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ABSTRACT: Executive function develops rapidly during adolescence, and failures of
executive function are associated with both risk-taking behaviors and psychopathology.
However, it remains relatively unknown how structural brain networks mature during this
critical period to facilitate energetically demanding transitions to activate the frontoparietal
system, which is critical for executive function. In a sample of 946 human youths (ages 8-
23 yr) who completed diffusion imaging as part of the Philadelphia Neurodevelopment
Cohort, we capitalized upon recent advances in network control theory in order to calculate
the control energy necessary to activate the frontoparietal system given the existing
structural network topology. We found that the control energy required to activate the
frontoparietal system declined with development. Moreover, we found that this control
energy pattern contains sufficient information to make accurate predictions about
individuals’ brain maturity. Finally, the control energy costs of the cingulate cortex were
negatively correlated with executive performance, and partially mediated the development
of executive performance with age. These results could not be explained by changes in
general network control properties or in network modularity. Taken together, our results
reveal a mechanism by which structural networks develop during adolescence to facilitate

the instantiation of activation states necessary for executive function.
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SIGNIFICANCE STATEMENT

Executive function undergoes protracted development during youth, but it is unknown
how structural brain networks mature to facilitate the activation of frontoparietal cortex
that is critical for executive processes. Here, we leverage recent advances in network
control theory to establish that structural brain networks evolve in adolescence to lower the
energetic cost of activating the frontoparietal system. Our results suggest a new
mechanistic framework for understanding how brain network maturation supports
cognition, with clear implications for disorders marked by executive dysfunction, such as

ADHD and psychosis.
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INTRODUCTION

Executive function is essential for a wide range of cognitive tasks, and is strongly
associated with both overall intelligence (1) and academic performance (2). Executive
function undergoes protracted maturation during adolescence (3, 4), and its development
is linked to the expansion of the cognitive and behavioral repertoire. Notably, executive
deficits are linked to both increased morbidity associated with risk-taking behaviors as well
as a wide range of neuropsychiatric disorders (5), such as attention deficit hyperactivity
disorder (ADHD) and psychosis (6, 7).

Prior studies have consistently established that executive function relies on activity in
a distributed network of frontoparietal regions, including the dorsolateral prefrontal cortex,
cingulate cortex, superior parietal cortex, and frontopolar cortex (8-12). Notably, both
functional (13-16) and structural (17, 18) connectivity among these regions undergoes
active remodeling during adolescence, with increased connectivity among executive
regions, and diminished connectivity between executive regions and other systems such as
the default mode network. As structural white matter networks are known to constrain both
intrinsic connectivity and patterns of task-related activation (19, 20), it is possible that
white matter networks develop during adolescence to facilitate dynamic transitions to
activate the frontoparietal system. However, research that seeks to relate developing white
matter networks to functional dynamics of executive function remains sparse.

Network control theory provides a powerful framework to address this gap in our
knowledge. Specifically, network control theory allows one to integrate information
regarding network topology and patterns of brain activation within one mathematical
model, in order to specify how theoretical neural dynamics are constrained by the structural
connectome (21). Such models assume that the activation state of the brain at a given time
is a linear function of the previous state, the underlying white matter network, and any
additional control energy injected into the system (22). From this paradigm, one can
identify regionally specific control points that are optimally situated within the network’s
topology to move the brain from one state to another (23-25). Network control theory thus
could provide an account of how brain network topology facilitates patterns of brain

activation. Previously, we have shown that the brain becomes more theoretically
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controllable during adolescence (18). While pivotal, that study considered only general
properties regarding the controllability of a brain network. Innovations in network control
theory (23, 24, 26) now allow one to describe how networks support transitions to specific
activation states, including those required for executive function. We hypothesized that
maturation of structural brain networks would allow for the target activation state of the
frontoparietal executive system to be reached at a lower energetic cost.

To test this hypothesis, we capitalized on a large sample of youth who completed
neuroimaging as part of the Philadelphia Neurodevelopmental Cohort (PNC) (27). We
examined how white matter networks (estimated using diffusion imaging) support the
transition to a frontoparietal system activation state. As described below, we demonstrate
that the energy required to reach this state declines with age, especially within the
frontoparietal control network. Furthermore, the whole-brain control energy pattern
contains sufficient information to make accurate predictions about individuals’ brain
maturity across development. Finally, participants with better performance on executive
tasks require less energetic cost in the bilateral cingulate cortex to reach this activation
target, and the energetic cost of this region mediates the development of executive
performance with age. Notably, these results could not be explained by individual
differences in network modularity or more general network control properties, and were
not present in alternative activation target states. Together, these results suggest that during
youth structural brain networks become optimized to minimize the energetic costs of

transitions to activation states necessary for executive function.


https://doi.org/10.1101/424929
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/424929; this version posted September 23, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

RESULTS
Network topology constrains the transition to a frontoparietal activation state

In this study, we included 946 youths aged 8-23 years who were imaged as part of the
PNC (Fig. S1). Structural white matter networks were reconstructed for each participant
from diffusion imaging data using probabilistic tractography and a standard parcellation of
232 regions. Based on each participant’s unique network topology, we estimated the
regional energetic cost required for the brain to transition from a baseline state to a
frontoparietal activation target state (23, 24, 26) (Fig. S2 & Fig. 1A). Formally, this
estimation was operationalized as a multi-point network control optimization problem,
where we aimed to identify the optimal trajectory between baseline and the frontoparietal
activation target state that minimizes both the energetic cost and the distance between the
final state and the target state.

Results of this dynamical systems model indicate that all participants arrived at the
desired target state. For each network node and cognitive system, we calculated the mean
control energy cost, which provides an indication of where energy must be injected into
the network to achieve the transition to the target state. The highest control energy was
observed in systems involved in executive function (Fig. 1B & 1C), including the
frontoparietal and ventral attention/cingulo-opercular systems (see Fig. S2) (28).

