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Abstract

[sogenic bacterial populations are known to exhibit phenotypic heterogeneity at the
single cell level. Because of difficulties in assessing the phenotypic heterogeneity of a
single taxon in a mixed community, the importance of this deeper level of organisation
remains relatively unknown for natural communities. In this study, we have used
membrane-based microcosms that allow the probing of the phenotypic heterogeneity of
a single taxon while interacting with a synthetic or natural community. Individual taxa
were studied under axenic conditions, as members of a coculture with physical
separation, and as a mixed culture. Phenotypic heterogeneity was assessed through
both flow cytometry and Raman spectroscopy. Using this setup, we investigated the
effect of microbial interactions on the individual phenotypic heterogeneities of two
interacting drinking water isolates. We have demonstrated that interactions between
these bacteria lead to an adjustment of their individual phenotypic diversities, and that

this adjustment is conditional on the bacterial taxon.

Importance

Laboratory studies have shown the impact of phenotypic heterogeneity on the survival
and functionality of isogenic populations. As phenotypic heterogeneity is known to play
an important role in pathogenicity and virulence, antibiotics resistance,
biotechnological applications and ecosystem properties, it is crucial to understand its
influencing factors. An unanswered question is whether bacteria in mixed communities
influence the phenotypic heterogeneity of their community partners. We found that

coculturing bacteria leads to a reduction in their individual phenotypic heterogeneities,
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41  which led us to the hypothesis that the individual phenotypic diversity of a taxon is

42  dependent on the community composition.
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Introduction

Genetically identical bacteria are known to exhibit single cell heterogeneity under
controlled laboratory conditions (1-3). These heterogeneous traits include
morphological traits, such as cell size, as well as biochemical properties, such as protein
and mRNA content. The individualisation of identical sister cells in clonal populations
occurs rapidly after cell division (4). Cells can be partitioned into clusters of cells with
similar traits, called phenotypes. The variation in phenotypes within sympatric isogenic

populations is referred to as the phenotypic heterogeneity (5).

Noise in gene expression is known to be one of the main drivers of phenotypic
heterogeneity (6-8). At first glance, a heterogeneous gene expression appears to be
disadvantageous, as it may reduce the mean fitness of the population under the
prevailing environmental conditions (9). However, several studies have indicated that
biological noise is an evolved and regulated trait (10, 11), which offers benefits for the
survival (12, 13) and functionality (14-16) of a clonal population. The aforementioned
studies have revealed that isogenic bacterial populations are not homogeneous
populations. Instead, they behave as communities consisting of phenotypic subgroups,
which may differ in quantitative (i.e. continuous variation in phenotypic traits) and

qualitative (i.e. distinct phenotypic states) aspects.

In nature, bacteria are not encountered as isolated populations, but they are a part of a
larger association where many microorganisms coexist. To date few research has been
devoted to the occurrence and functional consequences of phenotypic heterogeneity in
natural, mixed communities (17, 18) and our knowledge regarding factors that

influence phenotypic heterogeneity is limited. One of the reasons for this is that it is
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difficult to assess the heterogeneity of a single taxon within a mixed community.
Recently, several experimental approaches that assess the metabolic diversity of a
single taxon in natural communities have been developed (19, 20). However, these
approaches rely on FISH-probes that bind to 16S rRNA gene sequences for
identification of the taxon of interest. Hence, they do not allow to exclude the possibility
that some of the observed phenotypic differences are caused by minor genetic

differences between bacteria with very similar 16S rRNA genes.

Two laser-based methods that are suitable for assessing phenotypes are flow cytometry
and Raman spectroscopy (21-23). Two types of light can be detected by the flow
cytometer, that is scattered light and fluorescence. The scattered light provides
information about the basic characteristics of the cells (e.g. size, shape and surface
properties), while the fluorescence data provides additional information about the cell
properties for which it has been stained (e.g. nucleic acid content, metabolic activity,
etc.) (24). Flow cytometry thus gives information regarding morphological as well as
specific physiological properties of single-cells. The Raman spectrum of a single cell
consists of a combination of the individual spectra of all the compounds that make up
this cell (e.g. proteins, nucleic acids, fatty acids, etc.). This results in a complex spectrum,
which can be interpreted as a chemical fingerprint of the cell (25, 26). Hence, single-cell
Raman spectra offer an in depth view on the biochemical composition of each

phenotype.

A tool that can help to answer questions that are difficult to study directly in natural
communities is a synthetic ecosystem. A synthetic ecosystem consists of a selected set
of species under specific conditions. They are controllable and have a reduced

complexity in comparison to natural communities (27). Hence, they provide a way to
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90 test ecological theories in order to better understand the rules of nature (28). A specific
91 setup for these synthetic ecosystems are co-cultures. The principle of such a system is
92 that two or more bacterial populations are cultivated together with some degree of

93  contact between them, which allows to study their interactions (29).

