258150) with deafness; OMIM: 616958	Oligoasthenoteratozoospermia	Familial	Syndromic infertility	AR	11	Moderate	(Imtiaz et al. 2018)	
CEP290		12q21.32	Testicular	Spermiogenesis defect	Leber Congenital Amaurosis; OMIM: 611755	Asthenozoospermia	Sporadic	Syndromic infertility	AR	9	Moderate	(Yzer et al. 2012)	
CFAP43	WDR96	10q25.1	Testicular	Spermiogenesis defect	Multiple morphological abnormalities of the sperm flagella; OMIM: 617592	Teratozoospermia: Multiple Morphological Abnormalities of the Sperm Flagella	Familial/sporadic	Isolated infertility	AR	16	Definitive	(Tang et al. 2017; Sha et al. 2017)**	
CFAP44	WDR52	3q13.2	Testicular	Spermiogenesis defect	Multiple morphological abnormalities of the sperm flagella; OMIM: 617593	Teratozoospermia: Multiple Morphological Abnormalities of the Sperm Flagella	Familial/sporadic	Isolated infertility	AR	16	Definitive	(Tang et al. 2017; Sha et al. 2017)**	
CFAP69		7q21.13	Testicular	Spermiogenesis defect	Multiple morphological abnormalities of the sperm flagella; OMIM: 617959	Teratozoospermia: Multiple Morphological Abnormalities of the Sperm Flagella	Familial	Isolated infertility	AR	9	Moderate	(Dong et al. 2018)	
CFTR		7q31.2	Post-testicular	Abnormal development of vas deferens	Congenital Bilateral/Unilateral Absence of Vas Deferens; OMIM: 277180	Azoospermia	Familial/sporadic	Isolated infertility	AR	16	Definitive	(Dumur et al. 1990; Anguiano et al. 1992)**	
CHD7		8q12.2	Pre-testicular	Abnormal hypothalamus development and function	Kallmann syndrome without CHARGE phenotype; OMIM: 612370	Oligozoospermia, azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AD	16	Definitive	(Kim et al. 2008; Jongmans et al. 2009)**	
			Pre-testicular	Abnormal hypothalamus development and function	Isolated Hypogonadotropic Hypogonadism (normosmic) without CHARGE phenotype; OMIM: 612370	Azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AD	16	Definitive	(Kim et al. 2008; Tommiska et al. 2014)**	
CYP11A1	P450SCC	15q24.1	Pre-testicular	Adrenal gland dysfunction	Congenital adrenal insufficiency with partial 46,XY sex reversal (Prader stage 4; 5 or 6); OMIM: 613743	Normozoospermia, oligozoospermia, azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AR	16	Definitive	(Rubtsov et al. 2009; Sahakirtrung ruang et al. 2011)**	
CYP11B1	P450C11	8q24.3	Pre-testicular	Adrenal gland dysfunction	46,XX Disorders of Sex Development (Prader scale 4; 5 or 6) due to congenital adrenal hyperplasia (11-beta-hydroxylase deficiency); OMIM: 202010	Azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AR	17	Definitive	(Kandemir and Yordam 1997; Chabre et al. 2000)**	
CYP17A1	P450C17	10q24.32	Pre-testicular	Adrenal gland dysfunction	46,XY Disorders of Sex Development (Prader stage 4, 5 or 6) due to 17-alpha-hydroxylase/17,20-luteinizing deficiency; OMIM: 202110	Normozoospermia, oligozoospermia, azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AR	16	Definitive	(Ahlgren et al. 1992; Imai et al. 1992)**	
CYP19A1	Aromatase	15q21.2	Pre-testicular	Adrenal gland dysfunction	Aromatase excess syndrome with gynaecomastia; OMIM: 139300	Normozoospermia, oligozoospermia, azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AD	17	Definitive	(Shozu et al. 2003; Demura et al. 2007)**	
			Pre-testicular	Adrenal gland dysfunction	46,XX Disorders of Sex Development (Prader scale 4; 5 or	Azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AR	9	Moderate	(Marino et al. 2015;	

					6) due to aromatase deficiency; OMIM:613546			ductive system syndrome				Mazen et al. 2017)