Based on recent evidence that network control properties depend appreciably on the
topological structure of the network (29), we next sought to demonstrate that the
topological structure of brain networks specifically facilitates this transition. We therefore
compared the energetic cost of this transition in empirical brain networks to the energetic
cost observed in null model networks. Specifically, we randomly permuted (100 times per
participant) the placement of edge weights, while preserving the network degree and
strength distribution. The mean whole brain energetic cost of the null networks was
significantly higher (= 180.08, p <2 x 10°'%) than that of the empirical networks (Fig. 1D),
indicating that structural brain networks are topologically optimized to reduce the energetic

costs of the transition to a frontoparietal activation state.
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Energetic costs of the transition to a frontoparietal activation state decline with
development

Having shown that the topology of structural brain networks facilitates transitions to a
frontoparietal activation state, we next investigated how the energetic costs of this
transition evolve in youth. We hypothesized that the energy required to make this transition
would decline as networks were remodeled in development. To test this hypothesis, we
used generalized additive models (GAM) with penalized splines to examine both linear
and nonlinear associations of control energy and age within a statistically rigorous
framework. Age associations with control energy were examined at multiple scales,
including the level of the whole brain, cognitive systems, and individual nodes. For all
analyses, we included sex, handedness, in-scanner head motion, total brain volume, and
total network strength as covariates. These analyses revealed that the whole-brain average
energetic cost of the transition to the frontoparietal activation state declined with age (P =
3.06 x 107) (Fig. 2A). Notably, analyses of cognitive systems indicated that age effects
were heterogeneously distributed (Fig. 2B), with the largest declines in control energy
occurring in frontoparietal (Prpr = 4.54 x 107; Fig. 2C), visual (Prpor = 5.71 x 107), and
somatomotor (Prpr = 2.70 x 10%) systems. In contrast, energetic costs within the limbic
(Prpr < 2 x 10716) and default mode (Prpr = 5.66 x 107) systems increased with age (see
Fig. S3). These system-level results aligned with analyses of individual network nodes; we
found that the control energy of 49 regions decreased significantly with age (Prpr < 0.05),
including regions in the frontoparietal control network, visual network, and somatomotor
network. Furthermore, the control energy significantly increased with development in 30
regions (Prpr < 0.05), which were mainly situated in limbic and default mode systems (Fig.

2D).

Specificity and sensitivity analyses provide convergent results

Having found strong associations between age and control energy, we next conducted
a series of four additional analyses to evaluate whether these results could be attributed to
other network properties. First, we evaluated whether age effects could be due to non-

topological network properties by evaluating the presence of age effects in null networks
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where degree and strength distributions were preserved. We found that the significance
level of age effects in null networks were smaller than those observed in the real network
(p < 0.01, 100 permutations), suggesting that the empirically measured developmental
effects were indeed driven by changes in the network topology (Fig. S4A). Second, we
determined whether these developmental effects were only associated with specific
activation target states. Notably, declines in control energy with age were more significant
(» =0.03, 100 permutations) than those observed when randomized activation target states
were used (Fig. S4B).

Third, we evaluated the specificity of these developmental effects by evaluating age
effects in the transition to an a priori motor system activation target (Fig. S2) (28). As the
age range of 8-23 years is a critical period in the development of executive function rather
than motor function, we expected weaker age effects in the motor system. We found that
the whole-brain control energy required to transition to the motor system activation did not
significantly change over the age range studied (P = 0.14, Fig. S4C). Fourth, we evaluated
whether our developmental results could be explained by other network properties known
to change with development, including modal controllability (18) or network modularity
(17). Notably, including these properties as model covariates did not alter our results (Fig.
S5). For example, average control energy of the whole-brain and frontoparietal system both
significantly declined with age after controlling for modal controllability (whole-brain: P
= 2.09 x 107; frontoparietal: Prpr < 2 x 1071%) as well as after controlling for network

modularity (whole-brain: P = 7.73 x 107; frontoparietal: Prpr = 6.46 x 107).

Patterns of control energy can predict brain maturity

Having established that control energy required to reach the frontoparietal activation
state changes with age on a regional and system-level basis, we asked whether the
multivariate pattern of control energy could be used to identify an individual participant’s
age in an unbiased fashion. To address this question, we used ridge regression with nested
two-fold cross validation (2F-CV, see Fig. S6). Specifically, we divided all subjects into
two subsets based on age (30, 31), with the first subset used as a training set and the second

subset used as a testing set. Within the training set, we used inner 2F-CV to select an
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optimal regularization parameter (1). Then, we trained a model using the training data and
predicted the brain maturity (i.e., ‘brain age’) of participants in the testing set (32, 33). The
significance of the model was evaluated using permutation testing, where the
correspondence between a subject’s brain network and their age was permuted uniformly
at random. This analysis revealed that the multivariate pattern of control energy could
accurately predict an unseen individual’s age with a high degree of accuracy (Fig. 3A and
Fig. STA & S7B): the correlation between the predicted ‘brain age’ and chronological age
was 0.62 (p < 0.001), while the mean absolute error (MAE) was 2.27 years (p < 0.001).
For completeness, we also repeated this procedure while reversing the training and test sets,
which yielded very similar results (» = 0.57, p < 0.001; MAE = 2.28, p < 0.001) (Fig. 3A
and Fig. S7C & S7D). When model weights were examined at the level of individual
network nodes, the regions that most contributed to the prediction of brain maturity aligned
with univariate analyses, and included the dorsolateral and ventrolateral prefrontal cortex,
the cingulate cortex, superior parietal cortex, and lateral temporal cortex (Fig. 3B). In order
to ensure that our initial split of the data was representative, we repeated this analysis with
100 random splits, which returned highly consistent results (mean » = 0.59, mean MAE =

2.27 years).

Declines in control energy mediate the development of executive function

Lastly, we investigated the cognitive implications of individual differences in control
energy. Specifically, we expected that participants with higher executive performance on
a standardized cognitive battery would require reduced control energy cost to activate the
frontoparietal system. In order to ensure that associations were present above and beyond
the observed developmental effects, we controlled for linear and nonlinear age effects in
addition to the other covariates described above. While we did not find effects at the whole-
brain or systems level, we did find that reduced control energy within two regions in the
frontoparietal control system -- the left and right middle cingulate cortex -- was associated
with higher executive function (Left: Prpr= 0.032; Right: Prpr= 0.002. Fig. 4A & 4B).

