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Abstract 24 

Schizophrenia patients are known to have profound deficits in visual working 25 

memory (VWM), and almost all previous studies attribute the deficits to decreased 26 

memory capacity. This account, however, ignores the potential contributions of 27 

other VWM components (e.g., memory precision). Here, we measure the VWM 28 

performance of 60 schizophrenia and 61 healthy control subjects. Moreover, we 29 

thoroughly evaluate several established computational models of VWM to compare 30 

the performance of the two groups. Surprisingly, none of the models reveal group 31 

differences in memory capacity and memory resources. We find that the model 32 

assuming variable precision across items and trials is the best model to explain the 33 

performance of both groups. According to the variable-precision model, 34 

schizophrenia subjects exhibit abnormally larger variability of allocating memory 35 

resources rather than resources or capacity per se. These results challenge the 36 

widely accepted decreased-capacity theory and propose a new perspective on the 37 

diagnosis and rehabilitation of schizophrenia. 38 

 39 
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Introduction 45 

Schizophrenia is a severe mental disorder accompanied by a range of dysfunctions 46 

in perceptual and cognitive behavior, among which working memory deficit is 47 

considered as a core feature 1–4. Working memory refers to the ability to temporally 48 

store and manipulate information in order to guide appropriate behavior, and it has 49 

been shown to link with a broad range of other brain functions, including perception, 50 

attention, problem-solving and executive control 5–8. Dysfunctions in working 51 

memory therefore might cascade into multiple mental processes, causing a wide 52 

spectrum of negative consequences 2,3,9.  53 

A well-established finding in lab-based experiments is that people with 54 

schizophrenia (SZ) exhibit worse performance than healthy control (HC) in visual 55 

working memory (VWM) tasks 2. This phenomenon has long been attributed to 56 

decreased VWM capacity in SZ 2,10,11. This theory was supported by previous 57 

studies using various VWM or other WM tasks, including the ‘span’ tasks (e.g., 58 

digit span, spatial span, verbal span) 12,13,  the N-back task 14–16, the delayed-59 

response task 17–19, the change detection task 20–24, and the delay-estimation task 25–60 
27. Despite the considerable differences across tasks, almost all previous studies 61 

converged to the same conclusion that decreased-capacity is the major cause of the 62 

VWM deficits in SZ. 63 

Besides capacity, in the basic research of VWM, people have increasingly 64 

recognized memory precision as another pivotal determinant of VWM performance 65 
28. Precision reflects the amount of memory resources assigned to individual 66 

items—a larger amount of resources leads to higher memory precision. At the 67 

neural level, low perceptual precision might arise from either the intrinsic noise in 68 

neural processing 29–31 or the fluctuations of cognitive factors (e.g., arousal, 69 

attention) 31,32. Atypically increased variability in both behavioral and neural 70 

responses has been discovered in patients with mental diseases such as autism 71 

spectrum disorder 33,34, dyslexia 35, and attention-deficit/hyperactivity disorder 36. 72 

These theoretical and empirical studies raise the possibility that SZ and HC might 73 

differ in memory precision rather than capacity— that is, these two groups might be 74 

able to remember an equal number of items (i.e., comparable capacity) but SZ 75 
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generally process and maintain items in a less precise manner. Only a few studies 76 

have attempted to simultaneously quantify memory capacity and precision in 77 

schizophrenic or schizotypy subjects, and the results are not consensus 25,26.  78 

Despite the confound of the possible cause in different VWM components, it is 79 

unclear whether SZ and HC employ the same computational strategies (i.e., 80 

observer model) in VWM. Most prior studies only used one model and implicitly 81 

assumed the model was the best one for both SZ and HC. But without systematic 82 

model comparisons model optimality cannot be firmly warranted, and endowed 83 

results might be biased by the choice of a particular model. Given that several 84 

influential models have been proposed to explain the VWM behavior in normal 85 

subjects 28, it remains unclear which one is the best for SZ. If the best model for SZ 86 

differs from the one for HC, it indicates that the two groups use qualitatively 87 

different computational strategies to complete behavioral tasks. If SZ and HC share 88 

the same best model, it indicates that they use the same strategy but quantitatively 89 

different parameters. These possibilities, however, have yet been thoroughly tested. 90 

In the present study, we aim to systematically disentangle the impact of 91 

memory capacity and precision, as well as other factors (i.e., variability in 92 

allocating resources and variability in choice) in SZ. In this study, the performance 93 

of SZ and demographically matched HC was measured in a standard VWM 94 

delayed-estimation task (Fig. 1). Using a standard task allows us to compare our 95 

results to that from previous studies 25,37–40. Most importantly, in contrast to most 96 

prior studies, we evaluated and compared almost all mainstream computational 97 

models in visual working memory research. This approach allows us to take an 98 

unbiased perspective and search a large space of both models and parameters. We 99 

believe that a well-controlled task and thorough computational modeling will shed 100 

new light on the mechanisms of VWM deficits associated with schizophrenia. 101 

 102 
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 103 

Figure 1. Color delay-estimation task. This figure depicts an example trial (i.e., 104 
set size = 3) of the color delay-estimation task. Subjects are instructed to first 105 
memorize the colors of all squares on the screen, and after a 900ms delay 106 
choose the color of the probed square (the one in the left lower visual field in 107 
this example) on a color wheel. Response error is the difference between the 108 
reported color and the real color of the probe in the standard color space. 109 

 110 

Results 111 

Worse VWM performance in SZ 112 

We first look at the histograms of raw response errors (the circular distance between 113 

the original color and the chosen color, Fig. 2A). The circular standard deviation 114 

(CSD) of the response errors was calculated to indicate VWM performance. A 115 

repeated-measure ANOVA was performed with CSD as the dependent variable, set 116 

size (1/3) as the within-subject variable, group as the between-subject variable (Fig. 117 

2B). As demonstrated by previous studies, VWM performance was worse when set 118 

size was higher (F(1,119) = 641,703, p < 0.001, partial η2 = 0.844), and 119 

unsurprisingly, HC performed significantly better than SZ (F(1,119) = 13.651, p < 120 

0.001, partial η" = 0.103) did. The interaction between set size and group was not 121 

significant (F(1,119) = 0.229, p = 0.633, partial η" = 0.002), indicating that set size 122 

equally affected the performance in both groups. Taken together, we replicated the 123 

widely documented VWM deficits in SZ. 124 
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 125 

Figure 2. Visual working memory performance in SZ and HC. A. Histograms 126 
of circular response errors under set size 1 and 3 for both groups. B. Circular 127 
standard deviations of response errors corresponding to Panel A. SZ show 128 
higher CSDs (i.e., worse performance) than HC. All error bars represent SEM 129 
across subjects. 130 

