

1 Vertical transmission of sponge microbiota is inconsistent and unfaithful

2 Johannes R. Björk^{1,2} [†], Cristina Diéz-Vives³, Carmen Astudillo-García⁴, Elizabeth A. Archie¹ ^{*}, and José M.
3 Montoya² ^{*}

4 ¹*Department of Biological Sciences, University of Notre Dame, United States*

5 ²*Theoretical and Experimental Ecology Station, CNRS-University Paul Sabatier, Moulis, France*

6 ³*Natural History Museum, London, United Kingdom*

7 ⁴*School of Biological Sciences, University of Auckland, New Zealand*

8 [†]*Corresponding author*

9 ^{*}*Joint senior authorship*

10 ^{1,3} [†]*rbjork@nd.edu*

11 ¹ ^{*}*earchie@nd.edu*

12 ³ ^{*}*josemaria.montoyateran@sete.cnrs.fr*

13 Abstract

14 Classic coevolutionary theory predicts that if beneficial microbial symbionts improve host fitness, they should be
15 faithfully transmitted to offspring. More recently, the hologenome theory of evolution predicts resemblance between
16 parent and offspring microbiomes and high partner fidelity between host species and their vertically transmitted
17 microbes. Here, we test these ideas for the first time in multiple coexisting host species with highly diverse microbiota,
18 leveraging known parent-offspring pairs sampled from eight species of wild marine sponges (*Porifera*). We found that
19 the processes governing vertical transmission were both neutral and selective. A neutral model explained 66% of the
20 variance in larval microbiota, which was higher than the variance this model explained for adult sponge microbiota
21 ($R^2 = 27\%$). However, microbes that are enriched above neutral expectations in adults were disproportionately
22 transferred to offspring. Patterns of vertical transmission were, however, incomplete: larval sponges shared, on
23 average, 44.8% of microbes with their parents, which was not higher than the fraction they shared with nearby non-
24 parental adults. Vertical transmission was also inconsistent across siblings, as larval sponges from the same parent
25 only shared 17% of microbes. Finally, we found no evidence that vertically transmitted microbes are faithful to a
26 single sponge host species. Surprisingly, larvae were just as likely to share vertically transmitted microbes with larvae
27 from other sponge species as they were with their own species. Our study demonstrates that common predictions of
28 vertical transmission that stem from species-poor systems are not necessarily true when scaling up to diverse and
29 complex microbiomes.

30 Introduction

31 All animals are colonized by microbes. These microbes live in communities, called microbiomes, that can exhibit
32 astonishing diversity and complexity and have profound effects on host health and fitness [1 2 3]. However, despite
33 their importance, we still do not understand how most organisms acquire their microbiomes: are they largely inherited
34 from parents via vertical transmission, or acquired horizontally from the environment? In the last five years, the
35 literature has provided widely divergent answers to this question [4 5 6 7]. A recent meta-analysis of 528 host-
36 microbe symbioses found that 42.8% of symbioses were strictly vertical, 21.2% were strictly horizontal, and 36%
37 exhibited a combination of transmission modes [7]. Understanding how animals acquire their microbiomes, especially
38 microbial symbionts, is necessary to learn how environments shape host phenotypes via host-microbe interactions and
39 whether hosts and their microbiomes represent an important unit of natural selection [8 9 10 11 12].

40 Classic coevolutionary theory predicts that (i) if microbial symbionts are beneficial, they should be vertically
41 transmitted (as the host is assured of gaining a compatible partner), and (ii) the more a host depends on its microbial
42 partners, the higher the expected incidence of vertical transmission [13 14 15 16 17 18 19 20]. In support, many
43 obligate insect-microbe interactions, such as those described between *Buchnera*-aphid [21], *Wolbachia*-nematode [22],
44 and *Ishikawaella*-stinkbug [23] are transmitted from parents to offspring. However, this theory is incomplete. Evidence
45 for symbioses involving horizontal transmission is common, especially in hosts with relatively simple microbiota
46 [6 19 24 25 26 27]. Two well-known examples include the facultative symbiosis between the luminescent *Vibrio*
47 *fischeri* and the bobtail squid *Euprymna scolopes* [28], and the obligate symbiosis between chemolithoautotrophic
48 bacteria and the hydrothermal vent tubeworm *Riftia pachyptila* [29]. Furthermore, Mushegian and colleagues recently
49 demonstrated that, in water fleas (*Daphnia magna*), microbes that are essential to host functioning are acquired from
50 the environment and not maternally derived [30]. However, we currently do not understand whether the patterns and
51 processes observed in these relatively species-poor systems can be extrapolated to highly diverse microbiomes. With
52 increasing community diversity, do parents transmit a representative sample of the whole microbial community or
53 select only a subset of the most beneficial microbes? How does vertical transmission interact with other community
54 assembly processes shown to be important in complex communities, including ecological drift, priority effects, and
55 environmental selection?

56 The present study is, to our knowledge, the first in-depth analysis of the nature, strength and consistency of vertical
57 transmission in multiple coexisting host species in the wild from an animal phylum with diverse and abundant micro-
58 biomes. By characterizing signatures of vertical transmission in multiple, related host species, we also test, for the

59 first time, partner fidelity between vertically transmitted microbes and their hosts. Partner fidelity is predicted by the
60 hologenome theory of evolution because if vertically transmitted microbes occur in multiple host species, this weak-
61 ens the coherence of the unit of selection [11]. Here we test these ideas in marine sponges, an evolutionarily ancient
62 phylum with a fossil record dating back over 600 million years [31]. Indeed, Porifera are the oldest metazoan group
63 with known microbial symbioses [32]. Marine sponges are filter feeders with a simple body plan consisting of canals
64 embedded in an extracellular matrix called the mesohyl. Within the mesohyl, sponges maintain diverse microbial
65 communities that contribute to host functioning by e.g., cycling nitrogen, fixing carbon dioxide, producing secondary
66 metabolites, and acquiring and converting dissolved organic matter—tasks that, in many cases, the sponge cannot per-
67 form without microbial symbionts [32, 33, 34]. Sponge larvae are lecithotrophic, which means that they do not receive
68 any external energy sources until they start filter feeding after metamorphosis and settlement [35]. However, some lar-
69 vae travel long distances, much farther than what is expected from the energy content in their yolk. Evidence suggests
70 that this is because some larvae have the capacity to gain energy via phagocytosis of vertically transmitted symbionts
71 [36, 37, 38].

72 While the prevailing transmission model in marine sponges is a mixture of horizontal and vertical transmission
73 [39], at least three lines of evidence suggest that vertical transmission could play an important role in the assembly of
74 the sponge microbiome. First, sponges appear to have coevolved with a unique set of microbial symbionts that form
75 so-called *sponge-enriched* 16S rRNA gene sequence *clusters* [40, 41]. These *sponge-enriched clusters* span 14 known
76 bacterial and archaeal phyla, many of which are highly specific to the phylum Porifera (e.g., phyla such as Poribacteria,
77 Chloroflexi and PAUC34f) [40, 41]. Unlike any other group of animal associated microbial symbionts described to
78 date, each *sponge-enriched cluster* is monophyletic, indicating that microbes assigning to these clusters have diverged
79 from their free-living relatives [40, 41]. Second, electron micrographs have revealed that sponge oocytes, embryos, and
80 larvae contain free-swimming or vacuole-enclosed endosymbiotic bacteria that are morphologically identical to those
81 found in the mesohyl of the parent [42, 43, 44, 45, 37, 46]. The mechanisms of microbial selection and transference to
82 oocytes vary between sponge species [46], as does the density and diversity of microbes that are incorporated into the
83 oocytes [36, 47, 48]. Third, multiple studies, largely based on non-high-throughput sequencing methods, have found
84 similar microbial phylotypes in adults and larvae from the same species [39, 49, 50, 51, 52]. One study also found
85 that three pre-selected bacterial taxa that were present in the embryos of the tropical sponge *Corticium* sp. persisted
86 throughout development and were consistently detected in adult samples over a period of three years [53]. Together,
87 these lines of evidence strongly suggest that vertical transmission may be a frequent phenomenon that ensures the
88 assembly of a functioning and beneficial microbiota in many species of marine sponges.

89 Here we use high-throughput sequencing to test for evidence of vertical and horizontal transmission by comparing
90 microbial sharing in known parent-offspring pairs from wild sponges. We use these data to test four hypotheses of
91 diverse microbiome acquisition that are applicable to any host-microbe system. Firstly, we test whether the processes
92 underlying vertical and horizontal transmission are neutral or selective. If the processes underlying vertical transmission
93 are neutral, microbes that are abundant inside the adults are expected to be widespread among their offspring.
94 Alternatively, if the processes underlying vertical transmission are selective, then microbes found inside larval offspring
95 should occur more frequently than expected, given their abundances in adults. Secondly, we test the hypothesis
96 that sponges exhibit comprehensive vertical transmission, such that microbiota in larval offspring are either a perfect
97 replica or a substantial subset of the microbes found in their adult parents. Alternatively, vertical transmission might
98 be incomplete or undetectable; if incomplete, larval offspring will share only a fraction of their microbes with their
99 parents, but this proportion will be higher than the proportion of microbes they share with other adults of the same
100 species. If vertical transmission is undetectable, then larval offspring will be just as likely to share microbes with other
101 conspecific adults as they are with their parents. Thirdly, we test the consistency of vertical transmission between
102 parents and offspring. We hypothesize that if a specific set of symbionts has coevolved with their sponge host, and
103 if it is adaptive for parents to transmit this set of symbionts, then all offspring from the same parent should receive
104 an identical or highly consistent set of beneficial symbionts. Alternatively, if consistent vertical transmission is not
105 important to parental fitness, or if parents benefit from transmitting different symbionts to each offspring (e.g., if larvae
106 settle in variable environments where only a subset of symbionts is beneficial), then larvae might receive a variable
107 or even random subset of microbes from their parents that is inconsistent between siblings. Finally, we test whether
108 vertically transmitted taxa exhibit partner fidelity. If symbionts have coevolved with a particular sponge species, then
109 conspecific sponge adults and larvae should share more vertically transmitted microbes with each other than with heterospecific hosts. Our approach helps reveal the prevalence and role of both vertical and horizontal transmission in an
110 animal phylum with diverse microbiota that has important ramifications for understanding coevolution between hosts
111 and their associated microbiota in general

113 **Results and Discussion**

114 **Taxonomic diversity is distributed along a *sponge-specific* axis**

115 To establish parent-offspring relationships for wild sponges, we placed mesh traps around adult sponges living close
116 to the Islas Medas marine reserve in the northwestern Mediterranean Sea. We sampled 24 adults from a total of eight

117 sponge species spanning five orders (Figure S1) and collected 63 larval offspring from 21 of these adults (1 to 5
 118 larvae sampled per adult). To sample environmental microbes as a potential source pool, we simultaneously collected
 119 seawater samples from seven locations within the area where the adult sponges were found (seawater samples were
 120 never taken in direct proximity to any sponge specimen).