Having identified a significant relationship between control energy in the bilateral

middle cingulate cortex and both age and executive function, we conducted mediation
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analyses to investigate the extent to which control energy accounted for the association
between age and executive function. Using a bootstrapped mediation analysis while
adjusting for the covariates described above, we found that control energy in both the left
(B =0.03, p=0.001, 95% confidence interval = [0.01, 0.04]; Fig. 4C) and right middle
cingulate cortex (= 0.03, p < 0.001, 95% confidence interval = [0.02, 0.05]; Fig. 4D)

mediated the development of executive function with age.

DISCUSSION

Using a large sample of youths and a mechanistic model of brain network function, we
demonstrated that the control energy theoretically required to transition to a frontoparietal
activation state declines with age in youth. Furthermore, the multivariate pattern of the
whole-brain control energy predicted the brain maturity of unseen individual participants.
These results could not be explained by individual differences in network modularity or
other network control properties, and were not observed in analyses stipulating alternative
activation targets. Finally, we found that individuals who had higher executive function
required lower control energy in the bilateral middle cingulate cortex to activate the
frontoparietal system, and the control energy of this region partially mediated the
development of executive performance with age. These results suggest that maturation of

structural brain networks facilitates the emergence of executive dynamics in youth.

In this study, we used a model of multi-point control to understand the transition from a
baseline state to a target state where the frontoparietal system is activated. Building upon
prior work (23-26), this dynamical system was constrained by the brain’s structural
connectome. Across all participants (regardless of age), we found that the energetic cost of
this transition was far lower in real brain networks compared to null networks that
preserved basic properties such as degree and strength. This result extends prior work
demonstrating that the topology of a network has marked implications for its control
properties (25, 29). In the context of human cognition, the results suggest that brain
network topology is configured to support these energetically demanding transitions to

activation states required for executive function.
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We evaluated associations between control energy and age at multiple spatial and
topological scales, including the whole brain, cognitive systems, and individual network
nodes. We observed that the mean whole-brain control energy required to transition to the
frontoparietal activation state declines with development. This observation suggests that
white matter network topology is optimized during youth to facilitate energetically efficient
transitions to activation states that are necessary for executive function. Examination of
individual cognitive systems revealed that this decline in whole-brain energy was driven
by reduced energetic costs within the frontoparietal system. In particular, substantial
negative associations between age and control energy were observed in lateral prefrontal
cortex and middle cingulate cortex. These regions are responsible for preparation,
execution, monitoring and switching of tasks (i.e., working memory, attention, inhibitory
control, etc.) (8, 9, 11, 34). The reduced regional energetic cost suggests that structural
brain networks may mature to allow for neural events that occur in these regions to impact
the broad activation state of the entire network more efficiently, and more easily drive the
brain towards the frontoparietal activation state associated with demanding executive tasks

(15, 17, 35).

In contrast, the energetic cost of limbic regions and regions within the default mode system
increased with age. This localization of costs suggests that these regions become less able
to move the brain to a frontoparietal activation state as development progresses. This result
is consistent with previous studies using both structural and functional connectivity data,
which have shown that the frontoparietal system becomes more segregated from the default
mode during youth (14, 17), potentially allowing for functional specialization and reducing
interference. However, developmental changes in modularity do not explain our current
findings, as sensitivity analyses that included modularity quality as a covariate yielded

convergent results.

It should be noted that in prior work we demonstrated that another network control property
— modal controllability — increased with age (18). That previous study used a single-point
model of control, where modal control quantified the ability of a single brain region to

move the brain to any theoretically possible state (22). Here, we build upon those prior
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results and show that in the context of multi-point control, energetic costs to a specific
frontoparietal activation target state decline with age. By allowing for multi-point control
and stipulating a specific activation target, these results are both consistent with our prior
result and also more biologically interpretable. Importantly, we demonstrate that our
current results are not simply a result of increasing single-point modal controllability: when
modal controllability was included as a model covariate, our results remained unchanged.
Thus, our results cannot be easily explained by general control properties of the network

that are known to evolve in development.

Beyond single-point modal control and modularity, we also evaluated whether other
confounds or network properties could explain our developmental findings. Specifically,
we found that null networks that preserved other basic network properties (i.e., degree and
strength) did not show similar age effects. Analogously, we observed much stronger
declines in network control energy for the frontoparietal activation target than when
randomly shuffled activation targets were specified. However, while such shuffled
activation targets provide a useful null condition, they have limited biologic plausibility.
Accordingly, we also evaluated age effects using a somatomotor activation target
constructed using the same atlas as our frontoparietal target. Notably, no developmental
associations with control energy were seen with this somatomotor target. These results
accord with prior evidence indicating that motor development precedes executive
development, and is largely complete by late childhood or early adolescence (36).
Moreover, these results suggest that the observed developmental changes in control energy
may be specific for transitions to activation states recruiting higher-order cognitive systems,

which undergo protracted maturation.

Our main results regarding brain development (as well as the supplementary analyses
described above) used a mass-univariate analysis approach, where the association between
the control energy of each region was modeled separately. Complementary analyses sought
to identify distributed multivariate patterns, which could be used to predict the brain
maturity of unseen individuals. Such an approach is similar to prior studies that have used

structural (33, 37), functional (16, 32), or diffusion (38) based imaging to predict brain

12


https://doi.org/10.1101/424929
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/424929; this version posted September 23, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

development. Here, we used a rigorous split half validation framework with nested
parameter tuning. We found that the complex pattern of control energy could be used to
predict individual brain maturity with a relatively high degree of accuracy. The feature
weights from this multivariate model were generally consistent with findings from mass-
univariate analyses, underscoring the robustness of these results to the methodological
approach. With the ability to predict individuals’ brain maturity, control energy could have
potential to determine whether individuals display either precocity or delay in specific
dynamic aspects of brain maturation, which may be relevant to studying developmental

disorders and neuropsychiatric syndromes (32, 38).

Having established that control energy evolves significantly in youth, we evaluated
whether control energy has implications for individual differences in executive
performance. While controlling for age, we observed a significant negative correlation
between control energy of both the bilateral middle cingulate cortex and executive function
performance. The middle cingulate is a component of the frontoparietal control system (15,
28) and is critical for executive tasks such as performance monitoring, error detection, and
task switching (34, 39). This result suggests that individuals with better executive function
can transition to the frontoparietal activation state while making fewer demands on this
region. Critically, the control energy of the bilateral middle cingulate cortex mediated the

observed improvement of executive function with age.