 131 

Variable-precision model accounts for VWM behavior in both HC and 132 

SZ 133 

To systematically compare the VWM performance of SZ and HZ, we evaluated 134 

almost all mainstream computational models of VWM. We provide some brief 135 

introductions here, and readers may consider to skip the following paragraph to 136 

directly reach the after results or go to Supplementary Notes 1&2 for detailed 137 

mathematical and intuitive explanations of the models, depending on the reading 138 

preference. 139 

The first one is the item-limit (IL) model. The IL model assumes no 140 

uncertainty in the sensory encoding stage, and that each subject has a fixed memory 141 
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capacity and a fixed response variability across set size levels 41. The second one is 142 

the mixture (MIX) model, similar to the IL model but assuming response variability 143 

is set-size dependent 25,26.  Compared with the MIX model, the slots-plus-averaging 144 

(SA) model 37 further elaborates the idea that memory resources manifest as 145 

discrete chunks, and these chunks can be flexibly assigned to multiple items. We 146 

also explored a modified version of the SA model, dubbed cosSA model, which 147 

inherits the idea of discrete memory resources and further assumes that response 148 

bias is stimulus-dependent and can be described as empirically derived periodic 149 

functions. The fifth one is the equal-precision (EP) model, which is similar to the 150 

variable-precision (VP) model below but assumes that the memory resources are 151 

evenly distributed across items and trials 42,43. The VP model proposes that memory 152 

resources are continuous, and the amount of resource assigned to individual items 153 

varies across items and trials. Note that the VP model does not include the capacity 154 

component thus we also constructed a variable-precision-with-capacity (VPcap) 155 

model that not only acknowledges the variable precision mechanisms and but also 156 

explicitly estimates the capacity of individual subjects. Note that the IL, MIX, SA 157 

and cosSA, and VPcap models have the parameter of capacity, and the EP and VP 158 

models do not. Here, capacity is operationally defined as the maximum number of 159 

items that can be stored in memory. Some items are out of memory if set size 160 

exceeds capacity, and the subject has to randomly guess the color if one of these 161 

items is probed. 162 
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 163 

Figure 3. Model comparison results. We compared seven models in each 164 
subject. The pie charts illustrate the proportion of subjects for whom each 165 
model is their best-fitting model. The VP model is the best-fitting model for 166 
over 84% of subjects in both groups and under both AIC and BIC metrics. This 167 
result indicates both groups share a qualitatively similar internal process of 168 
VWM. 169 

 170 

We compared all seven models using the Akaike information criterion (AIC) 171 

and the Bayesian information criterion (BIC) 44,45. We found that (Fig. 3), among all 172 

models, the VP model was the best-fitting model for over 84% of subjects in the 173 

HC group under both metrics, replicating previous results in normal subjects 46,47. 174 

Most importantly, the VP model (Fig. 4) was also the best-fitting model for over 90% 175 

of subjects in the SZ group.  This result indicates that both groups use the same 176 

observer model to perform the task.  177 

 178 
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 179 

Figure 4. Variable-precision model of VWM. A. Resource decay function. 180 
The VP model assumes that the mean resource (J#) for processing a single item 181 
declines as a power function of set size N, a trend characterized by two free 182 
parameters—initial resources (J1$ ) and decaying exponent (a). B. The resources 183 
across items or trials follow a gamma distribution with the mean resource (J1$ ) 184 
determined by the resource decay function (panel A) and the resource 185 
allocation variability (τ). Larger amounts of resources (J) indicate higher 186 
precision and therefore generate narrower von Mises distributions (three small 187 
axes indicating the precision equals to 5, 10 and 15 respectively) of stimulus 188 
measurement (m). The widths of the von Mises distributions indicate the 189 
degree of trial-by-trial sensory uncertainty. C. The eventual behavioral choice 190 
given the internal stimulus measurement (m) is also uncertain, following a von 191 
Mises distribution with the choice variability (κr) 80.  In the VP model, initial 192 
resources (J#), decaying exponent (a), resource allocation variability (τ) and 193 
choice variability (κr) are four free parameters to estimate (see details in SI and 194 
van den Berg et al. 46). All numbers here are only for illustration purposes and 195 
not quantitatively related to the model fitting results in this paper. 196 

 197 

It is worth highlighting two findings here. First, the superior performance of 198 

the VP model suggests the important role of variable precision in VWM processing. 199 

Second, we found that the VP model was better than the VPcap model. This result 200 

suggests that adding the capacity parameter in the VPcap model seems unnecessary 201 

from the modeling perspective. This result is also in line with the literature showing 202 

that a fixed capacity might not exist in VWM 48,49. Although systematically 203 

examining the existence of a fixed capacity is beyond the scope of this paper, this 204 

result at least invites a rethink of whether memory capacity should be considered as 205 

a key factor that limits VWM performance in SZ. 206 

 207 

Larger resource allocation variability in SZ 208 
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Analyses above have established that HC and SZ employ the qualitatively 209 

same observer model to complete the VWM task.  Their behavioral differences thus 210 

should arise from the differences on some parameters in the observer model. We 211 

next compared the fitted parameters of the VP model in the two groups. Results 212 

showed that the two groups had comparable resource decay functions (Fig. 5A, 213 

initial resources, t(119) = 0.689, p = 0.492, d = 0.125; decaying exponent, t(119) = 214 

1.065, p = 0.289, d = 0.194), indicating a similar trend of diminished memory 215 

resources as set size increases. SZ, however, had larger variability in allocating 216 

resources (Fig. 5B, resource allocation variability, t(119) = 4.03, p = 9.87 ´ 10-5, d 217 

= 0.733). This suggests that, although the two groups have on average the same 218 

amount of memory resources across different set size levels, SZ allocate the 219 

resources across items or trials in a more heterogeneous manner, with some items in 220 

some trials receiving considerably larger amounts and vice versa in other cases. 221 

This is theoretically suboptimal with respect to completing the task since the probe 222 

was randomly chosen among all presented items with an equal probability. The 223 

optimal strategy therefore should be to assign an equal amount of resources to every 224 

item and in every trial to tackle the unpredictable target. Furthermore, our VP 225 

model explicitly distinguishes the variability in processing items and the variability 226 

in exerting a behavioral choice (e.g., motor or decision noise). We found no 227 

significant group difference in the choice variability (Fig. 5C, t(119) = 1.7034, p = 228 