CYP21A2	P450c21 B	6p21.33	Pre-testicular	Adrenal gland dysfunction	Classic congenital adrenal hyperplasia; OMIM:201910	Oligozoospermia, azoospermia	Familial/sporadic	Syndromic infertility/Endocrine disorder	AR	17	Definitive	(Cabreria, Vogiatzi, and New 2001; Ezquiero et al. 2007)**
			Pre-testicular	Adrenal gland dysfunction	Non-classic adrenal hyperplasia (late onset or no CAH symptoms); OMIM: 201910	Oligozoospermia, azoospermia	Familial/sporadic	Endocrine disorder	AR	17	Definitive	(Sugino et al. 2006; Nandagopal et al. 2011)**
DMRT1		9p24.3	Testicular	Sertoli cell only syndrome/Pre-meiotic arrest/Meiotic arrest	Non-obstructive azoospermia; OMIM:NA(PS258150)	Azoospermia	Sporadic	Isolated infertility	AD	9	Moderate	(Lopes et al. 2013; Tewes et al. 2014)
DNAAF2	KTU/C14 orf104/P F13	14q21.3	Testicular	Spermiogenesis defect	Primary ciliary dyskinesia; OMIM:612518	Asthenozoospermia	Familial	Syndromic infertility	AR	10	Moderate	(Omran et al. 2008)
DNAH1		3p21.1	Testicular	Spermiogenesis defect	Multiple morphological abnormalities of the sperm flagella; OMIM:617576	Teratozoospermia: Multiple morphological abnormalities of the sperm flagella	Familial/sporadic	Isolated infertility	AR	16	Definitive	(Ben Khelifa et al. 2014; Wambergue et al. 2016)**
DPY19L2		12q14.2	Testicular	Spermiogenesis defect	Globozoospermia; OMIM:613958	Teratozoospermia: Globozoospermia	Familial/sporadic	Isolated infertility	AR	16	Definitive	(Koscinski et al. 2011; Harbuz et al. 2011)**
FANCA		16q24.3	Testicular	Sertoli cell only syndrome	Occult Fanconi Anemia; OMIM:NA (PS227650)	Azoospermia	Familial/sporadic	Isolated infertility	AR	10	Moderate	(Krausz et al. 2018)
FGF8		10q24.32	Pre-testicular	Abnormal hypothalamus development and function	Kallmann syndrome; OMIM: 612702	Oligozoospermia, azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AD	14	Strong	(Falardeau et al. 2008; Trarbach et al. 2010)**
			Pre-testicular	Abnormal hypothalamus development and function	Isolated Hypogonadotropic Hypogonadism (normosmic); OMIM:612702	Oligozoospermia, azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AD	10	Moderate	(Falardeau et al. 2008; Trarbach et al. 2010)
FGFR1	KAL2	8p11.23	Pre-testicular	Abnormal hypothalamus development and function	Kallmann syndrome; OMIM:147950	Oligozoospermia, azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AD	17	Definitive	(Dode et al. 2003; Sato et al. 2004)**
			Pre-testicular	Abnormal hypothalamus development and function	Isolated Hypogonadotropic Hypogonadism (normosmic); OMIM:147950	Oligozoospermia, azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AD	17	Definitive	(Kim et al. 2005; Pitteloud et al. 2006)**
FSHB		11p14.1	Pre-testicular	Pituitary gland dysfunction	Isolated Hypogonadotropic Hypogonadism; OMIM:229070	Oligozoospermia, azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AR	12	Moderate	(Phillip et al. 1998; Lindstedt et al. 1998)**
FSHR		2p16.3	Pre-testicular	Pre-meiotic arrest	Hypergonadotropic hypogonadism; OMIM:NA (PS147950)	Oligozoospermia	Familial	Endocrine disorder	AR	11	Moderate	(Tapanainen et al. 1997; Franca et al. 2017)
GATA4		8p23.1	Pre-testicular	Abnormal development of reproductive organs	46,XY Disorders of Sex Development (Prader scale 4; 5 or 6) resulting in anomalies of	Oligozoospermia, azoospermia	Familial	Reproductive system syndrome	AD	12	Moderate	(Lourenco et al. 2011; Igarashi et

					testicular development; OMIM:615542							al. 2018)