Several limitations should be noted. First, all data presented here were cross-sectional,
which precludes inference regarding within-individual developmental effects. Ongoing
follow-up of the PNC will yield informative longitudinal data, as will other large-scale
studies such as the Adolescent Brain and Cognitive Development Study. Second, it should
be noted that probabilistic tractography methods remain limited in their ability to fully
resolve the complex white matter architecture of the human brain. However, these methods
are currently considered state-of-the-art, and may be superior to tensor-based tractography
in resolving crossing fibers (40). Third, we used a linear model of brain network dynamics,
which has been shown to be an appropriate approximation in past efforts (22, 25, 41).

However, future studies could expand upon this work and use more complex non-linear
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models (42). Finally, it should be noted that motion artifact is a major potential confound
for any study of brain development, and prior studies by our group and others have shown
that motion artifact can bias estimates of tractography and confound developmental
inference (43). However, to limit the impact of this confound, we conducted rigorous

quality assurance and included in-scanner motion as a covariate in all analyses.

These potential limitations notwithstanding, we demonstrated that the topological structure
of white matter networks is optimized during development to facilitate transitions to a
frontoparietal activation state. Moving forward, this framework may be useful for
understanding the developmental substrates of executive dysfunction in diverse psychiatric
disorders including psychosis and ADHD. Improved knowledge regarding both normal
network development and abnormalities associated with psychopathology is a prerequisite
for developing individualized interventions to alter disease trajectories and improve patient
outcomes. In the future, advances in non-invasive neuromodulatory therapies may allow
for targeted stimulation of specific brain regions that are optimally situated within the
brain’s control architecture to facilitate transitions to specific target states (44). Such
advances could potentially aid in the treatment of the wide range of neuropsychiatric

disorders marked by executive dysfunction (45).

MATERIALS AND METHODS

Farticipants and Assessments. All subjects or their parent/guardian provided informed
consent, and minors provided assent. The Institutional Review Boards of both Penn and
CHOP approved study procedures. Following exclusion of participants with major medical
disorders, missing data, or low-quality imaging data (see SI Methods), we included a

sample of 946 subjects aged 8-23 years (27).
Cognitive Assessment. All participants completed the Penn Computerized Neurocognitive

Battery (3). Accuracy and speed measures were summarized using factor analysis to yield

a performance efficiency score for executive function (46); see SI Methods for details.

14


https://doi.org/10.1101/424929
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/424929; this version posted September 23, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Image Acquisition and Preprocessing. All participants completed multi-modal
neuroimaging on the same scanner using the same sequences (27). Diffusion images were
pre-processed using standard procedures, and probabilistic tractography (40, 47) was used
to construct a structural connectivity matrix among 232 regions defined using a standard
surface-based structural parcellation (48-50). We treat this connectivity matrix as a
parsimonious encoding of a network model (51). Edge weights within this network were
defined as the connection probability between any pair of nodes (43, 52, 53). In contrast to
tensor-based deterministic approaches, probabilistic tractography allowed us to model up
to two crossing fibers per voxel, enhancing sensitivity to more complex white matter
architecture (40). As described previously (17), each network node was assigned to an a
priori network community using a commonly-used functional atlas (28). Details are

available in SI Methods.

Calculation of control energy. We calculated control energy using previously described
methods (23, 24, 26) and standard parameters (see SI Methods). Specifically, based on the
structural connectivity network of each subject, we evaluated the control energy of all brain
regions necessary to move each from a baseline state to a target state with activation of the

frontoparietal system. The control set included all regions in the parcellation.

Comparison to null model network. In order to determine whether the topology of brain
networks specifically facilitated transitions to the frontoparietal activation target state, we
compared the energetic cost to that of null model networks. Specifically, for each
participant we constructed 100 null model networks where the degree and strength
distribution was preserved (54). We compared the control energy cost of the transition to
the frontoparietal activation target state estimated from the empirical networks to the

average energy cost estimated in these null networks using a paired #-test.
Statistical analyses of developmental and cognition effects. Brain development is known

to be a nonlinear process. Accordingly, for our developmental analyses we used

generalized additive models (GAMs) in order to simultaneously model linear and nonlinear
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relationships with age using penalized splines (55). We evaluated associations between
control energy and age at multiple resolutions, including the whole brain, cognitive systems,
and network nodes. Similarly, we evaluated associations between control energy and
executive performance while controlling for age. Furthermore, for regions that displayed
both cognition and age associations, we evaluated whether regional control energy might
mediate the relationship between age and executive function using a boostrapped mediation
analysis (resampled 10,000 times). For all models, we included sex, handedness, total brain
volume, total network strength, and in-scanner head motion during the diffusion scan as
model covariates. Multiple comparisons were accounted for using the False Discovery Rate

(0<0.05).

Individualized prediction of brain maturity. As a complement to the mass-univariate
analyses described above, we also sought to predict individual brain maturity using the
multivariate pattern of control energy (32, 33, 38). We used ridge regression (31) with
nested two-fold cross validation (2F-CV). In this model, the outer 2F-CV was used for
testing and the inner 2F-CV was used for parameter selection (1) (Fig. S6). Specifically,
we divided the dataset into two subsets according to the age rank (30, 31), and we used one
subset as the training set and the other subset as the testing set. We regressed out the
covariates from each feature for the training set; these coefficients were then applied to the
testing set. We selected an optimal parameter A with an inner 2F-CV and then trained a
model including all training subjects using the acquired optimal A. This model was used
to predict individuals’ brain maturity (i.e., ‘brain age’) of the left-out testing set. This
procedure was repeated for each half of the split data. The correlation and mean absolute
error (MAE) between the predicted ‘brain age’ and chronological age was used to quantify
the degree to which the model captured the development trajectory of the brain. To verify
that the split of our data (based on age rank) was representative, we also repeated the

analysis described above using 100 random splits.

Specificity and sensitivity analysis. We conducted several additional supplementary

analyses to assess the sensitivity and specificity of our results. First, to ensure the observed
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associations with age were driven by the topological structure of real brain networks, we
tested whether age effects existed using null networks. Second, we tested whether the
observed age effects were specific to the frontoparietal target state, or were also present
using randomly shuffled target states. Third, we evaluated the developmental effects of
control energy with a motor activation target state to evaluate the specificity of our
observed age effects. Fourth, to ensure that observed associations were not simply
dependent on potentially related network properties, we re-examined associations with age
while considering modal controllability or overall network modularity as a covariate. See

SI for details.

