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24  Abstract

25  Schizophrenia patients are known to have profound deficits in visual working
26 memory (VWM), and almost all previous studies attribute the deficits to decreased
27  memory capacity. This account, however, ignores the potential contributions of
28  other VWM components (e.g., memory precision). Here, we measure the VWM
29  performance of 60 schizophrenia and 61 healthy control subjects. Moreover, we
30 thoroughly evaluate several established computational models of VWM to compare
31  the performance of the two groups. Surprisingly, none of the models reveal group
32  differences in memory capacity and memory resources. We find that the model
33  assuming variable precision across items and trials is the best model to explain the
34  performance of both groups. According to the variable-precision model,
35 schizophrenia subjects exhibit abnormally larger variability of allocating memory
36 resources rather than resources or capacity per se. These results challenge the
37  widely accepted decreased-capacity theory and propose a new perspective on the
38  diagnosis and rehabilitation of schizophrenia.

39

40  Keywords: Schizophrenia, Visual working memory, Memory precision, Memory
41  capacity, Bayesian inference, Perceptual variability

42

43

44


https://doi.org/10.1101/424523
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/424523; this version posted August 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

45 Introduction

46  Schizophrenia is a severe mental disorder accompanied by a range of dysfunctions
47  in perceptual and cognitive behavior, among which working memory deficit is
48  considered as a core feature '*. Working memory refers to the ability to temporally
49  store and manipulate information in order to guide appropriate behavior, and it has
50  been shown to link with a broad range of other brain functions, including perception,

51  attention, problem-solving and executive control 8

. Dysfunctions in working
52 memory therefore might cascade into multiple mental processes, causing a wide
53  spectrum of negative consequences >3,

54 A well-established finding in lab-based experiments is that people with
55  schizophrenia (SZ) exhibit worse performance than healthy control (HC) in visual
56  working memory (VWM) tasks 2. This phenomenon has long been attributed to
57  decreased VWM capacity in SZ >!%!1, This theory was supported by previous
58  studies using various VWM or other WM tasks, including the ‘span’ tasks (e.g.,
59  digit span, spatial span, verbal span) '>!3, the N-back task '4'6, the delayed-
60 response task "1, the change detection task 2°4, and the delay-estimation task 2°-
61  27. Despite the considerable differences across tasks, almost all previous studies
62 converged to the same conclusion that decreased-capacity is the major cause of the
63 VWM deficits in SZ.

64 Besides capacity, in the basic research of VWM, people have increasingly
65 recognized memory precision as another pivotal determinant of VWM performance
66 2% Precision reflects the amount of memory resources assigned to individual
67 items—a larger amount of resources leads to higher memory precision. At the
68 neural level, low perceptual precision might arise from either the intrinsic noise in

29-31

69 neural processing or the fluctuations of cognitive factors (e.g., arousal,

70  attention) 332

. Atypically increased variability in both behavioral and neural
71 responses has been discovered in patients with mental diseases such as autism
72 spectrum disorder ¥4, dyslexia ¥, and attention-deficit/hyperactivity disorder 3°.
73 These theoretical and empirical studies raise the possibility that SZ and HC might
74  differ in memory precision rather than capacity— that is, these two groups might be

75 able to remember an equal number of items (i.e., comparable capacity) but SZ
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76  generally process and maintain items in a less precise manner. Only a few studies
77  have attempted to simultaneously quantify memory capacity and precision in
78  schizophrenic or schizotypy subjects, and the results are not consensus 232°,

79 Despite the confound of the possible cause in different VWM components, it is
80 unclear whether SZ and HC employ the same computational strategies (i.e.,
81  observer model) in VWM. Most prior studies only used one model and implicitly
82  assumed the model was the best one for both SZ and HC. But without systematic
83 model comparisons model optimality cannot be firmly warranted, and endowed
84  results might be biased by the choice of a particular model. Given that several
85 influential models have been proposed to explain the VWM behavior in normal
86  subjects 28, it remains unclear which one is the best for SZ. If the best model for SZ
87  differs from the one for HC, it indicates that the two groups use qualitatively
88  different computational strategies to complete behavioral tasks. If SZ and HC share
89  the same best model, it indicates that they use the same strategy but quantitatively
90 different parameters. These possibilities, however, have yet been thoroughly tested.
91 In the present study, we aim to systematically disentangle the impact of
92 memory capacity and precision, as well as other factors (i.e., variability in
93 allocating resources and variability in choice) in SZ. In this study, the performance
94 of SZ and demographically matched HC was measured in a standard VWM
95 delayed-estimation task (Fig. 1). Using a standard task allows us to compare our
96  results to that from previous studies 2374, Most importantly, in contrast to most
97  prior studies, we evaluated and compared almost all mainstream computational
98 models in visual working memory research. This approach allows us to take an
99  unbiased perspective and search a large space of both models and parameters. We
100  believe that a well-controlled task and thorough computational modeling will shed
101 new light on the mechanisms of VWM deficits associated with schizophrenia.

102
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104 Figure 1. Color delay-estimation task. This figure depicts an example trial (i.e.,
105 set size = 3) of the color delay-estimation task. Subjects are instructed to first
106 memorize the colors of all squares on the screen, and after a 900ms delay
107 choose the color of the probed square (the one in the left lower visual field in
108 this example) on a color wheel. Response error is the difference between the
109 reported color and the real color of the probe in the standard color space.

110
111 Results

112 Worse VWM performance in SZ

113 We first look at the histograms of raw response errors (the circular distance between
114 the original color and the chosen color, Fig. 2A). The circular standard deviation
115  (CSD) of the response errors was calculated to indicate VWM performance. A
116  repeated-measure ANOVA was performed with CSD as the dependent variable, set
117 size (1/3) as the within-subject variable, group as the between-subject variable (Fig.
118  2B). As demonstrated by previous studies, VWM performance was worse when set
119  size was higher (F(1,119) = 641,703, p < 0.001, partial n> = 0.844), and
120  unsurprisingly, HC performed significantly better than SZ (F(1,119) = 13.651, p <
121 0.001, partial n? = 0.103) did. The interaction between set size and group was not
122 significant (F(1,119) = 0.229, p = 0.633, partial n? = 0.002), indicating that set size
123 equally affected the performance in both groups. Taken together, we replicated the
124  widely documented VWM deficits in SZ.
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126 Figure 2. Visual working memory performance in SZ and HC. 4. Histograms
127 of circular response errors under set size 1 and 3 for both groups. B. Circular
128 standard deviations of response errors corresponding to Panel A. SZ show
129 higher CSDs (i.e., worse performance) than HC. All error bars represent SEM
130 across subjects.