GNRH1		8p21.2	Pre-testicular	Abnormal hypothalamus development and function	Isolated Hypogonadotropic Hypogonadism; OMIM:614841	Oligozoospermia, azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AR	10	Moderate	(Bouligand et al. 2009; Chan et al. 2009)
GNRHR		4q13.2	Pre-testicular	Pituitary gland dysfunction	Isolated Hypogonadotropic Hypogonadism; OMIM:146110	Oligozoospermia, azoospermia	Familial	Endocrine disorder/Reproductive system syndrome	AR	17	Definitive	(de Roux et al. 1997; Layman et al. 1998)**
HSD17B3		9q22.32	Pre-testicular	Abnormal development of reproductive organs	46,XY Disorders of Sex Development (Prader scale 4; 5 or 6) resulting in anomalies of testicular development; OMIM:264300	Normozoospermia, oligozoospermia, azoospermia	Familial/sporadic	Reproductive system syndrome	AR	12	Moderate	(Neocleous et al. 2012; Costa-Barbosa et al. 2013)**
HSD3B2		1p12	Pre-testicular	Adrenal gland dysfunction	Adrenal hyperplasia due to 3 β -hydroxysteroid dehydrogenase deficiency; OMIM:201810	Normozoospermia, oligozoospermia, azoospermia	Familial/sporadic	Syndromic infertility	AR	15	Strong	(Zhang et al. 2000; Welzel et al. 2008)**
INSL3		19p13.11	Pre-testicular	Abnormal development of reproductive organs	Cryptorchidism; OMIM:219050	Normozoospermia, oligozoospermia, azoospermia	Familial/Sporadic	Reproductive system syndrome	AD	12	Moderate	(Tomboc et al. 2000; Marin et al. 2001)**
KISS1R	GPR54	19p13.3	Pre-testicular	Abnormal hypothalamus development and function	Kallmann syndrome; OMIM:614837	Oligozoospermia, azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AR	17	Definitive	(de Roux et al. 2003; Seminara et al. 2003)**
			Pre-testicular	Abnormal hypothalamus development and function	Isolated Hypogonadotropic Hypogonadism (normosmic); OMIM:614837	Oligozoospermia, azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AR	17	Definitive	(de Roux et al. 2003; Seminara et al. 2003)**
KLHL10		17q21.2	Testicular	Meiotic arrest/Spermiogenesis defect	Oligozoospermia; OMIM:615081	Oligozoospermia	Sporadic	Isolated infertility	AD	10	Moderate	(Yatsenko et al. 2006)
LHB		19q13.3	Pre-testicular	Pituitary gland dysfunction	Hypogonadotropic hypogonadism; OMIM:228300	Oligozoospermia, azoospermia	Familial/sporadic	Endocrine disorder	AR	17	Definitive	(Weiss et al. 1992; Valdes-Socin et al. 2004)**
LHCGR	LHR	2p16.3	Testicular	Leydig cell dysfunction	Leydig cell dysfunction with hypogonadism; OMIM:238320	Normozoospermia, oligozoospermia	Familial/Sporadic	Reproductive system syndrome/Endocrine system disorder	AR	17	Definitive	(Laue et al. 1996; Misrahi et al. 1997)**
			Testicular	Leydig cell dysfunction	Male precocious puberty; OMIM:176410	Normozoospermia, oligozoospermia	Familial/sporadic	Reproductive system syndrome/Endocrine system disorder	AD	17	Definitive	(Shenker et al. 1993; Kremer et al. 1993)**
LRRC6		8q24.22	Testicular	Spermiogenesis defect	Primary ciliary dyskinesia; OMIM:614935	Asthenozoospermia	Familial/Sporadic	Syndromic infertility	AR	13	Strong	(Kott et al. 2012; Liu and Luo 2018)
MAMLD1	CXorf6	Xq28	Pre-testicular	Abnormal development of reproductive organs	46,XY Disorders of Sex Development (Prader scale 4; 5 or 6); OMIM:300758	Normozoospermia, oligozoospermia, azoospermia	Familial/sporadic	Reproductive system syndrome	XL	15	Strong	(Fukami et al. 2006; Ogata, Fukami, and Wada 2008)**

NLRP3		1q44	Testicular	Sertoli cell only syndrome/Pre-meiotic arrest/Meiotic arrest/Spermiogenesis defect	Muckle-Wells Syndrome; OMIM:191900	Oligozoospermia, azoospermia	Familial/sporadic	Syndromic infertility	AD	9	Moderate	(Tran et al. 2012)
