

1 **Coculturing bacteria leads to reduced phenotypic heterogeneities**

2 Jasmine Heyse^a, Benjamin Buysschaert^a, Ruben Props^a, Peter Rubbens^b, Andre G.

3 Skirtach^c, Willem Waegeman^b, Nico Boon^a #

4 ^a Center for Microbial Ecology and Technology (CMET), Department of Biochemical and

5 Microbial Technology, Ghent University, Coupure Links 653, B-9000 Gent, Belgium

6 ^b KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University,

7 Coupure Links 653, B-9000 Gent, Belgium

8 ^c Group of Nano-Bio-Technology, Department of Biotechnology, Ghent University,

9 Coupure Links 653, B-9000 Gent, Belgium

10 **Running title**

11 Phenotypic heterogeneity in cocultures

12 **Keywords**

13 phenotypic heterogeneity, single-cell, microbial interactions, axenic culture, coculture,

14 synthetic ecosystems, flow cytometry, Raman spectroscopy

15 # Correspondence to: Nico Boon, Ghent University; Faculty of Bioscience Engineering;

16 Centre of Microbial Ecology and Technology (CMET); Coupure Links 653; B-9000 Gent,

17 Belgium; phone: +32 (0)9 264 59 76; fax: +32 (0)9 264 62 48; E-mail:

18 Nico.Boon@UGent.be; Webpage: www.cmet.ugent.be.

19 **Abstract**

20 Isogenic bacterial populations are known to exhibit phenotypic heterogeneity at the
21 single cell level. Because of difficulties in assessing the phenotypic heterogeneity of a
22 single taxon in a mixed community, the importance of this deeper level of organisation
23 remains relatively unknown for natural communities. In this study, we have used
24 membrane-based microcosms that allow the probing of the phenotypic heterogeneity of
25 a single taxon while interacting with a synthetic or natural community. Individual taxa
26 were studied under axenic conditions, as members of a coculture with physical
27 separation, and as a mixed culture. Phenotypic heterogeneity was assessed through
28 both flow cytometry and Raman spectroscopy. Using this setup, we investigated the
29 effect of microbial interactions on the individual phenotypic heterogeneities of two
30 interacting drinking water isolates. We have demonstrated that interactions between
31 these bacteria lead to an adjustment of their individual phenotypic diversities, and that
32 this adjustment is conditional on the bacterial taxon.

33 **Importance**

34 Laboratory studies have shown the impact of phenotypic heterogeneity on the survival
35 and functionality of isogenic populations. As phenotypic heterogeneity is known to play
36 an important role in pathogenicity and virulence, antibiotics resistance,
37 biotechnological applications and ecosystem properties, it is crucial to understand its
38 influencing factors. An unanswered question is whether bacteria in mixed communities
39 influence the phenotypic heterogeneity of their community partners. We found that
40 coculturing bacteria leads to a reduction in their individual phenotypic heterogeneities,

41 which led us to the hypothesis that the individual phenotypic diversity of a taxon is
42 dependent on the community composition.

43 Introduction

44 Genetically identical bacteria are known to exhibit single cell heterogeneity under
45 controlled laboratory conditions (1-3). These heterogeneous traits include
46 morphological traits, such as cell size, as well as biochemical properties, such as protein
47 and mRNA content. The individualisation of identical sister cells in clonal populations
48 occurs rapidly after cell division (4). Cells can be partitioned into clusters of cells with
49 similar traits, called phenotypes. The variation in phenotypes within sympatric isogenic
50 populations is referred to as the phenotypic heterogeneity (5).

51 Noise in gene expression is known to be one of the main drivers of phenotypic
52 heterogeneity (6-8). At first glance, a heterogeneous gene expression appears to be
53 disadvantageous, as it may reduce the mean fitness of the population under the
54 prevailing environmental conditions (9). However, several studies have indicated that
55 biological noise is an evolved and regulated trait (10, 11), which offers benefits for the
56 survival (12, 13) and functionality (14-16) of a clonal population. The aforementioned
57 studies have revealed that isogenic bacterial populations are not homogeneous
58 populations. Instead, they behave as communities consisting of phenotypic subgroups,
59 which may differ in quantitative (*i.e.* continuous variation in phenotypic traits) and
60 qualitative (*i.e.* distinct phenotypic states) aspects.

61 In nature, bacteria are not encountered as isolated populations, but they are a part of a
62 larger association where many microorganisms coexist. To date few research has been
63 devoted to the occurrence and functional consequences of phenotypic heterogeneity in
64 natural, mixed communities (17, 18) and our knowledge regarding factors that
65 influence phenotypic heterogeneity is limited. One of the reasons for this is that it is

66 difficult to assess the heterogeneity of a single taxon within a mixed community.
67 Recently, several experimental approaches that assess the metabolic diversity of a
68 single taxon in natural communities have been developed (19, 20). However, these
69 approaches rely on FISH-probes that bind to 16S rRNA gene sequences for
70 identification of the taxon of interest. Hence, they do not allow to exclude the possibility
71 that some of the observed phenotypic differences are caused by minor genetic
72 differences between bacteria with very similar 16S rRNA genes.