131

132 Variable-precision model accounts for VWM behavior in both HC and
133 SZ

134  To systematically compare the VWM performance of SZ and HZ, we evaluated
135  almost all mainstream computational models of VWM. We provide some brief
136  introductions here, and readers may consider to skip the following paragraph to
137  directly reach the after results or go to Supplementary Notes 1&2 for detailed
138  mathematical and intuitive explanations of the models, depending on the reading
139  preference.

140 The first one is the item-limit (IL) model. The IL model assumes no

141 uncertainty in the sensory encoding stage, and that each subject has a fixed memory
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142 capacity and a fixed response variability across set size levels *!. The second one is
143 the mixture (MIX) model, similar to the IL model but assuming response variability
144 s set-size dependent 2>2°, Compared with the MIX model, the slots-plus-averaging
145  (SA) model 37 further elaborates the idea that memory resources manifest as
146  discrete chunks, and these chunks can be flexibly assigned to multiple items. We
147  also explored a modified version of the SA model, dubbed cosSA model, which
148  inherits the idea of discrete memory resources and further assumes that response
149  bias is stimulus-dependent and can be described as empirically derived periodic
150  functions. The fifth one is the equal-precision (EP) model, which is similar to the
151  variable-precision (VP) model below but assumes that the memory resources are

152  evenly distributed across items and trials >43

. The VP model proposes that memory
153  resources are continuous, and the amount of resource assigned to individual items
154  varies across items and trials. Note that the VP model does not include the capacity
155  component thus we also constructed a variable-precision-with-capacity (VPcap)
156  model that not only acknowledges the variable precision mechanisms and but also
157  explicitly estimates the capacity of individual subjects. Note that the IL, MIX, SA
158  and cosSA, and VPcap models have the parameter of capacity, and the EP and VP
159  models do not. Here, capacity is operationally defined as the maximum number of
160  items that can be stored in memory. Some items are out of memory if set size

161  exceeds capacity, and the subject has to randomly guess the color if one of these

162  items is probed.
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164 Figure 3. Model comparison results. We compared seven models in each
165 subject. The pie charts illustrate the proportion of subjects for whom each
166 model is their best-fitting model. The VP model is the best-fitting model for
167 over 84% of subjects in both groups and under both AIC and BIC metrics. This
168 result indicates both groups share a qualitatively similar internal process of
169 VWM.
170
171 We compared all seven models using the Akaike information criterion (AIC)

172 and the Bayesian information criterion (BIC) 4. We found that (Fig. 3), among all
173 models, the VP model was the best-fitting model for over 84% of subjects in the
174 HC group under both metrics, replicating previous results in normal subjects 447,
175  Most importantly, the VP model (Fig. 4) was also the best-fitting model for over 90%
176  of subjects in the SZ group. This result indicates that both groups use the same
177  observer model to perform the task.

178
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180 Figure 4. Variable-precision model of VWM. A. Resource decay function.
181 The VP model assumes that the mean resource (J) for processing a single item
182 declines as a power function of set size N, a trend characterized by two free
183 parameters—initial resources (J;) and decaying exponent (a). B. The resources
184 across items or trials follow a gamma distribution with the mean resource (J;)
185 determined by the resource decay function (panel A) and the resource
186 allocation variability (7). Larger amounts of resources (J) indicate higher
187 precision and therefore generate narrower von Mises distributions (three small
188 axes indicating the precision equals to 5, 10 and 15 respectively) of stimulus
189 measurement (m). The widths of the von Mises distributions indicate the
190 degree of trial-by-trial sensory uncertainty. C. The eventual behavioral choice
191 given the internal stimulus measurement (m) is also uncertain, following a von
192 Mises distribution with the choice variability (x;) ¥. In the VP model, initial
193 resources (J), decaying exponent (a), resource allocation variability () and
194 choice variability (x;) are four free parameters to estimate (see details in SI and
195 van den Berg ef al. *°). All numbers here are only for illustration purposes and
196 not quantitatively related to the model fitting results in this paper.
197
198 It is worth highlighting two findings here. First, the superior performance of

199  the VP model suggests the important role of variable precision in VWM processing.
200  Second, we found that the VP model was better than the VPcap model. This result
201 suggests that adding the capacity parameter in the VPcap model seems unnecessary
202  from the modeling perspective. This result is also in line with the literature showing
203 that a fixed capacity might not exist in VWM *%°  Although systematically
204  examining the existence of a fixed capacity is beyond the scope of this paper, this
205 result at least invites a rethink of whether memory capacity should be considered as
206  akey factor that limits VWM performance in SZ.

207

208  Larger resource allocation variability in SZ
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209 Analyses above have established that HC and SZ employ the qualitatively
210  same observer model to complete the VWM task. Their behavioral differences thus
211 should arise from the differences on some parameters in the observer model. We
212 next compared the fitted parameters of the VP model in the two groups. Results
213 showed that the two groups had comparable resource decay functions (Fig. 5A,
214 initial resources, t(119) = 0.689, p = 0.492, d = 0.125; decaying exponent, t(119) =
215 1.065, p = 0.289, d = 0.194), indicating a similar trend of diminished memory
216  resources as set size increases. SZ, however, had larger variability in allocating
217  resources (Fig. 5B, resource allocation variability, t(119) = 4.03, p = 9.87 x 105, d
218 = 0.733). This suggests that, although the two groups have on average the same
219 amount of memory resources across different set size levels, SZ allocate the
220  resources across items or trials in a more heterogeneous manner, with some items in
221 some trials receiving considerably larger amounts and vice versa in other cases.
222 This is theoretically suboptimal with respect to completing the task since the probe
223  was randomly chosen among all presented items with an equal probability. The
224  optimal strategy therefore should be to assign an equal amount of resources to every
225 item and in every trial to tackle the unpredictable target. Furthermore, our VP
226 model explicitly distinguishes the variability in processing items and the variability
227 in exerting a behavioral choice (e.g., motor or decision noise). We found no
228  significant group difference in the choice variability (Fig. 5C, t(119) = 1.7034, p =
229  0.091, d = 0.31), excluding the possibility that the atypical performance of SZ arises

230 from larger variability at the choice stage.

A B c
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232 Figure 5. Fitted parameters of the VP model. No significant group differences
233 are noted between two groups in resource decay functions (panel A), and
234 choice variability (panel C). SZ have larger resource allocation variability than

10
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235 HC (panel B). The individual resource decay functions are computed by
T— 7T kN4 . . - . C .