NROB1	DAX1	Xp21.2	Pre-testicular	Adrenal gland dysfunction	Congenital Adrenal Hypoplasia; OMIM:300200	Oligozoospermia, azoospermia	Familial/sporadic	Syndromic infertility/Endocrine disorder	XL	17	Definitive	(Muscatelli et al. 1994; Meloni et al. 1996)**
			Pre-testicular	Adrenal gland dysfunction	Late-onset adrenal failure or isolated hypogonadotropic hypogonadism; OMIM:NA (PS147950)	Oligozoospermia, azoospermia	Familial/sporadic	Isolated infertility	XL	17	Definitive	(Tabarin et al. 2000; Mantovani et al. 2002)**
NR5A1	SF1	9q33.3	Pre-testicular	Abnormal development of reproductive organs	46,XY Disorders of Sex Development (Prader scale 4; 5 or 6); OMIM:612965	Oligozoospermia, azoospermia	Familial/Sporadic	Reproductive system syndrome	AD	17	Definitive	(Mallet et al. 2004; Lin et al. 2007)**
			Pre-testicular	Abnormal development of reproductive organs	46,XX Disorders of Sex Development (Prader scale 4; 5 or 6); OMIM:617480	Azoospermia	Sporadic	Reproductive system syndrome	AD	10	Moderate	(Bashamboo et al. 2016; Baetens et al. 2017)**
			Pre-testicular	Leydig cell dysfunction/Sertoli cell only syndrome/Pre-meiotic arrest/ Pituitary gland dysfunction	Isolated spermatogenic failure; OMIM:184757	Oligozoospermia, azoospermia	Sporadic	Endocrine disorder	AD	14	Strong	(Ropke et al. 2013; Safari et al. 2014)**
PIH1D3		Xq22.3	Testicular	Spermiogenesis defect	Mild Primary ciliary dyskinesia; OMIM:300991	Asthenozoospermia	Familial	Syndromic infertility	XL	9	Moderate	(Paff et al. 2017)
PROK2		3p13	Pre-testicular	Abnormal hypothalamus development and function	Kallmann syndrome; OMIM:610628	Oligozoospermia, azoospermia	Familial/Sporadic	Endocrine disorder/Reproductive system syndrome	AR	15	Strong	(Pitteloud et al. 2007; Leroy et al. 2008)**
PROKR2		20p12.3	Pre-testicular	Abnormal hypothalamus development and function	Kallmann syndrome; OMIM:244200	Oligozoospermia, azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AR	17	Definitive	(Dode et al. 2006; Sinisi et al. 2008)**
RSPO1		1p34.3	Pre-testicular	Abnormal development of reproductive organs	Palmoplantar hyperkeratosis with squamous cell carcinoma of skin and sex reversal; OMIM:610644	Azoospermia	Familial/Sporadic	Syndromic infertility/Reproductive system syndrome	AR	12	Moderate	(Micali et al. 2005; Parma et al. 2006)**
SEMA3A		7q21.11	Pre-testicular	Abnormal hypothalamus development and function	Kallmann syndrome; OMIM:614897	Oligozoospermia, azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AD	10	Moderate	(Young et al. 2012; Hanchate et al. 2012)
SOX10		22q13.1	Pre-testicular	Abnormal hypothalamus development and function	Kallmann syndrome; OMIM:NA (PS147950)	Oligozoospermia, azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AD	15	Strong	(Pingault et al. 2013; Vaaralahti et al. 2014)**
SOX2		3q26.33	Pre-testicular	Abnormal hypothalamus development and function	Isolated hypogonadotropic hypogonadism (normosmic); OMIM:NA (PS147950)	Oligozoospermia, azoospermia	Familial	Endocrine disorder/Reproductive system syndrome	AD	15	Strong	(Kelman et al. 2006; Stark et al. 2011)**
SOX3		Xq27.1	Pre-testicular	Abnormal development of reproductive organs	46,XX Disorders of Sex Development (Prader scale 4; 5 or 6); OMIM:NA	Azoospermia	Sporadic	Reproductive system syndrome	XL	12	Moderate	(Sutton et al. 2011; Moalem et al. 2012)**

SOX9		17q24.3	Pre-testicular	Abnormal development of reproductive organs	46,XX Disorders of Sex Development (Prader scale 4; 5 or 6); OMIM:NA	Azoospermia	Familial/Sporadic	Reproductive system syndrome	AD	11	Moderate	(Cox et al. 2011; Vetro et al. 2011)**
