

1 Atypically larger variability of resource allocation
2 accounts for visual working memory deficits in
3 schizophrenia

4 Running title: visual working memory in schizophrenia

5

6 Yi-Jie Zhao¹, Tianye Ma¹, Xuemei Ran¹, Li Zhang¹, Ru-Yuan Zhang^{2*},
7 Yixuan Ku^{1*}

8 ¹The Shanghai Key Lab of Brain Functional Genomics, Shanghai Changning-
9 ECNU Mental Health Center, School of Psychology and Cognitive Science, East
10 China Normal University, Shanghai, 200062 China

11 ²Center for Magnetic Resonance Research, Department of Neuroscience, University
12 of Minnesota, Minneapolis, MN 55455 USA

13 * co-corresponding author

14

15 Correspondence:

16 Yixuan Ku: yxku@psy.ecnu.edu.cn

17 Ru-Yuan Zhang: zhan1217@umn.edu

18

19

20

21

22

23

24 **Abstract**

25 Schizophrenia patients are known to have profound deficits in visual working
26 memory (VWM), and almost all previous studies attribute the deficits to decreased
27 memory capacity. This account, however, ignores the potential contributions of
28 other VWM components (e.g., memory precision). Here, we measure the VWM
29 performance of 60 schizophrenia and 61 healthy control subjects. Moreover, we
30 thoroughly evaluate several established computational models of VWM to compare
31 the performance of the two groups. Surprisingly, none of the models reveal group
32 differences in memory capacity and memory resources. We find that the model
33 assuming variable precision across items and trials is the best model to explain the
34 performance of both groups. According to the variable-precision model,
35 schizophrenia subjects exhibit abnormally larger variability of allocating memory
36 resources rather than resources or capacity per se. These results challenge the
37 widely accepted decreased-capacity theory and propose a new perspective on the
38 diagnosis and rehabilitation of schizophrenia.

39

40 **Keywords:** Schizophrenia, Visual working memory, Memory precision, Memory
41 capacity, Bayesian inference, Perceptual variability

42

43

44

45 **Introduction**

46 Schizophrenia is a severe mental disorder accompanied by a range of dysfunctions
47 in perceptual and cognitive behavior, among which working memory deficit is
48 considered as a core feature ^{1–4}. Working memory refers to the ability to temporally
49 store and manipulate information in order to guide appropriate behavior, and it has
50 been shown to link with a broad range of other brain functions, including perception,
51 attention, problem-solving and executive control ^{5–8}. Dysfunctions in working
52 memory therefore might cascade into multiple mental processes, causing a wide
53 spectrum of negative consequences ^{2,3,9}.

54 A well-established finding in lab-based experiments is that people with
55 schizophrenia (SZ) exhibit worse performance than healthy control (HC) in visual
56 working memory (VWM) tasks ². This phenomenon has long been attributed to
57 decreased VWM capacity in SZ ^{2,10,11}. This theory was supported by previous
58 studies using various VWM or other WM tasks, including the ‘span’ tasks (e.g.,
59 digit span, spatial span, verbal span) ^{12,13}, the N-back task ^{14–16}, the delayed-
60 response task ^{17–19}, the change detection task ^{20–24}, and the delay-estimation task ^{25–}
61 ²⁷. Despite the considerable differences across tasks, almost all previous studies
62 converged to the same conclusion that decreased-capacity is the major cause of the
63 VWM deficits in SZ.

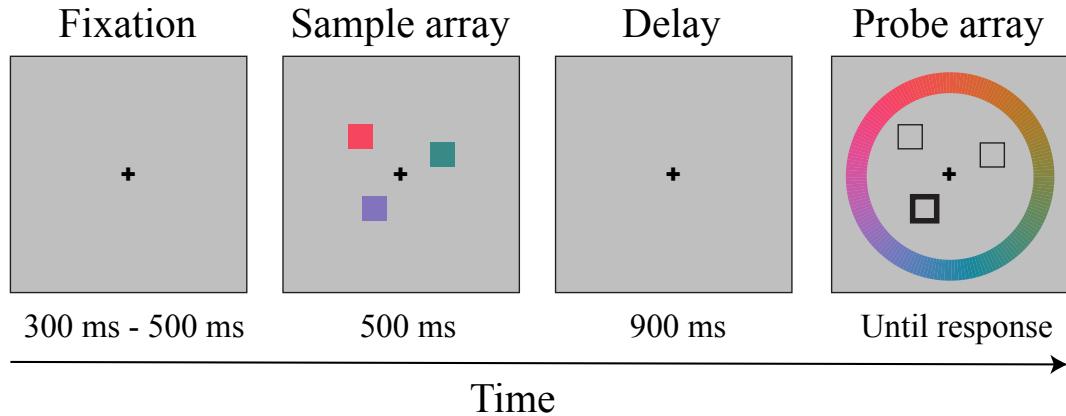
64 Besides capacity, in the basic research of VWM, people have increasingly
65 recognized memory *precision* as another pivotal determinant of VWM performance
66 ²⁸. Precision reflects the amount of memory resources assigned to individual
67 items—a larger amount of resources leads to higher memory precision. At the
68 neural level, low perceptual precision might arise from either the intrinsic noise in
69 neural processing ^{29–31} or the fluctuations of cognitive factors (e.g., arousal,
70 attention) ^{31,32}. Atypically increased variability in both behavioral and neural
71 responses has been discovered in patients with mental diseases such as autism
72 spectrum disorder ^{33,34}, dyslexia ³⁵, and attention-deficit/hyperactivity disorder ³⁶.
73 These theoretical and empirical studies raise the possibility that SZ and HC might
74 differ in memory precision rather than capacity—that is, these two groups might be
75 able to remember an equal number of items (i.e., comparable capacity) but SZ

76 generally process and maintain items in a less precise manner. Only a few studies
77 have attempted to simultaneously quantify memory capacity and precision in
78 schizophrenic or schizotypy subjects, and the results are not consensus^{25,26}.

79 Despite the confound of the possible cause in different VWM components, it is
80 unclear whether SZ and HC employ the same computational strategies (i.e.,
81 observer model) in VWM. Most prior studies only used one model and implicitly
82 assumed the model was the best one for both SZ and HC. But without systematic
83 model comparisons model optimality cannot be firmly warranted, and endowed
84 results might be biased by the choice of a particular model. Given that several
85 influential models have been proposed to explain the VWM behavior in normal
86 subjects²⁸, it remains unclear which one is the best for SZ. If the best model for SZ
87 differs from the one for HC, it indicates that the two groups use qualitatively
88 different computational strategies to complete behavioral tasks. If SZ and HC share
89 the same best model, it indicates that they use the same strategy but quantitatively
90 different parameters. These possibilities, however, have yet been thoroughly tested.

91 In the present study, we aim to systematically disentangle the impact of
92 memory capacity and precision, as well as other factors (i.e., variability in
93 allocating resources and variability in choice) in SZ. In this study, the performance
94 of SZ and demographically matched HC was measured in a standard VWM
95 delayed-estimation task (Fig. 1). Using a standard task allows us to compare our
96 results to that from previous studies^{25,37-40}. Most importantly, in contrast to most
97 prior studies, we evaluated and compared almost all mainstream computational
98 models in visual working memory research. This approach allows us to take an
99 unbiased perspective and search a large space of both models and parameters. We
100 believe that a well-controlled task and thorough computational modeling will shed
101 new light on the mechanisms of VWM deficits associated with schizophrenia.

102



103

104 **Figure 1.** Color delay-estimation task. This figure depicts an example trial (i.e.,
105 set size = 3) of the color delay-estimation task. Subjects are instructed to first
106 memorize the colors of all squares on the screen, and after a 900ms delay
107 choose the color of the probed square (the one in the left lower visual field in
108 this example) on a color wheel. Response error is the difference between the
109 reported color and the real color of the probe in the standard color space.
110

111

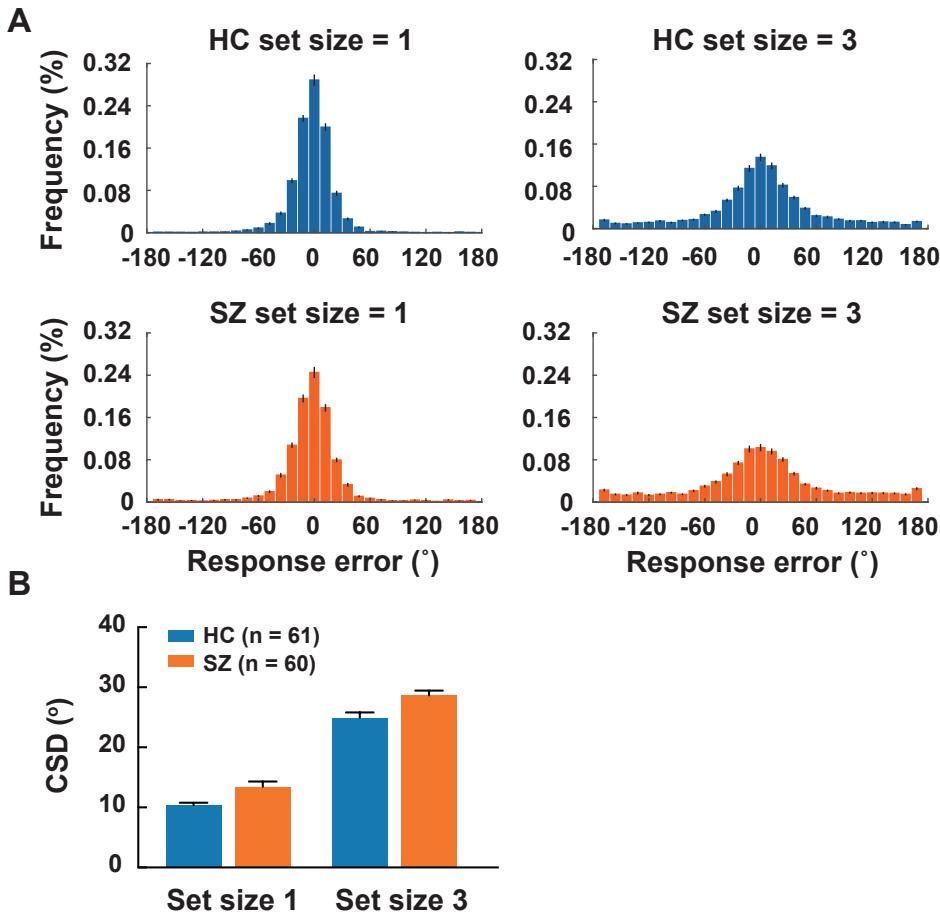
Results

112

Worse VWM performance in SZ

113

We first look at the histograms of raw response errors (the circular distance between
114 the original color and the chosen color, Fig. 2A). The circular standard deviation
115 (CSD) of the response errors was calculated to indicate VWM performance. A
116 repeated-measure ANOVA was performed with CSD as the dependent variable, set
117 size (1/3) as the within-subject variable, group as the between-subject variable (Fig.
118 2B). As demonstrated by previous studies, VWM performance was worse when set
119 size was higher ($F(1,119) = 641,703$, $p < 0.001$, partial $\eta^2 = 0.844$), and
120 unsurprisingly, HC performed significantly better than SZ ($F(1,119) = 13.651$, $p <$
121 0.001 , partial $\eta^2 = 0.103$) did. The interaction between set size and group was not
122 significant ($F(1,119) = 0.229$, $p = 0.633$, partial $\eta^2 = 0.002$), indicating that set size
123 equally affected the performance in both groups. Taken together, we replicated the
124 widely documented VWM deficits in SZ.