236 S=J N , where N is the set size, J, and a are the estimated initial
237 resources and the decaying exponent of one subject. The solid lines represent
238 the averaged resource decay functions across subjects. The shaded areas in
239 panel A and all error bars in panel B and C represent 2SEM across subjects.
240 Significance symbol conventions are ***: p < 0.001; n.s.: non-significant.

241

242

243 No capacity difference between HC and SZ

244  Although the VP model is the most appropriate model for both groups, we believe it
245 s also valuable to examine other suboptimal models for several reasons. First, the
246 VP model does not have the concept of capacity. Thus, we cannot completely rule
247  out the influence of capacity. One might argue that resource allocation variability
248 and limited capacity might jointly manifest in SZ and a hybrid model that
249  aggregates the two factors might yield a better explanation. Second, conclusions
250 based on a single model might be unreliable as its fitted parameters may arise from
251  specific model settings or possible idiosyncratic model fitting processes.

252 First, we emphasize that the VPcap model is such a hybrid model that
253  accommodates both the variable precision mechanism and a fixed capacity. The
254  results from the VPcap model largely replicated the results of the VP model. Again,
255  we found a significantly larger resource allocation variability in SZ (t(119) = 3.891,
256 p=1.65x 104, d=0.707), see full statistical results in Supplementary Note 4). This
257  result suggests that the effect of resource allocation variability is quite robust even
258  though we alter the model structure.

259 We further examined the estimated capacity of all subjects in all models that
260 contain the capacity parameter (i.e., IL, MIX, SA, cosSA, and VPcap models).
261 Consistently, none of the models showed decreased capacity in SZ (see full stats in
262  Supplementary Note 4 and Supplementary Figure 4). This result further rules out
263  capacity deficits in SZ.

264 In sum, we found robustly larger resource allocation variability in SZ in
265 both the VP and the VPcap models. Also, we found no evidence for decreased

266  capacity in SZ in all models that include the capacity parameter. These results

11
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directly challenge the widely accepted decreased-capacity account and highlight the

role of resource allocation variability in VWM deficits of SZ.

Resource allocation variability predicts the severity of schizophrenic symptoms

We next turned to investigate whether the results from the VP model can
predict clinical symptoms. A set of correlational analyses was carried out to link the
estimated resource allocation variability to the schizophrenia symptomatology in
each subject (BPRS, SANS, and SAPS).

We noticed that the estimated resource allocation variability of individual
subjects correlates with their BPRS scores (Fig. 6A, r = 0.259, p = 0.045) and the
SANS scores (Fig. 6B, r = 0.302, p = 0.019) in SZ. No significant correlation was
noted on the SAPS scores (Fig. 6C, r = -0.121, p = 0.358). These results suggest
that resource allocation variability not only is the key factor describing VWM
behavior in SZ but also can quantitatively predict the severity of clinically

measured symptoms.
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Figure 6. Individual differences in resource allocation variability predict the
scores in symptom assessments. Estimated resource allocation variability
values in the SZ group significantly correlates with their scores on BPRS
(panel A) and SANS (negative symptoms, panel B) but not on SAPS (positive
symptoms, panel C).
Discussion

12
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291 The mechanisms of VWM deficits in schizophrenia have been a matter of debate
292  over the past few years. One widely accepted view proposes decreased capacity as
293  the major cause of the deficits in SZ. In the present study, we re-examine this
294  conclusion by comparing the performance of SZ and HC using all mainstream
295  computational models of VWM proposed so far. We first establish that the VP
296  model is the best model to characterize performance of both groups, indicating a
297  qualitative similar internal process in both groups. We then further evaluate
298  different components in the VP model as well as other suboptimal models, with
299  special focuses on memory capacity and the declining trend of mean precision as a
300 function of set size. Surprisingly, we find that SZ and HC differ in none of these
301 two diagnostic features of VWM. Interestingly, we find that SZ have larger
302  variability in allocating memory resources. Furthermore, individual differences in
303 resource allocation variability predict variation of patients’ symptom severity,
304  highlighting the clinical functionality of this factor. Taken together, our results
305 challenge the long-standing decreased-capacity explanation for the VWM deficits in
306  schizophrenia and propose for the first time that resource allocation variability is
307 the key factor that limits their performance.

308 A large body of literature has documented that SZ perform poorly in various
309  forms of working memory tasks %3391, They reached the same conclusion: memory
310  capacity is decreased in schizophrenia. However, through a careful examination of
311 the literature, we find that the definition of capacity varies substantially across
312  studies. Many studies directly equated worse performance with decreased capacity
313  without quantitatively demonstrating how capacity modulates performance. For
314  example, memory capacity was defined as the number of digits that can be recalled
315  in the longest strand in digit span tasks '2. In N-back tasks, capacity was defined as
316  the number of backs corresponding to a certain accuracy level %', Moreover, the
317  calculation of capacity resembled the d-prime metric in change detection tasks 2~
318 244132 The majority of these metrics are behavioral thresholds related to capacity
319  rather than direct quantifications of capacity. Although these metrics indeed suggest
320  worse performance in SZ, they cannot directly reveal decreased capacity given the

321  presence of other components such as memory resource or choice variability. It is

13
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322  still unclear how these components jointly determine performance. This is partly
323  because we lack appropriate computational models for the majority of the tasks.
324  The VP model is advantageous as it describes the generative process of the delay-
325  estimation task and the change-detection task #6. As such, it allows to disassociate
326  the effect of capacity from other VWM components.

327 The most notable result in our study is that no group difference is discovered
328 in capacity in all models that estimate capacity. One potential limitation here might
329  Dbe that we only tested set size 1 and 3 given the limited number of trials we were
330 able to collect on SZ patients. We acknowledge that high set size levels that
331 challenge the subjects’ VWM ability would lead to more accurate estimates of
332  capacity. But we tended to be conservative when designing the experiment as SZ
333 had already shown significant guessing behavior on set size 3 in our pilot
334  experiment (also see Fig. 2A). Moreover, the fact that no capacity differences in all
335 models are unlikely driven by the parameter setting in a particular model. One
336  might also argue that adding the capacity parameter in for example the SA and MIX
337  models might not significantly improve goodness of fit but will be penalized by
338  AIC and BIC metrics, rendering worse models in terms of model comparison. We
339 exclude this possibility by performing model comparisons using AIC and BIC
340  without considering the capacity parameter (see Supplementary Note 3). Results
341  replicated our main conclusions here. Future studies might need to test more
342  conditions and more behavioral tasks.