94  An unanswered question, and the focus of this study, is whether bacteria in mixed
95 communities influence the phenotypic heterogeneity of their community partners. Here,
96 we used a synthetic community setup where two isolates were used as model
97 organisms. Four synthetic communities were created. The isolates were grown in
98 axenic cultures as a reference for non-interacting genotypes. To be able to study the
99 individual community members separately after they have been interacting via their
100  joint medium, a coculture with physical separation by a membrane was created. Lastly,
101  a mixed culture without physical separation, representing ‘full interaction’, was created.
102  Phenotypes were assessed through flow cytometry and single-cell Raman spectroscopy.
103  Furthermore, we applied and evaluated a novel machine learning approach to quantify

104  synthetic community composition through flow cytometric fingerprinting.
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105 Results

106 We aimed to evaluate whether the phenotype and phenotypic heterogeneity of a single
107  taxon in a dual-species coculture is mediated by interactions with a partner taxon. Two
108  drinking water isolates, an Enterobacter sp. and a Pseudomonas sp., were used as model
109  organisms. The experimental design consisted of four synthetic communities: two
110  axenic cultures, a coculture with physical separation between the taxa (partial
111  interaction), and a mixed culture (full interaction) (Fig. 1). The synthetic communities
112 were monitored for 72 h. Every 24 h population phenotypic diversity was assessed by
113 flow cytometry. At 72 h, populations were analysed using single-cell Raman
114  spectroscopy. Cell viability throughout the experiment was verified through SGPI
115  staining (Fig. S4). Cell populations remained viable throughout the course of the
116  experiment and viability was found to be similar between the cocultures and axenic
117  cultures (Fig. S4). In the following results the physically separated culture is referred to
118 as the ‘coculture’, while ‘mixed culture’ indicates the culture without physical

119  separation.

120 Flow cytometric diversity assessment

121  To evaluate whether microbial interactions can lead to changes in the phenotypic
122 heterogeneity of interacting organisms, cytometric diversity estimates were used as
123 measures of phenotypic heterogeneity. For this, an equal spaced binning grid was used
124  to arbitrarily split up the cytometric parameter space in operational phenotypic units.
125  The signals of both scatter and fluorescence detectors were used, implying that the
126  diversity is a measure of population heterogeneity in terms of both morphological traits

127  and nucleic acid content. Note that the calculated diversity metrics are independent of
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128  the taxon abundances (Fig. S5), as all populations were subsampled to equal cell counts

129  prior to diversity estimation.

130  The phenotypic community structure was first investigated through an alpha-diversity
131  (ie. within sample diversity) assessment. For both taxa, the diversity of the individual
132 taxon was larger when present in the axenic culture compared to when the same taxon
133  was present as a member of the coculture. Not only the phenotypic diversity (D1 and
134 D), which include both richness and evenness, decreased (Fig. $6), but the phenotypic
135  richness (Do) of the coculture members decreased as compared to the axenic cultures
136  (Fig. 2A). This indicates that the interaction did not only lead to a reorganization of the
137  phenotypic community structure (i.e. change in the relative abundances of the
138  cytometric bins), but that the number of non-empty bins on the cytometric fingerprint
139 was reduced due to the interaction, implying not only a redistribution of trait

140 abundance, but a reduction in trait heterogeneity.

141 Using a contrast analysis, differences between the phenotypic fingerprints of
142  populations can easily be visualised in bivariate parameter spaces. To evaluate whether
143  the observed lower diversities were linked with specific shifts in the cytometric
144  fingerprint, differences in scatter and fluorescence patterns of the axenic cultures and
145  the cocultures were assessed. The differences in scatter patterns were limited for both
146  taxa (Fig. S10). In contrast, a clear difference in fluorescence intensity was observed
147  (Fig. 2, B and (C, Fig. S7). For Enterobacter there was a shift towards high fluorescence
148  cells in the coculture as compared to the axenic culture. This difference became larger
149 over time. For Pseudomonas there was a more limited difference, with a small

150 enrichment of lower fluorescence cells. Thus, there was not only a reduction in
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151  population diversity, but there was also a shift of the population fingerprint. Moreover,

152  this shift was taxon-dependent.

153  To further compare the cytometric fingerprints of the different populations, a PCoA
154  ordination was generated based on the Bray-Curtis dissimilarities between the
155  fingerprints (Fig. 3). In this ordination, the fingerprints of the taxa, both under axenic
156  and under coculture growth, are separated, with the mixed culture in between. The
157  populations show a significant shift in their phenotypic structure through time (p =
158  0.001, r2 = 0.154). In addition, there is a significant difference in the fingerprint of
159  Enterobacter when present as an axenic culture compared to being present in the
160  coculture (p = 0.001, r? = 0.455). For Pseudomonas the differences between the axenic
161  cultures and coculture members were not significant (p = 0.092, r2 = 0.170). The mixed
162  culture shifted from a community that is more resembling Enterobacter at the first
163  measurement, towards a community that is more similar to Pseudomonas at the second

164  and third measurement.