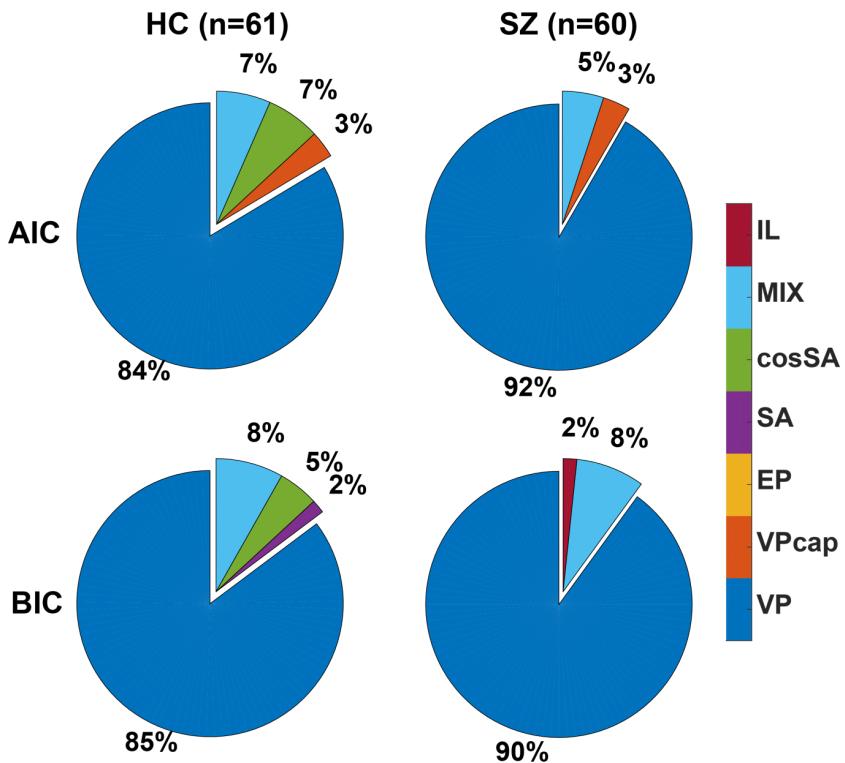
125
126 **Figure 2.** Visual working memory performance in SZ and HC. **A.** Histograms
127 of circular response errors under set size 1 and 3 for both groups. **B.** Circular
128 standard deviations of response errors corresponding to Panel A. SZ show
129 higher CSDs (i.e., worse performance) than HC. All error bars represent SEM
130 across subjects.
131

132 **Variable-precision model accounts for VWM behavior in both HC and**
133 **SZ**

134 To systematically compare the VWM performance of SZ and HZ, we evaluated
135 almost all mainstream computational models of VWM. We provide some brief
136 introductions here, and readers may consider to skip the following paragraph to
137 directly reach the after results or go to Supplementary Notes 1&2 for detailed
138 mathematical and intuitive explanations of the models, depending on the reading
139 preference.

140 The first one is the item-limit (IL) model. The IL model assumes no
141 uncertainty in the sensory encoding stage, and that each subject has a fixed memory

142 capacity and a fixed response variability across set size levels ⁴¹. The second one is
143 the mixture (MIX) model, similar to the IL model but assuming response variability
144 is set-size dependent ^{25,26}. Compared with the MIX model, the slots-plus-averaging
145 (SA) model ³⁷ further elaborates the idea that memory resources manifest as
146 discrete chunks, and these chunks can be flexibly assigned to multiple items. We
147 also explored a modified version of the SA model, dubbed cosSA model, which
148 inherits the idea of discrete memory resources and further assumes that response
149 bias is stimulus-dependent and can be described as empirically derived periodic
150 functions. The fifth one is the equal-precision (EP) model, which is similar to the
151 variable-precision (VP) model below but assumes that the memory resources are
152 evenly distributed across items and trials ^{42,43}. The VP model proposes that memory
153 resources are continuous, and the amount of resource assigned to individual items
154 varies across items and trials. Note that the VP model does not include the capacity
155 component thus we also constructed a variable-precision-with-capacity (VPcap)
156 model that not only acknowledges the variable precision mechanisms and but also
157 explicitly estimates the capacity of individual subjects. Note that the IL, MIX, SA
158 and cosSA, and VPcap models have the parameter of capacity, and the EP and VP
159 models do not. Here, capacity is operationally defined as the maximum number of
160 items that can be stored in memory. Some items are out of memory if set size
161 exceeds capacity, and the subject has to randomly guess the color if one of these
162 items is probed.



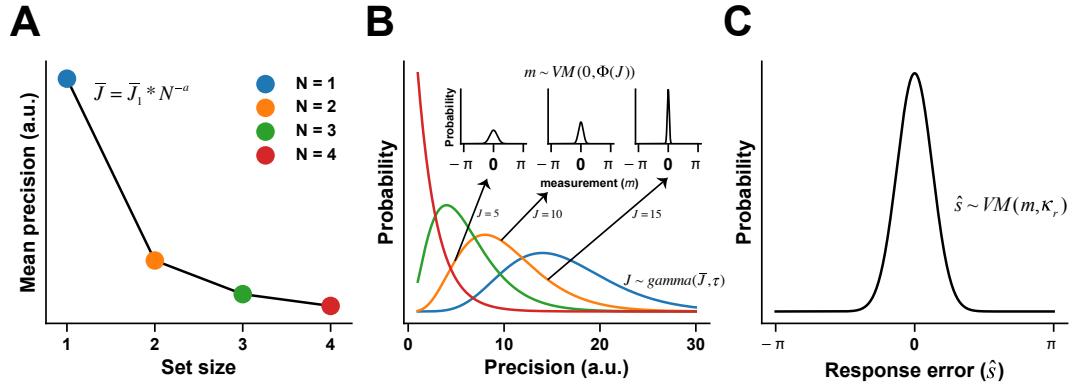
163

164 **Figure 3.** Model comparison results. We compared seven models in each
165 subject. The pie charts illustrate the proportion of subjects for whom each
166 model is their best-fitting model. The VP model is the best-fitting model for
167 over 84% of subjects in both groups and under both AIC and BIC metrics. This
168 result indicates both groups share a qualitatively similar internal process of
169 VWM.

170

171 We compared all seven models using the Akaike information criterion (AIC)
172 and the Bayesian information criterion (BIC)^{44,45}. We found that (Fig. 3), among all
173 models, the VP model was the best-fitting model for over 84% of subjects in the
174 HC group under both metrics, replicating previous results in normal subjects^{46,47}.
175 Most importantly, the VP model (Fig. 4) was also the best-fitting model for over 90%
176 of subjects in the SZ group. This result indicates that both groups use the same
177 observer model to perform the task.

178



179

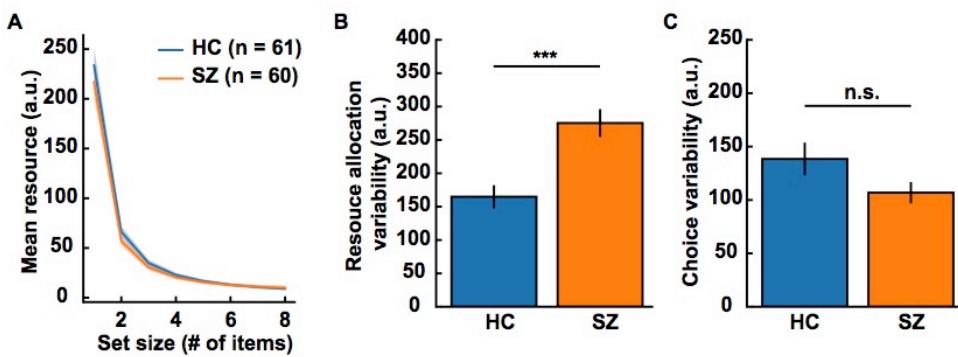
180 **Figure 4.** Variable-precision model of VWM. **A.** Resource decay function.
181 The VP model assumes that the mean resource (\bar{J}) for processing a single item
182 declines as a power function of set size N , a trend characterized by two free
183 parameters—initial resources (\bar{J}_1) and decaying exponent (a). **B.** The resources
184 across items or trials follow a gamma distribution with the mean resource (\bar{J}_1)
185 determined by the resource decay function (panel A) and the resource
186 allocation variability (τ). Larger amounts of resources (J) indicate higher
187 precision and therefore generate narrower von Mises distributions (three small
188 axes indicating the precision equals to 5, 10 and 15 respectively) of stimulus
189 measurement (m). The widths of the von Mises distributions indicate the
190 degree of trial-by-trial sensory uncertainty. **C.** The eventual behavioral choice
191 given the internal stimulus measurement (m) is also uncertain, following a von
192 Mises distribution with the choice variability (κ_r)⁸⁰. In the VP model, initial
193 resources (\bar{J}), decaying exponent (a), resource allocation variability (τ) and
194 choice variability (κ_r) are four free parameters to estimate (see details in SI and
195 van den Berg *et al.*⁴⁶). All numbers here are only for illustration purposes and
196 not quantitatively related to the model fitting results in this paper.
197

198 It is worth highlighting two findings here. First, the superior performance of
199 the VP model suggests the important role of variable precision in VWM processing.
200 Second, we found that the VP model was better than the VPCap model. This result
201 suggests that adding the capacity parameter in the VPCap model seems unnecessary
202 from the modeling perspective. This result is also in line with the literature showing
203 that a fixed capacity might not exist in VWM^{48,49}. Although systematically
204 examining the existence of a fixed capacity is beyond the scope of this paper, this
205 result at least invites a rethink of whether memory capacity should be considered as
206 a key factor that limits VWM performance in SZ.

207

208 **Larger resource allocation variability in SZ**

209 Analyses above have established that HC and SZ employ the qualitatively
210 same observer model to complete the VWM task. Their behavioral differences thus
211 should arise from the differences on some parameters in the observer model. We
212 next compared the fitted parameters of the VP model in the two groups. Results
213 showed that the two groups had comparable resource decay functions (Fig. 5A,
214 initial resources, $t(119) = 0.689$, $p = 0.492$, $d = 0.125$; decaying exponent, $t(119) =$
215 1.065 , $p = 0.289$, $d = 0.194$), indicating a similar trend of diminished memory
216 resources as set size increases. SZ, however, had larger variability in allocating
217 resources (Fig. 5B, resource allocation variability, $t(119) = 4.03$, $p = 9.87 \times 10^{-5}$, d
218 $= 0.733$). This suggests that, although the two groups have on average the same
219 amount of memory resources across different set size levels, SZ allocate the
220 resources across items or trials in a more heterogeneous manner, with some items in
221 some trials receiving considerably larger amounts and vice versa in other cases.
222 This is theoretically suboptimal with respect to completing the task since the probe
223 was randomly chosen among all presented items with an equal probability. The
224 optimal strategy therefore should be to assign an equal amount of resources to every
225 item and in every trial to tackle the unpredictable target. Furthermore, our VP
226 model explicitly distinguishes the variability in processing items and the variability
227 in exerting a behavioral choice (e.g., motor or decision noise). We found no
228 significant group difference in the choice variability (Fig. 5C, $t(119) = 1.7034$, $p =$
229 0.091 , $d = 0.31$), excluding the possibility that the atypical performance of SZ arises
230 from larger variability at the choice stage.



231
232 **Figure 5.** Fitted parameters of the VP model. No significant group differences
233 are noted between two groups in resource decay functions (panel A), and
234 choice variability (panel C). SZ have larger resource allocation variability than

235 HC (panel B). The individual resource decay functions are computed by
236 $\bar{J} = \bar{J}_1 * N^{-a}$, where N is the set size, \bar{J}_1 and a are the estimated initial
237 resources and the decaying exponent of one subject. The solid lines represent
238 the averaged resource decay functions across subjects. The shaded areas in
239 panel A and all error bars in panel B and C represent \pm SEM across subjects.
240 Significance symbol conventions are ***: $p < 0.001$; n.s.: non-significant.

241

242

243 ***No capacity difference between HC and SZ***

244 Although the VP model is the most appropriate model for both groups, we believe it
245 is also valuable to examine other suboptimal models for several reasons. First, the
246 VP model does not have the concept of capacity. Thus, we cannot completely rule
247 out the influence of capacity. One might argue that resource allocation variability
248 and limited capacity might jointly manifest in SZ and a hybrid model that
249 aggregates the two factors might yield a better explanation. Second, conclusions
250 based on a single model might be unreliable as its fitted parameters may arise from
251 specific model settings or possible idiosyncratic model fitting processes.