Data & code availability. The PNC data is publicly available in the Database of Genotypes
and Phenotypes: accession
number: phs000607.v3.p2; https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study id=phs000607.v3.p2. All analysis code is available here:
https://github.com/ZaixuCui/pncControlEnergy, ~ with  detailed  explanation in
https://github.com/ZaixuCui/pncControlEnergy/wiki.
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Fig. 1. Schematic of the network control approach and the estimation of control energy. A)
From a baseline state, we calculated the control energy required to reach a frontoparietal
activation target state. This transition was calculated for each subject based on their
structural brain network, which was estimated using diffusion imaging based probabilistic
tractography. B) The average energetic costs to reach the frontoparietal activation target
state varied by cognitive system, with the largest energetic costs being present in the
frontoparietal control network and the ventral attention network. C) The regional control
energy required to reach the frontoparietal activation target. D) The control energy cost of
a transition to the frontoparietal activation target state was significantly lower in real brain
networks than in null model networks where the strength and degree distribution were

preserved.
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Fig. 2. Control energy evolves with age in youth. A) The mean whole-brain control energy
required to reach the frontoparietal activation target declined with age. B) Control energy
declines significantly with age in the frontoparietal, visual, somatomotor and subcortical
systems. In contrast, control energy increased in the ventral attention, default mode and
limbic systems. C) The control energy of the frontoparietal system declines significantly
with age. D) The age effect of control energy for each brain region. The color of the contour
of each brain region represents the cognitive system for each region (see Fig. S2). In the
scatterplots shown in panels A and C, data points represent each subject (n = 946), the bold
line indicates the best fit from a general additive model, and the shaded envelope denotes

the 95% confidence interval.
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Fig. 3. The whole-brain control energy pattern contains sufficient information to accurately
predict brain maturity in unseen individuals. A) The predicted brain maturity index was
significantly related to the chronological age in a multivariate ridge regression model that
used 2-fold cross validation (2F-CV) with nested parameter tuning. The group of all
subjects was divided into two subsets according to age rank; all models were trained using
a completely independent sample of the data. The blue color represents the best-fit line
between the actual score of the first subset of subjects and their scores predicted by the
model trained using the second subset of subjects. The green color represents the best-fit
line between the actual score of the second subset of subjects and their scores predicted by
the model trained using the first subset of subjects. B) Regions with the highest contribution
to the multivariate model aligned with mass-univariate analyses and included frontal,

parietal, and temporal regions.
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Fig. 4. Reduced control energy in both the A) left and B) right mid-cingulate cortex is

associated with higher executive performance. Data points represent each subject (n =944),

the bold line indicates the best linear fit, and the shaded envelope denotes the 95%

confidence interval. The yellow color indicates that the two regions belong to the

frontoparietal system (Fig. S2). The control energy of both C) left and D) right mid-

cingulate cortex partially mediates the improvement of executive function with age.

Significance of mediation effect was assessed using bootstrapped confidence intervals.
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Supplementary Information Text

MATERIALS AND METHODS

Participants

Overall, 1,601 participants were enrolled. However, 340 subjects were excluded owing to
clinical factors including medical disorders that could affect brain function, current use of
psychoactive medications, prior inpatient psychiatric treatment, or an incidentally
encountered structural brain abnormality. Among the 1,261 subjects eligible for
inclusion, 54 subjects were excluded for a low quality T1-weighted image or errors in the
FreeSurfer reconstruction. Of the remaining 1,207 subjects with a usable T1 image, 128
subjects were excluded because of the lack of a complete diffusion scan. Of the 1,079
subjects with complete diffusion data, 110 subjects failed quality assurance as part a
rigorous quality assurance protocol for diffusion MRI (1). Additionally, 20 subjects were
excluded because they had no field map for distortion correction. Finally, of the
remaining 949 subjects, 3 subjects were excluded due to incomplete image coverage
during brain parcellation, yielding a final sample of 946 participants (Fig. S1).

Cognitive assessment

The Penn computerized neurocognitive battery (Penn CNB) was administered to all
participants during a separate session from neuroimaging. The CNB consists of 14 tests
adapted from tasks applied in functional neuroimaging to evaluate a broad range of
cognitive domains (2). These domains include executive control (abstraction and mental
flexibility, attention, working memory), episodic memory (verbal, facial, spatial),
complex cognition (verbal reasoning, nonverbal reasoning, spatial processing), social
cognition (emotion identification, emotion differentiation, age differentiation) and
sensorimotor and motor speed. Accuracy and speed for each test were z-transformed and
summarized into an efficiency score. A factor analysis was used to summarize these
efficiency scores into four factors (3), including executive function, complex reasoning,
memory, and social cognition. Here, we focused on the executive function factor score.
Of the sample of 946 participants with complete imaging data that passed quality
assurance, two participants had incomplete cognitive data. Accordingly, 944 participants
were used in the analysis examining the association between cognition and control
energy.

Image acquisition

As previously described (4), all MRI scans were acquired on the same 3T Siemens Tim
Trio whole-body scanner and 32-channel head coil at the Hospital of the University of
Pennsylvania.

Structural MRI

Prior to dMRI acquisitions, a 5-minute magnetization-prepared, rapid acquisition
gradient-echo T1-weighted (MPRAGE) image (TR = 1810ms; TE = 3.51ms; FOV =
180x240mm?, matrix = 192x256, effective voxel resolution = 0.9x0.9x1 mm?) was
acquired. This high-resolution structural image was used for tissue segmentation and
parcellating gray matter into anatomically defined regions in native space.