0.091, d = 0.31), excluding the possibility that the atypical performance of SZ arises 229 

from larger variability at the choice stage. 230 

 231 

Figure 5.  Fitted parameters of the VP model. No significant group differences 232 
are noted between two groups in resource decay functions (panel A), and 233 
choice variability (panel C). SZ have larger resource allocation variability than 234 
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HC (panel B). The individual resource decay functions are computed by 235 

, where N is the set size,  and a are the estimated initial 236 
resources and the decaying exponent of one subject. The solid lines represent 237 
the averaged resource decay functions across subjects. The shaded areas in 238 
panel A and all error bars in panel B and C represent ±SEM across subjects. 239 
Significance symbol conventions are ***: p < 0.001; n.s.: non-significant.  240 

 241 

 242 

No capacity difference between HC and SZ  243 

Although the VP model is the most appropriate model for both groups, we believe it 244 

is also valuable to examine other suboptimal models for several reasons. First, the 245 

VP model does not have the concept of capacity. Thus, we cannot completely rule 246 

out the influence of capacity. One might argue that resource allocation variability 247 

and limited capacity might jointly manifest in SZ and a hybrid model that 248 

aggregates the two factors might yield a better explanation. Second, conclusions 249 

based on a single model might be unreliable as its fitted parameters may arise from 250 

specific model settings or possible idiosyncratic model fitting processes. 251 

First, we emphasize that the VPcap model is such a hybrid model that 252 

accommodates both the variable precision mechanism and a fixed capacity. The 253 

results from the VPcap model largely replicated the results of the VP model. Again, 254 

we found a significantly larger resource allocation variability in SZ (t(119) = 3.891, 255 

p =1.65 x 10-4, d = 0.707), see full statistical results in Supplementary Note 4). This 256 

result suggests that the effect of resource allocation variability is quite robust even 257 

though we alter the model structure.  258 

 We further examined the estimated capacity of all subjects in all models that 259 

contain the capacity parameter (i.e., IL, MIX, SA, cosSA, and VPcap models). 260 

Consistently, none of the models showed decreased capacity in SZ (see full stats in 261 

Supplementary Note 4 and Supplementary Figure 4). This result further rules out 262 

capacity deficits in SZ. 263 

 In sum, we found robustly larger resource allocation variability in SZ in 264 

both the VP and the VPcap models. Also, we found no evidence for decreased 265 

capacity in SZ in all models that include the capacity parameter. These results 266 

J = J1 *N
−a

  
J1
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directly challenge the widely accepted decreased-capacity account and highlight the 267 

role of resource allocation variability in VWM deficits of SZ. 268 

 269 

Resource allocation variability predicts the severity of schizophrenic symptoms 270 

 We next turned to investigate whether the results from the VP model can 271 

predict clinical symptoms. A set of correlational analyses was carried out to link the 272 

estimated resource allocation variability to the schizophrenia symptomatology in 273 

each subject (BPRS, SANS, and SAPS).  274 

We noticed that the estimated resource allocation variability of individual 275 

subjects correlates with their BPRS scores (Fig. 6A, r = 0.259, p = 0.045) and the 276 

SANS scores (Fig. 6B, r = 0.302, p = 0.019) in SZ. No significant correlation was 277 

noted on the SAPS scores (Fig. 6C, r = -0.121, p = 0.358). These results suggest 278 

that resource allocation variability not only is the key factor describing VWM 279 

behavior in SZ but also can quantitatively predict the severity of clinically 280 

measured symptoms. 281 

 282 

Figure 6. Individual differences in resource allocation variability predict the 283 
scores in symptom assessments. Estimated resource allocation variability 284 
values in the SZ group significantly correlates with their scores on BPRS 285 
(panel A) and SANS (negative symptoms, panel B) but not on SAPS (positive 286 
symptoms, panel C). 287 

 288 

 289 

Discussion 290 
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The mechanisms of VWM deficits in schizophrenia have been a matter of debate 291 

over the past few years. One widely accepted view proposes decreased capacity as 292 

the major cause of the deficits in SZ. In the present study, we re-examine this 293 

conclusion by comparing the performance of SZ and HC using all mainstream 294 

computational models of VWM proposed so far. We first establish that the VP 295 

model is the best model to characterize performance of both groups, indicating a 296 

qualitative similar internal process in both groups. We then further evaluate 297 

different components in the VP model as well as other suboptimal models, with 298 

special focuses on memory capacity and the declining trend of mean precision as a 299 

function of set size. Surprisingly, we find that SZ and HC differ in none of these 300 

two diagnostic features of VWM. Interestingly, we find that SZ have larger 301 

variability in allocating memory resources. Furthermore, individual differences in 302 

resource allocation variability predict variation of patients’ symptom severity, 303 

highlighting the clinical functionality of this factor. Taken together, our results 304 

challenge the long-standing decreased-capacity explanation for the VWM deficits in 305 

schizophrenia and propose for the first time that resource allocation variability is 306 

the key factor that limits their performance. 307 

A large body of literature has documented that SZ perform poorly in various 308 

forms of working memory tasks 2,3,50,51. They reached the same conclusion: memory 309 

capacity is decreased in schizophrenia. However, through a careful examination of 310 

the literature, we find that the definition of capacity varies substantially across 311 

studies. Many studies directly equated worse performance with decreased capacity 312 

without quantitatively demonstrating how capacity modulates performance. For 313 

example, memory capacity was defined as the number of digits that can be recalled 314 

in the longest strand in digit span tasks 12. In N-back tasks, capacity was defined as 315 

the number of backs corresponding to a certain accuracy level 14–16. Moreover, the 316 

calculation of capacity resembled the d-prime metric in change detection tasks 22–317 
24,41,52. The majority of these metrics are behavioral thresholds related to capacity 318 

rather than direct quantifications of capacity. Although these metrics indeed suggest 319 

worse performance in SZ, they cannot directly reveal decreased capacity given the 320 

presence of other components such as memory resource or choice variability. It is 321 
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still unclear how these components jointly determine performance. This is partly 322 

because we lack appropriate computational models for the majority of the tasks. 323 

The VP model is advantageous as it describes the generative process of the delay-324 

estimation task and the change-detection task 46. As such, it allows to disassociate 325 

the effect of capacity from other VWM components.  326 

The most notable result in our study is that no group difference is discovered 327 

in capacity in all models that estimate capacity. One potential limitation here might 328 

be that we only tested set size 1 and 3 given the limited number of trials we were 329 

able to collect on SZ patients. We acknowledge that high set size levels that 330 

challenge the subjects’ VWM ability would lead to more accurate estimates of 331 

capacity. But we tended to be conservative when designing the experiment as SZ 332 

had already shown significant guessing behavior on set size 3 in our pilot 333 

experiment (also see Fig. 2A). Moreover, the fact that no capacity differences in all 334 

models are unlikely driven by the parameter setting in a particular model. One 335 

might also argue that adding the capacity parameter in for example the SA and MIX 336 

models might not significantly improve goodness of fit but will be penalized by 337 