252 First, we emphasize that the VPcap model is such a hybrid model that
253 accommodates both the variable precision mechanism and a fixed capacity. The
254 results from the VPcap model largely replicated the results of the VP model. Again,
255 we found a significantly larger resource allocation variability in SZ ($t(119) = 3.891$,
256 $p = 1.65 \times 10^{-4}$, $d = 0.707$), see full statistical results in Supplementary Note 4). This
257 result suggests that the effect of resource allocation variability is quite robust even
258 though we alter the model structure.

259 We further examined the estimated capacity of all subjects in all models that
260 contain the capacity parameter (i.e., IL, MIX, SA, cosSA, and VPcap models).
261 Consistently, none of the models showed decreased capacity in SZ (see full stats in
262 Supplementary Note 4 and Supplementary Figure 4). This result further rules out
263 capacity deficits in SZ.

264 In sum, we found robustly larger resource allocation variability in SZ in
265 both the VP and the VPcap models. Also, we found no evidence for decreased
266 capacity in SZ in all models that include the capacity parameter. These results

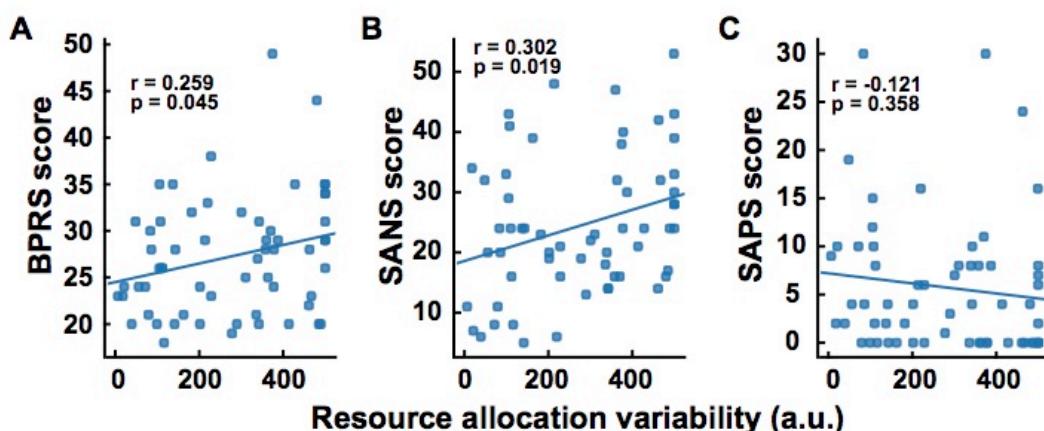
267 directly challenge the widely accepted decreased-capacity account and highlight the
268 role of resource allocation variability in VWM deficits of SZ.

269

270 ***Resource allocation variability predicts the severity of schizophrenic symptoms***

271 We next turned to investigate whether the results from the VP model can
272 predict clinical symptoms. A set of correlational analyses was carried out to link the
273 estimated resource allocation variability to the schizophrenia symptomatology in
274 each subject (BPRS, SANS, and SAPS).

275 We noticed that the estimated resource allocation variability of individual
276 subjects correlates with their BPRS scores (Fig. 6A, $r = 0.259$, $p = 0.045$) and the
277 SANS scores (Fig. 6B, $r = 0.302$, $p = 0.019$) in SZ. No significant correlation was
278 noted on the SAPS scores (Fig. 6C, $r = -0.121$, $p = 0.358$). These results suggest
279 that resource allocation variability not only is the key factor describing VWM
280 behavior in SZ but also can quantitatively predict the severity of clinically
281 measured symptoms.



282

283 **Figure 6.** Individual differences in resource allocation variability predict the
284 scores in symptom assessments. Estimated resource allocation variability
285 values in the SZ group significantly correlates with their scores on BPRS
286 (panel A) and SANS (negative symptoms, panel B) but not on SAPS (positive
287 symptoms, panel C).

288

289

290 **Discussion**

291 The mechanisms of VWM deficits in schizophrenia have been a matter of debate
292 over the past few years. One widely accepted view proposes decreased capacity as
293 the major cause of the deficits in SZ. In the present study, we re-examine this
294 conclusion by comparing the performance of SZ and HC using all mainstream
295 computational models of VWM proposed so far. We first establish that the VP
296 model is the best model to characterize performance of both groups, indicating a
297 qualitative similar internal process in both groups. We then further evaluate
298 different components in the VP model as well as other suboptimal models, with
299 special focuses on memory capacity and the declining trend of mean precision as a
300 function of set size. Surprisingly, we find that SZ and HC differ in none of these
301 two diagnostic features of VWM. Interestingly, we find that SZ have larger
302 variability in allocating memory resources. Furthermore, individual differences in
303 resource allocation variability predict variation of patients' symptom severity,
304 highlighting the clinical functionality of this factor. Taken together, our results
305 challenge the long-standing decreased-capacity explanation for the VWM deficits in
306 schizophrenia and propose for the first time that resource allocation variability is
307 the key factor that limits their performance.

308 A large body of literature has documented that SZ perform poorly in various
309 forms of working memory tasks ^{2,3,50,51}. They reached the same conclusion: memory
310 capacity is decreased in schizophrenia. However, through a careful examination of
311 the literature, we find that the definition of capacity varies substantially across
312 studies. Many studies directly equated worse performance with decreased capacity
313 without quantitatively demonstrating how capacity modulates performance. For
314 example, memory capacity was defined as the number of digits that can be recalled
315 in the longest strand in digit span tasks ¹². In N-back tasks, capacity was defined as
316 the number of backs corresponding to a certain accuracy level ¹⁴⁻¹⁶. Moreover, the
317 calculation of capacity resembled the d-prime metric in change detection tasks ²²⁻
318 ^{24,41,52}. The majority of these metrics are behavioral thresholds related to capacity
319 rather than direct quantifications of capacity. Although these metrics indeed suggest
320 worse performance in SZ, they cannot directly reveal decreased capacity given the
321 presence of other components such as memory resource or choice variability. It is

322 still unclear how these components jointly determine performance. This is partly
323 because we lack appropriate computational models for the majority of the tasks.
324 The VP model is advantageous as it describes the generative process of the delay-
325 estimation task and the change-detection task ⁴⁶. As such, it allows to disassociate
326 the effect of capacity from other VWM components.

327 The most notable result in our study is that no group difference is discovered
328 in capacity in all models that estimate capacity. One potential limitation here might
329 be that we only tested set size 1 and 3 given the limited number of trials we were
330 able to collect on SZ patients. We acknowledge that high set size levels that
331 challenge the subjects' VWM ability would lead to more accurate estimates of
332 capacity. But we tended to be conservative when designing the experiment as SZ
333 had already shown significant guessing behavior on set size 3 in our pilot
334 experiment (also see Fig. 2A). Moreover, the fact that no capacity differences in all
335 models are unlikely driven by the parameter setting in a particular model. One
336 might also argue that adding the capacity parameter in for example the SA and MIX
337 models might not significantly improve goodness of fit but will be penalized by
338 AIC and BIC metrics, rendering worse models in terms of model comparison. We
339 exclude this possibility by performing model comparisons using AIC and BIC
340 without considering the capacity parameter (see Supplementary Note 3). Results
341 replicated our main conclusions here. Future studies might need to test more
342 conditions and more behavioral tasks.

343 Only a few studies have quantitatively estimated capacity and precision in
344 schizophrenia. Gold et al ²⁵ employed the same delay-estimation task as in our
345 study and estimated individual's capacity and precision using the MIX model.
346 Results in that study echoed the decreased-capacity theory. The MIX model
347 assumes that response errors arise from a mixture distribution that combines a von
348 Mises distribution whose variance reflects memory precision, and a uniform
349 distribution that accounts for the random guessing if set size exceeds capacity. The
350 MIX model, however, does not consider two important factors. First, the model
351 assumes an equal precision across items in memory. Second, the model does not
352 separate the variability for processing stimuli (i.e., sensory uncertainty, κ in

353 Supplementary Eq. S5) and the variability in exertion of a choice (i.e., choice
354 uncertainty, κ_r in Supplementary Eq. S6). Such distinction is important since it
355 highlights different types of uncertainty in encoding and decoding stages of VWM.
356 Mathematically, these two types of uncertainty can be distinguished by
357 manipulating set size since the encoding variability depends on set size but the
358 choice variability does not. The issues of the MIX model have been symmetrically
359 addressed in recent work⁵³.

360 Compared with capacity and precision—the two diagnostic features of
361 VWM, resource allocation variability emerges as a new concept in VWM. It
362 describes the heterogeneity of allocating resources across multiple items and trials.
363 Recent work suggests that such variability might not only manifest in VWM and
364 but also act as a ubiquitous mechanism when processing multiple objects in vision
365⁵⁴. We speculate that resource allocation variability reflects the stability of
366 attentional control when the brain processes multiple objects. Two aspects of
367 available evidence support this argument. First, it has been shown that attention and
368 WM are two core components of executive control and tightly linked with each
369 other^{55,56}. Second, schizophrenia is known to have deficits in top-down attentional
370 modulation^{51,55}. Particularly, recent studies discovered the phenomenon of spatial
371 hyperfocusing in schizophrenia patients^{19,57–59}. If schizophrenia patients overly
372 attend to one item and ignore others in the memory encoding stage, unbalanced
373 resource allocation will likely occur. But we want to emphasize that such variability
374 is not equivalent to attentional lapse. A higher attentional lapse rate will lead to
375 overall fewer resources, a phenomenon we did not observe in our study.

376 What are the neural mechanisms of this resource allocation variability?
377 Recent neurophysiological studies proposed that the neural representation of a
378 stimulus may follow a doubly stochastic process^{60,61}, which suggests that the
379 variability in encoding precision is a consequence of trial-to-trial and item-to-item
380 fluctuations in attentional gain^{32,46,62}. A recent study combined functional magnetic
381 resonance imaging and the VP model, showing that the superior intraparietal sulcus
382 (IPS) is the cortical locus that controls the resource allocation⁶³. Interestingly,
383 schizophrenia patients have been known to have IPS deficits⁶⁴. Note that besides

384 top-down factors, we cannot rule out the contribution of bottom-up neural noise in
385 perceptual and cognitive processing^{60,61}, as found in several other mental diseases
386³³⁻³⁶.

387 The current results also reveal links between resource allocation variability
388 and patients' negative symptoms, but not positive symptoms (Fig. 6). These
389 findings are consistent with several experimental and meta-analysis studies
390 claiming dissociable mechanisms underlying the cluster of negative symptoms
391 versus that of positive symptoms⁶⁵⁻⁶⁸. More broadly, a growing collection of
392 evidence suggests that visual perceptual deficits in schizophrenic patients are more
393 likely to link to negative rather than positive symptom severity⁶⁹⁻⁷³. Negative
394 symptoms in turn might produce improvised social functioning. Humans depend
395 heavily on VWM to interact with multiple agents and complete social tasks.
396 Deficits in distributing processing resources over multiple agents therefore might
397 cause disadvantages in social cognition.

398 In conclusion, our study proposes a new explanation that the resource
399 allocation variability accounts for the atypical VWM performance in schizophrenia.
400 This view differs from the decreased-capacity theory and provides a new direction
401 for future studies that attempt to promote diagnosis and rehabilitation for
402 schizophrenic patients.

403

404 **Methods**

405 **Ethics Statement.**

406 All experimental protocols were approved by the institutional review board at the
407 East China Normal University. All research was performed in accordance with
408 relevant guidelines and regulations. Informed written consent was obtained from all
409 participants.

410

411 **Subjects.**

412 61 HC and 60 SZ participated in the study. SZ were clinically stable inpatients (N =
413 33) and outpatients (N = 27) who met DSM-IV criteria⁷⁴ for schizophrenia. All
414 patients were receiving antipsychotic medication (2 first-generation, 43 second-

415 generation, 15 both). Symptom severity was evaluated by the Brief Psychiatric
416 Rating Scale (BPRS) ⁷⁵, the Scale for the Assessment of Negative (SANS) and
417 Positive Symptoms (SAPS) ^{76,77}. HC were recruited by advertisement. All HC had
418 no current diagnosis of axis 1 or 2 disorders as well as no family history of
419 psychosis nor substance abuse or dependence. All subjects are right-handed with
420 normal sight and color perception.