73 Two laser-based methods that are suitable for assessing phenotypes are flow cytometry
74 and Raman spectroscopy (21–23). Two types of light can be detected by the flow
75 cytometer, that is scattered light and fluorescence. The scattered light provides
76 information about the basic characteristics of the cells (*e.g.* size, shape and surface
77 properties), while the fluorescence data provides additional information about the cell
78 properties for which it has been stained (*e.g.* nucleic acid content, metabolic activity,
79 etc.) (24). Flow cytometry thus gives information regarding morphological as well as
80 specific physiological properties of single-cells. The Raman spectrum of a single cell
81 consists of a combination of the individual spectra of all the compounds that make up
82 this cell (*e.g.* proteins, nucleic acids, fatty acids, etc.). This results in a complex spectrum,
83 which can be interpreted as a chemical fingerprint of the cell (25, 26). Hence, single-cell
84 Raman spectra offer an in depth view on the biochemical composition of each
85 phenotype.

86 A tool that can help to answer questions that are difficult to study directly in natural
87 communities is a synthetic ecosystem. A synthetic ecosystem consists of a selected set
88 of species under specific conditions. They are controllable and have a reduced
89 complexity in comparison to natural communities (27). Hence, they provide a way to

90 test ecological theories in order to better understand the rules of nature (28). A specific
91 setup for these synthetic ecosystems are co-cultures. The principle of such a system is
92 that two or more bacterial populations are cultivated together with some degree of
93 contact between them, which allows to study their interactions (29).
94 An unanswered question, and the focus of this study, is whether bacteria in mixed
95 communities influence the phenotypic heterogeneity of their community partners. Here,
96 we used a synthetic community setup where two isolates were used as model
97 organisms. Four synthetic communities were created. The isolates were grown in
98 axenic cultures as a reference for non-interacting genotypes. To be able to study the
99 individual community members separately after they have been interacting via their
100 joint medium, a coculture with physical separation by a membrane was created. Lastly,
101 a mixed culture without physical separation, representing 'full interaction', was created.
102 Phenotypes were assessed through flow cytometry and single-cell Raman spectroscopy.
103 Furthermore, we applied and evaluated a novel machine learning approach to quantify
104 synthetic community composition through flow cytometric fingerprinting.

105 **Results**

106 We aimed to evaluate whether the phenotype and phenotypic heterogeneity of a single
107 taxon in a dual-species coculture is mediated by interactions with a partner taxon. Two
108 drinking water isolates, an *Enterobacter* sp. and a *Pseudomonas* sp., were used as model
109 organisms. The experimental design consisted of four synthetic communities: two
110 axenic cultures, a coculture with physical separation between the taxa (partial
111 interaction), and a mixed culture (full interaction) (**Fig. 1**). The synthetic communities
112 were monitored for 72 h. Every 24 h population phenotypic diversity was assessed by
113 flow cytometry. At 72 h, populations were analysed using single-cell Raman
114 spectroscopy. Cell viability throughout the experiment was verified through SGPI
115 staining (**Fig. S4**). Cell populations remained viable throughout the course of the
116 experiment and viability was found to be similar between the cocultures and axenic
117 cultures (**Fig. S4**). In the following results the physically separated culture is referred to
118 as the ‘coculture’, while ‘mixed culture’ indicates the culture without physical
119 separation.

120 **Flow cytometric diversity assessment**

121 To evaluate whether microbial interactions can lead to changes in the phenotypic
122 heterogeneity of interacting organisms, cytometric diversity estimates were used as
123 measures of phenotypic heterogeneity. For this, an equal spaced binning grid was used
124 to arbitrarily split up the cytometric parameter space in operational phenotypic units.
125 The signals of both scatter and fluorescence detectors were used, implying that the
126 diversity is a measure of population heterogeneity in terms of both morphological traits
127 and nucleic acid content. Note that the calculated diversity metrics are independent of

128 the taxon abundances (**Fig. S5**), as all populations were subsampled to equal cell counts
129 prior to diversity estimation.

130 The phenotypic community structure was first investigated through an alpha-diversity
131 (*i.e.* within sample diversity) assessment. For both taxa, the diversity of the individual
132 taxon was larger when present in the axenic culture compared to when the same taxon
133 was present as a member of the coculture. Not only the phenotypic diversity (D_1 and
134 D_2), which include both richness and evenness, decreased (**Fig. S6**), but the phenotypic
135 richness (D_0) of the coculture members decreased as compared to the axenic cultures
136 (**Fig. 2A**). This indicates that the interaction did not only lead to a reorganization of the
137 phenotypic community structure (*i.e.* change in the relative abundances of the
138 cytometric bins), but that the number of non-empty bins on the cytometric fingerprint
139 was reduced due to the interaction, implying not only a redistribution of trait
140 abundance, but a reduction in trait heterogeneity.