343 Only a few studies have quantitatively estimated capacity and precision in

344  schizophrenia. Gold et al »

employed the same delay-estimation task as in our
345 study and estimated individual’s capacity and precision using the MIX model.
346  Results in that study echoed the decreased-capacity theory. The MIX model
347  assumes that response errors arise from a mixture distribution that combines a von
348  Mises distribution whose variance reflects memory precision, and a uniform
349  distribution that accounts for the random guessing if set size exceeds capacity. The
350 MIX model, however, does not consider two important factors. First, the model

351 assumes an equal precision across items in memory. Second, the model does not

352  separate the variability for processing stimuli (i.e., sensory uncertainty, x in
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353  Supplementary Eq. S5) and the variability in exertion of a choice (i.e., choice
354  uncertainty, k. in Supplementary Eq. S6). Such distinction is important since it
355  highlights different types of uncertainty in encoding and decoding stages of VWM.
356  Mathematically, these two types of uncertainty can be distinguished by
357  manipulating set size since the encoding variability depends on set size but the
358  choice variability does not. The issues of the MIX model have been symmetrically
359  addressed in recent work 3.

360 Compared with capacity and precision—the two diagnostic features of
361 VWM, resource allocation variability emerges as a new concept in VWM. It
362  describes the heterogeneity of allocating resources across multiple items and trials.
363  Recent work suggests that such variability might not only manifest in VWM and
364  but also act as a ubiquitous mechanism when processing multiple objects in vision
365 % We speculate that resource allocation variability reflects the stability of
366  attentional control when the brain processes multiple objects. Two aspects of
367 available evidence support this argument. First, it has been shown that attention and
368 WM are two core components of executive control and tightly linked with each
369  other 3¢, Second, schizophrenia is known to have deficits in top-down attentional
370  modulation °', Particularly, recent studies discovered the phenomenon of spatial

371 hyperfocusing in schizophrenia patients %7, If

schizophrenia patients overly
372  attend to one item and ignore others in the memory encoding stage, unbalanced
373  resource allocation will likely occur. But we want to emphasize that such variability
374  is not equivalent to attentional lapse. A higher attentional lapse rate will lead to
375  overall fewer resources, a phenomenon we did not observe in our study.

376 What are the neural mechanisms of this resource allocation variability?
377  Recent neurophysiological studies proposed that the neural representation of a

378  stimulus may follow a doubly stochastic process 0!

, which suggests that the
379  variability in encoding precision is a consequence of trial-to-trial and item-to-item
380 fluctuations in attentional gain 324662, A recent study combined functional magnetic
381  resonance imaging and the VP model, showing that the superior intraparietal sulcus
382  (IPS) is the cortical locus that controls the resource allocation %. Interestingly,

383  schizophrenia patients have been known to have IPS deficits . Note that besides
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384  top-down factors, we cannot rule out the contribution of bottom-up neural noise in

385  perceptual and cognitive processing ! as found in several other mental diseases
386 33736'
387 The current results also reveal links between resource allocation variability

388 and patients’ negative symptoms, but not positive symptoms (Fig. 6). These
389 findings are consistent with several experimental and meta-analysis studies
390 claiming dissociable mechanisms underlying the cluster of negative symptoms

65-68  More broadly, a growing collection of

391  versus that of positive symptoms
392  evidence suggests that visual perceptual deficits in schizophrenic patients are more
393  likely to link to negative rather than positive symptom severity 3. Negative
394 symptoms in turn might produce improvised social functioning. Humans depend
395 heavily on VWM to interact with multiple agents and complete social tasks.
396 Deficits in distributing processing resources over multiple agents therefore might
397  cause disadvantages in social cognition.

398 In conclusion, our study proposes a new explanation that the resource
399 allocation variability accounts for the atypical VWM performance in schizophrenia.
400  This view differs from the decreased-capacity theory and provides a new direction
401  for future studies that attempt to promote diagnosis and rehabilitation for
402  schizophrenic patients.

403

404 Methods

405 Ethics Statement.

406  All experimental protocols were approved by the institutional review board at the
407  East China Normal University. All research was performed in accordance with
408  relevant guidelines and regulations. Informed written consent was obtained from all
409  participants.

410

411 Subjects.

412 61 HC and 60 SZ participated in the study. SZ were clinically stable inpatients (N =
413 33) and outpatients (N = 27) who met DSM-IV criteria ™ for schizophrenia. All

414  patients were receiving antipsychotic medication (2 first-generation, 43 second-
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415  generation, 15 both). Symptom severity was evaluated by the Brief Psychiatric
416  Rating Scale (BPRS) 75, the Scale for the Assessment of Negative (SANS) and
417  Positive Symptoms (SAPS) 7677, HC were recruited by advertisement. All HC had
418 no current diagnosis of axis 1 or 2 disorders as well as no family history of
419  psychosis nor substance abuse or dependence. All subjects are right-handed with
420  normal sight and color perception.

421 The two groups were matched in age (t(119) = 1.58, p = 0.118, d = 0.284),
422  gender (31 females and 29 males) and education level of parents (t(119) = 0.257, p
423 = 0.798, d = 0.047). Inevitably, the SZ had fewer years of education than the HC
424 (t(119) =5.51, p=2.09 x 107, d = 1.00). The detailed demographic information is

425  summarized in the Table 1.

426 Table 1. Demographics and clinical information of people with schizophrenia
427 (SZ) and healthy control subjects (HC)
SZ (N = 60) HC (N=61)
Mean SD Mean SD
age 35.67 6.58 33.82 9.90
range 23-48 n/a 21-57 n/a
Female/male 31/29 n/a 29/32 n/a
Inpatient/outpatient 33/27 n/a n/a n/a
Subject’s education (in years) 12.03 2.24 15.13 3.70
Paternal education (in years) ? 9.89 2.53 9.76 2.95
Maternal education (in years) 9.62 291 9.29 3.63
BPRS 27.25 6.27 n/a n/a
SAPS 5.77 7.02 n/a n/a
SANS 24.43 11.45 n/a n/a

428  * Average of mother’s and father’s years of education

429  BPRS: Brief Psychiatric Rating Scale ; SAPS: Scale for the Assessment of

430  Positive Symptoms 77’; SANS: Scale for the Assessment of Negative Symptoms 6.
431

432

433
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434  Stimuli and Task.