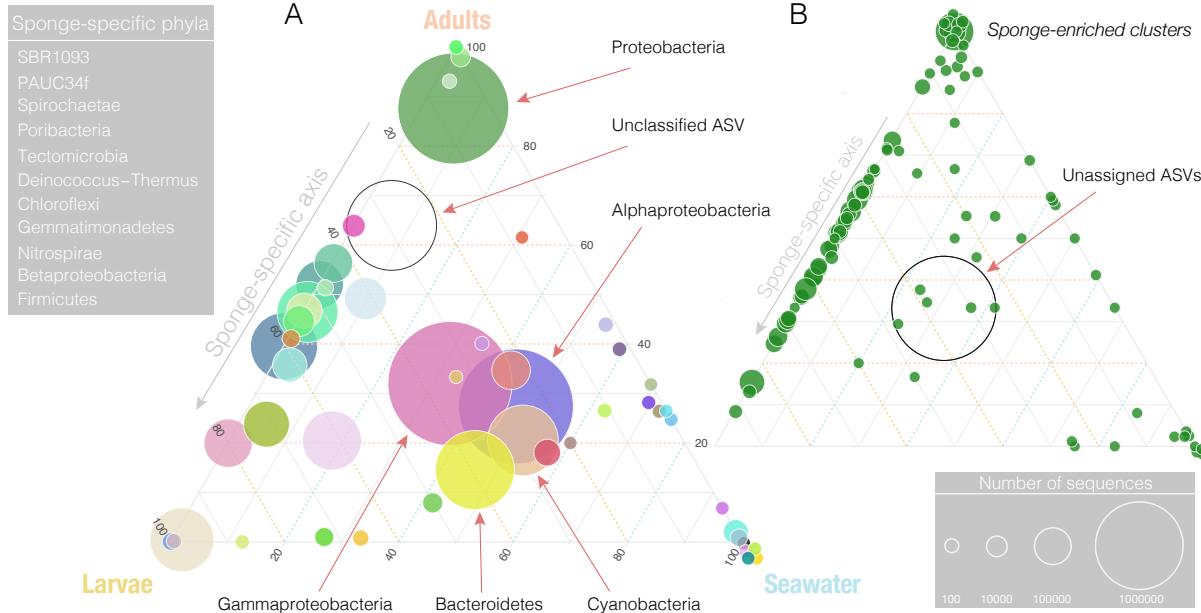


Figure 1: Ternary plots indicating the fraction of microbial ASVs classifying to (A) phyla, and assigning to (B) *sponge-enriched clusters*, present in three environments: seawater (light blue, bottom right corner); sponge adults (peach, top corner); and larval offspring (yellow, bottom left corner). Figure A shows the distribution of all microbial ASVs at the phylum level (class level for Proteobacteria). Each circle represents a different phylum, and the size of the circle corresponds to the total number of reads assigned to that phylum. While The color legend for (A) is shown in Figure 4. The phyla that lie along the sponge specific axis are listed in the grey table to the left of plot A. Figure B shows the diversity of all ASVs assigning to *sponge-enriched clusters*. Each green circle represents a different *sponge-enriched cluster*, and the size of the circle corresponds to the number of reads assigning to that particular cluster. ASVs that classify to phyla and *sponge-enriched clusters* that are unique to any of the three environments occur in their respective corners (100%); ASVs that classify to phyla and *sponge-enriched clusters* that are shared between any two environments occur along their focal axis. ASVs that classify to phyla and *sponge-enriched clusters* present in all three environments occur in the center of the ternary plots.

121 After quality control, we obtained 11,375,431 16S rRNA gene amplicon reads from these 94 samples (mean=121,015
 122 reads per sample; min=1116, max=668,100 reads), resulting in 12,894 microbial ASVs (Amplicon Sequence Variants).
 123 Of these, 9,030 ASVs were present in the 24 sponge adults (Table S1), 5,786 were found in their 63 larval offspring
 124 (Table S2), and 9,802 ASVs occurred in the seven seawater samples. The 12,894 ASVs were classified to over 30
 125 bacterial phyla and candidate phyla, five of which were only detected in the surrounding seawater. One class of Pro-

126 teobacteria was unique to sponge adults, and two phyla, Deferribacteres and Fibrobacteres, were especially enriched
127 in larval offspring, but present in low abundances in the other two environments (Figure 1A). While several phyla
128 (classes for Proteobacteria) were shared between all three environments (circles close to the center in Figure 1A),
129 likely representing horizontally acquired ASVs, a large fraction of the observed taxonomic diversity was only shared
130 between sponge adults and larvae, distributed along a *sponge-specific axis* (left-hand side of the ternary plot in Fig-
131 ure 1A). These included many common sponge-associated phyla, such as Poribacteria, Chloroflexi, and PAUC34f, but
132 also more arcane phyla like Tectomicrobia and SBR1093 (Figure 1A). Many of the sponge-associated phyla include
133 microbes with known symbiotic features and functional capabilities. For example, members of Poribacteria and Chlo-
134 roflexi harbor eukaryote-like protein domains which are suspected to be involved in preventing phagocytosis by the
135 sponge host [54, 55]. Several genomic features in Chloroflexi are related to energy and carbon converting pathways,
136 including amino and fatty acid metabolism and respiration, that directly benefit the sponge host [55]. Microbes from
137 PAUC34f have the capacity to produce, transport and store polyphosphate granules, likely representing a phosphate
138 reservoir for the sponge host in periods of deprivation [56]. This type of evidence strongly suggests that microbes
139 from these phyla indeed represent beneficial symbionts for sponge hosts.

140 The ASVs we found also assigned to 105 different *sponge-enriched clusters* from 13 different bacterial phyla, of
141 which Proteobacteria, Chloroflexi and Poribacteria represented the three most common (PAUC34f came in 5th place)
142 (Figure 1B). These *sponge-enriched clusters* accounted for 9.6% of the total ASV richness and 25.5% of the total
143 sequence count across samples. 94 *sponge-enriched clusters* were found in seawater, however, these only accounted
144 for about 5% of ASV richness and 0.23% of reads from seawater. Out of these 94 *sponge-enriched clusters*, only 4 were
145 not detected in the sponge hosts, supporting the idea that a rare biosphere functions as a seed bank for colonization of
146 sponge hosts [57, 58]. While very few *sponge-enriched clusters* were present in all three environments (circles close
147 to the center in Figure 1B), 62 were distributed along the *sponge-specific axis* (with a relative abundance of < 0.01%
148 in the seawater). Sponge larvae do not filter feed prior to settlement and metamorphosis [35]. Concurrently, just one
149 phyla and two *sponge-enriched clusters*, were shared between larvae and seawater only (bottom axis of Figure 1B),
150 showing that, at least at these higher taxonomic levels, there is a signature of microbial transmission and subsequent
151 enrichment between adults and larvae.

152 The processes underlying symbiont acquisition are both neutral and selective

153 To test whether the processes underlying horizontal and vertical transmission are neutral or selective, we fit the neutral
154 model developed by Sloan and colleagues [59] to adult and larval microbiota. This model predicts the relationship

155 between the occurrence frequency of microbes in individual hosts (here either adults or larvae), and their abundances
156 in a larger metacommunity consisting of microbes found in either (i) adults, including microbes that are shared with
157 larvae and seawater (adults \cap {larvae, seawater}; Figure 2A), or (ii) larvae, including microbes shared with adults and
158 seawater (larvae \cap {adults, seawater}; Figure 2B). Given neutral assembly processes, the model predicts that microbes
159 with high abundances in the metacommunity should be frequently found in individual hosts. Microbes that fall above
160 the neutral prediction occur more frequently than expected, indicating that they are selectively acquired and/or enriched
161 by the sponge host, whereas microbes that fall below the neutral prediction occur less frequently than expected, and
162 may therefore either be selected against or dispersal limited [60].

163 In support of the hypothesis that neutral processes play an important role in vertical transmission in marine sponges,
164 we found that the neutral model was a better fit to larval than to the adult microbiota ($R^2 = 0.27$ in adults vs 0.66 in
165 larvae; Figure 2C and Figure 2D). This pattern suggests that the importance of non-neutral processes increases as
166 the sponge host matures, as mediated by selective acquisition of symbionts, active curation of the microbiota, and
167 microbe-microbe interactions within the host. Evidence suggests that sponge hosts have mechanisms to actively
168 recognise and incorporate symbionts into the oocytes [37, 61], but our results suggest that these mechanisms can be
169 neutral and/or selective. Indeed, electron micrographs suggest that if microbes are collected by amoeboid nurse cells
170 and subsequently engulfed by the oocytes, then the process may be selective [46, 62, 63, 64]. However, in the absence
171 of nurse cells, microbes are incorporated into the oocytes solely based on their abundance [45, 64, 65, 66].

172 If the processes underlying vertical transmission are neutral, then microbes that are abundant in individual adults
173 should be widespread among their larval offspring. To test this prediction, we examined whether microbes that fell
174 above, within, and below the neutral prediction in adult sponges also were found within the same partitions across
175 larvae (transmission of microbes goes from parent to offspring, not vice versa). We again found evidence that vertical
176 transmission is governed by both neutral and selective processes. Owing to their filter feeding activities, adults harbor
177 a large number of transient visitors, including food microbes (i.e., microbes that can be used as a food source by
178 the host). Congruently, we found that 73.4% of the adult microbiota consisted of “neutral” ASVs (i.e., gray dots in
179 Figure 2C). However, larvae only shared 41.7% of these ASVs; 10.7% and 88.5% fell above and within the neutral
180 prediction. This suggests that microbes that are neutral in adults also tend to be neutral in larvae. In support of selective
181 processes, of the 23.7% of ASVs that fell above the neutral prediction in adults (i.e., green dots in Figure 2C), 79%
182 were present in larvae. Of these, 42.6% and 56.5% fell above and within the neutral prediction. While this indicates
183 that symbionts that are selectively acquired and/or enriched by individual adults are also frequent across individual
184 larvae, it also suggests that almost 43% are transmitted and incorporated into the oocytes by selective processes. The