421 The two groups were matched in age ($t(119) = 1.58$, $p = 0.118$, $d = 0.284$),
422 gender (31 females and 29 males) and education level of parents ($t(119) = 0.257$, p
423 = 0.798, $d = 0.047$). Inevitably, the SZ had fewer years of education than the HC
424 ($t(119) = 5.51$, $p = 2.09 \times 10^{-7}$, $d = 1.00$). The detailed demographic information is
425 summarized in the Table 1.

426 **Table 1. Demographics and clinical information of people with schizophrenia**
427 **(SZ) and healthy control subjects (HC)**

	SZ (N = 60)		HC (N = 61)	
	Mean	SD	Mean	SD
age	35.67	6.58	33.82	9.90
range	23-48	n/a	21-57	n/a
Female/male	31/29	n/a	29/32	n/a
Inpatient/outpatient	33/27	n/a	n/a	n/a
Subject's education (in years)	12.03	2.24	15.13	3.70
Paternal education (in years) ^a	9.89	2.53	9.76	2.95
Maternal education (in years)	9.62	2.91	9.29	3.63
BPRS	27.25	6.27	n/a	n/a
SAPS	5.77	7.02	n/a	n/a
SANS	24.43	11.45	n/a	n/a

428 ^a Average of mother's and father's years of education

429 BPRS: Brief Psychiatric Rating Scale ⁷⁵; SAPS: Scale for the Assessment of
430 Positive Symptoms ⁷⁷; SANS: Scale for the Assessment of Negative Symptoms ⁷⁶.

431

432

433

434 **Stimuli and Task.**

435 The subjects sat 50 cm away from an LCD monitor. All stimuli were generated by
436 Matlab 8.1 and Psychtoolbox 3^{78,79}, and then presented on a LCD monitor.

437

438 **Color delay-estimation VWM task**

439 In the color delay-estimation VWM task (Fig. 1), each trial began with a fixation
440 cross presented at center-of-gaze for a duration randomly chosen from a sequence
441 of 300, 350, 400, 450 and 500 ms. Subjects shall keep their fixation on the cross
442 throughout the whole experiment. A set of colored squares (set size = 1 or 3) was
443 shown on an invisible circle with 4° radius. Our pilot experiment showed that SZ
444 patients exhibit a high dropout rate if the task is longer than 30 mins or too hard
445 (i.e., set size > 4). We therefore limited our task to set size level 1 and 3. The
446 sample array lasted 500 ms. Each square was 1.5° × 1.5° of visual angle. Their
447 colors were randomly selected from the 180 colors that are equally distributed along
448 the wheel representing the CIE L*a*b color space. The color wheel was centered at
449 (L = 70, a = 20, b = 38) with a radius of 60 in the color space³⁷. The sample array
450 then disappeared and was followed by a 900 ms blank period for memory retention.
451 After the delay, an equal number of outlined squares were shown at the same
452 location of each sample array item, with one of them bolded as the probe. In the
453 meantime, a randomly rotated color wheel was shown. The color wheel was 2.1°
454 thick and centered on the monitor with the inner and the outer radius as 7.8° and
455 9.8° respectively. Subjects were asked to choose the remembered color of the probe
456 by clicking a color on the color wheel using a computer mouse. Subjects shall
457 choose the color as precisely as possible and response time was not constrained.
458 Every subject completed 2 blocks for the set size 1 and 3, respectively. The order of
459 the two blocks was counterbalanced across subjects. Each block had 80 trials. The
460 difference between the reported color and the true color of the target is considered
461 as the response error.

462

463 **Data availability statement**

464 The data that support the findings of this study are available from the corresponding
465 author upon reasonable request.

466

467 **Acknowledgments**

468 We thank Zheng Ma, Ting Qian and Haojiang Ying for their invaluable comments
469 on the manuscript. This work was supported by the National Social Science
470 Foundation of China (17ZDA323), the National Key Fundamental Research
471 Program of China (2013CB329501), the Major Program of Science and Technology
472 Commission Shanghai Municipal (17JC1404100), the Fundamental Research Funds
473 for the Central Universities (2018ECNU-QKT015), and the NYU-ECNU Institute
474 of Brain and Cognitive Science at NYU (YK).

475

476 **Author contributions**

477 Y. K., Y. Z. and X. R. designed the experiments. X. R. and L. Z. performed the
478 experiments. Y. Z., T.M. and R-Y. Z. analyzed the data, R-Y. Z. and wrote the
479 manuscript in consultation with Y. K. and L. Z.

480

481 **References**

- 482 1. Gold, J. M., Randolph, C. & Carpenter, C. Auditory working memory and
483 Wisconsin Card Sorting Test Performance in Schizophrenia. *Arch. Gen.*
484 *Psychiatry* **54**, 159–165 (1997).
- 485 2. Lee, J. & Park, S. Working Memory Impairments in Schizophrenia: A Meta-
486 Analysis. *J. Abnorm. Psychol.* **114**, 599–611 (2005).
- 487 3. Forbes, N. F., Carrick, L. A., McIntosh, A. M. & Lawrie, S. M. Working
488 memory in schizophrenia: a meta-analysis. *Psychol. Med.* **39**, 889–905
489 (2009).
- 490 4. Goldman-Rakic, P. S. Working memory dysfunction in schizophrenia. *J.*
491 *Neuropsychiatry Clin. Neurosci.* **6**, 348–357 (1994).
- 492 5. Mayer, R. E. & Moreno, R. A split-attention effect in multimedia learning:
493 Evidence for dual processing systems in working memory. *J. Educ. Psychol.*
494 **90**, 312–320 (1998).
- 495 6. Postle, B. R. Working memory as an emergent property of the mind and
496 brain. *Neuroscience* **139**, 23–38 (2006).
- 497 7. Nee, D. E. *et al.* A meta-Analysis of executive components of working
498 memory. *Cereb. Cortex* **23**, 264–282 (2013).
- 499 8. Luck, S. J. & Vogel, E. K. Visual working memory capacity: From
500 psychophysics and neurobiology to individual differences. *Trends Cogn. Sci.*
501 **17**, 391–400 (2013).
- 502 9. Coleman, M. J., Krastoshevsky, O., Tu, X., Mendell, N. R. & Levy, D. L.
503 The effects of perceptual encoding on the magnitude of object working
504 memory impairment in schizophrenia. *Schizophr. Res.* **139**, 60–65 (2012).
- 505 10. Leonard, C. J. *et al.* Testing sensory and cognitive explanations of the
506 antisaccade deficit in schizophrenia. *J. Abnorm. Psychol.* **122**, 1111–1120
507 (2013).
- 508 11. Johnson, M. K. *et al.* The relationship between working memory capacity
509 and broad measures of cognitive ability in healthy adults and people with
510 schizophrenia. *Neuropsychology* **27**, 220–229 (2013).

511 12. Conklin, H. M. Verbal Working Memory Impairment in Schizophrenia
512 Patients and Their First-Degree Relatives: Evidence From the Digit Span
513 Task. *Am. J. Psychiatry* **157**, 275–277 (2000).

514 13. Chey, J., Lee, J., Kim, Y.-S., Kwon, S.-M. & Shin, Y.-M. Spatial working
515 memory span, delayed response and executive function in schizophrenia.
516 *Psychiatry Res.* **110**, 259–271 (2002).

517 14. Callicott, J. Functional Magnetic Resonance Imaging Brain Mapping in
518 Psychiatry: Methodological Issues Illustrated in a Study of Working Memory
519 in Schizophrenia. *Neuropsychopharmacology* **18**, 186–196 (1998).

520 15. Barch, D. M., Csernansky, J. G., Conturo, T. & Snyder, A. Z. Working and
521 long-term memory deficits in schizophrenia: Is there a common prefrontal
522 mechanism? *J. Abnorm. Psychol.* **111**, 478–494 (2002).

523 16. Jansma, J. M., Ramsey, N. F., Van Der Wee, N. J. A. & Kahn, R. S. Working
524 memory capacity in schizophrenia: A parametric fMRI study. *Schizophr.*
525 *Res.* **68**, 159–171 (2004).

526 17. Park, S. Schizophrenics Show Spatial Working Memory Deficits. *Arch. Gen.*
527 *Psychiatry* **49**, 975 (1992).

528 18. Keedy, S. K., Ebens, C. L., Keshavan, M. S. & Sweeney, J. A. Functional
529 magnetic resonance imaging studies of eye movements in first episode
530 schizophrenia: Smooth pursuit, visually guided saccades and the oculomotor
531 delayed response task. *Psychiatry Res.* **146**, 199–211 (2006).

532 19. Sawaki, R. *et al.* Hyperfocusing of attention on goal-related information in
533 schizophrenia: Evidence from electrophysiology. *J. Abnorm. Psychol.* **126**,
534 106–116 (2017).

535 20. Gold, J. M., Wilk, C. M., McMahon, R. P., Buchanan, R. W. & Luck, S. J.
536 Working memory for visual features and conjunctions in schizophrenia. *J.*
537 *Abnorm. Psychol.* **112**, 61–71 (2003).

538 21. Lencz, T. *et al.* Impairments in perceptual competency and maintenance on a
539 visual delayed match-to-sample test in first-episode schizophrenia. *Arch.*
540 *Gen. Psychiatry* **60**, 238–243 (2003).

541 22. Erickson, M. A. *et al.* Impaired Working Memory Capacity Is Not Caused by
542 Failures of Selective Attention in Schizophrenia. *Schizophr. Bull.* **41**, 366–
543 373 (2015).

544 23. Erickson, M. A. *et al.* Enhanced vulnerability to distraction does not account
545 for working memory capacity reduction in people with schizophrenia.
546 *Schizophr. Res. Cogn.* **1**, 149–154 (2014).

547 24. Leonard, C. J. *et al.* Toward the Neural Mechanisms of Reduced Working
548 Memory Capacity in Schizophrenia. *Cereb. Cortex* **23**, 1582–1592 (2013).

549 25. Gold, J. M. *et al.* Reduced Capacity but Spared Precision and Maintenance of
550 Working Memory Representations in Schizophrenia. *Arch. Gen. Psychiatry*
551 **67**, 570–577 (2010).

552 26. Xie, W. *et al.* Schizotypy is associated with reduced mnemonic precision in
553 visual working memory. *Schizophr. Res.* **193**, 91–97 (2018).

554 27. Starc, M. *et al.* Schizophrenia is associated with a pattern of spatial working
555 memory deficits consistent with cortical disinhibition. *Schizophr. Res.* **181**,
556 107–116 (2017).

557 28. Ma, W. J., Husain, M. & Bays, P. M. Changing concepts of working
558 memory. *Nat. Neurosci.* **17**, 347–356 (2014).

559 29. Bialek, W. Physical Limits to Sensation and Perception. *Annu. Rev. Biophys.*
560 *Biophys. Chem.* **16**, 455–478 (1987).

561 30. Rolls, E. T. & Deco, G. *The Noisy Brain: Stochastic Dynamics as a Principle*
562 *of Brain Function*. (Oxford University Press, 2010).

563 31. Faisal, A. A., Selen, L. P. J. & Wolpert, D. M. Noise in the nervous system.
564 *Nature Reviews Neuroscience* **9**, 292–303 (2008).

565 32. Goris, R. L. T., Movshon, J. A. & Simoncelli, E. P. Partitioning neuronal
566 variability. *Nat. Neurosci.* **17**, 858–865 (2014).

567 33. Dinstein, I. *et al.* Unreliable Evoked Responses in Autism. *Neuron* **75**, 981–
568 991 (2012).

569 34. Park, W. J., Schauder, K. B., Zhang, R., Bennetto, L. & Tadin, D. High
570 internal noise and poor external noise filtering characterize perception in
571 autism spectrum disorder. *Sci. Rep.* **7**, 17584 (2017).

572 35. Sperling, A. J., Lu, Z.-L., Manis, F. R. & Seidenberg, M. S. Deficits in
573 perceptual noise exclusion in developmental dyslexia. *Nat. Neurosci.* **8**, 862–
574 863 (2005).

575 36. Bubl, E. *et al.* Elevated Background Noise in Adult Attention Deficit
576 Hyperactivity Disorder Is Associated with Inattention. *PLoS One* **10**,
577 e0118271 (2015).