435  The subjects sat 50 cm away from an LCD monitor. All stimuli were generated by
436 Matlab 8.1 and Psychtoolbox 3 %7, and then presented on a LCD monitor.

437

438  Color delay-estimation VWM task

439  In the color delay-estimation VWM task (Fig. 1), each trial began with a fixation
440  cross presented at center-of-gaze for a duration randomly chosen from a sequence
441 of 300, 350, 400, 450 and 500 ms. Subjects shall keep their fixation on the cross
442  throughout the whole experiment. A set of colored squares (set size = 1 or 3) was
443  shown on an invisible circle with 4° radius. Our pilot experiment showed that SZ
444  patients exhibit a high dropout rate if the task is longer than 30 mins or too hard
445  (i.e., set size > 4). We therefore limited our task to set size level 1 and 3. The
446  sample array lasted 500 ms. Each square was 1.5° x 1.5° of visual angle. Their
447  colors were randomly selected from the 180 colors that are equally distributed along
448  the wheel representing the CIE L*a*b color space. The color wheel was centered at
449 (L =70, a=20, b= 38) with a radius of 60 in the color space 3’. The sample array
450  then disappeared and was followed by a 900 ms blank period for memory retention.
451  After the delay, an equal number of outlined squares were shown at the same
452  location of each sample array item, with one of them bolded as the probe. In the
453  meantime, a randomly rotated color wheel was shown. The color wheel was 2.1°
454  thick and centered on the monitor with the inner and the outer radius as 7.8° and
455  9.8° respectively. Subjects were asked to choose the remembered color of the probe
456 by clicking a color on the color wheel using a computer mouse. Subjects shall
457  choose the color as precisely as possible and response time was not constrained.
458  Every subject completed 2 blocks for the set size 1 and 3, respectively. The order of
459  the two blocks was counterbalanced across subjects. Each block had 80 trials. The
460  difference between the reported color and the true color of the target is considered

461  as the response error.
462

463  Data availability statement
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464  The data that support the findings of this study are available from the corresponding
465  author upon reasonable request.
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29  Supplementary Note 1: Computational models of VWM
30  Variable-precision model. The variable-precision (VP) model has been shown as the
31  state-of-the-art computational model of VWM. Details of the VP model have been

1

32 documented in several previous studies ! and the model codes are publicly available

33 (http://www.cns.nyu.edu/malab/resources.html).

34 The VP model assumes a resource decaying function describing the decreasing
35 trend of mean memory resource (/) assigned to individual items as the set size (N)
36  increases *>*:

37 J=J *N, (S1)
38  where J, is the initial resources when only 1 item (N = 1) should be memorized and a is
39 the decaying exponent. The key component of the VP model is that the memory
40  resources s across items and trials follow a Gamma distribution with the mean j and the
41  scale parameter 7:

42 J~ Gamma(j,f) , (52)
43 Intuitively, a larger 7 indicates a more uneven distribution of memory resources across
44  items or trials, with some items in some trials receiving a larger amount of resources
45  while others receive comparative fewer. Note that a larger amount of memory resource
46  produces a higher precision. Thus, we do not explicitly distinguish resource and precision
47  and denote them as J. Defining precision as Fisher information °, precision ;s can be

48  linked to the variance of the von Mises distribution of sensory measurement:

49 J= K‘M, (S3)
I,(x)

50  where I, and 7, are modified Bessel functions of the first kind of order 0 and 1
51  respectively, with the concentration parameter k. Eq. S3 specifies a one-on-one mapping
52 between precision y and variance k. We can rewrite their relationship as:

53 K=0(), (S4)
54 where @ is the mapping function. The distribution of sensory measurement (m) given the

55  input stimulus (s) can be written as:

1
56 I — Kcos(mfs)EVM : ,K , SS
p(mls) —27r10(1c)e (m;s,K) (S5)
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57  We further assume that the reported color ( ;) by participants also follows a von Mises
58  distribution:

1

— eK,cos(h?fm) EVM §,m,K’ , (S6)
27, (k) (Ssm.Kc.)

59 p(sIm)

60  where & represents the variability at the choice stage.

61 Given the four free parameters and stimulus color s in a trial, we can derive the
62  probability of the observed response in a trial by marginalizing over sensory

63  measurement m and variable precision ;:

p(§|s; .7,1'): J.p(§]s;J)p(J|.7;T)dJ

= JVM(§;s,(D(J))Gamma(J;j,T)dJ

64 = ffVM(ﬁ;m,Kr)VM(m;s,@(]))Gamma(J;j,T)dem ’
1, \/@(J)2+Kf+2q§(J)Krcos(s—§) ~
= ( AT jGam;mz(J;J,r)aU
65 (87)

66  Note that in Eq. S7, sensory measurement (m) can be analytically eliminated. Since
67  precision yis a random variable across items and trials, we sampled it 10000 times from
68  the Gamma distribution with mean j and scale parameter 7. Note that van den Berg et
69 al. ! confirmed that 500 samples are enough in the model fitting. We then used all the

70  samples to calculate response probability in each trial.

71 Taken together, this VP model has four free parameters: J, a, rand k.

72

73 Variable-precision-with-capacity model. The variable-precision-with-capacity (VPcap)
74 model inherits all parameters and the structure of the VP model above, except that an
75 additional capacity parameter (K) is introduced to estimate the memory capacity of
76 individuals. If the set size N is smaller than capacity K, the VPcap model is identical to
7T the VP model. If the set size N exceeds the capacity K, the model assumes that the probe
78

is stored in the VWM with the probability K/N, and out of memory with the probability
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79 1. K/N. In the latter case, a participant randomly guesses a color. The response
80 probability therefore can be written as:
K . = K. 1
. —p@s|s;J,7)+(1-—)—, K<=N
81 pSls)=y N N 21 (S8)
p(§1s:J,7), K>N
82 Where PG15:7.7) s defined in Eq. S7. In essence, the VPcap model is a mixture model
83 of the VP model and a random guessing process when the set size exceeds the
84 participant’s capacity. The VPcap model has five parameters, four as the same in the VP
85 model and the additional capacity parameter (K).
86
87 tem-limit model. The item-limit (IL) model assumes no uncertainty in the sensory
88 encoding stage such that the internal sensory measurement m is equal to the input
89 Stimulus s. But there exists choice variability from measurement m to the reported color (
%0 3§ ). Such choice variability does not vary across set size levels. The IL model also
91 assumes a fixed capacity K. The response probability is:
K R K 1
A R —VM(s|s,x )+ (1-—)—, K<=N
92 p$|s)=p(S|m)=4 N N 2rm , (S9)
VM(S |5,k ), K>N
9 The IL model has two free parameters: choice variability %, and capacity K.
94

95  Mixture model. The mixture model (MIX) has been used in previous clinical research 6.
96  Similar to the IL model, the MIX model only assumes the uncertainty from stimulus s to
97  the reported color () and a fixed capacity K. The difference is that the uncertainty ( k)
98 reflects both sensory noise and choice variability, and thus the uncertainty is set-size
99  dependent (each set size has one k). The response probability can be written as:
%VM(& |s,KU3)+[1—%)§, K<N

VM (s|s.x,,), K>N

100 p($1s)= (S10)
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101  where and denote the uncertainty for set size 1 and 3, respectively. The MIX model has
102 three parameters: uncertainty levels k _and x, and capacity K.