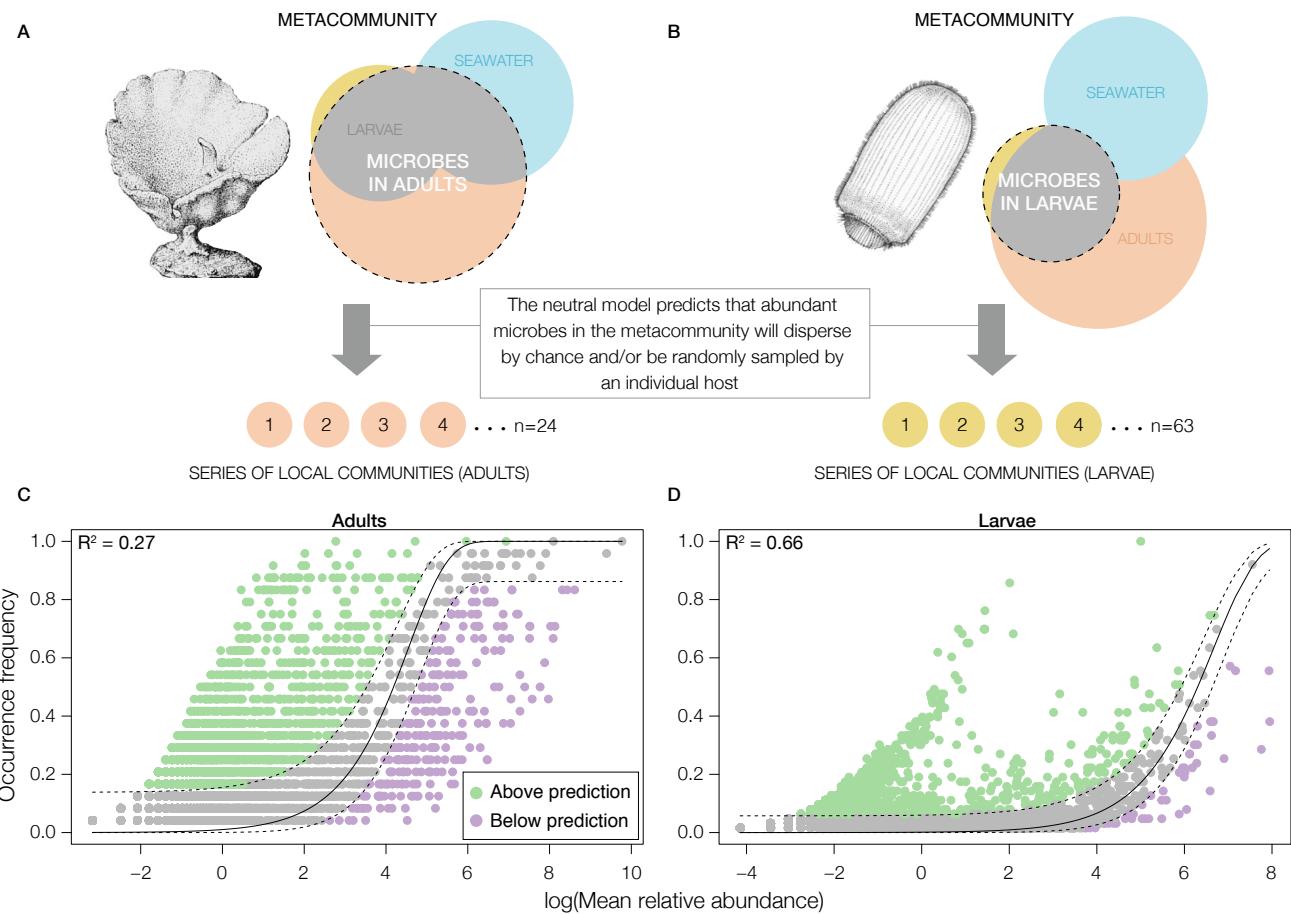


Figure 2: Panels A and B illustrate conceptual diagrams of the constructed metacommunities for (A) adults and (B) larvae. In the Venn diagrams, the microbial communities associated with adults, larvae, and seawater are depicted by circles colored in peach, yellow, and turquoise, respectively. The focal metacommunity is circled by a dashed black line, and the local host communities are represented as four circles below each Venn diagram, representing either individual adults (peach) or larvae (yellow). The bottom panel shows the fit of the neutral model for adults (C) and larvae (D). ASVs that fit the neutral model are colored gray; ASVs that occur more frequently than predicted by the model are colored green; and ASVs that occur less frequently than predicted are colored purple. Dashed black lines represent the 95% confidence interval around the model prediction (solid black line). The R^2 for the model fit is shown in the upper left-hand corner of each plot. The percentage of microbes that fall above, within, and below the neutral prediction for adults and larvae are 23.7%, 73.4%, 3%, and 20.4%, 78.8%, 0.8%, respectively. This indicates that both neutral and non-neutral processes govern microbial acquisition in marine sponges.

185 10.7% that fell above the neutral prediction in larvae may represent symbionts that were haphazardly filtered by a few
 186 individual adults, and subsequently incorporated into the oocytes. Finally, for the 3% of ASVs that fell below the
 187 neutral prediction in adults (i.e., purple dots Figure 2C), 86.5% were present in larvae; 54.1% and 43.3% fell above
 188 and within the neutral prediction, suggesting that most of microbes that fall below the neutral prediction in adults

189 represent dispersal limited symbionts.

190 From Figure S2A, an interesting pattern emerged: a “peak” consisting of microbes above the neutral prediction that
191 largely disappeared when microbes shared with the seawater were removed (Figure S2B). Compared to adults, larvae
192 do not filter feed prior to settlement and metamorphosis [35]. This, therefore, suggests that the “peak” consists of (i)
193 a mixture of symbionts and other microbes that the adults acquire from the seawater (which are subsequently incorpo-
194 rated into the oocytes), and/or (ii) environmental microbes that populate the outer surface of the free-swimming larvae
195 prior to settlement. While we can not exclude the latter, it is less likely for four reasons: (1) we rinsed sponge larvae
196 with filter-sterilized seawater prior to DNA extraction; (2) evidence from electron micrographs suggests that microbes
197 are not frequently present on the surface of sponge larvae [36, 44, 67]; (3) most of the ASVs forming the “peak” are
198 also present above the neutral prediction in adults, indicating that they are selectively acquired and/or enriched by
199 individual adults (Figure S3); and (4) several of these ASVs assigned to *sponge-enriched clusters* (Figure S4).

200 Our results allow to distinguishing between *direct* and *indirect* vertical transmission; that is, symbionts which
201 have been passed down through multiple host generations, and microbes that the adult parent, at some point, acquired
202 from the environment and subsequently incorporated into the oocytes. This parallels *direct* and *indirect* transmission
203 in disease ecology [68], where a directly transmitted pathogen, e.g., HIV, moves directly from one host to another,
204 without passing through the environment. An indirectly transmitted pathogen, such as *E. coli*, either requires time, or
205 can survive indefinitely in the environment, before infecting a new host.

206 Furthermore, in systems with highly diverse microbiota, microbes are subject to continual turnover. This means
207 that even vertically transmitted microbial lineages can be lost due to intrinsic and extrinsic factors affecting their
208 population dynamics. Thus, *indirect* vertical transmission may provide a mechanism to either replenish lost or gain
209 new symbiotic functions. With *directly* and *indirectly* vertically transmitted symbionts, offspring may also receive a
210 larger microbial genetic repertoire. Similar to the idea that a genetically diverse cohort of offspring is more likely to
211 succeed than a genetically uniform cohort, these larvae may better survive and reach adulthood in diverse and varying
212 environments. However, to better understand *direct* and *indirect* vertical transmission, it will be necessary to trace
213 transmission at the microbial strain level through multiple lineages of sponge hosts.

214 We next focused on the subset of vertically transmitted ASVs that were shared between adults and their offspring
215 and were not detected in seawater (i.e., were least likely to be attributed to microbes from seawater found incidentally
216 on the surface of the larva; Table S2). We found that 50.0%, 44.1% and 5.9% of these vertically transmitted ASVs fell
217 above, within, and below the neutral prediction across individual adults, suggesting that at least half of the vertically
218 transmitted ASVs are selected and/or enriched by individual adults. Of these “selected” taxa, 48.4% and 51.1% fell

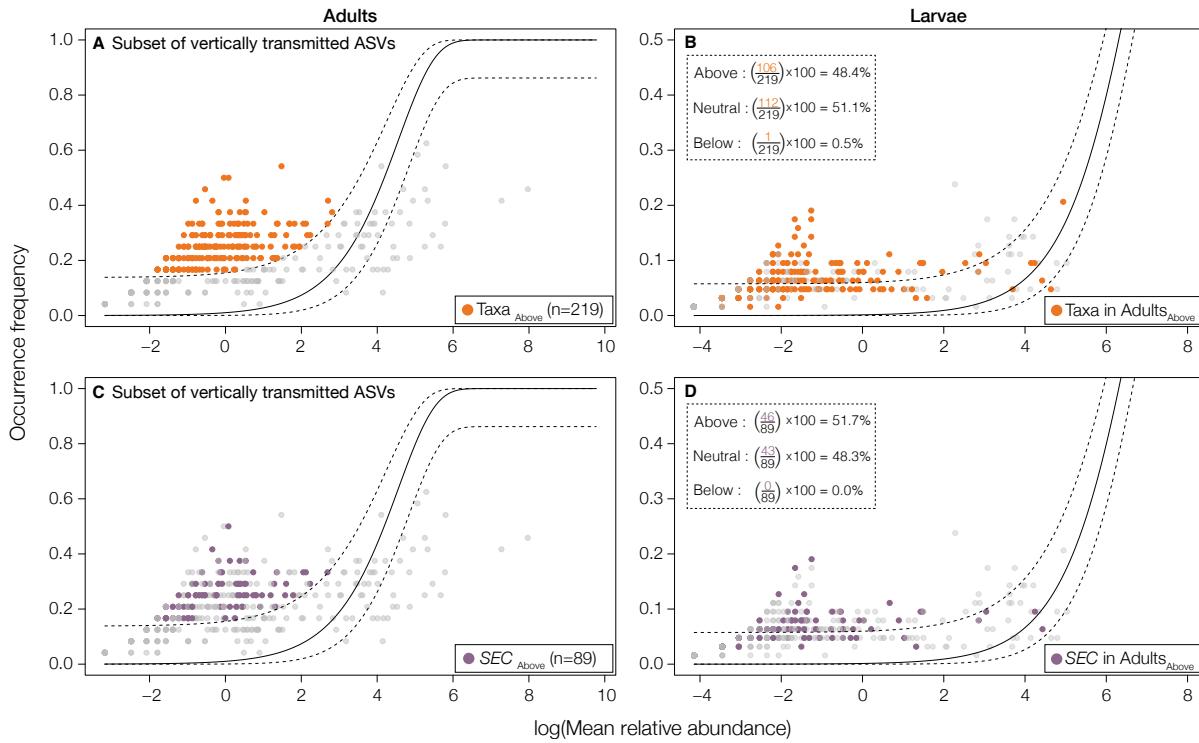


Figure 3: The processes underlying vertical transmission are both neutral and selective. Both the top and bottom panel correspond to ASVs shared between parents and their offspring, but not detected in seawater. In the top panel (A-B), orange dots correspond to ASVs that are above the neutral prediction in adults; 48.4% of these vertically transmitted ASVs are also above the neutral prediction in larvae. In the bottom panel (C-D), purple dots correspond to *sponge-enriched clusters* that are above the neutral prediction in adults; 51.7% of these vertically transmitted *sponge-enriched clusters* are also above the prediction in the larvae. Microbes that fall within or below the neutral prediction are colored gray.

219 above and within the neutral prediction in larvae (Figure 3A and Figure 3B). Interestingly, of the ASVs that fell above
 220 the neutral prediction in adults, 40.6% assigned to *sponge-enriched clusters*, and of these, 51.7% and 48.3% fell above
 221 and within the neutral prediction in larvae (Figure 3C and Figure 3D), further indicating that adults transmit beneficial
 222 symbionts to offspring that may likely be important during microbiome assembly. Of the 44.1% of ASVs that were
 223 neutral across individual adults, 22.3% and 77.2% fell above and within the neutral prediction in larvae (Figure 3A and
 224 Figure 3B), suggesting that offspring also receive “neutral” microbes that likely serve as an additional energy reserve
 225 until larval settlement. Finally, of the 5.9% of ASVs that fell below the prediction across individual adults, 42.3%
 226 and 53.8% fell above and within the neutral prediction in larvae (Figure 3A and Figure 3B). These percentages are
 227 altogether very similar to the ones found for the overall microbiota. This indicates that the relative importance of the
 228 neutral and selective processes that governs vertical transmission is similar regardless of whether microbes detected in

229 seawater are considered or not.