165 To better understand the interaction that was occurring between Enterobacter and
166  Pseudomonas, we applied a novel machine learning approach to infer the relative
167 abundances of both taxa in the mixed community. Previous results confirmed our initial
168  hypothesis that the phenotypic diversity of a taxon can be influenced by the presence of
169  other taxa. In order to take this into account, a random forest classifier was trained, for
170  each time point separately, on the fingerprints of the coculture members at the
171  corresponding time point, as these are expected to be the most biologically accurate
172 (Supplementary Results and Discussion). The predictions indicate a higher abundance
173 of Enterobacter in the community at 24 h, followed by a gradual enrichment of

174  Pseudomonas at the second and third time point (Fig. 4).
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175  In summary, both Enterobacter and Pseudomonas showed lower phenotypic diversities
176  in the coculture compared to their axenic culture counterparts. However, while the
177  overall phenotypic community structure did not change substantially for Pseudomonas
178  (i.e. small differences in beta-diversity and limited shift towards lower fluorescence
179  intensity cells), there was a clear shift in the phenotypes of the Enterobacter population
180  (ie. large differences in beta-diversity and a clear shift towards higher fluorescence

181  intensity cells).

182 Raman phenotyping

183  The cytometric phenotype only takes into account the morphological characteristics
184  and nucleic acid content of the cells. However, phenotypes can differ in more cell
185  constituents than nucleic acids alone. The Raman spectrum of a single cell offers a more
186 in depth view on the biochemical phenotype compared to flow cytometry. Raman
187  spectroscopy was used to measure single cell spectra for each of the populations of

188  Enterobacter and Pseudomonas in the axenic cultures and the coculture at 72 h.

189  The spectra hold 333 wavenumbers over the selected biologically relevant range. To
190 gain insight in the separability of cells from the different populations, spectra were
191  visualised through PCA after preprocessing of the data (see materials & methods) (Fig.
192 5 A). The spectra of the Enterobacter populations were clearly separated. A large
193  overlap between the spectra of Pseudomonas that was grown in axenic culture and
194  Pseudomonas that was grown in the coculture was observed. However, when
195 performing PCA for each taxon separately, cells from each synthetic community were
196  separated well (Fig. 5 B and C). This confirms the previous results, indicating that for
197  both taxa a phenotypic shift occurred, but that this shift was larger for Enterobacter

198 than for Pseudomonas.

10
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199  Since the Raman spectrum of a single cell is a combination of the spectra of all
200 compounds that make up this cell (e.g. proteins, nucleic acids, fatty acids, etc.), the
201  signal intensity at every wavenumber is the result of all compounds that produce a
202  signal at this wavenumber. The Raman spectra of all DNA and RNA bases are available
203  from literature (42) as well as information regarding peak regions that are assumed to
204  be related to nucleic acids in general (43). We aimed to investigate whether the shift in
205  fluorescence intensity that was observed through flow cytometry was caused by a
206  changing DNA or RNA content, and in this way get more information about the cause of
207  the observed phenotypic shift. Based on this tentative peak assignment, differences in
208 nucleic acids between the coculture and the axenic populations were observed for both
209 taxa (Fig. S8). However, there was no consistency in whether this considered an
210 increase or a decrease (i.e. for some wavenumbers the average intensity was higher in
211 the coculture, while for other wavenumbers the intensity was higher in the axenic
212 culture). When considering only uracil and thymine it remained impossible to draw a
213 conclusion regarding whether DNA or RNA differences contributed most to the

214  observed phenotypic shift (Fig. S8).

11
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215 Discussion

216  There is an interest in understanding the implications of phenotypic heterogeneity in
217  both natural and engineered microbial ecosystems. Our current knowledge is mainly
218  based on experimental set-ups using axenic cultures. This is partly due to the fact that it
219  is not straightforward to assess the phenotypic heterogeneity of an isogenic population
220  in a mixed community. In order to circumvent this issue we present a membrane-based
221  synthetic community setup. Using this setup we investigated the effect of microbial
222 interactions on the individual phenotype and phenotypic diversities of the interacting

223 taxa.

224  Effect of interaction on phenotype and phenotypic diversity

225 Based on flow cytometric fingerprinting, the phenotypic diversity of both community
226 members was lower when they were grown in a coculture compared to when they were
227  grown as axenic cultures (Fig. 2 A, S6 and S7). This effect of interaction on population
228  diversity was more pronounced for Enterobacter than for Pseudomonas, indicating that
229  different taxa had different phenotypic responses to the interaction. When comparing
230 the phenotypes of the populations through beta-diversity assessment (Fig. 3) and
231 Raman spectroscopy (Fig. 5) a similar observation was found. The differences between
232 the phenotypic state of Pseudomonas in the coculture and in the axenic culture were
233 smaller compared to the differences between Enterobacter in the coculture and in the

234  axenic culture.