AIC and BIC metrics, rendering worse models in terms of model comparison. We 338 

exclude this possibility by performing model comparisons using AIC and BIC 339 

without considering the capacity parameter (see Supplementary Note 3). Results 340 

replicated our main conclusions here. Future studies might need to test more 341 

conditions and more behavioral tasks. 342 

Only a few studies have quantitatively estimated capacity and precision in 343 

schizophrenia. Gold et al 25 employed the same delay-estimation task as in our 344 

study and estimated individual’s capacity and precision using the MIX model. 345 

Results in that study echoed the decreased-capacity theory. The MIX model 346 

assumes that response errors arise from a mixture distribution that combines a von 347 

Mises distribution whose variance reflects memory precision, and a uniform 348 

distribution that accounts for the random guessing if set size exceeds capacity. The 349 

MIX model, however, does not consider two important factors. First, the model 350 

assumes an equal precision across items in memory. Second, the model does not 351 

separate the variability for processing stimuli (i.e., sensory uncertainty, κ in 352 
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Supplementary Eq. S5) and the variability in exertion of a choice (i.e., choice 353 

uncertainty, κr in Supplementary Eq. S6). Such distinction is important since it 354 

highlights different types of uncertainty in encoding and decoding stages of VWM. 355 

Mathematically, these two types of uncertainty can be distinguished by 356 

manipulating set size since the encoding variability depends on set size but the 357 

choice variability does not. The issues of the MIX model have been symmetrically 358 

addressed in recent work 53.  359 

 Compared with capacity and precision—the two diagnostic features of 360 

VWM, resource allocation variability emerges as a new concept in VWM. It 361 

describes the heterogeneity of allocating resources across multiple items and trials. 362 

Recent work suggests that such variability might not only manifest in VWM and 363 

but also act as a ubiquitous mechanism when processing multiple objects in vision 364 
54. We speculate that resource allocation variability reflects the stability of 365 

attentional control when the brain processes multiple objects. Two aspects of 366 

available evidence support this argument. First, it has been shown that attention and 367 

WM are two core components of executive control and tightly linked with each 368 

other 55,56. Second, schizophrenia is known to have deficits in top-down attentional 369 

modulation 51,55. Particularly, recent studies discovered the phenomenon of spatial 370 

hyperfocusing in schizophrenia patients 19,57–59. If schizophrenia patients overly 371 

attend to one item and ignore others in the memory encoding stage, unbalanced 372 

resource allocation will likely occur. But we want to emphasize that such variability 373 

is not equivalent to attentional lapse. A higher attentional lapse rate will lead to 374 

overall fewer resources, a phenomenon we did not observe in our study.  375 

What are the neural mechanisms of this resource allocation variability? 376 

Recent neurophysiological studies proposed that the neural representation of a 377 

stimulus may follow a doubly stochastic process 60,61, which suggests that the 378 

variability in encoding precision is a consequence of trial-to-trial and item-to-item 379 

fluctuations in attentional gain 32,46,62. A recent study combined functional magnetic 380 

resonance imaging and the VP model, showing that the superior intraparietal sulcus 381 

(IPS) is the cortical locus that controls the resource allocation 63.  Interestingly, 382 

schizophrenia patients have been known to have IPS deficits 64. Note that besides 383 
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top-down factors, we cannot rule out the contribution of bottom-up neural noise in 384 

perceptual and cognitive processing 60,61, as found in several other mental diseases 385 
33–36. 386 

The current results also reveal links between resource allocation variability 387 

and patients’ negative symptoms, but not positive symptoms (Fig. 6). These 388 

findings are consistent with several experimental and meta-analysis studies 389 

claiming dissociable mechanisms underlying the cluster of negative symptoms 390 

versus that of positive symptoms 65–68. More broadly, a growing collection of 391 

evidence suggests that visual perceptual deficits in schizophrenic patients are more 392 

likely to link to negative rather than positive symptom severity 69–73. Negative 393 

symptoms in turn might produce improvised social functioning. Humans depend 394 

heavily on VWM to interact with multiple agents and complete social tasks. 395 

Deficits in distributing processing resources over multiple agents therefore might 396 

cause disadvantages in social cognition.  397 

 In conclusion, our study proposes a new explanation that the resource 398 

allocation variability accounts for the atypical VWM performance in schizophrenia. 399 

This view differs from the decreased-capacity theory and provides a new direction 400 

for future studies that attempt to promote diagnosis and rehabilitation for 401 

schizophrenic patients. 402 

 403 

Methods 404 

Ethics Statement.  405 

All experimental protocols were approved by the institutional review board at the 406 

East China Normal University. All research was performed in accordance with 407 

relevant guidelines and regulations. Informed written consent was obtained from all 408 

participants. 409 

 410 

Subjects.  411 

61 HC and 60 SZ participated in the study. SZ were clinically stable inpatients (N = 412 

33) and outpatients (N = 27) who met DSM-IV criteria 74 for schizophrenia. All 413 

patients were receiving antipsychotic medication (2 first-generation, 43 second-414 
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generation, 15 both). Symptom severity was evaluated by the Brief Psychiatric 415 

Rating Scale (BPRS) 75, the Scale for the Assessment of Negative (SANS) and 416 

Positive Symptoms (SAPS) 76,77. HC were recruited by advertisement. All HC had 417 

no current diagnosis of axis 1 or 2 disorders as well as no family history of 418 

psychosis nor substance abuse or dependence. All subjects are right-handed with 419 

normal sight and color perception. 420 

The two groups were matched in age (t(119) = 1.58, p = 0.118, d = 0.284), 421 

gender (31 females and 29 males) and education level of parents (t(119) = 0.257, p 422 

= 0.798, d = 0.047). Inevitably, the SZ had fewer years of education than the HC 423 

(t(119) = 5.51, p = 2.09 ´ 10-7, d = 1.00). The detailed demographic information is 424 

summarized in the Table 1. 425 

Table 1. Demographics and clinical information of people with schizophrenia 426 

(SZ) and healthy control subjects (HC) 427 

 SZ (N = 60)  HC (N = 61) 