230 To further disentangle some of the processes underlying vertical transmission in marine sponges, in the remaining
231 series of analyses, we introduce one broad (*overall*) and one narrow (*sponge-specific*) definition of vertical transmis-
232 sion (Figure S5A). In (1) *overall* vertical transmission, we consider all ASVs that are shared between parents and
233 offspring, regardless of their presence in seawater (Figure S6 and Figure S7, Table S2). In (2) *sponge-specific* vertical
234 transmission, we only include ASVs that are shared between parents and offspring, but were not detected in seawater
235 (Figure S6 and Figure S7, Table S2). *Sponge-specific* vertically transmitted (VT) microbes are nested within the set
236 of *overall* VT microbes. Specifically, *sponge-specific* VT microbes are restricted to symbionts that are not detected
237 (or under detection limit) in seawater, including members of the rare biosphere, and *directly* VT symbionts. *Overall*
238 VT microbes include transient microbes passing through the adult host, and symbionts which are selectively acquired
239 from the seawater.

240 **Vertical transmission in sponges is relatively comprehensive, but often undetectable**

241 We next tested whether patterns of vertical transmission were detectable in sponges, and if so, whether these pat-
242 terns were comprehensive or incomplete (Figure S5B). A visual inspection of taxonomic profiles of the microbiota
243 between parents and offspring indicated that offspring often harbor similar microbial phyla to their parents, as well
244 as to non-parental conspecific adults (Figure 4A and Figure S8). Adults and larvae were also fairly similar at the
245 level of individual ASVs: across all sponge species, larvae shared, on average, 44.8% of their *overall* ASVs with
246 their adult parents (Figure 5A and Figure S9). Parents and offspring also shared, on average, 60.7% of their *overall*
247 *sponge-enriched clusters* (Figure S10A and Figure S11). These results suggest that vertical transmission is relatively
248 comprehensive, at least when considering microbes also found in seawater. However, the percent of ASVs shared
249 between parents and offspring was not different than the percent of ASVs and/or *sponge-enriched clusters* that larvae
250 shared with conspecific adults living nearby (ASVs: 44.8% vs 44.5%, $\Delta=-0.34$, 95% CI [-4.49,3.87], Mann-Whitney
251 U=3917.5, P>0.1, Figure 5A; *sponge-enriched clusters*: 60.7% vs 61.3% $\Delta=-0.36$, 95% CI [-6.94,5.73], Mann-
252 Whitney U=3916.5, P>0.1, Figure S10A). This pattern indicates that, at the level of all the microbes found in larvae,
253 the signature of vertical transmission is essentially undetectable.

254 However, the analysis above included ASVs found in seawater, which may represent transient microbes passing
255 through adult hosts, which are not consistent or important members of the sponge microbiota, or incidental microbes
256 found on the surface of the larva. Removing ASVs detected in seawater not only reduced the taxonomic diversity found
257 in larvae, but also decreased the percent of microbes shared between adults and their larval offspring. On average,

A. aerophoba

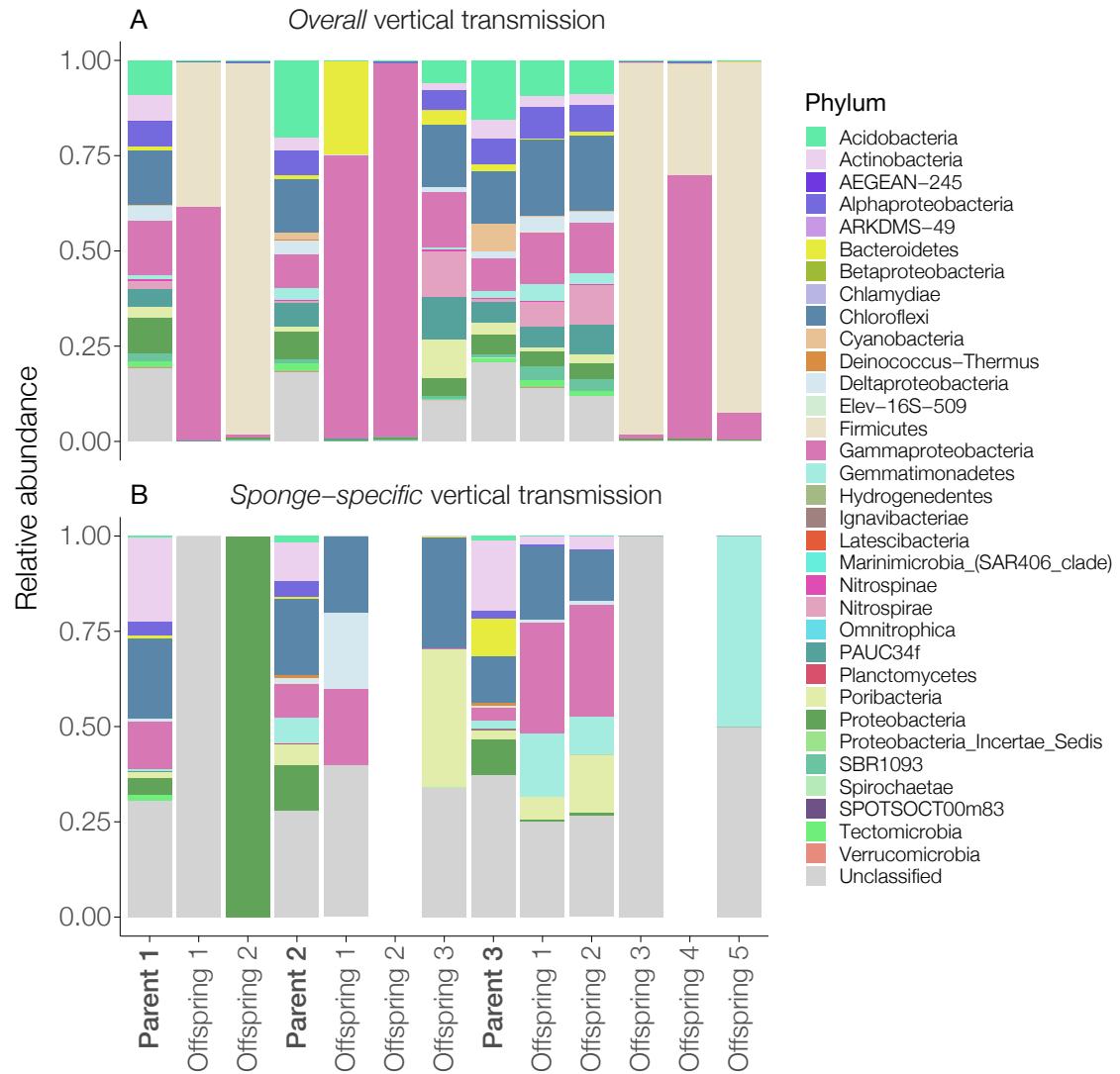


Figure 4: The relative contribution of vertically transmitted ASVs classifying to different microbial phyla (classes for Proteobacteria) in parents and the offspring of sponge species *A. aerophoba*. The top panel (A) shows the relative contribution of phyla for the *overall* definition of vertical transmission, and the bottom panel (B) shows the relative contribution of phyla for *sponge-specific* vertical transmission. Parents (in bold) and offspring are shown on the x-axis. Note that when microbes detected in seawater are removed, this sometimes leaves no vertical transmitted ASVs for the *sponge-specific* vertical transmission. Colors represent different microbial phyla (classes for Proteobacteria).

258 offspring only shared 11.3% and 18.6% of their *sponge-specific* ASVs (Figure 5B and Figure S9) and *sponge-enriched*
 259 *clusters* (Figure S10B and Figure S11) with their parents. This pattern indicates that, for *sponge-specific* ASVs and
 260 *sponge-enriched clusters*, vertical transmission is incomplete. However, the detectability of vertical transmission in-

261 creased somewhat in these subsets. Specifically, the percent of *sponge-specific* ASVs shared between parents and
262 offspring was slightly but significantly higher than the percent of *sponge-specific* ASVs larvae shared with nearby
263 conspecific adults (11.3% vs 8.8%, $\Delta=2.23$, 95% CI [0.00,5.00], Mann-Whitney U=4685, P=0.04; Figure 5B). How-
264 ever, parents and offspring did not share significantly more *sponge-specific sponge-enriched clusters* than with nearby
265 conspecifics (18.6% vs 14.12%, $\Delta=0.00$, 95% CI [-0.00,0.00]; Mann-Whitney U=4388, P>0.1; Figure S10B). These
266 patterns persisted when we filtered the data to only contain samples with $\geq 5,000$ reads (Figure S14). However, due to
267 the large reduction in sample sizes, no significant differences were found in data filtered to only contain samples with
268 $\geq 10,000$ reads (Figure S15). When ASVs were agglomerated to the family or genus level, the results were similar for
269 the *overall* vertical transmission (Figure S16A and Figure S16B). However, for the *sponge-specific* vertical transmis-
270 sion, the percents shared were lower than for taxa at the ASVs level (Figure S16A and Figure S16B). This is because
271 many genera, and many more families, are shared with seawater, and the constraints implied by the *sponge-specific*
272 definition of vertical transmission necessarily removes many of these higher-level taxa from the analysis.

273 To further characterize patterns of vertical transmission, we computed modularity on bipartite networks constructed
274 for each sponge species. In the ecological network literature, modules are groups of species that “interact” more among
275 themselves than with groups of other species (e.g., flowers and their pollinators, or fruits and their seed dispersers). If
276 modules are perfectly separated; that is, no species interact with species from other modules, they are called compart-
277 ments. Weighted modularity has been shown to be positively correlated with network specialization (H'_2), reinforcing
278 the idea that modules exist because species only interact with a small number of other coevolved species [69]. Comput-
279 ing modularity on weighted bipartite networks allows for weighting species by their relative abundances, such that rare
280 microbes are down-weighted and modules are formed around the most common host-microbe associations [69, 70].
281 We computed modularity on two sets of bipartite networks: (1) the *overall* networks which contain conspecific hosts
282 (i.e., adults and larvae from the same species) and all ASVs detected in those hosts; (2) the *sponge-specific* networks
283 that contain conspecific hosts and ASVs detected in those hosts, but not in seawater. If parents and offspring harbor the
284 same set of microbes at similar abundances, and if those microbes are unique to a given set of parents and offspring,
285 then the observed networks should be organized into compartments. We tested whether the observed modules devi-
286 ated from these expected parent-offspring compartments using the Normalized Mutual Information (NMI) criterion
287 [71, 72, 73]. NMI ranges between 0 and 1, where 0 indicates complete dissimilarity between expected compartments
288 and observed modules, and 1 indicates that the observed modules only contain nodes corresponding to parents and
289 offspring (i.e., compartments). We found that, while both the *overall* and *sponge-specific* networks were modular
290 (*overall*: 0.48±0.17; *sponge-specific*: 0.57±0.14), the observed modules were not comprised of nodes corresponding

291 to parents and offspring (Figure S17A). The *sponge-specific* networks had, on average, the highest NMI score but
 292 these networks were still quite far from the prior expectation of perfectly separated parent-offspring compartments
 293 (*overall*: 0.49 ± 0.08 and *sponge-specific*: 0.36 ± 0.13 ; Figure S18a). We also computed modularity on unweighted
 294 bipartite networks. While these resulted in different module composition, modules were still not comprised of nodes
 295 only corresponding to parents and offspring (Figure S17B and Figure S18b).