235  Differences in scattering patterns were limited for both taxa, implying that there were
236 no large changes in cell morphology (44). Since SG staining is a stoichiometric staining,

237  a higher fluorescence signal is directly related to a higher concentration of stained

12


https://doi.org/10.1101/423715
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/423715; this version posted September 23, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

238 nucleic acids (45, 46). In terms of nucleic acid content, large differences were observed
239  for Enterobacter and limited differences for Pseudomonas, with Enterobacter shifting
240  towards high nucleic acid individuals (Fig. 2 B and C, Fig. S7). This can indicate
241  different physiological shifts. On the one hand, the DNA copy number could be
242  increased, implying an adaptation of the cell cycle. Although both bacteria were
243 expected to be in stationary phase at all sampling points (Fig. S1), it is possible that
244  under stress, the bacteria adapted their cell cycle behaviour and DNA concentration
245  (47). On the other hand, the bacteria might have maintained a similar DNA
246  concentration but a higher RNA concentration, indicating a shift in their gene
247  expression. The bacteria could have been more actively expressing the same genes as
248  they were in the axenic cultures, or they might have shifted towards expression of other
249 genes compared to the axenic cultures. Lastly, also an increased membrane

250 permeability may explain higher fluorescence signals.

251  Through single-cell Raman spectroscopy, which offers an in depth view on the
252  biochemical phenotype, we attempted to investigate which of the above mentioned
253  scenarios was most likely to be occurring. Using a reference-based peak assignment, the
254  Raman spectra indicated differences in wavenumbers which were potentially related to
255  DNA and RNA, and in this way support both hypotheses (Fig. $8). It should be noted
256  that the tentative peak assignment resulted in inconsistent conclusions regarding the
257  intensity change of nucleic acid related wavenumbers for both taxa under the different
258  conditions (i.e. axenic or coculture). This might be explained by the fact that the signal
259 intensity at every wavenumber is the superposition of all compounds signals at this

260 wavenumber, thereby prohibiting biomolecule-specific interpretation.

13
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261  Several uptake- or metabolic pathways are often simultaneously active in a single
262  taxon’s population (48, 49). Interspecies interactions are known to alter the intensity of
263  the production pathways that are active in interacting bacteria (50, 51), and hence, they
264  may be influencing population heterogeneity. For example, the interspecies interactions
265 may allow species to share products of costly pathways, and in this way deprioritize
266  some functions which would be necessary for the proliferation in monoculture, such as
267  production of certain amino acids (50, 52). Since costly production pathways are often
268  expressed by only a fraction of a clonal population (15, 53), sharing of these pathways
269  between genotypes might allow one or both interacting genotypes to steer the
270  distribution of their costly phenotypes, and hence reduce their population
271 heterogeneity. This would enable each genotype to occupy the functions at which it is
272 most performant, thus, creating a mixed community with a higher overall performance.
273  The increased cell density in the mixed culture as compared to the axenic cultures may
274  indicate this increased performance (Fig. S5). The idea of pathway sharing is in line
275  with the observation that the gene-essentiality for a specific taxon is dependent on its
276  community partners (54). Asides these cooperative interactions, competition may also
277  explain the reduction in phenotypic diversity. It may confer a competitive advantage for
278  a taxon to reduce its heterogeneity and in that way reduce the fraction of individuals
279  that are in a suboptimal state for exploiting the current environmental conditions (13).
280 In this study, the community was predicted to be dominated by Pseudomonas (Fig. 4). A
281 possible explanation for the fact that Enterobacter showed a stronger reduction in
282  phenotypic diversity may be that Enterobacter needed to reduce its heterogeneity more

283  in order to compete with Pseudomonas.

284  Evaluation of the experimental setup

14
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285 In literature, phenotypic heterogeneity is most often studied though the assessment of
286  single cell metabolic activity, using isotope labelling with stable or radioactive probes
287 (49, 55), or though the quantification of gene-expression variability with fluorescent
288 labelled proteins (2, 11, 48). Both isotope labelling and fluorescent labelled proteins
289  allow to study heterogeneity in clonal populations. However, they require either a
290 modification of the organisms under study by inserting a fluorescent protein or the use
291  of rather expensive, and sometimes dangerous, isotopes. Using phenotypic
292  fingerprinting through flow cytometry does not require any tagging of bacteria or the
293  use of isotopes. Moreover, it is possible to assess the phenotypic diversity of bacterial
294  populations without prior knowledge on potentially relevant metabolic pathways
295  (isotope labelling) or genes (fluorescent labelling). The main benefits of the flow
296  cytometric approach are its speed and the fact that large amounts of cells can be
297 analysed. This allows to have good coverage of the phenotypic landscape of the

298  community and to achieve a highly resolved sampling frequency.