 Mean SD  Mean SD 

age 35.67 6.58  33.82 9.90 

  range 23-48 n/a  21-57 n/a 

Female/male 31/29 n/a  29/32 n/a 

Inpatient/outpatient 33/27 n/a  n/a n/a 

Subject’s education (in years) 12.03 2.24  15.13 3.70 

Paternal education (in years) a 9.89 2.53  9.76 2.95 

Maternal education (in years) 9.62 2.91  9.29 3.63 

BPRS 27.25 6.27  n/a n/a 

SAPS 5.77 7.02  n/a n/a 

SANS 24.43 11.45  n/a n/a 
a Average of mother’s and father’s years of education 428 

BPRS: Brief Psychiatric Rating Scale 75; SAPS: Scale for the Assessment of 429 

Positive Symptoms 77; SANS: Scale for the Assessment of Negative Symptoms 76. 430 

 431 

 432 

 433 
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Stimuli and Task.  434 

The subjects sat 50 cm away from an LCD monitor. All stimuli were generated by 435 

Matlab 8.1 and Psychtoolbox 3 78,79, and then presented on a LCD monitor. 436 

 437 

Color delay-estimation VWM task 438 

In the color delay-estimation VWM task (Fig. 1), each trial began with a fixation 439 

cross presented at center-of-gaze for a duration randomly chosen from a sequence 440 

of 300, 350, 400, 450 and 500 ms. Subjects shall keep their fixation on the cross 441 

throughout the whole experiment. A set of colored squares (set size = 1 or 3) was 442 

shown on an invisible circle with 4o radius. Our pilot experiment showed that SZ 443 

patients exhibit a high dropout rate if the task is longer than 30 mins or too hard 444 

(i.e., set size > 4). We therefore limited our task to set size level 1 and 3. The 445 

sample array lasted 500 ms. Each square was 1.5o × 1.5o of visual angle. Their 446 

colors were randomly selected from the 180 colors that are equally distributed along 447 

the wheel representing the CIE L*a*b color space. The color wheel was centered at 448 

(L = 70, a = 20, b = 38) with a radius of 60 in the color space 37. The sample array 449 

then disappeared and was followed by a 900 ms blank period for memory retention. 450 

After the delay, an equal number of outlined squares were shown at the same 451 

location of each sample array item, with one of them bolded as the probe. In the 452 

meantime, a randomly rotated color wheel was shown. The color wheel was 2.1o 453 

thick and centered on the monitor with the inner and the outer radius as 7.8o and 454 

9.8o respectively. Subjects were asked to choose the remembered color of the probe 455 

by clicking a color on the color wheel using a computer mouse. Subjects shall 456 

choose the color as precisely as possible and response time was not constrained. 457 

Every subject completed 2 blocks for the set size 1 and 3, respectively. The order of 458 

the two blocks was counterbalanced across subjects. Each block had 80 trials. The 459 

difference between the reported color and the true color of the target is considered 460 

as the response error. 461 

 462 

Data availability statement 463 
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The data that support the findings of this study are available from the corresponding 464 

author upon reasonable request. 465 
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 2 

Supplementary Note 1: Computational models of VWM 29 

Variable-precision model. The variable-precision (VP) model has been shown as the 30 

state-of-the-art computational model of VWM. Details of the VP model have been 31 

documented in several previous studies 1,2 and the model codes are publicly available 32 

(http://www.cns.nyu.edu/malab/resources.html).  33 

 The VP model assumes a resource decaying function describing the decreasing 34 

trend of mean memory resource ( ) assigned to individual items as the set size (N) 35 

increases 3,4:  36 

 ,                                                            (S1) 37 

where  is the initial resources when only 1 item (N = 1) should be memorized and a is 38 

the decaying exponent. The key component of the VP model is that the memory 39 

resources  across items and trials follow a Gamma distribution with the mean and the 40 

scale parameter :  41 

 ,                                                        (S2) 42 

Intuitively, a larger  indicates a more uneven distribution of memory resources across 43 

items or trials, with some items in some trials receiving a larger amount of resources 44 

while others receive comparative fewer. Note that a larger amount of memory resource 45 

produces a higher precision. Thus, we do not explicitly distinguish resource and precision 46 

and denote them as J. Defining precision as Fisher information 5, precision  can be 47 

linked to the variance of the von Mises distribution of sensory measurement: 48 

,                                                              (S3) 49 

where  and  are modified Bessel functions of the first kind of order 0 and 1 50 

respectively, with the concentration parameter . Eq. S3 specifies a one-on-one mapping 51 

between precision  and variance . We can rewrite their relationship as: 52 

 ,                                                                (S4) 53 

where  is the mapping function. The distribution of sensory measurement (m) given the 54 

input stimulus (s) can be written as: 55 

,                           (S5) 56 

J

J = J1 *N
−a

J1

J J

τ

J ~Gamma(J,τ )

τ

J

J =κ
I1 κ( )
I0 κ( )

I0 I1

κ
J κ

κ = Φ(J )

Φ

p(m | s) = 1
2π I0 (κ )

eκ cos(m−s ) ≡VM (m;s,κ )
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 3 

We further assume that the reported color ( ) by participants also follows a von Mises 57 

distribution: 58 

,                        (S6) 59 

where  represents the variability at the choice stage.  60 

 Given the four free parameters and stimulus color  in a trial, we can derive the 61 

probability of the observed response in a trial by marginalizing over sensory 62 

measurement  and variable precision : 63 

                       �64 

(S7) 65 

Note that in Eq. S7, sensory measurement (m) can be analytically eliminated. Since 66 

precision is a random variable across items and trials, we sampled it 10000 times from 67 

the Gamma distribution with mean  and scale parameter . Note that van den Berg et 68 

al. 1 confirmed that 500 samples are enough in the model fitting. We then used all the 69 

samples to calculate response probability in each trial. 70 

Taken together, this VP model has four free parameters: , a, and .  71 

 72 

Variable-precision-with-capacity model. The variable-precision-with-capacity (VPcap) 73 

model inherits all parameters and the structure of the VP model above, except that an 74 

additional capacity parameter (K) is introduced to estimate the memory capacity of 75 

individuals. If the set size N is smaller than capacity K, the VPcap model is identical to 76 

the VP model. If the set size N exceeds the capacity K, the model assumes that the probe 77 

is stored in the VWM with the probability K/N, and out of memory with the probability 78 

ŝ

p(ŝ |m) = 1
2π I0 (κ r )

eκ r cos( ŝ−m ) ≡VM (ŝ;m,κ r )

kr

s

m J

p ŝ | s; J ,τ( ) = ∫ p ŝ | s;J( ) p J | J ;τ( )dJ
= ∫VM ŝ;s,Φ J( )( )Gamma J ;J ,τ( )dJ
=∬VM ŝ;m,κ r( )VM m;s,Φ J( )( )Gamma J ;J ,τ( )dJdm