578 37. Zhang, W. & Luck, S. J. Discrete fixed-resolution representations in visual
579 working memory. *Nature* **453**, 233–235 (2008).

580 38. Zhang, W. & Luck, S. J. Sudden Death and Gradual Decay in Visual
581 Working Memory: Research Report. *Psychol. Sci.* **20**, 423–428 (2009).

582 39. Zhang, W. & Luck, S. J. The number and quality of representations in
583 working memory. *Psychol. Sci.* **22**, 1434–1441 (2011).

584 40. Foster, J. J., Bsales, E. M., Jaffe, R. J. & Awh, E. Alpha-Band Activity
585 Reveals Spontaneous Representations of Spatial Position in Visual Working
586 Memory. *Curr. Biol.* **27**, 3216–3223.e6 (2017).

587 41. Pashler, H. Familiarity and visual change detection. *Percept. Psychophys.* **44**,
588 369–378 (1988).

589 42. Palmer, J. Attentional limits on the perception and memory of visual
590 information. *J. Exp. Psychol. Hum. Percept. Perform.* **16**, 332–350 (1990).

591 43. Shaw, M. in *Attention and Performance* (ed. Nickerson, R.) 227–296
592 (Erlbaum, 1980).

593 44. Wit, E., van den Heuvel, E. & Romeijn, J. W. 'All models are wrong. ': An
594 introduction to model uncertainty. *Stat. Neerl.* **66**, 217–236 (2012).

595 45. Burnham, K. P. & Anderson, D. R. *Model Selection and Multimodel
596 Inference: A Practical Information-Theoretic Approach. Ecological
597 Modelling* **172**, (Springer-Verlag, 2002).

598 46. van den Berg, R., Shin, H., Chou, W.-C., George, R. & Ma, W. J. Variability
599 in encoding precision accounts for visual short-term memory limitations.
600 *Proc. Natl. Acad. Sci.* **109**, 8780–8785 (2012).

601 47. van den Berg, R., Awh, E. & Ma, W. J. Factorial comparison of working
602 memory models. *Psychol. Rev.* **121**, 124–149 (2014).

603 48. Bays, P. M. & Husain, M. Dynamic Shifts of Limited Working Memory
604 Resources in Human Vision. *Science* (80-). **321**, 851–854 (2008).

605 49. Bays, P. M., Catalao, R. F. G. & Husain, M. The precision of visual working
606 memory is set by allocation of a shared resource. *J. Vis.* **9**, 7.1-11 (2009).

607 50. Shakow, D. The Worcester State Hospital research on schizophrenia (1927-
608 1946). *J. Abnorm. Psychol.* **80**, 67–110 (1972).

609 51. Gold, J. M., Hahn, B., Strauss, G. P. & Waltz, J. A. Turning it upside down:
610 Areas of preserved cognitive function in schizophrenia. *Neuropsychol. Rev.*
611 **19**, 294–311 (2009).

612 52. Cowan, N. The magical number 4 in short-term memory: A reconsideration
613 of mental storage capacity. *Behav. Brain Sci.* **24**, 87–114 (2001).

614 53. Ma, W. J. Problematic usage of the Zhang and Luck mixture model. *bioRxiv*
615 (2018). doi:10.1101/268961

616 54. Shen, S. & Ma, W. J. Variable precision in visual perception. *bioRxiv* 153650
617 (2018). doi:10.1101/153650

618 55. Gold, J. M. *et al.* Selective Attention, Working Memory, and Executive
619 Function as Potential Independent Sources of Cognitive Dysfunction in
620 Schizophrenia. *Schizophr. Bull.* **44**, 1227–1234 (2018).

621 56. Christophel, T. B., Iamshchinina, P., Yan, C., Allefeld, C. & Haynes, J. D.
622 Cortical specialization for attended versus unattended working memory. *Nat.*
623 *Neurosci.* **21**, 494–496 (2018).

624 57. Fuller, R. L. *et al.* Impaired control of visual attention in schizophrenia. *J.*
625 *Abnorm. Psychol.* **115**, 266–275 (2006).

626 58. Kreither, J. *et al.* Electrophysiological Evidence for Hyperfocusing of Spatial
627 Attention in Schizophrenia. *J. Neurosci.* **37**, 3813–3823 (2017).

628 59. Luck, S. J. *et al.* Hyperfocusing in schizophrenia: Evidence from interactions
629 between working memory and eye movements. *J. Abnorm. Psychol.* **123**,
630 783–795 (2014).

631 60. Churchland, A. K. *et al.* Variance as a Signature of Neural Computations
632 during Decision Making. *Neuron* **69**, 818–831 (2011).

633 61. Churchland, M. M. *et al.* Stimulus onset quenches neural variability: a
634 widespread cortical phenomenon. *Nat. Neurosci.* **13**, 369–378 (2010).

635 62. Nienborg, H. & Cumming, B. G. Decision-related activity in sensory neurons
636 reflects more than a neuron's causal effect. *Nature* **459**, 89–92 (2009).

637 63. Galeano Weber, E. M., Peters, B., Hahn, T., Bledowski, C. & Fiebach, C. J.
638 Superior Intraparietal Sulcus Controls the Variability of Visual Working
639 Memory Precision. *J. Neurosci.* **36**, 5623–5635 (2016).

640 64. Zhou, S.-Y. *et al.* Parietal lobe volume deficits in schizophrenia spectrum
641 disorders. *Schizophr. Res.* **89**, 35–48 (2007).

642 65. de Gracia Dominguez, M., Viechtbauer, W., Simons, C. J. P., van Os, J. &
643 Krabbendam, L. Are Psychotic Psychopathology and Neurocognition
644 Orthogonal? A Systematic Review of Their Associations. *Psychol. Bull.* **135**,
645 157–171 (2009).

646 66. Cameron, A. M. *et al.* Working memory correlates of three symptom clusters
647 in schizophrenia. *Psychiatry Res.* **110**, 49–61 (2002).

648 67. Carter, C. *et al.* Spatial working memory deficits and their relationship to
649 negative symptoms in unmedicated schizophrenia patients. *Biol. Psychiatry*
650 **40**, 930–932 (1996).

651 68. Park, S., Püschel, J., Sauter, B. H., Rentsch, M. & Hell, D. Visual object
652 working memory function and clinical symptoms in schizophrenia.
653 *Schizophr. Res.* **59**, 261–268 (2003).

654 69. Cadenhead, K. S. *et al.* Information processing deficits of schizophrenia
655 patients: Relationship to clinical ratings, gender and medication status.
656 *Schizophr. Res.* **28**, 51–62 (1997).

657 70. Butler, P. D. & Javitt, D. C. Early-stage visual processing deficits in
658 schizophrenia. *Current Opinion in Psychiatry* **18**, 151–157 (2005).

659 71. Kéri, S., Kiss, I., Kelemen, O., Benedek, G. & Janka, Z. Anomalous visual
660 experiences, negative symptoms, perceptual organization and the
661 magnocellular pathway in schizophrenia: A shared construct? *Psychol. Med.*
662 **35**, 1445–1455 (2005).

663 72. Slaghuis, W. L. Spatio-temporal luminance contrast sensitivity and visual
664 backward masking in schizophrenia. *Exp. brain Res.* **156**, 196–211 (2004).

665 73. Slaghuis, W. L. & Bishop, A. M. Luminance flicker sensitivity in positive-
666 and negative-symptom schizophrenia. *Exp. Brain Res.* **138**, 88–99 (2001).

667 74. American Psychiatric Association. *Diagnostic and statistical manual of*
668 *mental disorders (4th ed.)*. American Psychiatric Publishing (1994).

669 75. Overall, J. E. & Gorham, D. R. The Brief Psychiatric Rating Scale. *Psychol.*
670 *Rep.* **10**, 799–812 (1962).

671 76. Andreasen, N. C. *The Scale for the Assessment of Negative Symptoms*
672 (*SANS*). University of Iowa (1983).

673 77. Andreasen, N. C. *The Scale for the Assessment of Positive Symptoms (SAPS)*.
674 University of Iowa (1984).

675 78. Brainard, D. H. The Psychophysics Toolbox. *Spat. Vis.* **10**, 433–436 (1997).

676 79. Pelli, D. G. The VideoToolbox software for visual psychophysics:
677 Transforming numbers into movies. *Spat. Vis.* **10**, 437–442 (1997).

678 80. Osborne, L. C., Lisberger, S. G. & Bialek, W. A sensory source for motor
679 variation. *Nature* **437**, 412–416 (2005).

680

681

1 **Supplementary materials for**

2 Atypically larger variability of resource allocation accounts for visual
3 working memory deficits in schizophrenia

4

5 Yi-Jie Zhao, Tianye Ma, Xuemei Ran, Li Zhang, Ru-Yuan Zhang*, Yixuan Ku*

6

7 Correspondence:

8 Yixuan Ku: yxku@psy.ecnu.edu.cn

9 Ru-Yuan Zhang zhan1217@umn.edu

10

11

12

13

14 **This PDF file includes:**

15

16 Supplementary Note 1: Computational models of VWM

17 Supplementary Note 2: Intuitive model explanations

18 Supplementary Note 3: Model fitting and comparisons

19 Supplementary Note 4: Results of other suboptimal models

20 Supplementary Note 5: Color perception task and results

21 Supplementary Note 6: Statistical results with the CSD in the color perception
22 task as a co-variate.

23 Supplementary Figures. 1 to 4

24 References

25

26

27

28

29 **Supplementary Note 1: Computational models of VWM**

30 **Variable-precision model.** The variable-precision (VP) model has been shown as the
31 state-of-the-art computational model of VWM. Details of the VP model have been
32 documented in several previous studies ^{1,2} and the model codes are publicly available
33 (<http://www.cns.nyu.edu/malab/resources.html>).

34 The VP model assumes a resource decaying function describing the decreasing
35 trend of mean memory resource (\bar{J}) assigned to individual items as the set size (N)
36 increases ^{3,4}:

37
$$\bar{J} = \bar{J}_1 * N^{-a}, \quad (S1)$$

38 where \bar{J}_1 is the initial resources when only 1 item ($N = 1$) should be memorized and a is
39 the decaying exponent. The key component of the VP model is that the memory
40 resources J across items and trials follow a Gamma distribution with the mean \bar{J} and the
41 scale parameter τ :

42
$$J \sim \text{Gamma}(\bar{J}, \tau), \quad (S2)$$

43 Intuitively, a larger τ indicates a more uneven distribution of memory resources across
44 items or trials, with some items in some trials receiving a larger amount of resources
45 while others receive comparative fewer. Note that a larger amount of memory resource
46 produces a higher precision. Thus, we do not explicitly distinguish resource and precision
47 and denote them as J . Defining precision as Fisher information ⁵, precision J can be
48 linked to the variance of the von Mises distribution of sensory measurement:

49
$$J = \kappa \frac{I_1(\kappa)}{I_0(\kappa)}, \quad (S3)$$

50 where I_0 and I_1 are modified Bessel functions of the first kind of order 0 and 1
51 respectively, with the concentration parameter κ . Eq. S3 specifies a one-on-one mapping
52 between precision J and variance κ . We can rewrite their relationship as:

53
$$\kappa = \Phi(J), \quad (S4)$$

54 where Φ is the mapping function. The distribution of sensory measurement (m) given the
55 input stimulus (s) can be written as:

56
$$p(m|s) = \frac{1}{2\pi I_0(\kappa)} e^{\kappa \cos(m-s)} \equiv VM(m; s, \kappa), \quad (S5)$$

57 We further assume that the reported color (\hat{s}) by participants also follows a von Mises
58 distribution:

59
$$p(\hat{s} | m) = \frac{1}{2\pi I_0(\kappa_r)} e^{\kappa_r \cos(\hat{s} - m)} \equiv VM(\hat{s}; m, \kappa_r), \quad (S6)$$

60 where κ_r represents the variability at the choice stage.