299  However, when assessing phenotypic heterogeneity, there needs to be a definition of
300 the phenotypes between which will be distinguished. Using the previously published
301 protocol by Props et al, (2016), a binning grid was applied to each of the bivariate
302 parameter combinations (ie. scatter and fluorescence parameters). Bacteria that fell
303  within the same bin were defined as the same phenotype. Thus, phenotypes, and by
304 extension the phenotypic diversity metrics, were defined ad hoc. Moreover, when
305 evaluating phenotypic heterogeneity based on flow cytometry, the phenotypic traits on
306  which information is gained are morphological parameters and nucleic acid content (in
307 case of SG staining). But only a certain level of information is retained in the scatter and

308 fluorescence parameters (e.g. morphology cannot be inferred directly from scatter

15
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309 values) (56). Thus the phenotypic traits derived through flow cytometry are an abstract
310 representation of the phenotype. Additionally, only taking into account these traits is an
311  abstraction of the entire phenotypic diversity of the bacteria. The fact that phenotypes
312 were defined using a predefined binning grid and based on a limited number of
313  phenotypic traits, makes it difficult to make a link with functionality and to fully
314 understand the underlying biological or ecological process that caused the phenotypic
315 diversity shift. Additional examination of the transcriptome (52, 57, 58) or
316 exometabolite profiles (59) could provide valuable insights in the cause of the
317 phenotypic adaptation and the functional consequences that the change in phenotypic
318 state might bring. Additionally, more validated and automated pipelines for detection of

319 biomolecules based on single-cell Raman spectra would be an interesting improvement.

320 Conclusion

321 In conclusion, we have used a synthetic community setup in which the individual
322 phenotypic heterogeneity of environmental isolates in mixed or synthetic communities
323  can be studied. We demonstrated that interactions between bacterial populations lead
324  to an adjustment of the individual phenotypic diversities of the interacting populations.
325  As phenotypic heterogeneity is playing an important role in pathogenicity and virulence
326 (14), antibiotics resistance (12, 60), biotechnological applications (20, 23, 61, 62),
327 ecosystem properties (63), it is crucial to understand its influencing factors. The
328  experimental design presented in this study provides a framework within which further
329  ecological hypotheses regarding phenotypic heterogeneity and microbial interactions

330 can be tested.
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331 Materials and Methods

332 Isolates

333  An Enterobacter sp. and a Pseudomonas sp. were selected from a set of drinking water
334 isolates which were isolated on R2ZA agar and provided by Pidpa (Provinciale en
335 Intercommunale Drinkwatermaatschappij der Provincie Antwerpen, Belgium).
336 Preliminary tests showed that these isolates had distinct cytometric fingerprints, as
337 determined by the method of Rubbens et al. (30), and reached stationary growth phase
338 in M9 supplemented with 200 mg/L glucose within 24 hours at 28°C, starting from a
339 cell density of 106 cells mL1 (Fig. S1). The isolates were identified with Sanger
340 sequencing (LGC Genomics GmbH, Germany). The strains were deposited into the
341 BCCM/LMG Bacteria Collection under accession IDs LMG 30741 (Enterobacter sp.) and

342 LMG 30742 (Pseudomonas sp.).

343 Experimental setup

344  Bacteria were cultured in Transwell plates (Corning® Costar® 6-well cell culture plates,
345  Corning Incorporated) where apical and basal compartments were created using cell
346  culture inserts (ThinCert™ Cell Culture Inserts with pore diameter 0.4 um, Greiner Bio-
347  One). The membranes of the culture inserts were replaced by membranes with smaller
348 pore sizes to avoid migration of bacteria between the two compartments (Whatman®
349  Cyclopore® polycarbonate and polyester membranes with 0.2 um pore size, GE Life
350 Sciences). Four synthetic communities were created, being two axenic cultures, a
351 physically separated culture and a mixed culture (Fig. 1). Each community was
352  prepared in triplicate and randomised over the plates to account for plate effects.
353  Before the start of the experiment, both bacteria were grown on nutrient agar (Oxoid,
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354  UK) plates. A single colony was picked from each plate and transferred to liquid
355 minimal medium (M9 with 200 mg/L glucose as carbon source). After two days of
356 incubation at 28°C, cell densities in the liquid cultures were determined by flow
357 cytometry and the cultures were diluted to the desired starting cell densities in fresh
358 medium. The required dilution was high enough to neglect differences in volume of
359  fresh medium, and thus resources for growth, that were needed to prepare the cultures.
360 The starting cell densities were set to have the same initial cell density of 106 cells mL-!
361 in each synthetic community, and with equal relative abundances for both community

362 members in the cocultures and mixed cultures (Table S1).