103
104  Slots-plus-averaging model. The slots-plus-averaging (SA) model was originally

7 and further elaborated in '. Unlike the IL model, the SA model

105  proposed in
106  acknowledges the presence of noise in the sensory encoding stage. However, the memory
107  resources are discrete chunks, and a single chunk or multiple chunks can be assigned to
108  one item. For one item, the SA model assumes Eq. S4 still holds as the relationship

109  between the resource assigned to that item and the width of the von Mises distribution:
110 K=D(SJ) , (S11)

111 where § is the number of chunks and J; is the resource of one chunk. The SA model also
112 assumes a capacity K.

113 When N > K, an item should receive either 0 or 1 chunk. Then the allocation
114 should be similar to the IL model. the response distribution should be a mixture of a

115  uniform and a von Mises distributions:

K IO ) +K2+20(J )i, cos(§ —s))

K 1
p@ls)= — +(1-—)— K<N
116 N 2nl (k) 1,(D(J,)) N 2rx (S12)

117 When N < K, some items receive either one or more chunks. Assuming that the
118  resource chunks should be assigned as equally as possible across items, the S can be

119  calculated as:

{%J, with probability I-Km—OdN

120 S= : (S13)

KmodN

{%J +1,  with probability

121 where LxJ represents the floor function in Matlab. The corresponding concentration

122 parameter of von Mises distributions can be computed by Eqs. S11&13:
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K = @({%Jm

K
Kigh = CD(\‘W + 1J‘]s)

123 (S14)
124 The response probability in the SA model can be written as:

P s) = KmOdNIo(\/Kzigh+Kf+2KhighKrCOS(§_s))+(1_KmOdN)]O(\/wa,""Kf+2K,WK,COS(§_S)) K>N
125 N 21, (e ), (K, ) N 2rl,(x )1, (x,,)
126 , (S15)

127 The SA model has three free parameters: unit resource Ji, choice variability x , and

128  capacity K.

129

130  Cosine slots-plus-averaging model. A recent paper 8 suggests that a modified version of
131  the SA model, dubbed cosine slots-plus-average model (cosSA), outperformed the VP
132 model to explain the delay-matching VWM behavior. To enhance the generality of our
133 study, we also followed that work and included this model. Briefly, the cosSA model
134  assumes that the unit memory precision is stimulus-dependent and exhibits a cosine-like

135  periodic fluctuation:

136 J — eJm+J/.cos(8s) , (816)

N

137 where J and J , describe the fluctuation of unit memory precision (J) as a function of

138 stimulus 5. We can convert precision J to the width of von Mises distributions x

139  according to Eq. S4. According to capacity K, the discrete memory resource allocation is
140  described as Eq. S11-S14. Moreover, the cosSA model also assumes the response bias is

141  periodic:
142 Ho= i sin(4s), (S17)
143 where M, adjusts the magnitude of the bias. The probability of a response given the

144  stimulus can be described as:

K . K1
= VM($|s+u.K )+ 1-= |=—, K<N
N s N )2n

145 p(sls)= , (S18)

VM (S |5+ .k, ), K>N
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146 The cosSA model has four free parameters: J , J Ry and capacity K.

147

148  Equal-precision model. The equal-precision (EP) model is very similar to the VP model,
149  except that an equal amount of resources is assigned to every item and in any trial.
150  Namely, the Eq. S2 does not apply to the EP model. In the EP model, the resource
151  assigned to one item declines as a power function (as Eq. S1). Then the resource at each
152  set size level can be converted to the width of the von Mises distribution using (Eq. S4).

153  The response probability is given by:

- I,(®(J, N +K? +20(J N ™)k, cos($ —
p($|s;J ,a,k )= 0(‘/ N r (_1 _a) .COoS(5—5))
154 2rl (k) (P(J N ")) s19)

b

155  where J; is the resource when set size is 1 (initial resources). The EP model has three free
156  parameters: initial resources j1’ decaying exponent a, and choice variability .

157
158  Supplementary Note 2: Intuitive model explanations

159  Despite the mathematical details provided above, we further provide intuitive
160  explanations for each model and highlight their differences based on cartoon illustrations
161  in Supplementary Fig. 1. Note that all stimuli are 0 because we transformed the reported

162  color to recall errors in each trial.
163

164  Item-limit model. In the IL model (Supplementary Fig. 1A), if the capacity K is larger
165  than the set size N (e.g., N=2, K=3, the left panel), all items can enter working memory.
166  The reported color follows a von Mises distribution with the mean as the color of the
167  probed stimulus. If the capacity K is smaller than the set size N (e.g., N=2, K=3, the right
168  panel), a probed stimulus can be stored within memory with probability K/N and out of
169  memory with probability (1-K/N). If the probed stimulus is in memory, the same rule of
170  von Mises distribution applies. If the probed stimulus is out of memory, a subject guesses

171  acolor (i.e., with probability 1/2m, the uniform distribution of guessing).

172
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173 Mixture model. The mixture model (Supplementary Fig. 1B) shares all components with
174  the IL model. The key difference is that the IL model assumes the same von Mises
175  distribution for both set size levels (i.e., same width of the blue and the orange
176  distributions in Supplementary Fig. 1A), while the mixture model uses two von Mises
177  distributions with different widths for the two set size levels (i.e., different widths of the
178  blue and the orange distributions in Supplementary Fig. 1B), to compensate the potential
179  different level uncertainty associated with two set size levels. Thus, the mixture model

180  has one additional free parameter than the IL model.
181

182  Slot-plus-averaging and cosine slot-plus-averaging model. The SA model regards
183  memory resources as several discrete chunks (Supplementary Fig. 1C). In the example of
184  Supplementary Fig. 1C, the subject has three (K=3) chunks of resources and the blue cups
185  stand for individual stimulus. If two stimuli are presented (i.e., two cups, set size = 2), the
186  scenario in which the number of resource chunks is larger than the set size, two resource
187  chunks are assigned to one cup and another chunk to the other cup. If the number of
188  resources is smaller than the set size (e.g., four stimuli/cups), one cup will receive no
189  resource, and the subject has to guess if this stimulus/cup is probed. The key difference
190  between the SA model and the three models below is that the SA model assumes discrete

191  resource chunks.