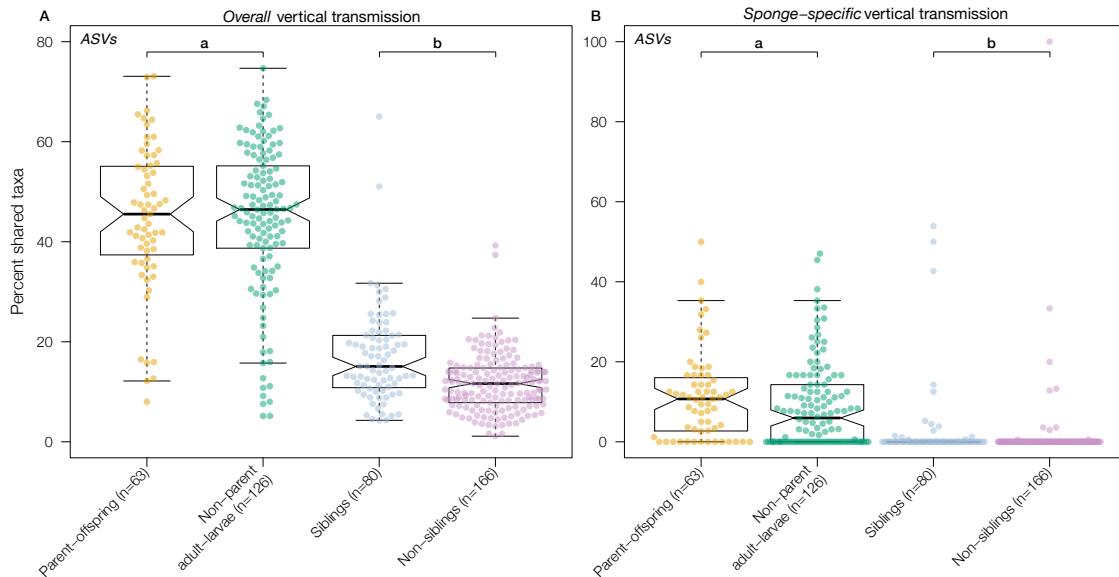


Figure 5: Percent of shared ASVs in the (A) *overall* and (B) *sponge-specific* definition of vertical transmission. Boxplots (a) show the percent shared ASVs between sponge larvae and either (i) their known parents (yellow dots), or (ii) non-parental conspecific adults (green dots). In boxplots (a), each dot represents one parent-offspring pair, or one non-parent adult-larva pair across all sponge species (see Figure S9). For *overall* vertical transmission (A), parents and offspring shared, on average, 44.8% of the ASVs, whereas non-parental conspecific adults and larvae shared, on average, 44.5% of ASVs ($P>0.1$). For *sponge-specific* vertical transmission (B), parents and offspring shared, on average, 11.3% of ASVs, whereas non-parental conspecific adults and larvae shared, on average, 8.8% of ASVs ($P=0.04$). Boxplots (b) show the percent shared VT ASVs between (i) siblings (blue dots), and (ii) non-siblings (purple dots). In boxplots (b), each dot represents one sibling pair, or one pair of non-siblings (see Figure S12). For *overall* vertical transmission (A), siblings shared, on average, 17.0% of their VT ASVs, while non-siblings only shared 11.7% ($P<0.001$). For *sponge-specific* vertical transmission (B), siblings shared, on average, only 2.4% of their VT ASVs, whereas non-siblings shared 1.0% ($P=0.001$). While these are significantly different, the effect size (i.e., the difference in location, Δ), is effectively zero.

296 **Vertical transmission is largely inconsistent; but each offspring receives a small set of identi-
297 cal microbes from their parent**

298 If symbiotic microbes have coevolved with their sponge host, and if it is adaptive for parents to transmit these microbes,
299 then we would expect that all offspring from the same parent should receive an identical or highly consistent set of
300 beneficial symbionts (Figure [SSC](#)). Alternatively, if consistent vertical transmission is not important to parental fitness,
301 or if parents benefit from transmitting different symbionts to each offspring, then we would expect larvae to receive a
302 variable or even random subset of microbes from their parents that is inconsistent between siblings.

303 We tested this prediction by calculating the proportion of *overall* and *sponge-specific* VT ASVs shared between
304 larval siblings and conspecific non-sibling larvae. Across all sponge species, siblings shared, on average, 17.0% and
305 18.8% of their *overall* VT ASVs (Figure [5A](#) and Figure [S12A](#)) and *sponge-enriched clusters* (Figure [S10A](#) and Fig-
306 ure [S13A](#)). These sharing percentages were much lower than what larvae shared with their parents, but they were
307 significantly higher than the percents of VT ASVs and *sponge-enriched clusters* they shared with non-sibling conspe-
308 cific larvae (ASVs: 17.0% vs 11.7%, $\Delta=4.48$, 95% CI [2.68,6.26], Mann-Whitney U=9145, P=<0.001, Figure [5A](#);
309 *sponge-enriched clusters*: 18.8% vs 12.4%, $\Delta=4.61$, 95% CI [2.08,7.21], Mann-Whitney U=8531.5, P=<0.001, Fig-
310 ure [S10A](#)). This pattern indicates that, while each offspring receives a small number of identical microbes from their
311 parent, VT microbes are largely inconsistent across siblings. When we removed ASVs detected in seawater, siblings
312 and non-siblings only shared 2.4% and 1.0%, and 1.85% and 0.6% of their VT ASVs, respectively ($\Delta=0.00$, 95% CI
313 [-0.00,0.00], Mann-Whitney U=6383, P=0.001, Figure [5A](#) and Figure [S12A](#)) and *sponge-enriched clusters* ($\Delta=0.00$,
314 95% CI [-0.00,0.00], Mann-Whitney U=6076, P=0.024, Figure [S10A](#) and Figure [S13A](#)). Together, these results indi-
315 cate that siblings receive a small set of identical symbionts, but that the majority of these microbes originate from the
316 seawater where they have been selectively acquired by the adult parent prior to being transmitted to offspring.

317 The absence of a large consistent set of microbes transmitted between a given parent and its offspring could have
318 at least three explanations. First, perhaps only a few symbiotic microbes are required to establish a functioning and
319 beneficial microbiota; hence, parents might only “selectively” transmit a few of the most important symbionts to
320 offspring. Second, parents may benefit from varying the microbes transmitted to each offspring. Such variability
321 might be important if offspring disperse long distances and settle in diverse and varying environments. In this case,
322 the identity of the most favorable set of microbes may vary across environments. This explanation is analogous to
323 the idea that a genetically diverse cohort of offspring is more likely to succeed than a genetically uniform cohort (in
324 this case, the genetic diversity is microbial, and not from the host). Third, previous research has suggested that larvae

325 can phagocytose VT microbes [36, 38, 37]. Thus, to maximize their offspring's chances of survival until settlement,
326 parents may "neutrally" transmit a large number microbes as an additional energy source. All of these explanations are
327 congruent with the finding that the mechanisms underlying vertical transmission are likely both neutral and selective.

328 **Vertically transmitted microbes are not host species-specific**

329 By the time many sponges reach adulthood, they have converged on highly similar and species-specific microbiota [74,
330 75], including the eight sponge species analyzed here [74, 76, 77, 78]. These distinctive, species-specific communities
331 may reflect the nature and strength of host-microbe interactions and strong selection for certain symbionts at the host
332 species level. Furthermore, if this selection is a result of strong coevolution between microbes and hosts, then we
333 would expect high levels of host species fidelity; that is, conspecific adults and larvae should share more VT microbes
334 than they do with individuals from different host species (Figure S5D). While previous studies, largely based on non-
335 high-throughput sequencing methods, have found similar microbial phylotypes in adults and larvae from the same
336 sponge species [39, 49, 50, 51, 52], little is known whether this is also the case for larvae from multiple species.

337 We tested this prediction by calculating the percent of shared vertically transmitted ASVs among offspring from all
338 possible combinations of adults. Surprisingly, we found that larvae were not more likely to share vertically transmitted
339 ASVs (Figure 6A and Figure S19A) or *sponge-enriched clusters* (Figure S21A and Figure S22A) with larvae from
340 their own species as compared to larvae of other species (ASVs: 17.4% vs 15.5%, $\Delta=1.72$, 95% CI [-2.71,6.27], Mann-
341 Whitney U=1928, P>0.1; *Sponge-enriched clusters*: 21.3% vs 18.6%, $\Delta=2.81$, 95% CI [-2.93,8.67], Mann-Whitney
342 U=1966.5, P>0.1). This pattern persisted when we considered the relative abundances of the vertically transmitted
343 ASVs in larvae (6.6% vs 6.2%, $\Delta=-0.05$, 95% CI [-1.07,1.04], Mann-Whitney U=1691, P>0.1, Figure 6A and Fig-
344 ure S19B) and *sponge-enriched clusters* (20.4% vs 15.6%, $\Delta=3.75$, 95% CI [-1.04,15.20], Mann-Whitney U=1973,
345 P>0.1, Figure S21A and Figure S22B). Removing microbes detected in seawater, conspecific larvae shared, on average,
346 only 3.5% and 9.5% of their *sponge-specific* vertically transmitted ASVs (Figure S20A) and *sponge-enriched clusters*
347 (Figure S23A), respectively. These percents of sharing were not different than the percent of vertically transmitted
348 ASVs larvae from different species shared (ASVs: 3.5% vs 2.7%, $\Delta=-0.000$, 95% CI [-0.41,0.00], Mann-Whitney
349 U=1651, P>0.1, Figure 6B; *sponge-enriched clusters*: 9.5% vs 8.6%, $\Delta=-0.000$, 95% CI [-2.65,3.61], Mann-Whitney
350 U=1696, P>0.1, Figure S21B). Similar results were also observed when we considered the relative abundance of ver-
351 tically transmitted ASVs (5.0% vs 1.8%, $\Delta=-0.000$, 95% CI [-0.01,0.00], Mann-Whitney U=1614.5, P>0.1, Figure 6B
352 and Figure S20B) and *sponge-enriched clusters* (10.1% vs 8.5%, $\Delta=-0.000$, 95% CI [-0.07,0.01], Mann-Whitney
353 U=1591, P>0.1, Figure S21B and Figure S23B). These patterns persisted when we filtered the data to only samples

354 with $\geq 5,000$ and $\geq 10,000$ reads (Figure S24 and Figure S25).