363  The 6-well plates were incubated at 28°C and gently shaken (25 rpm) to aid diffusion of
364 metabolites between the compartments. The communities were monitored over a
365 period of 72 hours. Every 24 hours samples were analysed by flow cytometry. After 72
366  hours samples were fixed with 4% paraformaldehyde for Raman spectroscopic analysis
367  (Supplementary material and methods). Sample fixation was necessary since single-cell
368 Raman measurements were too time consuming for immediate analysis. The first
369 sampling moment was at 24 h, which suggests, based on the previously determined
370  growth kinetics, that both taxa were in stationary phase at every sampling point (Fig.

371 S1).

372 Flow cytometry

373  For flow cytometric analysis, the samples were diluted and stained with 1 vol% SYBR®
374  Green I (SG, 100x concentrate in 0.22 pum-filtered DMSO, Invitrogen) for total cell
375 analysis, and with 1 vol% SYBR® Green I combined with propidium iodide (SGPI, 100x
376  concentrate SYBR® Green |, Invitrogen, and 50x 20 mM propidium iodide, Invitrogen, in

377  0.22 pm-filtered dimethyl sulfoxide) for live-dead analysis. SG primarily stains double
18
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378 stranded DNA, but will also stain the RNA (31). Staining was performed as described
379  previously, with an incubation period of 20 min at 37°C in the dark (32). Samples were
380 analysed immediately after incubation on a FACSVerse™ flow cytometer (BD
381  Biosciences, Belgium), which was equipped with eight fluorescence detectors (527/32
382 nm, 783/56 nm, 586/42 nm, 700/54 nm, 660/10 nm, 783/56 nm, 528/45 nm and
383  488/45 nm), two scatter detectors and a blue 20-mW 488-nm laser, a red 40-mW 640-
384 nm laser and a violet 40-mW 405-nm laser. The flow cytometer was operated with
385  FACSFlow™ solution (BD Biosciences, Belgium) as sheath fluid. Instrument performance

386  was verified daily using FACSuite™ CS&T beads (BD Biosciences, Belgium).

387 Raman spectroscopy

388  Prior to analysis, the fixed sample was centrifuged for 5 minutes at room temperature
389 and 5000 g, and the pellet was resuspended in 0.22 pm-filtered milli-Q (4°C). 10 pL of
390 cell suspension was spotted onto a CaF; slide (Crystran Ltd., UK) and air-dried for a few
391 minutes. The dry sample was analysed using an Alpha 300 R confocal Raman
392  microscope (WITec GmbH, Germany) with a 100x/0.9NA objective (Nikon, Japan), a 785
393 nm excitation diode laser (Toptica, Germany) and a UHTS 300 spectrometer (WITec
394  GmbH, Germany) with a -60°C cooled iDus 401 BR-DD CCD camera (Andor Technology
395 Ltd., UK). Laser power before the objective was measured daily and was about 150 mW.
396  Spectra were acquired in the range of 110-3375 cm-! with 300 grooves/mm diffraction
397 grating. For each single cell spectrum, the Raman signal was integrated over 40 s. All
398 Raman samples were analysed within 1 week after sampling, with minimal time
399 between them to limit possible differences caused by differences in storage duration.
400  For each population between 51 and 55 single cell spectra were measured from a single

401  biological replicate population. To allow for a fair comparison, 51 spectra were selected
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402 from each population for further analysis. The spectra with the lowest intensity were

403  assumed to be of lesser quality, and were therefore discarded.

404 A large peak in the range of 850 - 1030 cm! was present in the spectra of Enterobacter
405 in the axenic culture, while this peak was not observed in the other populations or
406  during preliminary tests (Fig. S2). Moreover, intensity values showed large variability
407  for this region. This might be the result of technical issues during fixation or storage of
408 the sample. Similar to the study of Garcia-Timermans et al. (33), this region was

409  excluded for further analysis (Fig. S3).

410 Data analysis

411 Flow cytometry

412 Phenotypic diversity analysis

413  The flow cytometry data was imported in R (v3.3.1) (34) using the flowCore package
414  (v1.40.3) (35). A quality control of the dataset was performed through the flowAl
415  package (v1.6.2) (36). The data was transformed using the arcsine hyperbolic function
416  and the background of the fingerprints was removed by manually creating a gate on the
417  primary fluorescent channels (32). The Phenoflow package (v1.1.1.) (37) was used to
418  assess the phenotypic community structure of the bacterial populations. Based on the
419  study of Rubbens et al. (38), which assessed the usefulness of information captured by
420 additional detectors (ie. detectors that are not directly targeted) for bacterial
421  population identification, an optimal subset of detectors was selected to include in the
422  analysis. The subset included the scatter-detectors, the detector for which had been
423  stained (ie. FITC), and some additional detectors that received spill-over signals