= ∫
I0 Φ J( )2

+κ r
2 + 2Φ J( )κ rcos s− ŝ( )⎛

⎝⎜
⎞
⎠⎟

2π I0 κ r( ) I0 Φ J( )( ) Gamma J ;J ,τ( )dJ

J

J τ

J1 τ κ r
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1- K/N. In the latter case, a participant randomly guesses a color. The response 79 

probability therefore can be written as: 80 

,                     (S8) 81 

where  is defined in Eq. S7. In essence, the VPcap model is a mixture model 82 

of the VP model and a random guessing process when the set size exceeds the 83 

participant’s capacity. The VPcap model has five parameters, four as the same in the VP 84 

model and the additional capacity parameter (K).  85 

 86 

Item-limit model. The item-limit (IL) model assumes no uncertainty in the sensory 87 

encoding stage such that the internal sensory measurement m is equal to the input 88 

stimulus s. But there exists choice variability from measurement m to the reported color (89 

). Such choice variability does not vary across set size levels. The IL model also 90 

assumes a fixed capacity K. The response probability is:   91 

 ,               (S9) 92 

The IL model has two free parameters: choice variability , and capacity K. 93 

 94 

Mixture model. The mixture model (MIX) has been used in previous clinical research 6.  95 

Similar to the IL model, the MIX model only assumes the uncertainty from stimulus s to 96 

the reported color ( ) and a fixed capacity K. The difference is that the uncertainty ( ) 97 

reflects both sensory noise and choice variability, and thus the uncertainty is set-size 98 

dependent (each set size has one ). The response probability can be written as:  99 

,                 (S10) 100 
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 5 

where and denote the uncertainty for set size 1 and 3, respectively. The MIX model has 101 

three parameters: uncertainty levels  and , and capacity K. 102 

 103 

Slots-plus-averaging model. The slots-plus-averaging (SA) model was originally 104 

proposed in 7 and further elaborated in 1. Unlike the IL model, the SA model 105 

acknowledges the presence of noise in the sensory encoding stage. However, the memory 106 

resources are discrete chunks, and a single chunk or multiple chunks can be assigned to 107 

one item. For one item, the SA model assumes Eq. S4 still holds as the relationship 108 

between the resource assigned to that item and the width of the von Mises distribution: 109 

 ,                                                     (S11) 110 

where S is the number of chunks and Js  is the resource of one chunk. The SA model also 111 

assumes a capacity K.  112 

When N > K, an item should receive either 0 or 1 chunk. Then the allocation 113 

should be similar to the IL model. the response distribution should be a mixture of a 114 

uniform and a von Mises distributions: 115 

,     (S12) 116 

When N ≤ K, some items receive either one or more chunks. Assuming that the 117 

resource chunks should be assigned as equally as possible across items, the S can be 118 

calculated as: 119 

,                     (S13)                                                              120 

where  represents the floor function in Matlab. The corresponding concentration 121 

parameter of von Mises distributions can be computed by Eqs. S11&13: 122 

κ1 κ 3
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2 +κ 2
r + 2Φ(Js )κ r cos(ŝ − s))
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K
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⎢
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 6 

                                            (S14) 123 

The response probability in the SA model can be written as: 124 

125 
, (S15) 126 

The SA model has three free parameters: unit resource Js, choice variability , and 127 

capacity K.   128 

 129 

Cosine slots-plus-averaging model. A recent paper 8  suggests that a modified version of 130 

the SA model, dubbed cosine slots-plus-average model (cosSA), outperformed the VP 131 

model to explain the delay-matching VWM behavior. To enhance the generality of our 132 

study, we also followed that work and included this model. Briefly, the cosSA model 133 

assumes that the unit memory precision is stimulus-dependent and exhibits a cosine-like 134 

periodic fluctuation:  135 

,                                                          (S16) 136 

where and  describe the fluctuation of unit memory precision ( ) as a function of 137 

stimulus s.  We can convert precision  to the width of von Mises distributions 138 

according to Eq. S4. According to capacity K, the discrete memory resource allocation is 139 

described as Eq. S11-S14. Moreover, the cosSA model also assumes the response bias is 140 

periodic: 141 

,                                                        (S17)  142 

where  adjusts the magnitude of the bias. The probability of a response given the 143 

stimulus can be described as:  144 

 ,                     (S18) 145 
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The cosSA model has four free parameters: , ,  and capacity K. 146 

 147 

Equal-precision model. The equal-precision (EP) model is very similar to the VP model, 148 

except that an equal amount of resources is assigned to every item and in any trial. 149 

Namely, the Eq. S2 does not apply to the EP model. In the EP model, the resource 150 

assigned to one item declines as a power function (as Eq. S1). Then the resource at each 151 

set size level can be converted to the width of the von Mises distribution using (Eq. S4). 152 

The response probability is given by:  153 

,          (S19) 154 

where J1 is the resource when set size is 1 (initial resources). The EP model has three free 155 

parameters: initial resources , decaying exponent a, and choice variability . 156 

 157 

Supplementary Note 2: Intuitive model explanations 158 

Despite the mathematical details provided above, we further provide intuitive 159 

explanations for each model and highlight their differences based on cartoon illustrations 160 

in Supplementary Fig. 1. Note that all stimuli are 0 because we transformed the reported 161 

color to recall errors in each trial. 162 

 163 

Item-limit model. In the IL model (Supplementary Fig. 1A), if the capacity K is larger 164 

than the set size N (e.g., N=2, K=3, the left panel), all items can enter working memory. 165 

The reported color follows a von Mises distribution with the mean as the color of the 166 

probed stimulus. If the capacity K is smaller than the set size N (e.g., N=2, K=3, the right 167 

panel), a probed stimulus can be stored within memory with probability K/N and out of 168 

memory with probability (1-K/N). If the probed stimulus is in memory, the same rule of 169 

von Mises distribution applies. If the probed stimulus is out of memory, a subject guesses 170 

a color (i.e., with probability 1/2p, the uniform distribution of guessing).  171 

 172 

Jm J f µ f

p(ŝ | s;J1,a,κ r ) =
I0( Φ(J1N

−a )2 +κ 2
r + 2Φ(J1N

−a )κ r cos(ŝ − s))
2π I0(κ r )I0(Φ(J1N

−a ))