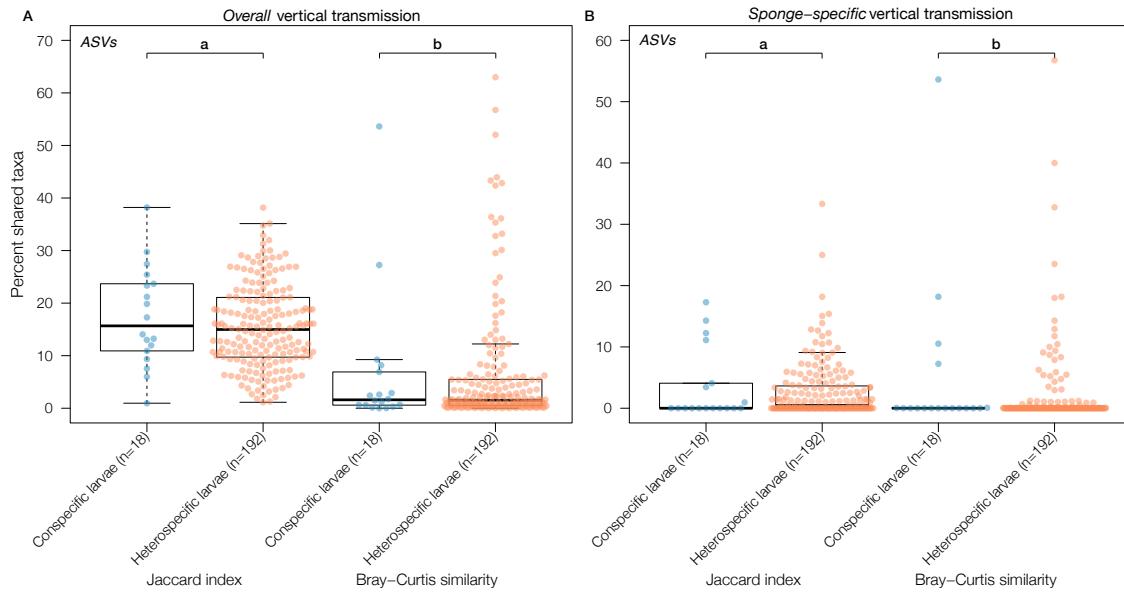


Figure 6: The percent of shared (A) *overall* and (B) *sponge-specific* vertically transmitted ASVs among offspring from all possible combinations of adults, calculated as either the (a) Jaccard index (see Figure S19A and Figure S20A), or (b) Bray-Curtis similarity (see Figure S19B and Figure S20B). Each dot represents all offspring from either (i) adults belonging to the same species (blue dots), or (ii) adults from different species (orange dots). While the Jaccard index calculates similarity between two samples based on the presence-absence of taxa, Bray-Curtis similarity weights taxa by their relative abundance. For *overall* vertical transmission (A), conspecific larvae shared, on average, 17.4% (Jaccard) and 6.6% (Bray-Curtis) of the ASVs, whereas heterospecific larvae shared, on average, 15.5% (Jaccard) and 6.2% (Bray-Curtis) of the ASVs ($P>0.1$). For *sponge-specific* vertical transmission (B), parents and offspring shared, on average, 3.5% (Jaccard) and 5.0% (Bray-Curtis) of the ASVs, whereas non-parental conspecific adults and larvae shared, on average, 2.7% (Jaccard) and 1.8% (Bray-Curtis) of the ASVs ($P>0.1$).

355 To test this pattern beyond pairwise comparisons, we computed weighted modularity on two bipartite networks:
 356 (i) the *overall* network which contains all hosts (i.e., adults and larvae) and ASVs detected in those hosts, and (ii) the
 357 *sponge-specific* network that contains all hosts and ASVs detected in those hosts, but not in seawater. If conspecific
 358 adults and larvae harbor the same microbes at similar abundances, and do not share those with other species, then the
 359 networks will be organized in compartments consisting of conspecific adults and larvae only. While we found that
 360 both the *overall* and *sponge-specific* network were highly modular ($Q=0.71$ and $Q=0.79$; Table S3), modules rarely
 361 consisted of adults and larvae from the same species ($NMI=0.51$ and $NMI=0.41$; Figure S26A). For instance, in the
 362 *overall* network, apart from *A. aerophoba*'s and *I. oros*'s adults that together formed one module, all other adults
 363 formed their own species-specific modules. In the *sponge-specific* network, there were a few modules that contained
 364 a larger number of heterospecific larvae (Figure S26A). In both networks, some modules that contained adults also

365 contained larvae, but they rarely corresponded to offspring or even larvae of the same species. While the results from
366 modularity computed on unweighted networks were quantitatively different (Table S3), it did not change the overall
367 conclusion (Figure S26B).

368 **Conclusion**

369 Vertical transmission is proposed to be a primary mechanism by which parents transmit assemblages of beneficial
370 microbes to offspring in a way that maintains both these microbes' interactions with each other and the beneficial
371 functions that emerge from their interactions [16, 17, 19]. While this may often be the case when microbial symbionts
372 consist of just one or a few species [21, 22, 23], when microbiomes are highly diverse, transferring hundreds to thou-
373 sands of microbial species such that their interaction structures and emergent functions are preserved seems highly
374 improbable. In systems with diverse microbiomes, how do parents ensure that offspring get the microbes they need?
375 In marine sponges, we know that such mechanisms exist because by the time juveniles reach adulthood, they have
376 converged on highly similar and species-specific microbiomes [74, 75]. Alternatively, species have evolved to create
377 environments which select for specific microbes. Our results indicate that the assembly processes can be both neutral
378 and selective, and that this may help to explain why several of our findings cast doubt on the consistency and faithfulness
379 of vertical transmission of highly diverse microbiomes. Specifically, across eight sponge species, we show that:
380 (1) vertical transmission is relatively comprehensive, but often undetectable. While larval sponges shared, on average,
381 44.8% of microbes with their parents, this fraction was not higher than the fraction they shared with nearby conspecific
382 adults who were not their parents; (2) vertical transmission is inconsistent across siblings, as larval sponges from the
383 same parent only shared 17% of microbes, and (3) vertically transmitted microbes are not faithful to a single sponge
384 species: surprisingly, larvae were just as likely to share vertically transmitted microbes with larvae from other species
385 as they were with their own species, and are therefore unlikely to have coevolved with particular sponge species. While
386 removing microbes detected in seawater increased the detectability of vertical transmission, it heavily decreased the
387 percent of microbes shared between adults and their larval offspring, including vertically transmitted microbes shared
388 between siblings. Together, our results indicate that siblings receive a small set of identical symbionts, but that the
389 majority of these microbes originate from the seawater where they likely have been selectively acquired by the adult
390 parent prior to being vertically transmitted to offspring.

391 Our findings highlight the need for new theory that is specific to the acquisition and transmission of diverse mi-
392 crobiomes (see e.g., [79]), but also theory that not only considers horizontal and vertical transmission of microbes,

393 but also *direct* and *indirect* vertical transmission; that is, symbionts which have been passed down through multiple
394 host generations, and microbes that the adult parent, at some point, acquired from the environment and subsequently
395 incorporated into the oocytes. While this mixture of mechanisms likely reduces the strength and consistency of vertical
396 transmission, it may have other benefits that increase the chances of dispersing larvae to settle and reach adulthood in
397 diverse and varying environments. For example, which microbes first colonize the host strongly influence subsequent
398 community succession and stability [80, 81, 82, 83].

399 Finally, some of our results are relevant to the predictions put forward by of the hologenome theory of evolution
400 [8, 9, 12]. This theory proposes that there might be value in treating hosts and their microbiota as a single evolutionary
401 unit. This theory comes with an important expectation: high partner fidelity—if the collection of genomes varies within
402 and between host generations, then it is not a coherent unit of selection [10, 11]. Such tight partner fidelity is typically
403 only found among host-microbe symbioses with obligate vertical transmission. On the contrary, we found that many
404 vertically transmitted microbes, including many *sponge-enriched clusters*, were not faithfully transmitted by parents
405 to offspring nor were they host species-specific. As such, their evolution is likely shaped by multiple host species
406 across the phylum Porifera, as well as by the marine environment where the sponge hosts live. It remains to be further
407 tested whether the patterns reported here hold for even more sponge species, or persist when using larger sequencing
408 depths or strain tracking techniques. Overall, our study demonstrates that common predictions of vertical transmission
409 that stem from species-poor systems are not necessarily true when scaling up to diverse and complex microbiomes.

410 Methods

411 We collected sponge and seawater samples between July and August 2012, close to the Islas Medas marine reserve
412 in the northwestern Mediterranean Sea 42°3'0"N, 3°13'0"E by SCUBA at depths between 5-15 m. The analyzed
413 species are common Mediterranean sponges and were identified based on their distinct morphological features. The
414 sampling site consisted of a relatively small bay (roughly 18,000 m²). All sampled sponge species live in rocky
415 overlapping habitats, and all species could be found within the same depth range. However, some specimens were
416 found in more shaded areas than others.

417 Larval sponge collection

418 We constructed larvae traps by modifying the traps used in [84] (Figure S27). In order to collect offspring from
419 known parents, traps were mounted over individual adult sponges by SCUBA. To minimize stress to individual adults,

420 traps were removed after one week. During this time, sample bottles were collected and replaced each day. Bottles
421 were placed on ice in insulated coolers and transported to the laboratory (< 2 hours). Larvae were identified using a
422 stereoloupe. In order to remove loosely associated microbes, larvae were carefully rinsed with filter-sterilized seawater
423 (0.20 μ m filter) before preservation in RNA later. All larval samples were stored at -80°C until DNA extraction.

424 **Adult sponge collection**

425 After larval offspring were collected, three adults per sponge species were sampled. These individuals corresponded
426 to the same adults from which we collected larvae. However, for a few species, larvae could only be collected for
427 two adults. In these cases, a third adult was still sampled. Specimens were sub-lethally sampled by removing a small
428 sample of tissue. Excised tissue was placed in separate plastic tubes and brought to the surface where they were
429 preserved in RNA later and placed on ice in insulated coolers and transported to the laboratory (< 2 hours). Seawater
430 samples were collected at 5 m depth and at seven locations within the sampling area. The water was always collected
431 at deeper locations (> 5 m) within the sampling area, and never in direct proximity to the benthic community. All
432 seven water samples were poured into separate, sterile 5 L jars. Aliquots of seawater (300-500 mL each, 1 aliquot per
433 sample jar) were concentrated on 0.2 μ m polycarbonate filters, and submerged in lysis buffer. All samples were stored
434 at -80°C until DNA extraction.

435 **DNA extraction and sequencing**

436 DNA was extracted from \approx 0.25 g of adult sponge tissue using the PowerSoil DNA extraction kit (MoBio). DNA from
437 larvae (one larva per adult) was extracted using the XS-RNA extraction kit (Macherey-Nagel) because of its capacity to
438 extract DNA from small samples, i.e., one larva. All DNA extractions were performed according to standard protocols.
439 The seven seawater samples were processed by passing 2 L of seawater through 0.2 μ m Sterivex filters, and DNA was
440 extracted from these filters as described by [52]. All extractions included a negative control without sponge tissue, and
441 the lack of amplified DNA was examined with the universal bacterial primers 27F and 1492R. The V4 region of the
442 16S rRNA gene was amplified using the primer set 515FB-806RB [85], and sequenced using the Illumina HiSeq2500
443 platform. Sequencing was performed by the Earth Microbiome Project [86].

444 Sequencing analysis

445 Illumina-sequenced, single-read fastq files were processed and cleaned in R [87] using the default settings in DADA2
446 [88] to produce an amplicon sequence variant (ASV) table (Appendix 1), and Silva (v128) [89] was used to create
447 the ASV taxonomy. The Phyloseq R package [90] was used to filter out sequences classifying to *Archaea* and
448 *Eukaryota*. We also removed singleton ASVs, and phyla that occurred in less than two samples (Appendix 1). The
449 analyzed dataset contained samples with at least 1,000 reads.