			Pre-testicular	Abnormal development of reproductive organs	46,XY Disorders of Sex Development (Prader scale 4; 5 or 6); OMIM:NA (PS400044)	Oligozoospermia, azoospermia	Sporadic	Reproductive system syndrome	AD	9	Moderate	(Katch-Fukui et al. 2015)
SPATA16		3q26.31	Testicular	Spermiogenesis defect	Globozoospermia; OMIM:102530	Teratozoospermia: Globozoospermia	Familial/sporadic	Isolated infertility	AR	9	Moderate	(Dam et al. 2007; Elnati et al. 2016)
SRD5A2		2p23.1	Pre-testicular	Abnormal development of reproductive organs	46,XY Disorders of Sex Development (Prader scale 4; 5 or 6); OMIM:264600	Normozoospermia, oligozoospermia, azoospermia	Sporadic	Reproductive system syndrome	AR	18	Definitive	(Thigpen et al. 1992; Hiort et al. 1996)**
SRY		Yp11.2	Pre-testicular	Abnormal development of reproductive organs	46,XX Disorders of Sex Development (Prader scale 4; 5 or 6); OMIM:400045	Azoospermia	Sporadic	Reproductive system syndrome	YL	17	Definitive	(Numabe et al. 1992; Fechner et al. 1993)**
			Pre-testicular	Abnormal development of reproductive organs	46,XY Disorders of Sex Development (Prader scale 4; 5 or 6); OMIM:400044	Oligozoospermia, azoospermia	Sporadic	Reproductive system syndrome	YL	15	Strong	(Domenic et al. 1998; Assumpcao et al. 2002)**
SUN5		20q11.21	Testicular	Spermiogenesis defect	Acephalic sperm; OMIM:617187	Teratozoospermia: Acephalic spermatozoa	Familial/sporadic	Isolated infertility	AR	16	Definitive	(Zhu et al. 2016; Elkhatib et al. 2017)**
SYCP3		12q23.2	Testicular	Meiotic arrest	Non-obstructive azoospermia; OMIM:270960	Azoospermia	Sporadic	Isolated infertility	AD	11	Moderate	(Miyamoto et al. 2003; Stouffs et al. 2011)**
TACR3		4q24	Pre-testicular	Abnormal hypothalamus development and function	Kallmann syndrome; OMIM:614840	Oligozoospermia, azoospermia	Familial/sporadic	Endocrine disorder/Reproductive system syndrome	AR	16	Definitive	(Topaloglu et al. 2009; Guran et al. 2009)**
TEX11		Xp11	Testicular	Meiotic arrest	Non-obstructive azoospermia; OMIM:309120	Azoospermia	Sporadic	Isolated infertility	XL	15	Strong	(Yatsenko et al. 2015; Yang et al. 2015)**
TEX15		8p12	Testicular	Meiotic arrest	Non-obstructive azoospermia; OMIM:617960	Azoospermia	Familial	Isolated infertility	AR	12	Moderate	(Okutman et al. 2015; Wang et al. 2018)**
TRIM37		17q22	Testicular	Leydig cell dysfunction/Sertoli cell only syndrome/pre-meiotic arrest/Meiotic arrest/Spermiogenesis defect	Mulibrey nanism; OMIM:253250	Oligoasthenozoospermia, azoospermia	Familial/sporadic	Syndromic infertility	AR	9	Moderate	(Karlberg et al. 2011)
WDR11		10q26.12	Pre-testicular	Abnormal hypothalamus development and function	Kallmann syndrome; OMIM:614858	Oligozoospermia, azoospermia	Familial/Sporadic	Endocrine disorder/Reproductive system syndrome	AD	12	Moderate	(Kim et al. 2010; Izumi et al. 2014)**
WT1		11p13	Pre-testicular	Abnormal development of reproductive organs	46,XY Disorders of Sex Development (Prader scale 4; 5 or 6) without Wilms tumor; OMIM:NA (PS400044)	Normozoospermia, oligozoospermia, azoospermia	Sporadic	Reproductive system syndrome	AD	16	Definitive	(Clarkson et al. 1993; Kohler et al. 2001)**

Abbreviations: HGNC: HUGO Gene Nomenclature Committee; OMIM: Online Mendelian Inheritance in Man; PS: Phenotype Series; AR: Autosomal Recessive; AD: Autosomal Dominant; XL: X-linked; YL: Y-linked

Full table including gene-disease relationships with “Limited evidence” and “No evidence” available in Supplemental Table S4.

*Details about the score available in Supplemental Table S5.

**Additional references are available in Supplemental Table S5