J1  κ r
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 8 

Mixture model. The mixture model (Supplementary Fig. 1B) shares all components with 173 

the IL model. The key difference is that the IL model assumes the same von Mises 174 

distribution for both set size levels (i.e., same width of the blue and the orange 175 

distributions in Supplementary Fig. 1A), while the mixture model uses two von Mises 176 

distributions with different widths for the two set size levels (i.e., different widths of the 177 

blue and the orange distributions in Supplementary Fig. 1B), to compensate the potential 178 

different level uncertainty associated with two set size levels. Thus, the mixture model 179 

has one additional free parameter than the IL model. 180 

 181 

Slot-plus-averaging and cosine slot-plus-averaging model. The SA model regards 182 

memory resources as several discrete chunks (Supplementary Fig. 1C). In the example of 183 

Supplementary Fig. 1C, the subject has three (K=3) chunks of resources and the blue cups 184 

stand for individual stimulus. If two stimuli are presented (i.e., two cups, set size = 2), the 185 

scenario in which the number of resource chunks is larger than the set size, two resource 186 

chunks are assigned to one cup and another chunk to the other cup. If the number of 187 

resources is smaller than the set size (e.g., four stimuli/cups), one cup will receive no 188 

resource, and the subject has to guess if this stimulus/cup is probed. The key difference 189 

between the SA model and the three models below is that the SA model assumes discrete 190 

resource chunks. 191 

 The cosSA model is a modified version of the SA model with three major changes 192 
8. First, the unit memory precision is stimulus-dependent and follows a periodic function 193 

(see Eq. S16 and Fig. S1D). Second, it also includes a response bias that is also stimulus-194 

dependent and periodic (see Eq. S17 above and Fig. S1D). Third, for simplicity it does 195 

not include the response variability and only includes one uncertainty (i.g., encoding 196 

precision) in the processing. 197 

 198 

Equal-precision, variable-precision and variable-precision-with-capacity models. 199 

The EP, VP and VPcap models share one core assumption: memory resources are 200 

continuous, analogous to the amount of juice in a big mug (Supplementary Fig. 1E). A 201 

subject needs to assign the juice (i.e., resources) into different cups (i.e., stimuli). In 202 

Supplementary Fig. 1E, the orange cups stand for the mean juice amount an individual 203 
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cup receives in each set size condition. We can imagine that, given the total amount of 204 

juice is fixed, the more cups (i.e., larger set size) the less juice on average each cup will 205 

receive. This is reflected by the diminishing average amount of juice as set size increases 206 

(also see Eq. S1). 207 

 Besides the core assumption of continuous resources, the three models have 208 

slightly different specifications (Supplementary Fig. 1F). In Supplementary Fig. 1F, all 209 

orange cups stand for the mean juice amount in each set size condition, and the blue cups 210 

stand for individual stimulus. The EP model assumes that in each set size condition, each 211 

cup receives an identical amount of juice (upper row in Supplementary Fig. 1F). In the 212 

VP model, however, each cup receives a variable amount of juice even though their 213 

average amount is the same as in the EP model. Using two cups as an example, the 214 

average amount of juice might be 10 ml but one cup might have 9 ml and the other one 215 

has 11 ml. Whether the amount of juice in each cup varies is the key difference between 216 

the EP and the VP models. Moreover, both EP and VP models do not constrain the total 217 

number of cups. Therefore, a cup will more or less receive a little bit juice even though 218 

there is a large number of cups (middle row). In other words, both the EP and the VP 219 

models have no concept of capacity. In contrast, the VPcap model not only inherits the 220 

assumption of variable precision and but also constraints the maximal number of cups 221 

(i.e., capacity K) that can receive juice. If the total number of cups (i.e., N stimuli) is 222 

larger than the capacity K, some cups will receive no juice, and the subject has to guess 223 

the color of these stimuli. 224 

 225 

Supplementary Note 3: Model fitting and comparisons  226 

Model fitting. The BADS optimization toolbox in MATLAB 9 was used to search the 227 

best-fit parameters that maximize the likelihood of response data in all trials. BADS has 228 

been shown to outperform other default nonlinear optimization algorithms in MATLAB, 229 

especially in the problems where gradients on loss function are not available or hard to 230 

compute 9. We fit all models separately in each participant. To avoid local minima, we 231 

repeated the optimization process with 20 different initial seeds that are equally spaced 232 

within a lower and an upper bound. Parameters bounds were set to be very broad to avoid 233 
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bias. The parameters with the maximum likelihood value were used as the best-fit 234 

parameters for one subject. 235 

 236 

Model comparisons. We compared the performance of all models fitted in this study. 237 

Model comparisons were performed for both groups using both Akaike information 238 

criterion (AIC) and Bayesian information criterion (BIC) 10,11 metrics (Supplementary 239 

Fig. 1). We derived the best model for each subject. Results showed that the VP model 240 

outperformed all other models over 84% of subjects in both groups under both AIC and 241 

BIC (Supplementary Fig. 2). Particularly, the VP model is the best-fitting model in 51 out 242 

of 61 (84%) HC and in 55 out of 60 SZ (92%) under the AIC. Using the BIC, the VP 243 

model is the best-fitting model in 52 out of 61 HC (85%) and 54 out of 60 (90%) SZ.  244 

These results strongly support the idea that the VP model assuming no fixed capacity 245 

better explains the VWM behavior. This result also questions the conventional theory 246 

whether capacity acts as a key determinant of limiting VWM performance in SZ. 247 

 One might argue that the SA, cosSA, and MIX models were worse than the VP 248 

model because AIC and BIC overly penalize the capacity parameter K while this 249 

parameter may not substantially improve goodness of fitting because of low set size 250 

levels (i.e., 1/3) used here. To exclude this possibility, we further compared the SA, cos 251 

SA, and MIX models to the VP model using AIC and BIC metric but without considering 252 

the capacity K� that is, we kept the likelihood of the model fitting with K but calculated 253 

AIC and BIC without K. In this case, the models fully enjoyed the potential benefits 254 

endowed by K in modeling fitting but avoided overly penalizing this additional parameter. 255 

Results showed that the VP model was still the best-fitting model in the majority of 256 

subjects in both groups and under both metrics (AIC, 51 out of 61 in the HC group and 257 

43 out of 60 in the SZ group; BIC, 52 out of 61 in the HC group and 45 out of 60 in the 258 

SZ group). 259 

 260 

Supplementary Note 4: Results of other suboptimal models 261 

Fitted parameters of the VPcap model. The VPcap model is a variant of the VP model 262 

and incorporates an additional capacity parameter. Estimated parameters in the VPcap 263 

model largely replicated the results of the VP model (Supplementary Fig. 3). Again, SZ 264 
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have larger resource allocation variability than HC (Supplementary Fig. 3B, t(119) = 265 