61 Given the four free parameters and stimulus color s in a trial, we can derive the
62 probability of the observed response in a trial by marginalizing over sensory
63 measurement m and variable precision J :

$$\begin{aligned} p(\hat{s} | s; \bar{J}, \tau) &= \int p(\hat{s} | s; J) p(J | \bar{J}; \tau) dJ \\ &= \int VM(\hat{s}; s, \Phi(J)) Gamma(J; \bar{J}, \tau) dJ \\ 64 \quad &= \iint VM(\hat{s}; m, \kappa_r) VM(m; s, \Phi(J)) Gamma(J; \bar{J}, \tau) dJ dm \\ &= \int \frac{I_0\left(\sqrt{\Phi(J)^2 + \kappa_r^2 + 2\Phi(J)\kappa_r \cos(s - \hat{s})}\right)}{2\pi I_0(\kappa_r) I_0(\Phi(J))} Gamma(J; \bar{J}, \tau) dJ \end{aligned} \quad ,$$

65 (S7)

66 Note that in Eq. S7, sensory measurement (m) can be analytically eliminated. Since
67 precision J is a random variable across items and trials, we sampled it 10000 times from
68 the Gamma distribution with mean \bar{J} and scale parameter τ . Note that van den Berg *et*
69 *al.*¹ confirmed that 500 samples are enough in the model fitting. We then used all the
70 samples to calculate response probability in each trial.

71 Taken together, this VP model has four free parameters: \bar{J}_1 , a , τ and κ_r .

72
73 **Variable-precision-with-capacity model.** The variable-precision-with-capacity (VPcap)
74 model inherits all parameters and the structure of the VP model above, except that an
75 additional capacity parameter (K) is introduced to estimate the memory capacity of
76 individuals. If the set size N is smaller than capacity K , the VPcap model is identical to
77 the VP model. If the set size N exceeds the capacity K , the model assumes that the probe
78 is stored in the VWM with the probability K/N , and out of memory with the probability

79 1- K/N . In the latter case, a participant randomly guesses a color. The response
 80 probability therefore can be written as:

$$81 \quad p(\hat{s}|s) = \begin{cases} \frac{K}{N} p(\hat{s}|s; \bar{J}, \tau) + (1 - \frac{K}{N}) \frac{1}{2\pi}, & K \leq N \\ p(\hat{s}|s; \bar{J}, \tau), & K > N \end{cases}, \quad (S8)$$

82 where $p(\hat{s}|s; \bar{J}, \tau)$ is defined in Eq. S7. In essence, the VPcap model is a mixture model
 83 of the VP model and a random guessing process when the set size exceeds the
 84 participant's capacity. The VPcap model has five parameters, four as the same in the VP
 85 model and the additional capacity parameter (K).

86

87 **Item-limit model.** The item-limit (IL) model assumes no uncertainty in the sensory
 88 encoding stage such that the internal sensory measurement m is equal to the input
 89 stimulus s . But there exists choice variability from measurement m to the reported color (\hat{s}).
 90 Such choice variability does not vary across set size levels. The IL model also
 91 assumes a fixed capacity K . The response probability is:

$$92 \quad p(\hat{s}|s) \equiv p(\hat{s}|m) = \begin{cases} \frac{K}{N} VM(\hat{s}|s, \kappa_r) + (1 - \frac{K}{N}) \frac{1}{2\pi}, & K \leq N \\ VM(\hat{s}|s, \kappa_r), & K > N \end{cases}, \quad (S9)$$

93 The IL model has two free parameters: choice variability κ_r , and capacity K .

94

95 **Mixture model.** The mixture model (MIX) has been used in previous clinical research ⁶.
 96 Similar to the IL model, the MIX model only assumes the uncertainty from stimulus s to
 97 the reported color (\hat{s}) and a fixed capacity K . The difference is that the uncertainty (κ)
 98 reflects both sensory noise and choice variability, and thus the uncertainty is set-size
 99 dependent (each set size has one κ). The response probability can be written as:

$$100 \quad p(\hat{s}|s) = \begin{cases} \frac{K}{N} VM(\hat{s}|s, \kappa_{1/3}) + \left(1 - \frac{K}{N}\right) \frac{1}{2\pi}, & K \leq N \\ VM(s|s, \kappa_{1/3}), & K > N \end{cases}, \quad (S10)$$

101 where and denote the uncertainty for set size 1 and 3, respectively. The MIX model has
102 three parameters: uncertainty levels κ_1 and κ_3 , and capacity K .

103

104 **Slots-plus-averaging model.** The slots-plus-averaging (SA) model was originally
105 proposed in ⁷ and further elaborated in ¹. Unlike the IL model, the SA model
106 acknowledges the presence of noise in the sensory encoding stage. However, the memory
107 resources are discrete chunks, and a single chunk or multiple chunks can be assigned to
108 one item. For one item, the SA model assumes Eq. S4 still holds as the relationship
109 between the resource assigned to that item and the width of the von Mises distribution:

110
$$\kappa = \Phi(SJ_s) , \quad (S11)$$

111 where S is the number of chunks and J_s is the resource of one chunk. The SA model also
112 assumes a capacity K .

113 When $N > K$, an item should receive either 0 or 1 chunk. Then the allocation
114 should be similar to the IL model. the response distribution should be a mixture of a
115 uniform and a von Mises distributions:

116
$$p(\hat{s} | s) = \frac{K}{N} \frac{I_0(\sqrt{\Phi(J_s)^2 + \kappa_r^2 + 2\Phi(J_s)\kappa_r \cos(\hat{s} - s)})}{2\pi I_0(\kappa_r) I_0(\Phi(J_s))} + (1 - \frac{K}{N}) \frac{1}{2\pi} \quad K < N , \quad (S12)$$

117 When $N \leq K$, some items receive either one or more chunks. Assuming that the
118 resource chunks should be assigned as equally as possible across items, the S can be
119 calculated as:

120
$$S = \begin{cases} \left\lfloor \frac{K}{N} \right\rfloor, & \text{with probability } 1 - \frac{K \bmod N}{N} \\ \left\lfloor \frac{K}{N} \right\rfloor + 1, & \text{with probability } \frac{K \bmod N}{N} \end{cases} , \quad (S13)$$

121 where $\lfloor x \rfloor$ represents the *floor* function in Matlab. The corresponding concentration
122 parameter of von Mises distributions can be computed by Eqs. S11&13:

$$\begin{aligned}
 \kappa_{low} &= \Phi\left(\left\lfloor \frac{K}{N} \right\rfloor J_s\right) \\
 \kappa_{high} &= \Phi\left(\left\lfloor \frac{K}{N} + 1 \right\rfloor J_s\right)
 \end{aligned} \tag{S14}$$

123

124 The response probability in the SA model can be written as:

$$p(\hat{s} | s) = \frac{K \bmod N}{N} \frac{I_0(\sqrt{\kappa_{high}^2 + \kappa_r^2 + 2\kappa_{high}\kappa_r \cos(\hat{s} - s)})}{2\pi I_0(\kappa_r) I_0(\kappa_{high})} + \left(1 - \frac{K \bmod N}{N}\right) \frac{I_0(\sqrt{\kappa_{low}^2 + \kappa_r^2 + 2\kappa_{low}\kappa_r \cos(\hat{s} - s)})}{2\pi I_0(\kappa_r) I_0(\kappa_{low})} \quad K > N$$

125

126

127 The SA model has three free parameters: unit resource J_s , choice variability κ_r , and
128 capacity K .

129

130 **Cosine slots-plus-averaging model.** A recent paper⁸ suggests that a modified version of
131 the SA model, dubbed cosine slots-plus-average model (cosSA), outperformed the VP
132 model to explain the delay-matching VWM behavior. To enhance the generality of our
133 study, we also followed that work and included this model. Briefly, the cosSA model
134 assumes that the unit memory precision is stimulus-dependent and exhibits a cosine-like
135 periodic fluctuation:

$$J_s = e^{J_m + J_f \cos(8s)}, \tag{S16}$$

136 where J_m and J_f describe the fluctuation of unit memory precision (J_s) as a function of
137 stimulus s . We can convert precision J_s to the width of von Mises distributions κ_s
138 according to Eq. S4. According to capacity K , the discrete memory resource allocation is
139 described as Eq. S11-S14. Moreover, the cosSA model also assumes the response bias is
140 periodic:

$$\mu_s = \mu_f \sin(4s), \tag{S17}$$

141 where μ_f adjusts the magnitude of the bias. The probability of a response given the
142 stimulus can be described as:

$$p(\hat{s} | s) = \begin{cases} \frac{K}{N} VM(\hat{s} | s + \mu_s, \kappa_s) + \left(1 - \frac{K}{N}\right) \frac{1}{2\pi}, & K \leq N \\ VM(\hat{s} | s + \mu_s, \kappa_s), & K > N \end{cases}, \tag{S18}$$

146 The cosSA model has four free parameters: J_m , J_f , μ_f and capacity K .

147

148 **Equal-precision model.** The equal-precision (EP) model is very similar to the VP model,
149 except that an equal amount of resources is assigned to every item and in any trial.
150 Namely, the Eq. S2 does not apply to the EP model. In the EP model, the resource
151 assigned to one item declines as a power function (as Eq. S1). Then the resource at each
152 set size level can be converted to the width of the von Mises distribution using (Eq. S4).

153 The response probability is given by:

$$154 p(\hat{s} | s; \bar{J}_1, a, \kappa_r) = \frac{I_0(\sqrt{\Phi(\bar{J}_1 N^{-a})^2 + \kappa_r^2 + 2\Phi(\bar{J}_1 N^{-a})\kappa_r \cos(\hat{s} - s)})}{2\pi I_0(\kappa_r) I_0(\Phi(\bar{J}_1 N^{-a}))}, \quad (S19)$$

155 where J_1 is the resource when set size is 1 (initial resources). The EP model has three free
156 parameters: initial resources \bar{J}_1 , decaying exponent a , and choice variability κ_r .

157

158 **Supplementary Note 2: Intuitive model explanations**

159 Despite the mathematical details provided above, we further provide intuitive
160 explanations for each model and highlight their differences based on cartoon illustrations
161 in Supplementary Fig. 1. Note that all stimuli are 0 because we transformed the reported
162 color to recall errors in each trial.

163

164 **Item-limit model.** In the IL model (Supplementary Fig. 1A), if the capacity K is larger
165 than the set size N (e.g., $N=2$, $K=3$, the left panel), all items can enter working memory.
166 The reported color follows a von Mises distribution with the mean as the color of the
167 probed stimulus. If the capacity K is smaller than the set size N (e.g., $N=2$, $K=3$, the right
168 panel), a probed stimulus can be stored within memory with probability K/N and out of
169 memory with probability $(1-K/N)$. If the probed stimulus is in memory, the same rule of
170 von Mises distribution applies. If the probed stimulus is out of memory, a subject guesses
171 a color (i.e., with probability $1/2\pi$, the uniform distribution of guessing).

172

173 **Mixture model.** The mixture model (Supplementary Fig. 1B) shares all components with
174 the IL model. The key difference is that the IL model assumes the same von Mises
175 distribution for both set size levels (i.e., same width of the blue and the orange
176 distributions in Supplementary Fig. 1A), while the mixture model uses two von Mises
177 distributions with different widths for the two set size levels (i.e., different widths of the
178 blue and the orange distributions in Supplementary Fig. 1B), to compensate the potential
179 different level uncertainty associated with two set size levels. Thus, the mixture model
180 has one additional free parameter than the IL model.

181

182 **Slot-plus-averaging and cosine slot-plus-averaging model.** The SA model regards
183 memory resources as several discrete chunks (Supplementary Fig. 1C). In the example of
184 Supplementary Fig. 1C, the subject has three ($K=3$) chunks of resources and the blue cups
185 stand for individual stimulus. If two stimuli are presented (i.e., two cups, set size = 2), the
186 scenario in which the number of resource chunks is larger than the set size, two resource
187 chunks are assigned to one cup and another chunk to the other cup. If the number of
188 resources is smaller than the set size (e.g., four stimuli/cups), one cup will receive no
189 resource, and the subject has to guess if this stimulus/cup is probed. The key difference
190 between the SA model and the three models below is that the SA model assumes discrete
191 resource chunks.