192 The cosSA model is a modified version of the SA model with three major changes
193 8. First, the unit memory precision is stimulus-dependent and follows a periodic function
194  (see Eq. S16 and Fig. SID). Second, it also includes a response bias that is also stimulus-
195  dependent and periodic (see Eq. S17 above and Fig. S1D). Third, for simplicity it does
196  not include the response variability and only includes one uncertainty (i.g., encoding
197  precision) in the processing.

198

199  Equal-precision, variable-precision and variable-precision-with-capacity models.
200 The EP, VP and VPcap models share one core assumption: memory resources are
201  continuous, analogous to the amount of juice in a big mug (Supplementary Fig. 1E). A
202  subject needs to assign the juice (i.e., resources) into different cups (i.e., stimuli). In

203  Supplementary Fig. 1E, the orange cups stand for the mean juice amount an individual
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204  cup receives in each set size condition. We can imagine that, given the total amount of
205  juice is fixed, the more cups (i.e., larger set size) the less juice on average each cup will
206  receive. This is reflected by the diminishing average amount of juice as set size increases

207  (also see Eq. S1).

208 Besides the core assumption of continuous resources, the three models have
209  slightly different specifications (Supplementary Fig. 1F). In Supplementary Fig. 1F, all
210  orange cups stand for the mean juice amount in each set size condition, and the blue cups
211  stand for individual stimulus. The EP model assumes that in each set size condition, each
212 cup receives an identical amount of juice (upper row in Supplementary Fig. 1F). In the
213 VP model, however, each cup receives a variable amount of juice even though their
214  average amount is the same as in the EP model. Using two cups as an example, the
215  average amount of juice might be 10 ml but one cup might have 9 ml and the other one
216  has 11 ml. Whether the amount of juice in each cup varies is the key difference between
217  the EP and the VP models. Moreover, both EP and VP models do not constrain the total
218  number of cups. Therefore, a cup will more or less receive a little bit juice even though
219  there is a large number of cups (middle row). In other words, both the EP and the VP
220  models have no concept of capacity. In contrast, the VPcap model not only inherits the
221  assumption of variable precision and but also constraints the maximal number of cups
222 (i.e., capacity K) that can receive juice. If the total number of cups (i.e., N stimuli) is
223 larger than the capacity K, some cups will receive no juice, and the subject has to guess

224  the color of these stimuli.

225

226  Supplementary Note 3: Model fitting and comparisons

227  Model fitting. The BADS optimization toolbox in MATLAB ° was used to search the
228  best-fit parameters that maximize the likelihood of response data in all trials. BADS has
229  been shown to outperform other default nonlinear optimization algorithms in MATLAB,
230  especially in the problems where gradients on loss function are not available or hard to
231  compute °. We fit all models separately in each participant. To avoid local minima, we
232 repeated the optimization process with 20 different initial seeds that are equally spaced

233 within a lower and an upper bound. Parameters bounds were set to be very broad to avoid
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234  bias. The parameters with the maximum likelihood value were used as the best-fit
235  parameters for one subject.

236

237  Model comparisons. We compared the performance of all models fitted in this study.
238  Model comparisons were performed for both groups using both Akaike information
) 10,11

239  criterion (AIC) and Bayesian information criterion (BIC

240  Fig. 1). We derived the best model for each subject. Results showed that the VP model

metrics (Supplementary

241  outperformed all other models over 84% of subjects in both groups under both AIC and
242  BIC (Supplementary Fig. 2). Particularly, the VP model is the best-fitting model in 51 out
243 of 61 (84%) HC and in 55 out of 60 SZ (92%) under the AIC. Using the BIC, the VP
244  model is the best-fitting model in 52 out of 61 HC (85%) and 54 out of 60 (90%) SZ.
245  These results strongly support the idea that the VP model assuming no fixed capacity
246  better explains the VWM behavior. This result also questions the conventional theory

247  whether capacity acts as a key determinant of limiting VWM performance in SZ.

248 One might argue that the SA, cosSA, and MIX models were worse than the VP
249  model because AIC and BIC overly penalize the capacity parameter K while this
250  parameter may not substantially improve goodness of fitting because of low set size
251  levels (i.e., 1/3) used here. To exclude this possibility, we further compared the SA, cos
252 SA, and MIX models to the VP model using AIC and BIC metric but without considering
253  the capacity K— that is, we kept the likelihood of the model fitting with K but calculated

254  AIC and BIC without K. In this case, the models fully enjoyed the potential benefits
255 endowed by K in modeling fitting but avoided overly penalizing this additional parameter.
256  Results showed that the VP model was still the best-fitting model in the majority of
257  subjects in both groups and under both metrics (AIC, 51 out of 61 in the HC group and
258 43 out of 60 in the SZ group; BIC, 52 out of 61 in the HC group and 45 out of 60 in the
259  SZ group).

260

261  Supplementary Note 4: Results of other suboptimal models

262  Fitted parameters of the VPcap model. The VPcap model is a variant of the VP model
263  and incorporates an additional capacity parameter. Estimated parameters in the VPcap

264  model largely replicated the results of the VP model (Supplementary Fig. 3). Again, SZ

10


https://doi.org/10.1101/424523
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/424523; this version posted August 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

265  have larger resource allocation variability than HC (Supplementary Fig. 3B, t(119) =
266  3.891, p =1.65 x 10%, d = 0.707) and the two groups did not significantly differ in the
267  resource decay function (Supplementary Fig. 3A, initial resources, t(119) = 0.012, p =
268  0.990, d = 0.002; decaying exponent, t(119) =1.142, p = 0.256, d = 0.208). We observed
269  a significant larger choice variability in HC (Supplementary Fig. 3C, choice variability,
270 t(119) = 2.365, p = 0.02, d = 0.43). Most importantly, the estimated capacity values of
271  two groups were statistically comparable (Supplementary Fig. 3D, t(119) = 0.459, p =
272 0.647,d = 0.083).