450 Identification of *sponge-enriched clusters*

451 A representative sequence from each ASV was taxonomically assigned using a BLAST 62 search against a curated
452 ARB-SILVA database containing 178 previously identified *sponge-specific clusters* [41]. For each BLAST search,
453 the 10 best hits were aligned to determine sequence similarities. The most similar ASV sequence to the respective
454 reference sequence within the database was then assigned to an *sponge-specific clusters* based on a 75% similarity
455 threshold: (i) a sequence was only assigned to any given *sponge-specific clusters* if its similarity was higher to the
456 members of the cluster than to sequences outside the cluster; and (ii) if its similarity to the most similar sequence
457 within the cluster was above 75%. A majority rule was applied in cases where the assignment of the most similar
458 sequences was inconsistent, and the ASV sequence was only assigned to the *sponge-specific clusters* if at least 60%
459 of the reference sequences were affiliated with the cluster.

460 Data analyses

461 We used Phyloseq package in R to store, organize and filter the analyzed sequence data [90]. Furthermore, to
462 find ASVs corresponding to our two definitions of vertical transmission, we used set theory functions in R, e.g.,
463 `setdiff(A, B)` to find all features in A that is not present in B (i.e., $A \setminus B$), or `intersect(A, B)` to find all
464 features that are present in both A and B (i.e., $A \cap B$). We used box plots overlaid with swarm plots (using the
465 `beeswarm` package in R) to better visualize the distribution of the data. When enough data points existed (or
466 where the confidence interval (i.e. size of the notches) was not larger than the interquartile range), we used the
467 `boxplot(..., notch=T)` to draw a notch in each side of the boxes. If the notches of two box plots do not overlap,
468 this can be seen as “strong evidence” that the two medians differ. To accompany this, we perform the Mann-Whitney
469 U test, `wilcox.test(x, y, ...)`, and to further compute a nonparametric confidence interval (CI) and estimate
470 the difference in location between parameters x and y (i.e., the effect size, Δ), we set the argument `conf.int=T`.

471 Modularity was computed using the DIRT_LPA_wb_plus algorithm in R [70]. To test whether observed modules
472 deviated from prior expectations, we used Normalized Mutual Information (NMI) criterion calculated through the
473 NMI::NMI (x, y) function in R.

474 **Acknowledgements**

475 We thank Dr. Rafel Coma and Dr. Eduard Serrano for help in the field. J.R.B. was supported by an FPI Fellowship
476 from the Spanish Government (BES-2011-049043). J.M.M. was supported by the French LabEx TULIP (ANR-10-
477 LABX-41; ANR-11-IDEX-002-02), by the Region Midi-Pyrénées project (CNRS 121090) and by the FRAGCLIM
478 Consolidator Grant, funded by the European Research Council under the European Union's Horizon 2020 research
479 and innovation programme (grant agreement number 726176).

480 **Conflict of interest**

481 The authors declare that they have no conflict of interest.

482 **Authors' contributions**

483 J.R.B. and J.M.M. conceived the study. J.R.B. performed the fieldwork and analyzed the data. J.R.B. and J.M.M.
484 drafted the first versions of the manuscript, and J.R.B. and E.A. refined the ideas and wrote the final version of the
485 paper. C.D. helped in the field and extracted DNA from the larvae. C.A.G. identified the *sponge-specific clusters*. All
486 authors commented and approved of later versions of the paper.

487 **Data and code availability**

488 All data and code will be available on Open Science Framework with an R Markdown document such that all
489 analyses and figures can be reproduced.

490 **References**

491 [1] Koch H, Schmid-Hempel P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite.
492 Proceedings of the National Academy of Sciences. 2011;108(48):19288–19292.

493 [2] Smith P, Willemse D, Popkes M, Metge F, Gandiwa E, Reichard M, et al. Regulation of life span by the gut
494 microbiota in the short-lived African turquoise killifish. *eLife*. 2017;6:e27014.

495 [3] Kwong WK, Mancenido AL, Moran NA. Immune system stimulation by the native gut microbiota of honey
496 bees. *R Soc Open Sci.* 2017;4(2):170003.

497 [4] Funkhouser LJ, Bordenstein SR. Mom Knows Best: The Universality of Maternal Microbial Transmission. *PLoS*
498 *Biology*. 2013;11(8):1–9.

499 [5] Fisher RM, Henry LM, Cornwallis CK, Kiers ET, West SA. The evolution of host-symbiont dependence. *Nature*
500 *Communications*. 2017;8:15973 EP.

501 [6] Hartmann AC, Baird AH, Knowlton N, Huang D. The Paradox of Environmental Symbiont Acquisition in
502 Obligate Mutualisms. *Current Biology*. 2017;27(23):3711–3716.e3.

503 [7] Russell SL. Transmission mode is associated with environment type and taxa across bacteria-eukaryote sym-
504 bioses: a systematic review and meta-analysis. *FEMS Microbiology Letters*. 2019;366(3).

505 [8] Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome
506 theory of evolution. *FEMS Microbiology Reviews*. 2008;32(5):723–735.

507 [9] Bordenstein SR, Theis KR. Host Biology in Light of the Microbiome: Ten Principles of Holobionts and
508 Hologenomes. *PLOS Biology*. 2015;13(8):e1002226.

509 [10] Moran NA, Sloan DB. The Hologenome Concept: Helpful or Hollow? *PLOS Biology*. 2015;13(12):1–10.

510 [11] Douglas AE, Werren JH. Holes in the Hologenome: Why Host-Microbe Symbioses Are Not Holobionts. *mBio*.
511 2016;7(2).

512 [12] Rosenberg E, Zilber-Rosenberg I. The hologenome concept of evolution after 10 years. *Microbiome*.
513 2018;6(1):78.

514 [13] Ewald PW. Transmission Modes and Evolution of the Parasitism-Mutualism Continuum. *Annals of the New*
515 *York Academy of Sciences*. 1987;503(1):295–306.

516 [14] Bull JJ, Ian Molineux J, Rice WR. Selection of Benevolence in a Host-Parasite System. *Evolution*.
517 1991;45(4):875–882.

518 [15] Yamamura N. Vertical Transmission and Evolution of Mutualism from Parasitism. *Theoretical Population*
519 *Biology*. 1993;44(1):95–109.

520 [16] Douglas AE. *Symbiotic Interactions*. Oxford Science Publications. Oxford University Press; 1994.

521 [17] Thompson JN. *The coevolutionary process*. University of Chicago Press; 1994.

522 [18] Herre EA, Knowlton N, Mueller UG, Rehner SA. The evolution of mutualisms: exploring the paths between
523 conflict and cooperation. *Trends in Ecology & Evolution*. 1999;14(2):49–53.

524 [19] Wilkinson DM, Sherratt TN. Horizontally acquired mutualisms, an unsolved problem in ecology? *Oikos*.
525 2001;92(2):377–384.

526 [20] Sachs JL, Skophammer RG, Regus JU. Evolutionary transitions in bacterial symbiosis. *Proceedings of the*
527 *National Academy of Sciences*. 2011;108:10800.

528 [21] Buchner P. *Endosymbiosis of animals with plant microorganisms*. Interscience Publishers; 1965.

529 [22] McLaren DJ, Worms MJ, Laurence BR, Simpson MG. Micro-organisms in filarial larvae (Nematoda). *Transac-*
530 *tions of the Royal Society of Tropical Medicine and Hygiene*. 1975;69(5):509–514.

531 [23] Fukatsu T, Hosokawa T. Capsule-Transmitted Gut Symbiotic Bacterium of the Japanese Common Plataspid
532 Stinkbug, *Megacopta punctatissima*. *Appl Environ Microbiol*. 2002;68(1):389–396.

533 [24] Bates JM, Mittge E, Kuhlman J, Baden KN, Cheesman SE, Guillemin K. Distinct signals from the microbiota
534 promote different aspects of zebrafish gut differentiation. *Developmental Biology*. 2006;297(2):374–386.

535 [25] Kikuchi Y, Hosokawa T, Fukatsu T. Insect-Microbe Mutualism without Vertical Transmission: a Stinkbug Ac-
536 *quires a Beneficial Gut Symbiont from the Environment Every Generation*. *Applied and Environmental Micro-*
537 *biology*. 2007;73(13):4308.

538 [26] Ho PT, Park E, Hong SG, Kim EH, Kim K, Jang SJ, et al. Geographical structure of endosymbiotic bac-
539 *teria hosted by Bathymodiolus mussels at eastern Pacific hydrothermal vents*. *BMC Evolutionary Biology*.
540 2017;17(1):121.

541 [27] Genkai-Kato M, Yamamura N. Evolution of Mutualistic Symbiosis without Vertical Transmission. *Theoretical*
542 *Population Biology*. 1999;55(3):309–323.

543 [28] Nyholm SV, Stabb EV, Ruby EG, McFall-Ngai MJ. Establishment of an animal-bacterial association: Recruiting
544 symbiotic vibrios from the environment. *Proceedings of the National Academy of Sciences*. 2000;97(18):10231.

545 [29] Dubilier N, Mülders C, Ferdelman T, de Beer D, Pernthaler A, Klein M, et al. Endosymbiotic sulphate-reducing
546 and sulphide-oxidizing bacteria in an oligochaete worm. *Nature*. 2001;411:298 EP.

547 [30] Mushegian AA, Walser JC, Sullam KE, Ebert D. The microbiota of diapause: How host-microbe associations
548 are formed after dormancy in an aquatic crustacean. *Journal of Animal Ecology*. 2017;87(2):400–413.

549 [31] Yin Z, Zhu M, Davidson EH, Bottjer DJ, Zhao F, Tafforeau P. Sponge grade body fossil with cellular resolution
550 dating 60 Myr before the Cambrian. *Proceedings of the National Academy of Sciences of the United States of
551 America*. 2015;112(12):E1453–60.

552 [32] Taylor MW, Radax R, Stegar D, Wagner M. Sponge-associated microorganisms: evolution, evoiology, and biotech-
553 nological potential. *Microbiology and Molecular Biology Reviews*. 2007;71(2):295–347.

554 [33] Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S, Webster NS, et al. Functional equivalence and evolutionary
555 convergence in complex communities of microbial sponge symbionts. *Proceedings of the National Academy of
556 Sciences*. 2012;109(27):E1878–E1887.

557 [34] Goeij JMD, Oevelen DV, Vermeij MJA, Osinga R, Middelburg JJ, Goeij AFPMD, et al. Surviving in a Marine
558 Desert: The Sponge Loop Retains Resources Within Coral Reefs. *Science*. 2013;342(October):108–110.

559 [35] Sará M VJ. Écologie des démosponges. Grassé PP (Ed), *Traité de Zoologie, Spongaires Masson et Cie*, Paris.
560 1973;3:462–576.

561 [36] Uriz MJ, Xavier T, A BM. Morphology and Ultrastructure of the Swimming Larvae of *Crambe crambe* (Demo-
562 spongiae, Poecilosclerida). *Invertebrate Biology*. 2001;120(4):295–307.

563 [37] de Caralt S, Uriz MJ, Wijffels RH. Vertical transmission and successive location of symbiotic bacteria during
564 embryo development and larva formation in *Corticium candelabrum* (Porifera: Demospongiae). *Journal of the
565 Marine Biological Association of the United Kingdom*. 2007;87(6):1693–1699.

566 [38] Uriz MJ, Turon X, Mariani S. Ultrastructure and dispersal potential of sponge larvae: tufted versus evenly
567 ciliated parenchymellae. *Marine Ecology*. 2008;29(2):280–297.