192 The cosSA model is a modified version of the SA model with three major changes
193 ⁸. First, the unit memory precision is stimulus-dependent and follows a periodic function
194 (see Eq. S16 and Fig. S1D). Second, it also includes a response bias that is also stimulus-
195 dependent and periodic (see Eq. S17 above and Fig. S1D). Third, for simplicity it does
196 not include the response variability and only includes one uncertainty (i.g., encoding
197 precision) in the processing.

198

199 **Equal-precision, variable-precision and variable-precision-with-capacity models.**
200 The EP, VP and VPcap models share one core assumption: memory resources are
201 continuous, analogous to the amount of juice in a big mug (Supplementary Fig. 1E). A
202 subject needs to assign the juice (i.e., resources) into different cups (i.e., stimuli). In
203 Supplementary Fig. 1E, the orange cups stand for the mean juice amount an individual

204 cup receives in each set size condition. We can imagine that, given the total amount of
205 juice is fixed, the more cups (i.e., larger set size) the less juice on average each cup will
206 receive. This is reflected by the diminishing average amount of juice as set size increases
207 (also see Eq. S1).

208 Besides the core assumption of continuous resources, the three models have
209 slightly different specifications (Supplementary Fig. 1F). In Supplementary Fig. 1F, all
210 orange cups stand for the mean juice amount in each set size condition, and the blue cups
211 stand for individual stimulus. The EP model assumes that in each set size condition, each
212 cup receives an identical amount of juice (upper row in Supplementary Fig. 1F). In the
213 VP model, however, each cup receives a variable amount of juice even though their
214 average amount is the same as in the EP model. Using two cups as an example, the
215 average amount of juice might be 10 ml but one cup might have 9 ml and the other one
216 has 11 ml. Whether the amount of juice in each cup varies is the key difference between
217 the EP and the VP models. Moreover, both EP and VP models do not constrain the total
218 number of cups. Therefore, a cup will more or less receive a little bit juice even though
219 there is a large number of cups (middle row). In other words, both the EP and the VP
220 models have no concept of capacity. In contrast, the VPcap model not only inherits the
221 assumption of variable precision and but also constraints the maximal number of cups
222 (i.e., capacity K) that can receive juice. If the total number of cups (i.e., N stimuli) is
223 larger than the capacity K , some cups will receive no juice, and the subject has to guess
224 the color of these stimuli.

225

226 **Supplementary Note 3: Model fitting and comparisons**

227 **Model fitting.** The BADS optimization toolbox in MATLAB ⁹ was used to search the
228 best-fit parameters that maximize the likelihood of response data in all trials. BADS has
229 been shown to outperform other default nonlinear optimization algorithms in MATLAB,
230 especially in the problems where gradients on loss function are not available or hard to
231 compute ⁹. We fit all models separately in each participant. To avoid local minima, we
232 repeated the optimization process with 20 different initial seeds that are equally spaced
233 within a lower and an upper bound. Parameters bounds were set to be very broad to avoid

234 bias. The parameters with the maximum likelihood value were used as the best-fit
235 parameters for one subject.

236

237 **Model comparisons.** We compared the performance of all models fitted in this study.
238 Model comparisons were performed for both groups using both Akaike information
239 criterion (AIC) and Bayesian information criterion (BIC)^{10,11} metrics (Supplementary
240 Fig. 1). We derived the best model for each subject. Results showed that the VP model
241 outperformed all other models over 84% of subjects in both groups under both AIC and
242 BIC (Supplementary Fig. 2). Particularly, the VP model is the best-fitting model in 51 out
243 of 61 (84%) HC and in 55 out of 60 SZ (92%) under the AIC. Using the BIC, the VP
244 model is the best-fitting model in 52 out of 61 HC (85%) and 54 out of 60 (90%) SZ.
245 These results strongly support the idea that the VP model assuming no fixed capacity
246 better explains the VWM behavior. This result also questions the conventional theory
247 whether capacity acts as a key determinant of limiting VWM performance in SZ.

248 One might argue that the SA, cosSA, and MIX models were worse than the VP
249 model because AIC and BIC overly penalize the capacity parameter K while this
250 parameter may not substantially improve goodness of fitting because of low set size
251 levels (i.e., 1/3) used here. To exclude this possibility, we further compared the SA, cos
252 SA, and MIX models to the VP model using AIC and BIC metric but without considering
253 the capacity K — that is, we kept the likelihood of the model fitting with K but calculated
254 AIC and BIC without K . In this case, the models fully enjoyed the potential benefits
255 endowed by K in modeling fitting but avoided overly penalizing this additional parameter.
256 Results showed that the VP model was still the best-fitting model in the majority of
257 subjects in both groups and under both metrics (AIC, 51 out of 61 in the HC group and
258 43 out of 60 in the SZ group; BIC, 52 out of 61 in the HC group and 45 out of 60 in the
259 SZ group).

260

261 **Supplementary Note 4: Results of other suboptimal models**

262 **Fitted parameters of the VPcap model.** The VPcap model is a variant of the VP model
263 and incorporates an additional capacity parameter. Estimated parameters in the VPcap
264 model largely replicated the results of the VP model (Supplementary Fig. 3). Again, SZ

265 have larger resource allocation variability than HC (Supplementary Fig. 3B, $t(119) =$
266 3.891 , $p = 1.65 \times 10^{-4}$, $d = 0.707$) and the two groups did not significantly differ in the
267 resource decay function (Supplementary Fig. 3A, initial resources, $t(119) = 0.012$, $p =$
268 0.990 , $d = 0.002$; decaying exponent, $t(119) = 1.142$, $p = 0.256$, $d = 0.208$). We observed
269 a significant larger choice variability in HC (Supplementary Fig. 3C, choice variability,
270 $t(119) = 2.365$, $p = 0.02$, $d = 0.43$). Most importantly, the estimated capacity values of
271 two groups were statistically comparable (Supplementary Fig. 3D, $t(119) = 0.459$, $p =$
272 0.647 , $d = 0.083$).

273
274 **Comparing capacity of the two groups in suboptimal models.** We further investigated
275 the estimated capacity of all subjects in the IL, the SA, the cosSA, the MIX and the
276 VPcap model, the four models having the capacity parameter. We found no significant
277 group difference in capacity measured by all five models (Supplementary Fig. 4, IL
278 model, $t(119) = 1.554$, $p = 0.123$, $d = 0.283$; SA model, $t(119) = 1.03$, $p = 0.306$, $d =$
279 0.187 ; cosSA model, $t(119) = 0.235$, $p = 0.815$, $d = 0.043$; MIX model, $t(119) = 0.273$, p
280 $= 0.786$, $d = 0.050$; VPcap model, $t(119) = 0.459$, $p = 0.647$, $d = 0.083$).

281

282 **Supplementary Note 5: Color perception task**

283 **Color perception task.** Before the main VWM task, all subjects completed a task to
284 measure their color perception ability. The task is identical to the VWM task except for
285 two modifications. First, only one colored object was shown in the sample array. Second,
286 in the probe array, the colored object appeared again on the screen. A subject needed to
287 choose its color on the color wheel while looking at it. There was 1 block with 50 trials in
288 this task.

289

290 **Color perception results between HC and SZ.** We used the circular standard deviation
291 (CSD) of response errors (the circular distance between the original color and chosen
292 color in a trial) to evaluate the performance in the color task. A significant group
293 difference was found ($t(119) = -2.095$, $p = 0.038$, $d = -0.38$), suggesting in general worse
294 color perception in SZ. But this result might also be explained by potential differences in
295 choice variability (e.g., motor control). To exclude the potential confounding of color

296 perception, we further set CSD from the color perception as a co-variate and repeat all
297 statistical analyses (see below).

298

299 **Supplementary Note 6: Statistical results with the CSD in the color perception task**
300 **as a covariate.**

301 **VWM performance.** We added the CSD in the color perception task as a co-variate to
302 VWM performance comparison of two groups. The repeated-measure ANCOVA (see the
303 main text for details of variables) results again showed a worse VWM performance at
304 higher set size level ($F(1,119) = 100.676$, $p < 0.001$, partial $\eta^2 = 0.46$). The group was
305 also significant ($F(1,119) = 8.902$, $p = 0.003$, partial $\eta^2 = 0.070$), indicating that HC's
306 performance was better than SZ's. The interaction between set size and group was not
307 significant ($F(1,119) = 0.324$, $p = 0.570$, partial $\eta^2 = 0.003$). Also, the color perception
308 ability had no influence on VWM performance ($F(1,119) = 0.285$, $p = 0.595$, partial $\eta^2 =$
309 0.002). These results replicated the results from the main text.

310

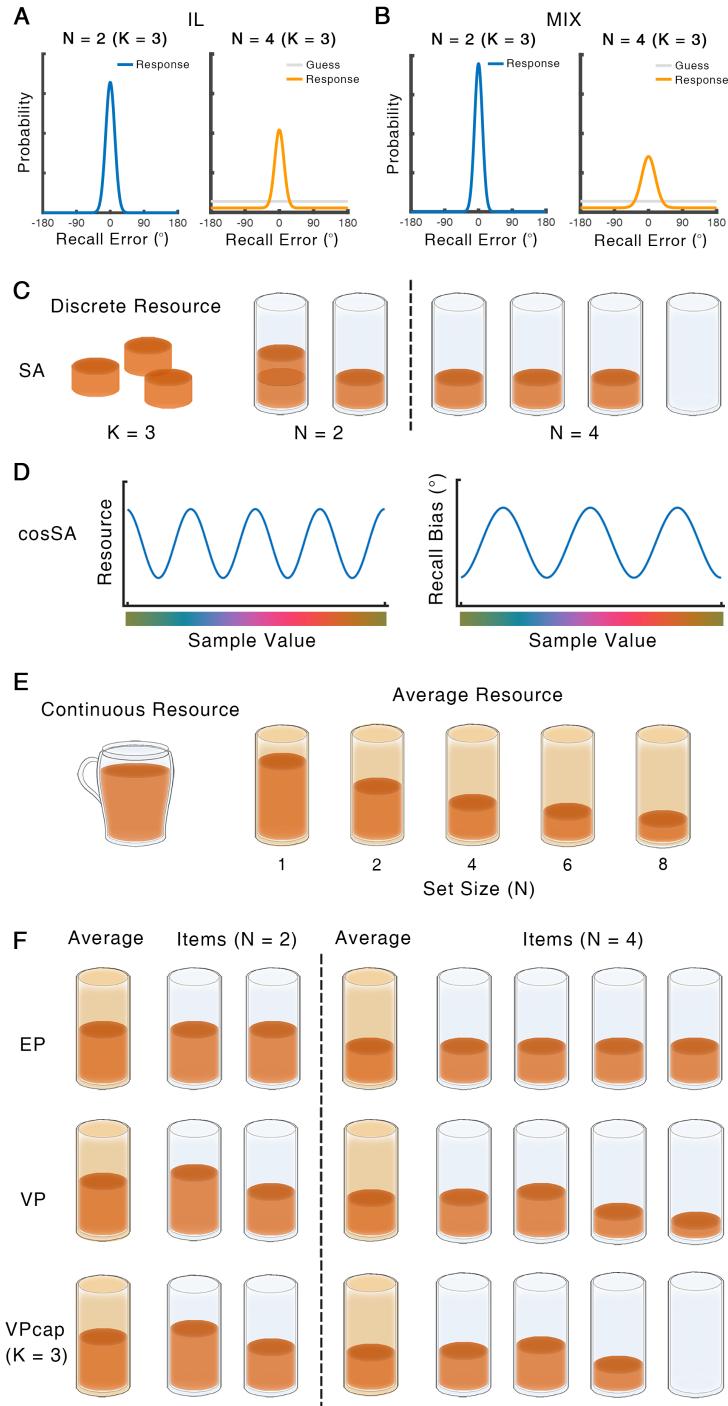
311 **Fitted parameters of the VP model.** Univariate general linear models were used for
312 comparing fitted parameters between the two groups. We regressed out the factor of color
313 perception by setting. Same as results in the main text (Fig. 5), comparable resource
314 decay functions (Fig. 5A, initial resources, $F(1,119) = 0.376$, $p = 0.541$, partial $\eta^2 =$
315 0.003 ; decaying exponent, $F(1,119) = 0.573$, $p = 0.451$, partial $\eta^2 = 0.005$) and choice
316 variability (Fig. 5C, $F(1,119) = 1.702$, $p = 0.195$, partial $\eta^2 = 0.014$) between SZ and HC
317 were found in this analysis. And SZ showed larger variability in allocating resources
318 (resource allocation variability, $F(1,119) = 15.112$, $p < 0.001$, partial $\eta^2 = 0.114$).