424  (AmCyan, dsRed and eCFP).
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425  Prior to diversity estimation, all populations were subsampled to 30,000 cells in order
426  to account for sample size differences. In short, for each bivariate parameter
427  combination (ie. combination of the scatter and fluorescence parameters) an 128x128
428  equal space binning grid is applied, which discretizes the parameter space, and in which
429  each bin represents a hypothetical phenotype. For each bin a kernel density estimation
430 is performed. All density estimations are summed to the total density estimation of the
431  community. Finally, the density values for each of the bins are concatenated into a 1D-
432  vector, which is called the ‘phenotypic fingerprint’. From this fingerprint, alpha and beta
433  diversity are calculated, which are used as measures for phenotypic population
434  heterogeneity. The alpha diversity (i.e. within sample diversity) is calculated by means
435  of the first three Hill diversity numbers Do, D1 and D2, which correspond to the observed
436  richness, the exponential of Shannon entropy, and the inverse Simpson index,
437  respectively (39). Beta diversity (i.e. between sample diversity) is evaluated by
438  principal coordinate analysis (PCoA) on the Bray-Curtis dissimilarities between the
439  fingerprints. Significance of the differences between fingerprints was assessed by
440 means of PERMANOVA on the Bray-Curtis dissimilarity matrix. Homogeneity of
441  variance in groups was assessed before performing PERMANOVA. A significance level of

442 0.01 was used.

443 In silico communities

444  Relative abundances in the mixed cultures were predicted using the supervised in silico
445  community methodology of Rubbens, Props, Boon, et al. (2017), implemented in the
446 Phenoflow (v1.1.1) software package. In short, a cytometric fingerprint of the taxa that
447 make up the synthetic community is made. Next, the single-cell data of the axenic

448  cultures is aggregated to a so-called ‘in silico community’. This in silico community
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449  consists of labelled data, which allows the use of supervised machine learning
450 techniques, such as random forests, to discriminate between different community
451  members. The label to be predicted is the taxon and the predictors are the scatter and
452  fluorescence parameters. Once this classifier has been trained on the dataset, it can use
453  the single-cell data to predict the relative abundances of both taxa in a mixture. For
454  training of the random forests, the biological replicates were pooled together and

455 10,000 cells of both Enterobacter and Pseudomonas were randomly sampled.

456 Raman spectra

457  The data was analysed in R (v3.3.1). Spectral processing was adapted from the study of
458  Berry et al. (40), and was performed using the MALDIquant package (v1.16) (41). In
459  short, baseline correction was performed using the statistics-sensitive nonlinear
460 iterative peak-clipping (SNIP) algorithm. Next, the biologically relevant part of the
461  spectrum (600-1800 cm'l) was selected (25) and the spectra were normalised by
462  surface normalisation. The intensity values were zero centred and scaled to unit

463  variance before performing PCA (stats package, v3.3.4).

464  Data availability

465 The entire data-analysis pipeline is available as an R Markdown document at
466  https://github.com/jeheyse/Cocultures2018. The Raman data and accompanying
467 metadata are available at https://github.com/jeheyse/Cocultures2018. Raw FCM data
468 and metadata are available on FlowRepository under accession ID FR-FCM-ZYWN (for
469 review:

470  https://flowrepository.org/id/RvFrlZ3CQpF6XTIKKEtSHYE9VPTRoOJREiY]JzZ8HKfdO9nl

471 TuTMc2JA3HiXvPt5fE).
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702  Figure legends

703  FIG 1 Illustration of the experimental setup. Bacteria in apical and basal phase can
704  interact via metabolites in their shared medium while they are physically separated by
705 the membrane of the cell culture inserts. Four synthetic communities were created: two
706  axenic cultures, a coculture and a mixed culture. There were biological replicates (n = 3)

707  for each synthetic community.

708  FIG 2 Phenotypic alpha diversity Do for both individual bacterial taxa in communities of
709 axenic cultures, cocultures and mixed cultures (A). The taxa are denoted as taxon E
710  (Enterobacter sp.) and P (Pseudomonas sp.), respectively. The populations are indicated
711 with names in the form of ‘X treated with Y’, where X is the taxon in the sample (E, P or
712  EP) and Y is what was present on the other side of the membrane (E, P or fresh
713  medium). There were biological replicates (n = 3) for each community. The dashed lines
714  indicate the average trend of the replicates. Contrast analysis of the phenotypic
715  fingerprints to compare the phenotypic community structure of axenic cultures and
716  coculture members with respect to fluorescence intensity. Each plot is a comparison
717  between the axenic culture and coculture of the same taxon at the same time point,
718 averaged over the three biological replicates. The colour gradient indicates whether
719  density in the coculture increased (purple) or decreased (dark green) relative to their
720 respective axenic culture at the specified time point. The upper row presents contrast
721  results for Enterobacter (B). The lower row presents contrast results for Pseudomonas
722 (C). If the difference between the two communities is lower than 0.01 no contrast value
723 is shown on the graphs, which causes the appearance of different cluster. Note that

724  different scales were used for the different taxa.
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725 FIG 3 PCoA ordination of the Bray-Curtis dissimilarities between the phenotypic
726  fingerprints for both individual bacterial taxa in communities of axenic cultures,
727  cocultures and mixed cultures. The ordination is shown in three graphs, split according
728  to time, since this allows for easier interpretation of how the different communities are
729 relating to each other at each time point. The taxa are denoted as taxon E (Enterobacter
730  sp.) and P (Pseudomonas sp.), respectively. The populations are indicated with names in
731 the form of ‘X treated with Y’, where X is the taxon in the sample (E, P or EP) and Y is
732 what was present on the other side of the membrane (E, P or fresh medium). There

733 were biological replicates (n = 3) for each community.