Diffusion MRI
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dMRI scans were acquired using a twice-refocused spin-echo (TRSE) single-shot
echo-planar imaging (EPI) sequence (TR = 8100ms; TE = 82ms; FOV =
240mm?/240mm?; Matrix = RL:128, AP:128; Slices: 70, in-plane resolution (x and y)
1.875 mm?; slice thickness = 2mm, gap = 0; flip angle = 90/180/180; volumes = 71;
GRAPPA factor = 3; bandwidth = 2170Hz/pixel; PE direction = AP). This sequence used
a four-lobed diffusion encoding gradient scheme combined with a 90-180-180 spin-echo
sequence designed to minimize eddy-current artifacts. For dMRI acquisition, a
64-direction set was divided into two independent 32-direction imaging runs in order to
ensure that the scan duration was more tolerable for young subjects. Each 32-direction
sub-set was chosen to be maximally independent such that they separately sampled the
surface of a sphere (5). The complete sequence consisted of 64 diffusion-weighted
directions with b=1000s/mm? and 7 interspersed scans where b=0 s/mm?. The total
duration of dMRI scans was approximately 11 min. The imaging volume was prescribed
in axial orientation covering the entire cerebrum with the topmost slice just superior to
the apex of the brain (4).

Field map

In addition, a BO field map was derived for application of distortion correction
procedures, using following the double-echo, gradient-recalled echo (GRE) sequence: TR
= 1000ms; TE1 = 2.69ms; TE2 = 5.27ms; 44 slices; slice thickness/gap = 4/0 mm; FOV =
240 mm,; effective voxel resolution = 3.8%3.8x4 mm.

Scanning procedure

Before scanning, to acclimate subjects to the MRI environment, a mock scanning session
where subjects practiced the task was conducted using a decommissioned MRI scanner
and head coil. Mock scanning was accompanied by acoustic recordings of the noise
produced by gradient coils for each scanning pulse sequence. During these sessions,
feedback regarding head movement was provided using the MoTrack motion tracking
system (Psychology Software Tools). Motion feedback was given only during the mock
scanning session. To further minimize motion, before data acquisition, subjects’ heads
were stabilized in the head coil using one foam pad over each ear and a third over the top
of the head.

Image processing

Structural image processing and network node definition

The structural image was processed using FreeSurfer (version 5.3) (6), and cortical and
subcortical gray matter was parcellated in native structural space according to the
Lausanne atlas (7), which includes whole-brain sub-divisions of the Desikan-Killany
anatomical atlas (8) at multiple spatial scales. The acquired 233-region gray matter
parcellation of each subject was dilated by 2mm and then masked by the boundary of
each subject’s white matter segmentation (9). Once defined for each subject, the
structural parcellation atlas was co-registered to the first b=0 volume of each subject’s
diffusion image using boundary-based registration (10). These parcels were then used as
nodes for brain network construction. The left lateral occipital parcel was missing in 18
subjects and therefore was removed from analyses, yielding 232 brain regions that were
present in all participants.

Diffusion image pre-processing
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FSL was used for diffusion data processing (11, 12). The two consecutive 32-direction
acquisitions were merged into a single 64-direction time series. In-scanner head motion
and the total network strength were used as covariates in this study. Specifically,
in-scanner head motion was measured by the mean relative volume-to-volume
displacement between the higher SNR b=0 images (n=7), which summarizes the total
translation and rotation in 3-dimensional Euclidean space (1, 9). A mask in subject
diffusion space was defined by registering a binary mask of a standard fractional
anisotropy (FA) map (FMRIB58 FA) to each subject’s dMRI reference image (mean
b=0) using FSL FLIRT. This mask was provided as input to FSL eddy in addition to the
non-brain extracted dMRI image. Eddy currents and subject motion were estimated and
corrected using the FSL eddy tool (version 5.0.5: Andersson and Sotiropoulos (13)). This
procedure uses a Gaussian Process to simultaneously model the effects of eddy currents
and head motion on diffusion-weighted volumes, resampling the data only once.
Diffusion gradient vectors were also rotated to adjust for subject motion estimated by
eddy (14). After the field map was estimated, distortion correction was then applied to
dMRI images using FSL’s FUGUE utility.

Probabilistic tractography and network construction

We first fitted a ball-and-sticks diffusion model for each subject’s dMRI data with FSL
bedpostx, which uses Markov chain Monte Carlo sampling to build distributions on
principal fiber orientation and diffusion parameters at each voxel (15). In contrast to
tensor-based approaches, this method allowed us to model up to two crossing fibers per
voxel, enhancing sensitivity to more complex white matter architecture. Probabilistic
tractography was run using FSL probtrackx, which repetitively samples voxel-wise fiber
orientation distributions to model the spatial trajectory and strength of anatomical
connectivity between specified seed and target regions (15).

Each cortical and subcortical region defined along the gray-white boundary was selected
as a seed region, and its connectivity strength to each of the other 231 regions was
calculated using probabilistic tractography. At each seed voxel, 1,000 samples were
initiated. We used the default tracking parameters (a step-length of 0.5 mm, 2,000 steps
maximum, curvature threshold of 0.02). To increase the biological plausibility of white
matter pathways reconstructed with probabilistic tractography, streamlines were
terminated if they traveled through the pial surface, and discarded if they traversed
cerebro-spinal fluid (CSF) in ventricles or re-entered the seed region (9). The connection
probability from the seed voxel i to another voxel j was defined by the number of fibers
passing through voxel j divided by the total number of fibers that were not rejected by
exclusion criteria sampled from voxel i. For a seed cortical region, 1,000x#n fibers were
sampled (1,000 fibers per voxel), where n is the number of voxels in this region. The
number of fibers passing through a given region divided by 1,000x# is calculated as the
connectivity probability from the seed region to this given region. Therefore, a 232%232
connection probability matrix was created for each subject. Notably, the probability from
region i to region j is not necessarily equivalent to the one from region j to region i due to
the dependence of tractography on the seeding location. Thus, we defined the
unidirectional connectivity probability P; between region i and region j by averaging
these two probabilities (9, 16).
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Defining a priori network modules

Each of the 232 nodes in our network was assigned to a standard set of 7 functional
systems originally defined by Yeo, ef al. (17) in a whole-brain clustering analysis. To
make this assignment, we calculated the purity index for the 7-system parcellation and
brain regions from the Lausanne 232 parcellation atlas as in prior work (18). This
measure quantifies the maximum overlap of cortical Lausanne labels and functional
systems defined by Yeo, et al. (17). Each cortical Lausanne label was assigned to a
functional system by calculating the non-zero mode of all voxels in each brain region
(Fig. S2). Subcortical regions were assigned to an eighth, subcortical module.