3.891, p =1.65 x 10-4, d = 0.707) and the two groups did not significantly differ in the 266 

resource decay function (Supplementary Fig. 3A, initial resources, t(119) = 0.012, p = 267 

0.990, d = 0.002; decaying exponent, t(119) = 1.142, p = 0.256, d = 0.208). We observed 268 

a significant larger choice variability in HC (Supplementary Fig. 3C, choice variability, 269 

t(119) = 2.365, p = 0.02, d = 0.43). Most importantly, the estimated capacity values of 270 

two groups were statistically comparable (Supplementary Fig. 3D, t(119) = 0.459, p = 271 

0.647, d = 0.083).  272 

 273 
Comparing capacity of the two groups in suboptimal models. We further investigated 274 

the estimated capacity of all subjects in the IL, the SA, the cosSA, the MIX and the 275 

VPcap model, the four models having the capacity parameter. We found no significant 276 

group difference in capacity measured by all five models (Supplementary Fig. 4, IL 277 

model, t(119) = 1.554, p = 0.123, d = 0.283; SA model, t(119) = 1.03, p = 0.306, d = 278 

0.187; cosSA model, t(119) = 0.235, p = 0.815, d = 0.043; MIX model, t(119) = 0.273, p 279 

= 0.786, d = 0.050; VPcap model, t(119) = 0.459, p = 0.647, d = 0.083).  280 

 281 

Supplementary Note 5: Color perception task 282 

Color perception task. Before the main VWM task, all subjects completed a task to 283 

measure their color perception ability. The task is identical to the VWM task except for 284 

two modifications. First, only one colored object was shown in the sample array. Second, 285 

in the probe array, the colored object appeared again on the screen. A subject needed to 286 

choose its color on the color wheel while looking at it. There was 1 block with 50 trials in 287 

this task. 288 

 289 

Color perception results between HC and SZ. We used the circular standard deviation 290 

(CSD) of response errors (the circular distance between the original color and chosen 291 

color in a trial) to evaluate the performance in the color task. A significant group 292 

difference was found (t(119) = -2.095, p = 0.038, d = -0.38), suggesting in general worse 293 

color perception in SZ. But this result might also be explained by potential differences in 294 

choice variability (e.g., motor control). To exclude the potential confounding of color 295 
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perception, we further set CSD from the color perception as a co-variate and repeat all 296 

statistical analyses (see below). 297 

 298 

Supplementary Note 6�Statistical results with the CSD in the color perception task 299 

as a covariate. 300 

VWM performance. We added the CSD in the color perception task as a co-variate to 301 

VWM performance comparison of two groups. The repeated-measure ANCOVA (see the 302 

main text for details of variables) results again showed a worse VWM performance at 303 

higher set size level (F(1,119) = 100.676, p < 0.001, partial η2 = 0.46). The group was 304 

also significant (F(1,119) = 8.902, p = 0.003, partial η" = 0.070), indicating that HC’s 305 

performance was better than SZ’s. The interaction between set size and group was not 306 

significant (F(1,119) = 0.324, p = 0.570, partial η" = 0.003). Also, the color perception 307 

ability had no influence on VWM performance (F(1,119) = 0.285, p = 0.595, partial η" = 308 

0.002). These results replicated the results from the main text. 309 

 310 

Fitted parameters of the VP model. Univariate general linear models were used for 311 

comparing fitted parameters between the two groups. We regressed out the factor of color 312 

perception by setting. Same as results in the main text (Fig. 5), comparable resource 313 

decay functions (Fig. 5A, initial resources, F(1,119) = 0.376, p = 0.541, partial η" = 314 

0.003; decaying exponent, F(1,119) = 0.573, p = 0.451, partial η" = 0.005) and choice 315 

variability (Fig. 5C, F(1,119) = 1.702, p = 0.195, partial η" = 0.014) between SZ and HC 316 

were found in this analysis. And SZ showed larger variability in allocating resources 317 

(resource allocation variability, F(1,119) = 15.112, p < 0.001, partial η" = 0.114).  318 

 319 

Fitted parameters of the VPcap model. The two groups did not show significant 320 

differences in the resource decay function (initial resources, F(1,119) = 0.557, p = 0.457, 321 

partial η" = 0.005; decaying exponent F(1,119) = 2.097, p = 0.150, partial η" = 0.017). 322 

SZ had larger resource allocation variability (F(1,119) = 11.490, p = 0.001, partial η" = 323 

0.089) and smaller choice variability F(1,119) = 5.616, p = 0.019, partial η" = 0.045) than 324 
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HC. The estimated capacity values of two groups were statistically comparable 325 

(Supplementary Fig. 2D, F(1,119) = 0.175, p = 0.667, partial η" = 0.001).  326 

  327 
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 328 
Supplementary Figure 1. Cartoon illustration of all computational models 329 
considered in this study. This figure aims to aid an intuitive understanding 330 
of the models. Detailed model explanation to Supplementary Note 2. A. 331 
item-limit model; B. MIX model; C. the principle of discrete slots and the 332 
SA model; D. cosSA model; E. the principle of continuous resources; F, 333 
EP, VP, and VPcap models.  334 
  335 
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 336 
Supplementary Figure 2. Positive log-likelihood (panels A, D), AIC 337 
(panels B, E) and BIC (panels C, F) values for all models. Note that here 338 
we display the positive log-likelihood values to help visually compare 339 
models since maximum negative log-likelihood values are equivalent to 340 
minimum positive log-likelihood values. As such, in all panels a lower y-341 
axis value indicates a better model. The upper (panels A-C) and lower 342 
(panels D-F) rows depict the model comparison results for HC and SZ 343 
respectively. The best-fitting model is the VP model for both groups (also 344 
see Fig. 3 in the main text). 345 
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 347 
 348 

 349 
Supplementary Figure 3. Fitted parameters (panel A: resource decay 350 
functions; panel B: resource allocation variability; panel C: choice 351 
variability; panel D: capacity) of the VPcap model. The results replicate 352 
the results in Fig. 4. Furthermore, this model estimates capacity in 353 
individual subjects and the result show that the two groups have a 354 
comparable capacity (panel D). All error bars are ± SEM across subjects. 355 
Other figure captions are the same as in Fig. 4 in the main text. 356 
Significance symbol conventions are *:p < 0.05; ***: p < 0.001; n.s.: non-357 
significant. 358 

  359 
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 360 

 361 
Supplementary Figure 4.  The capacity of the two groups measured by five 362 
suboptimal models. None of the five models reveal the significant group 363 
differences in capacity. These results directly challenge the conventional 364 
decreased-capacity account of SZ. All error bars are ± SEM across 365 
subjects.   366 
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