734  FIG 4 Predicted relative abundances in the mixed cultures. The random forest
735  classifiers that were used to infer community composition were constructed using the
736  fingerprints of the coculture members at the corresponding time point as input data.
737  Green lines indicate the predicted relative abundances of Enterobacter, blue lines
738 indicate the predicted relative abundances of Pseudomonas. The different shades

739  correspond to biological replicates (n = 3).

740  FIG 5 Visualisation of the separability of the single cell Raman spectra for Enterobacter
741  and Pseudomonas in axenic culture and coculture at 72 h. There are 51 single cell
742  measurements for each population. The taxa are denoted as taxon E (Enterobacter sp.)
743 and P (Pseudomonas sp.), respectively. The populations are indicated with names in the
744  form of X treated with Y’, where X is the taxon in the sample (E, P or EP) and Y is what
745  was present on the other side of the membrane (E, P or fresh medium). PCA was carried
746  out for the entire dataset (A), for the spectra of Enterobacter separately (B) and for the

747  spectra of Pseudomonas separately (C).
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FIG 1 [llustration of the experimental setup. Bacteria in apical and basal phase can interact
via metabolites in their shared medium while they are physically separated by the
membrane of the cell culture inserts. Four synthetic communities were created: two
axenic cultures, a coculture and a mixed culture. There were biological replicates (n = 3)

for each synthetic community.
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FIG 2 Phenotypic alpha diversity Do for both individual bacterial taxa in communities of
axenic cultures, cocultures and mixed cultures (A). The taxa are denoted as taxon E
(Enterobacter sp.) and P (Pseudomonas sp.), respectively. The populations are indicated
with names in the form of ‘X treated with Y’, where X is the taxon in the sample (E, P or
EP) and Y is what was present on the other side of the membrane (E, P or fresh medium).
There were biological replicates (n = 3) for each community. The dashed lines indicate the
average trend of the replicates. Contrast analysis of the phenotypic fingerprints to
compare the phenotypic community structure of axenic cultures and coculture members
with respect to fluorescence intensity. Each plot is a comparison between the axenic
culture and coculture of the same taxon at the same time point, averaged over the three
biological replicates. The colour gradient indicates whether density in the coculture
increased (purple) or decreased (dark green) relative to their respective axenic culture at
the specified time point. The upper row presents contrast results for Enterobacter (B).
The lower row presents contrast results for Pseudomonas (C). If the difference between
the two communities is lower than 0.01 no contrast value is shown on the graphs, which
causes the appearance of different cluster. Note that different scales were used for the

different taxa.
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FIG 3 PCoA ordination of the Bray-Curtis dissimilarities between the phenotypic
fingerprints for both individual bacterial taxa in communities of axenic cultures,
cocultures and mixed cultures. The ordination is shown in three graphs, split according to
time, since this allows for easier interpretation of how the different communities are
relating to each other at each time point. The taxa are denoted as taxon E (Enterobacter
sp.) and P (Pseudomonas sp.), respectively. The populations are indicated with names in
the form of ‘X treated with Y’, where X is the taxon in the sample (E, P or EP) and Y is what
was present on the other side of the membrane (E, P or fresh medium). There were

biological replicates (n = 3) for each community.
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FIG 4 Predicted relative abundances in the mixed cultures. The random forest classifiers
that were used to infer community composition were constructed using the fingerprints
of the coculture members at the corresponding time point as input data. Green lines
indicate the predicted relative abundances of Enterobacter, blue lines indicate the
predicted relative abundances of Pseudomonas. The different shades correspond to

biological replicates (n = 3).
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FIG 5 Visualisation of the separability of the single cell Raman spectra for Enterobacter
and Pseudomonas in axenic culture and coculture at 72 h. There are 51 single cell
measurements for each population. The taxa are denoted as taxon E (Enterobacter sp.)
and P (Pseudomonas sp.), respectively. The populations are indicated with names in the
form of ‘X treated with Y’, where X is the taxon in the sample (E, P or EP) and Y is what
was present on the other side of the membrane (E, P or fresh medium). PCA was carried
out for the entire dataset (A), for the spectra of Enterobacter separately (B) and for the

spectra of Pseudomonas separately (C).


https://doi.org/10.1101/423715
http://creativecommons.org/licenses/by-nc-nd/4.0/