Control analysis
We investigated how a structural brain network composed of white matter fiber tracts
constrains the brain in transitioning from a baseline state (i.e., 1%232 zero vector) to a
frontoparietal activation state, which was defined as regions in the frontoparietal system
that had activity magnitude equal to 1 while other regions had activity magnitude equal to
0. According to previous studies (19-22), we employed a simplified noise-free linear
continuous-time and time-invariant network model:

x(t) = Ax(t) + Bu(t). [1]
Here, x(2) is a 1xN vector that represents the brain state at a given time, where N is the
number of ROIs (N = 232). The initial sate x(0) is a 1x232 zero vector, and the target
state x7 is a 1x232 vector of frontoparietal activation. The matrix A encodes the
connection probability weighted network, where A has been scaled by its largest
eigenvalue and had the identity matrix subtracted to assure that it is stable (19, 20, 22).
The matrix B is a NxN input matrix that identifies the nodes in the control set. Here, B is
an identity matrix because all 232 regions in the whole brain were control nodes. The
input u(2) denotes the control energy injected for each node at a given time.

We were interested in a control task where the system transitions from initial state x(0) to
target state x7 with minimum-energy input, which is an optimal control problem. We first
defined a cost function as the weighted sum of the energy cost of the transition and the
integrated squared distance between the transition states and the target state.

min [} (xy — 2(£))TSCer = x(8)) + pu(OTu(t)de, [2]

s.t. x(t) = Ax(t) + Bu(t),x(0) = xg,and x(T) = x,

where x7 is the target state, (x; — x(t))7(xy — x(t)) is the distance between the state at
time ¢ and the target state xr, T is a free parameter that defines the finite amount of time
given to reach the target state, and p is a free parameter that weights the energy
constraint. Because the time of each step was defined as 0.001, there were 1,000 steps
from initial to target state if we set T=1. S is 0-1 diagonal matrix of size NxN that selects
only the nodes that we wish to control. Here, we only constrain the activity of the
frontoparietal system. Specially, (x; — x(t))"S(x; — x(t)) constrains the trajectories of
all nodes by preventing the system from traveling too far from the target state, and
u(t)Tu(t) constrains the amount of energy used to reach the target state.

To compute an optimal u* that induces a transition from the initial state x(0) to the target
state x7, we define a Hamiltonian as:
H(p,x,u,t) = (xp —x)'S(x; —x) + puTu + p(Ax + Bu). [3]


https://doi.org/10.1101/424929
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/424929; this version posted September 23, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

From the Pontryagin minimum principle (23), if #* is a solution to the minimization
problem with corresponding trajectory x*, then there exists p* such that:

6 * * "%
== 28y —x") +ATp = —p* [4]
Z—Z =2pu*+ B'p* =0 . [5]
From [5] and [1], we derive that
* __ _i T ., %
w=-1Bp [6]
X* = Ax* — %BBTp*. [7]
Then, we rewrite equations [4] and [7] as
. I R
O .
I U L
We denote:
1
~ A ——BBT
A= 2p )
—28 —AT
- x*]
X=1 .|
OP
Then, equation [8] can be reduced as:
X =A% + b,
Which can be solved as:
() = e2%(0) + A" 1(eA = Db . [9]
Then, by fixing t=T, we rewrote [9] as
%(T) = eAT%(0) + A~ (" — I)b. [10]
Let
c=A"1(eAT —1)b,
o AT — [En E12]'
E;y Ep

We can then rewrite [10] as: . . . © ]
X X
ol =l eillol e

x*(T) = E11x(0) + E12p™(0) + ¢4,
which can be rearranged to

p*(0) = Ex[x*(T) — E11x*(0) — c4].
Now that we have obtained p*(0), we can use it and x(0) to solve for X via forward
integration according to Equation [9]. To solve for u*, we take p* from our solution of X
and plug it into Equation [6].

from which we can obtain

To quantify differences in trajectories, and the ease of controlling the system, we
calculated a single measure of energy for every trajectory. Particularly, the energy of
each control node i was defined as:
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Prediction of brain maturity from the pattern of control energy

Ridge regression

A linear regression model was adopted to predict brain maturity using the pattern of
whole-brain control energy. The linear model can be formalized as follows:

P
Yi = Z Bixi; + Bo,
=1

where y; is the age of the i individual, p is the number of features, x;; is the value of the
j™ feature of the i subject, and f; is the regression coefficient.

To avoid over-fitting and to improve the prediction accuracy, we applied ridge regression
(24-26), which used an L2 penalty during model fitting. The objective function is:

N p
min ;(f(xi) —y)? + A;Hﬁjllz-

This technique shrinks the regression coefficients, resulting in better generalizability for
predicting unseen samples. In this algorithm, a regularization parameter A is used to
control the trade-off between the prediction error of the training data and L2-norm
regularization, i.e., a trade-off of penalties between the training error and model
complexity. A large A corresponds to a greater penalty on model complexity, and a
small A represents a greater penalty on training error. Compared with the traditional
ordinary least squares regression, ridge regression is less impacted by multicollinearity
and can avoid over-fitting (26).

Prediction framework

See Fig. S6 for the schematic overview of the prediction framework. Specifically, we
applied a nested 2-fold cross validation (2F-CV), with outer 2F-CV estimating the
generalizability of the model and the inner 2F-CV determining the optimal parameter A
for the ridge regression model.

Outer 2F-CV: In the outer 2F-CV, all subjects were divided into 2 subsets. Specifically,
we sorted the subjects according to their age and then assigned the individuals with an
odd rank to subset 1 and the individuals with an even rank to subset 2 (26, 27). We first
used subset 1 as a training set, and we used subset 2 as a testing set. We regressed out all
covariates (i.e., sex, handedness, total brain volume, total network strength, and
in-scanner head motion) from each brain feature (i.e., control energy of one brain region)
for the training set, and the resulting coefficients were used to regress out the covariates
for subjects in the testing set. Each feature was linearly scaled between zero and one
across the training dataset, and the scaling parameters were also applied to scale the
testing dataset (26, 27). We applied an inner 2-fold cross validation (2F-CV) within
training set to select the optimal A parameter. Based on the optimal A, we trained a
model using all subjects in the training set, and then used that model to predict the age of
all subjects in the testing set. Analogously, we used subset 2 as a training set and subset 1

7
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as a testing set, and repeated the above procedure. Across the testing subjects for each
fold, the correlation and mean absolute error (MAE) between the predicted and actual age
was used to quantify the prediction accuracy. Here, we used the scikit-learn library to
implement ridge regression (http://scikit-learn.org) (28).