319

320 **Fitted parameters of the VPcap model.** The two groups did not show significant
321 differences in the resource decay function (initial resources, $F(1,119) = 0.557$, $p = 0.457$,
322 partial $\eta^2 = 0.005$; decaying exponent $F(1,119) = 2.097$, $p = 0.150$, partial $\eta^2 = 0.017$).
323 SZ had larger resource allocation variability ($F(1,119) = 11.490$, $p = 0.001$, partial $\eta^2 =$
324 0.089) and smaller choice variability $F(1,119) = 5.616$, $p = 0.019$, partial $\eta^2 = 0.045$) than

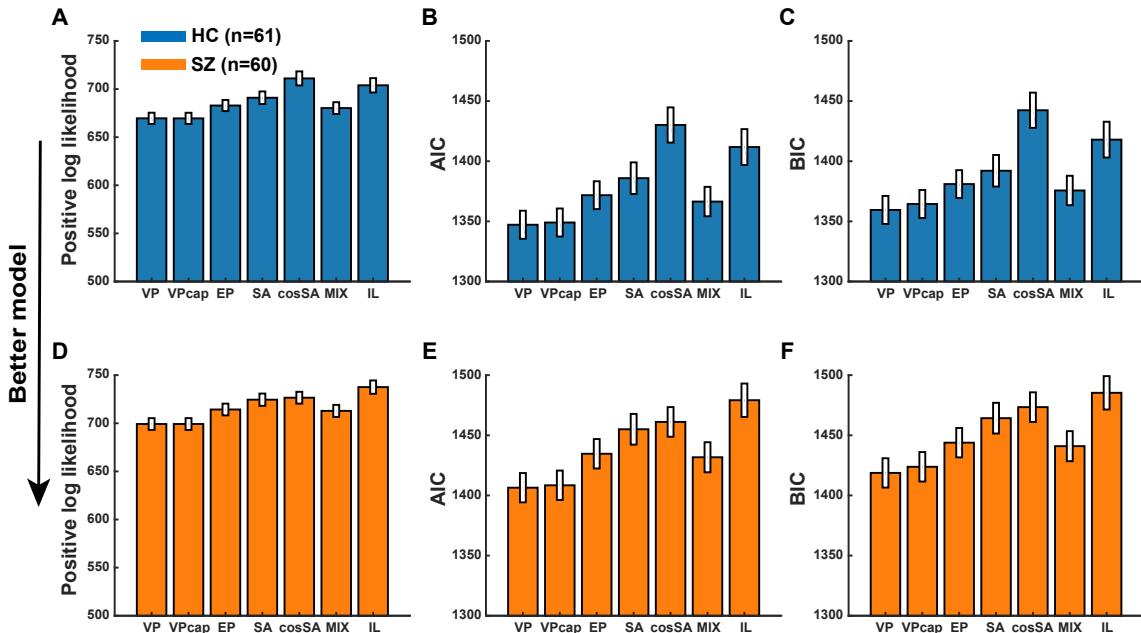
325 HC. The estimated capacity values of two groups were statistically comparable
326 (Supplementary Fig. 2D, $F(1,119) = 0.175$, $p = 0.667$, partial $\eta^2 = 0.001$).

327



328
329
330
331
332
333
334
335

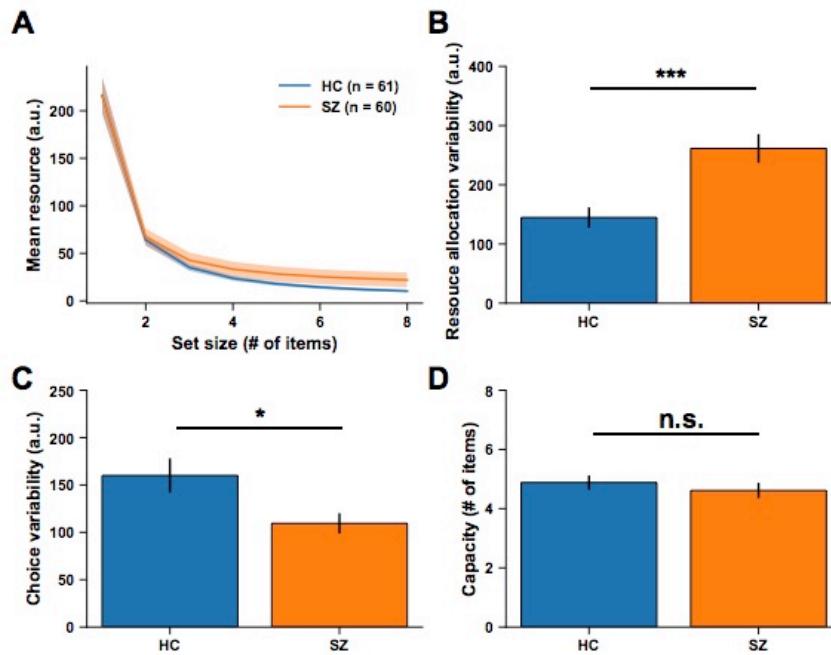
Supplementary Figure 1. Cartoon illustration of all computational models considered in this study. This figure aims to aid an intuitive understanding of the models. Detailed model explanation to Supplementary Note 2. **A.** item-limit model; **B.** MIX model; **C.** the principle of discrete slots and the SA model; **D.** cosSA model; **E.** the principle of continuous resources; **F.** EP, VP, and VPcap models.



336
337
338
339
340
341
342
343
344
345
346

Supplementary Figure 2. Positive log-likelihood (panels A, D), AIC (panels B, E) and BIC (panels C, F) values for all models. Note that here we display the positive log-likelihood values to help visually compare models since maximum negative log-likelihood values are equivalent to minimum positive log-likelihood values. As such, in all panels a lower y-axis value indicates a better model. The upper (panels A-C) and lower (panels D-F) rows depict the model comparison results for HC and SZ respectively. The best-fitting model is the VP model for both groups (also see Fig. 3 in the main text).

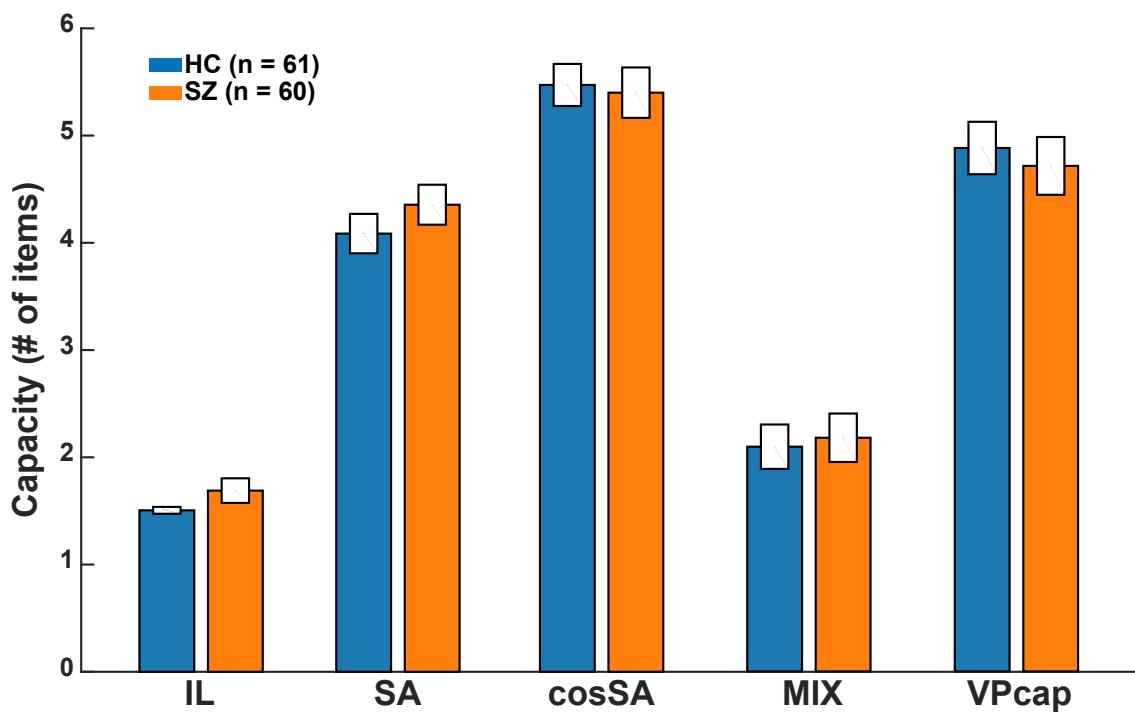
347
348



349
350
351
352
353
354
355
356
357
358
359

Supplementary Figure 3. Fitted parameters (panel A: resource decay functions; panel B: resource allocation variability; panel C: choice variability; panel D: capacity) of the VPcap model. The results replicate the results in Fig. 4. Furthermore, this model estimates capacity in individual subjects and the result show that the two groups have a comparable capacity (panel D). All error bars are \pm SEM across subjects. Other figure captions are the same as in Fig. 4 in the main text. Significance symbol conventions are *: $p < 0.05$; ***: $p < 0.001$; n.s.: non-significant.

360



361
362
363
364
365
366

Supplementary Figure 4. The capacity of the two groups measured by five suboptimal models. None of the five models reveal the significant group differences in capacity. These results directly challenge the conventional decreased-capacity account of SZ. All error bars are \pm SEM across subjects.

367 **References**

- 368 1. van den Berg, R., Shin, H., Chou, W.-C., George, R. & Ma, W. J. Variability in
369 encoding precision accounts for visual short-term memory limitations. *Proc. Natl.
370 Acad. Sci.* **109**, 8780–8785 (2012).
- 371 2. van den Berg, R., Awh, E. & Ma, W. J. Factorial comparison of working memory
372 models. *Psychol. Rev.* **121**, 124–149 (2014).
- 373 3. Bays, P. M. & Husain, M. Dynamic Shifts of Limited Working Memory Resources
374 in Human Vision. *Science (80-)* **321**, 851–854 (2008).
- 375 4. Bays, P. M., Catalao, R. F. G. & Husain, M. The precision of visual working
376 memory is set by allocation of a shared resource. *J. Vis.* **9**, 7.1-11 (2009).
- 377 5. Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. Bayesian inference with
378 probabilistic population codes. *Nat. Neurosci.* **9**, 1432–1438 (2006).
- 379 6. Gold, J. M. *et al.* Reduced Capacity but Spared Precision and Maintenance of
380 Working Memory Representations in Schizophrenia. *Arch. Gen. Psychiatry* **67**,
381 570–577 (2010).
- 382 7. Zhang, W. & Luck, S. J. Discrete fixed-resolution representations in visual
383 working memory. *Nature* **453**, 233–235 (2008).
- 384 8. Pratte, M. S., Park, Y. E., Rademaker, R. L. & Tong, F. Accounting for stimulus-
385 specific variation in precision reveals a discrete capacity limit in visual working
386 memory. *J. Exp. Psychol. Hum. Percept. Perform.* **43**, 6–17 (2017).
- 387 9. Acerbi, L. & Ma, W. J. Practical Bayesian Optimization for Model Fitting with
388 Bayesian Adaptive Direct Search. in *Advances in Neural Information Processing
389 Systems 30* 1836–1846 (2017). doi:<https://doi.org/10.1101/150052>
- 390 10. Wit, E., van den Heuvel, E. & Romeijn, J. W. 'All models are wrong. ': An
391 introduction to model uncertainty. *Stat. Neerl.* **66**, 217–236 (2012).
- 392 11. Burnham, K. P. & Anderson, D. R. *Model Selection and Multimodel Inference: A
393 Practical Information-Theoretic Approach*. *Ecological Modelling* **172**, (Springer-
394 Verlag, 2002).

395
396