273
274  Comparing capacity of the two groups in suboptimal models. We further investigated

275  the estimated capacity of all subjects in the IL, the SA, the cosSA, the MIX and the
276  VPcap model, the four models having the capacity parameter. We found no significant
277  group difference in capacity measured by all five models (Supplementary Fig. 4, IL
278  model, t(119) = 1.554, p = 0.123, d = 0.283; SA model, t(119) = 1.03, p = 0.306, d =
279  0.187; cosSA model, t(119) = 0.235, p = 0.815, d = 0.043; MIX model, t(119) = 0.273, p
280 =0.786,d =0.050; VPcap model, t(119) = 0.459, p = 0.647, d = 0.083).

281

282  Supplementary Note 5: Color perception task

283  Color perception task. Before the main VWM task, all subjects completed a task to
284  measure their color perception ability. The task is identical to the VWM task except for
285  two modifications. First, only one colored object was shown in the sample array. Second,
286  in the probe array, the colored object appeared again on the screen. A subject needed to
287  choose its color on the color wheel while looking at it. There was 1 block with 50 trials in
288  this task.

289

290  Color perception results between HC and SZ. We used the circular standard deviation
291  (CSD) of response errors (the circular distance between the original color and chosen
292 color in a trial) to evaluate the performance in the color task. A significant group
293  difference was found (t(119) =-2.095, p = 0.038, d = -0.38), suggesting in general worse
294  color perception in SZ. But this result might also be explained by potential differences in

295  choice variability (e.g., motor control). To exclude the potential confounding of color

11
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296  perception, we further set CSD from the color perception as a co-variate and repeat all

297  statistical analyses (see below).
298

299  Supplementary Note 6: Statistical results with the CSD in the color perception task
300 as a covariate.

301 VWM performance. We added the CSD in the color perception task as a co-variate to
302 VWM performance comparison of two groups. The repeated-measure ANCOVA (see the
303  main text for details of variables) results again showed a worse VWM performance at
304  higher set size level (F(1,119) = 100.676, p < 0.001, partial > = 0.46). The group was
305 also significant (F(1,119) = 8.902, p = 0.003, partial n? = 0.070), indicating that HC’s
306  performance was better than SZ’s. The interaction between set size and group was not
307  significant (F(1,119) = 0.324, p = 0.570, partial > = 0.003). Also, the color perception
308  ability had no influence on VWM performance (F(1,119) = 0.285, p = 0.595, partial n? =
309  0.002). These results replicated the results from the main text.

310

311  Fitted parameters of the VP model. Univariate general linear models were used for
312 comparing fitted parameters between the two groups. We regressed out the factor of color
313  perception by setting. Same as results in the main text (Fig. 5), comparable resource
314  decay functions (Fig. 5A, initial resources, F(1,119) = 0.376, p = 0.541, partial n? =
315  0.003; decaying exponent, F(1,119) = 0.573, p = 0.451, partial n? = 0.005) and choice
316  variability (Fig. 5C, F(1,119) = 1.702, p = 0.195, partial n? = 0.014) between SZ and HC
317  were found in this analysis. And SZ showed larger variability in allocating resources
318  (resource allocation variability, F(1,119) = 15.112, p < 0.001, partial n? = 0.114).

319

320  Fitted parameters of the VPcap model. The two groups did not show significant
321  differences in the resource decay function (initial resources, F(1,119) = 0.557, p = 0.457,
322  partial n? = 0.005; decaying exponent F(1,119) = 2.097, p = 0.150, partial n? = 0.017).
323 SZ had larger resource allocation variability (F(1,119) = 11.490, p = 0.001, partial n? =
324 0.089) and smaller choice variability F(1,119) = 5.616, p = 0.019, partial n? = 0.045) than
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325 HC. The estimated capacity values of two groups were statistically comparable
326  (Supplementary Fig. 2D, F(1,119) =0.175, p = 0.667, partial n? = 0.001).
327

13


https://doi.org/10.1101/424523
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/424523; this version posted August 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

328
329

330
331
332
333
334
335

aCC-BY-NC-ND 4.0 International license.

A IL B MIX
N=2(K=38) N=4(K-=3) N=2(K=3) N=4(K=3)
— Response Guess = Response Guess
= Response == Response
= 2
i 3
38 2
o [
) ) JA\
180 -0 0 90 180 -180 -90 0O 90 180 180 90 O 90 180 -180 -0 O 90 180
Recall Error () Recall Error (°) Recall Error (°) Recall Error ()

Discrete Resource

:
C
-

(o]
[e]
w
17}
>
Resource
Recall Bias (°)

[ I —
Sample Value Sample Value
E
i Average Resource
Continuous Resource
1
Set Size (N)
F Average Items (N = 2) Average Iltems (N = 4)
D (D

)@
)@

Iy |
)

{ |

(

Supplementary Figure 1. Cartoon illustration of all computational models
considered in this study. This figure aims to aid an intuitive understanding
of the models. Detailed model explanation to Supplementary Note 2. A4.
item-limit model; B. MIX model; C. the principle of discrete slots and the
SA model; D. cosSA model; E. the principle of continuous resources; F,
EP, VP, and VPcap models.
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337 Supplementary Figure 2. Positive log-likelihood (panels A, D), AIC
338 (panels B, E) and BIC (panels C, F) values for all models. Note that here
339 we display the positive log-likelihood values to help visually compare
340 models since maximum negative log-likelihood values are equivalent to
341 minimum positive log-likelihood values. As such, in all panels a lower y-
342 axis value indicates a better model. The upper (panels A-C) and lower
343 (panels D-F) rows depict the model comparison results for HC and SZ
344 respectively. The best-fitting model is the VP model for both groups (also
345 see Fig. 3 in the main text).

346
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349
350 Supplementary Figure 3. Fitted parameters (panel A: resource decay
351 functions; panel B: resource allocation variability; panel C: choice
352 variability; panel D: capacity) of the VPcap model. The results replicate
353 the results in Fig. 4. Furthermore, this model estimates capacity in
354 individual subjects and the result show that the two groups have a
355 comparable capacity (panel D). All error bars are =+ SEM across subjects.
356 Other figure captions are the same as in Fig. 4 in the main text.
357 Significance symbol conventions are *:p < 0.05; ***: p < 0.001; n.s.: non-
358 significant.
359
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362 Supplementary Figure 4. The capacity of the two groups measured by five
363 suboptimal models. None of the five models reveal the significant group
364 differences in capacity. These results directly challenge the conventional
365 decreased-capacity account of SZ. All error bars are £ SEM across
366 subjects.
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