568 [39] Schmitt S, Angermeier H, Schiller R, Lindquist N, Hentschel U. Molecular microbial diversity survey of sponge
569 reproductive stages and mechanistic insights into vertical transmission of microbial symbionts. *Applied and*
570 *Environmental Microbiology*. 2008;74(24):7694–7708.

571 [40] Hentschel U, Hopke J, Horn M, Anja B, Wagner M, Hacker J, et al. Molecular Evidence for a Uniform Microbial
572 Community in Sponges from Different Oceans Molecular Evidence for a Uniform Microbial Community in
573 Sponges from Different Oceans. *Applied and Environmental Microbiology*. 2002;68(9):4431–4440.

574 [41] Simister RL, Deines P, Botté ES, Webster NS, Taylor MW. Sponge-specific clusters revisited: A comprehensive
575 phylogeny of sponge-associated microorganisms. *Environmental Microbiology*. 2012;14(2):517–524.

576 [42] Vacelet J, Donadey C. Electron microscope study of the association between some sponges and bacteria. *Journal*
577 *of Experimental Marine Biology and Ecology*. 1977;30(3):301–314.

578 [43] Usher KM, Kuo J, Fromont J, Sutton DC. Vertical transmission of cyanobacterial symbionts in the marine sponge
579 *Chondrilla australiensis* (Demospongiae). *Hydrobiologia*. 2001;461:9–13.

580 [44] Ereskovsky AV, Tokina DB. Morphology and fine structure of the swimming larvae of *Ircinia oros* (Porifera,
581 Demospongiae, Dictyoceratida). *Invertebrate Reproduction & Development*. 2004;45(2):137–150.

582 [45] Ereskovsky AV, Gonobobleva E, Vishnyakov A. Morphological evidence for vertical transmission of symbiotic
583 bacteria in the viviparous sponge *Halisarca dujardini* Johnston (Porifera, Demospongiae, Halisarcida). *Marine*
584 *Biology*. 2005;146(5):869–875.

585 [46] Maldonado M. Intergenerational transmission of symbiotic bacteria in oviparous and viviparous demosponges,
586 with emphasis on intracytoplasmically-compartmented bacterial types. *Journal of the Marine Biological Association*
587 *of the UK*. 2007;87(06):1701–1713.

588 [47] Riesgo A, Maldonado M. Differences in reproductive timing among sponges sharing habitat and thermal regime.
589 *Invertebrate Biology*. 2008;127(4):357–367.

590 [48] Maldonado M, Riesgo A. Gametogenesis, embryogenesis, and larval features of the oviparous sponge *Petrosia*
591 *ficiformis* (Haplosclerida, Demospongiae). *Marine Biology*. 2009;156(10):2181–2197.

592 [49] Enticknap JJ, Kelly M, Peraud O, Hill RT. Characterization of a culturable alphaproteobacterial symbiont com-
593 mon to many marine sponges and evidence for vertical transmission via sponge larvae. *Applied and Environ-
594 mental Microbiology*. 2006;72(5):3724–3732.

595 [50] Schmitt S, Weisz JB, Lindquist N, Hentschel U. Vertical transmission of a phylogenetically complex microbial
596 consortium in the viviparous sponge *Ircinia felix*. *Applied and Environmental Microbiology*. 2007;73(7):2067–
597 2078.

598 [51] Lee OO, Chiu PY, Wong YH, Pawlik JR, Qian PY. Evidence for vertical transmission of bacterial sym-
599 biots from adult to embryo in the Caribbean Sponge *Svenzea zeai*. *Applied and Environmental Microbiology*.
600 2009;75(19):6147–6156.

601 [52] Webster NS, Taylor MW, Behnam F, Lücker S, Rattei T, Whalan S, et al. Deep sequencing reveals ex-
602 ceptional diversity and modes of transmission for bacterial sponge symbionts. *Environmental Microbiology*.
603 2010;12(8):2070–2082.

604 [53] Sharp KH, Eam B, John Faulkner D, Haygood MG. Vertical transmission of diverse microbes in the tropical
605 sponge *Corticium* sp. *Applied and Environmental Microbiology*. 2007;73(2):622–629.

606 [54] Kamke J, Rinke C, Schwientek P, Mavromatis K, Ivanova N, Sczyrba A, et al. The candidate phylum Poribacteria
607 by single-cell genomics: New insights into phylogeny, cell-compartmentation, eukaryote-like repeat proteins,
608 and other genomic features. *PLoS ONE*. 2014;9(1).

609 [55] Bayer K, Jahn MT, Slaby BM, Moitinho-Silva L, Hentschel U. Marine sponges as Chloroflexi hot-spots: Ge-
610 nomic insights and high resolution visualization of an abundant and diverse symbiotic clade. *bioRxiv*. 2018;.

611 [56] Carmen AG, M SB, W WD, Kristina B, Ute H, W TM. Phylogeny and genomics of SAUL, an enigmatic bacterial
612 lineage frequently associated with marine sponges. *Environmental Microbiology*. 2017;20(2):561–576.

613 [57] Pedrós-Alió C. Dipping into the Rare Biosphere. *Science*. 2007;315(5809):192.

614 [58] Taylor MW, Tsai P, Simister RL, Deines P, Botte E, Ericson G, et al. ‘Sponge-specific’ bacteria are widespread
615 (but rare) in diverse marine environments. *The ISME Journal*. 2013;7:438–443.

616 [59] Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. Quantifying the roles of immigration and chance
617 in shaping prokaryote community structure. *Environmental Microbiology*. 2006;8(4):732–740.

618 [60] Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. Contribution of neutral pro-
619 cesses to the assembly of gut microbial communities in the zebrafish over host development. *The Isme Journal*.
620 2015;10:655 EP –.

621 [61] Usher KM, Sutton DC, Toze S, Kuo J, Fromont J. Inter-generational transmission of microbial symbionts in the
622 marine sponge *Chondrilla australiensis* (Demospongiae). *Marine and Freshwater Research*. 2005;56(2):125–131.

623 [62] Kaye HR, Reiswig HM. Sexual reproduction in four Caribbean commercial sponges. III. Larval behaviour,
624 settlement and metamorphosis. *Invertebrate Reproduction & Development*. 1991;19(1):25–35.

625 [63] Kaye HR. Sexual reproduction in four Caribbean commercial sponges. II. Oogenesis and transfer of bacterial
626 symbionts. *Invertebrate Reproduction & Development*. 1991;19(1):13–24.

627 [64] Gaino E, Burlando B, Buffa P, Sará M. Ultrastructural study of the mature egg of *Tethya citrina* sará and melone
628 (porifera, demospongiae). *Gamete Research*. 1987;16(3):259–265.

629 [65] Sciscioli M, Liaci LS, Lepore E, Gherardi M, Simpson TL. Ultrastructural study of the mature egg of the marine
630 sponge *Stellella grubii* (porifera demospongiae). *Molecular Reproduction and Development*. 1991;28(4):346–
631 350.

632 [66] Sciscioli LEGM M, Scalera Liaci L. Transfer of symbiotic bacteria in the mature oocyte of. *Geodia cydonium*
633 (Porifera, Demospongiae): an ultrastructural study. *Cah Biol mar*. 1994;35:471–478.

634 [67] Maldonado M. Embryonic development of verongid demosponges supports the independent acquisition of spon-
635 gin skeletons as an alternative to the siliceous skeleton of sponges. *Biological Journal of the Linnean Society*.
636 2009;97(2):427–447.

637 [68] Bowden SE, Drake JM. Ecology of multi-host pathogens of animals. *Nature Education Knowledge*. 2013;8:5.

638 [69] Dormann CF, Strauss R. A method for detecting modules in quantitative bipartite networks. *Methods in Ecology*
639 and Evolution

640 [70] Beckett SJ. Improved community detection in weighted bipartite networks. *R Soc Open Sci*. 2016;3(1):140536.

641 [71] Arenas LD, Díaz-Guilera A, Duch J, Alex. Comparing community structure identification. *Journal of Statistical*
642 *Mechanics: Theory and Experiment*. 2005;2005(09):P09008.

643 [72] Barber MJ. Modularity and community detection in bipartite networks. *Phys Rev E*. 2007;76:066102.

644 [73] Thébault E. Identifying compartments in presence-absence matrices and bipartite networks: insights into modu-
645 larity measures. *Journal of Biogeography*. 2012;40(4):759–768.

646 [74] Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, et al. Diversity, structure and
647 convergent evolution of the global sponge microbiome. *Nature Communications*. 2016;7.

648 [75] Reveillaud J, Maignien L, Murat Eren A, Huber JA, Apprill A, Sogin ML, et al. Host-specificity among abundant
649 and rare taxa in the sponge microbiome. *ISME J*. 2014;8(6):1198–1209.

650 [76] Blanquer A, Uriz MJ, Galand PE. Removing environmental sources of variation to gain insight on sym-
651 bionts vs. transient microbes in high and low microbial abundance sponges. *Environmental Microbiology*.
652 2013;15(11):3008–3019.

653 [77] Björk JR, Díez-Vives C, Coma R, Ribes M, Montoya JM. Specificity and temporal dynamics of complex bacteria-
654 sponge symbiotic interactions. *Ecology*. 2013;94(12):2781–2791.

655 [78] Björk JR, O’Hara RB, Ribes M, Coma R, Montoya JM. The dynamic core microbiome: Structure, dynamics and
656 stability. *bioRxiv*. 2018;.

657 [79] Roughgarden J. Holobiont Evolution: Model with Lineal vs. Collective Hologenome Inheritance. *bioRxiv*.
658 2018;.

659 [80] Fukami T. Historical contingency in community assembly : integrating niches, species pools, and priority effects.
660 *Annual Review of Ecology Evolution and Systematics*. 2015;46(July):1–23.

661 [81] Martínez I, Maldonado-Gómez MX, Gomes-Neto JC, Kittana H, Ding H, Schmaltz R, et al. Experimental
662 evaluation of the importance of colonization history in early-life gut microbiota assembly. *eLife*. 2018;7:e36521.

663 [82] Sprockett D, Fukami T, Relman DA. Role of priority effects in the early-life assembly of the gut microbiota.
664 *Nature Reviews Gastroenterology and Hepatology*. 2018;p. 1–9.

665 [83] Litvak Y, Bäumler AJ. The founder hypothesis: A basis for microbiota resistance, diversity in taxa carriage, and
666 colonization resistance against pathogens. *PLOS Pathogens*. 2019;15(2):1–6.

667 [84] Lindquist N. Palatability of invertebrate larvae to corals and sea anemones. *Marine Biology*. 1996;126(4):745–
668 755.

669 [85] Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial
670 community analysis on the Illumina HiSeq and MiSeq platforms. *The ISME Journal*. 2012;6(8):1621–1624.

671 [86] Gilbert JA, Jansson JK, Knight R. The Earth Microbiome project: successes and aspirations. *BMC Biology*.
672 2014;12(1):69.

673 [87] Team RC. R: A Language and Environment for Statistical Computing; 2016.

674 [88] Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High resolution sample
675 inference from Illumina amplicon data. *Nat Methods*. 2016;13(7):581–583.

676 [89] Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database
677 project: improved data processing and web-based tools. *Nucleic Acids Research*. 2013 Jan;41(D1):D590–D596.

678 [90] McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of
679 Microbiome Census Data. *PLOS ONE*. 2013;8(4):1–11.