Inner 2F-CV: Within each loop of the outer 2F-CV, we applied inner 2F-CVs to
determine the optimal A. Specially, the training set for each loop of the outer 2F-CV was
further partitioned into 2 subsets according to their rank of the age, as like the outer loop
(i.e., subjects with odd rank in subset 1 and subjects with even rank in subset 2). One
subset was selected to train the model under a given A in the range [271°, 2, ..., 24, 2]
(i.e., 16 values in total) (26), and the remaining subset was used to test the model. This
procedure was repeated 2 times such that each subset was used once as the testing
dataset, resulting in 2 inner 2F-CV loops in total. For each inner 2F-CV loop, the
correlation 7 between the actual and predicted age and the mean absolute error (MAE)
were calculated for each A, and averaged over each fold. The sum of the mean
correlation 7 and reciprocal of the mean MAE was defined as the inner prediction
accuracy, and the A with the highest inner prediction accuracy was chosen as the optimal
A (26, 27). Of note, the mean correlation r and the reciprocal of the mean MAE cannot
be summed directly, because the scales of the raw values of these two measures are quite
different. Therefore, we normalized the mean correlation r and the reciprocal of the mean
MAE across all values and then summed the resultant normalized values.

Randomly split 2F-CV: In the above prediction analysis, we split subjects into two halves
according to their age rank. For completeness, we also split the subjects randomly into
two halves for both outer 2F-CV and inner 2F-CV, and calculated the mean correlation r
and MAE across two folds. Because the split is random, we repeated this procedure 100
times and averaged the correlation and MAE across the 100 times to acquire the final
prediction accuracy.

Specificity and sensitivity analysis

Controlling for modal controllability

The present work explored a specific transition of the brain from a baseline state to a state
of frontoparietal activation state by enacting multi-point control. In contrast, modal
controllability quantifies the difficulties of transitioning to all possible states via
single-node control (29). Modal controllability identifies brain areas that can push the
brain into difficult-to-reach states; our prior work has shown that modal control increases
with age in youth (30). Accordingly, it is important to establish whether our present
results were driven by developmental changes in modal controllability. As in Tang, et al.
(30), before calculating controllability, we scaled the matrix by 1+¢,, where &, is the
largest eigenvalue value of the matrix. Next, we conducted sensitivity analyses where we
controlled for modal controllability by including it as a covariate in the regression
equation at each resolution of analysis (e.g., whole brain, functional system, network
nodes).

Controlling for overall network modularity

Given that structural brain networks are modular, and modularity changes with age (31),
it is important to evaluate if observed developmental associations with control energy
might be driven by changes in network modularity. We calculated network modularity
quality (Q) using the community structure defined by the functional atlas (17). See Baum,
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et al. (18) for the details of the calculation of QOye,, where we have shown that Oy., was
highly similar to the network modules identified using data-driven community detection
procedures (32, 33). We scaled the matrix by the maximum eigenvalue before calculating
0, as the matrix was scaled when calculating the energy. We do not subtract the identity
matrix because it would lead to (uninterpretable) negative values of Q. Finally, we
controlled for Q by including it as a model covariate in sensitivity analyses, which were
conducted at all resolutions (whole brain, functional systems, and network nodes).
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Fig. S1. Sample construction. The cross-sectional sample of the Philadelphia
Neurodevelopmental Cohort (PNC) has 1601 participants in total. 340 subjects were
excluded owing to clinical factors, such as medical disorders. Then, 312 subjects were
excluded because of low quality of T1 or diffusion data, incomplete diffusion data,
lacking of field map. Finally, 3 subjects were excluded due to incomplete image coverage
during brain parcellation. The final sample consisted of the remaining 946 subjects.
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Fig. S2. Functional brain networks defined by (17). Each parcel was mapped to one of
these networks.
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Fig. S3. Scatter plots of significant age effects of control energy at the system scale. The
control energy of visual, somatomotor, and subcortical systems decline significantly with
age, while that of ventral attention, limbic and default mode systems increase
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significantly with age. Data points represent each subject (n = 946), the bold line
indicates the best fit from a general additive model, and the shaded envelope denotes the
95% confidence interval.
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Fig. S4. Specificity and sensitivity analyses provide convergent results. A) The
distribution of the age effect of average control energy of whole-brain and frontoparietal
systems when using null model networks, which preserve the degree and strength
distribution. The red arrow indicates the actual age effect estimated using the data from
the real brain network. B) The distribution of the age effect of control energy when the
activation target states were shuffled uniformly at random. The red arrow indicates the
actual age effect with the real target state. C) The control energy required to reach a
motor activation state did not change over the age range studied.
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Fig. S5. Age effects at the whole-brain, cognitive system, and nodal level are maintained
after controlling for the A) modal controllability and for the B) network modularity.
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Fig. S6. Schematic overview of one outer loop of the nested 2-fold cross-validation
(2F-CV) prediction framework. All subjects were divided into 2 halves according to age
rank, with the first half used as a training set and the second half used as a testing set. We
regressed out covariates from each brain feature in the training set, and the resulting
coefficients were used to regress out the covariates for subjects in the testing set. Each
feature was linearly scaled between zero and one across the training dataset, and the
scaling parameters were also applied to scale the testing dataset. An inner 2F-CV was
applied within training set to select the optimal A parameter. Based on the optimal A,
we trained a model using all subjects in the training set, and then used that model to
predict the age of all subjects in the testing set.
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Fig. S7. The histograms of the permutation distribution of the A) correlation » and B)
MAE with the first subset used as a training set and the second subset used as a testing
set, and C) correlation » and D) MAE with the first subset used as the testing set and the
second subset used as training set. The red arrow represents the actual prediction
accuracy (i.e., # or MAE). The actual correlation » was significantly higher than expected
by chance (p<0.001) and the actual MAE was significantly lower than expected by
chance (p<0.001).
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