141 Using a contrast analysis, differences between the phenotypic fingerprints of
142 populations can easily be visualised in bivariate parameter spaces. To evaluate whether
143 the observed lower diversities were linked with specific shifts in the cytometric
144 fingerprint, differences in scatter and fluorescence patterns of the axenic cultures and
145 the cocultures were assessed. The differences in scatter patterns were limited for both
146 taxa (**Fig. S10**). In contrast, a clear difference in fluorescence intensity was observed
147 (**Fig. 2, B and C, Fig. S7**). For *Enterobacter* there was a shift towards high fluorescence
148 cells in the coculture as compared to the axenic culture. This difference became larger
149 over time. For *Pseudomonas* there was a more limited difference, with a small
150 enrichment of lower fluorescence cells. Thus, there was not only a reduction in

151 population diversity, but there was also a shift of the population fingerprint. Moreover,
152 this shift was taxon-dependent.

153 To further compare the cytometric fingerprints of the different populations, a PCoA
154 ordination was generated based on the Bray-Curtis dissimilarities between the
155 fingerprints (Fig. 3). In this ordination, the fingerprints of the taxa, both under axenic
156 and under coculture growth, are separated, with the mixed culture in between. The
157 populations show a significant shift in their phenotypic structure through time ($p =$
158 0.001, $r^2 = 0.154$). In addition, there is a significant difference in the fingerprint of
159 *Enterobacter* when present as an axenic culture compared to being present in the
160 coculture ($p = 0.001$, $r^2 = 0.455$). For *Pseudomonas* the differences between the axenic
161 cultures and coculture members were not significant ($p = 0.092$, $r^2 = 0.170$). The mixed
162 culture shifted from a community that is more resembling *Enterobacter* at the first
163 measurement, towards a community that is more similar to *Pseudomonas* at the second
164 and third measurement.

165 To better understand the interaction that was occurring between *Enterobacter* and
166 *Pseudomonas*, we applied a novel machine learning approach to infer the relative
167 abundances of both taxa in the mixed community. Previous results confirmed our initial
168 hypothesis that the phenotypic diversity of a taxon can be influenced by the presence of
169 other taxa. In order to take this into account, a random forest classifier was trained, for
170 each time point separately, on the fingerprints of the coculture members at the
171 corresponding time point, as these are expected to be the most biologically accurate
172 (Supplementary Results and Discussion). The predictions indicate a higher abundance
173 of *Enterobacter* in the community at 24 h, followed by a gradual enrichment of
174 *Pseudomonas* at the second and third time point (Fig. 4).

175 In summary, both *Enterobacter* and *Pseudomonas* showed lower phenotypic diversities
176 in the coculture compared to their axenic culture counterparts. However, while the
177 overall phenotypic community structure did not change substantially for *Pseudomonas*
178 (i.e. small differences in beta-diversity and limited shift towards lower fluorescence
179 intensity cells), there was a clear shift in the phenotypes of the *Enterobacter* population
180 (i.e. large differences in beta-diversity and a clear shift towards higher fluorescence
181 intensity cells).

182 **Raman phenotyping**

183 The cytometric phenotype only takes into account the morphological characteristics
184 and nucleic acid content of the cells. However, phenotypes can differ in more cell
185 constituents than nucleic acids alone. The Raman spectrum of a single cell offers a more
186 in depth view on the biochemical phenotype compared to flow cytometry. Raman
187 spectroscopy was used to measure single cell spectra for each of the populations of
188 *Enterobacter* and *Pseudomonas* in the axenic cultures and the coculture at 72 h.

189 The spectra hold 333 wavenumbers over the selected biologically relevant range. To
190 gain insight in the separability of cells from the different populations, spectra were
191 visualised through PCA after preprocessing of the data (see materials & methods) (**Fig.**
192 **5 A**). The spectra of the *Enterobacter* populations were clearly separated. A large
193 overlap between the spectra of *Pseudomonas* that was grown in axenic culture and
194 *Pseudomonas* that was grown in the coculture was observed. However, when
195 performing PCA for each taxon separately, cells from each synthetic community were
196 separated well (**Fig. 5 B and C**). This confirms the previous results, indicating that for
197 both taxa a phenotypic shift occurred, but that this shift was larger for *Enterobacter*
198 than for *Pseudomonas*.

199 Since the Raman spectrum of a single cell is a combination of the spectra of all
200 compounds that make up this cell (*e.g.* proteins, nucleic acids, fatty acids, etc.), the
201 signal intensity at every wavenumber is the result of all compounds that produce a
202 signal at this wavenumber. The Raman spectra of all DNA and RNA bases are available
203 from literature (42) as well as information regarding peak regions that are assumed to
204 be related to nucleic acids in general (43). We aimed to investigate whether the shift in
205 fluorescence intensity that was observed through flow cytometry was caused by a
206 changing DNA or RNA content, and in this way get more information about the cause of
207 the observed phenotypic shift. Based on this tentative peak assignment, differences in
208 nucleic acids between the coculture and the axenic populations were observed for both
209 taxa (**Fig. S8**). However, there was no consistency in whether this considered an
210 increase or a decrease (*i.e.* for some wavenumbers the average intensity was higher in
211 the coculture, while for other wavenumbers the intensity was higher in the axenic
212 culture). When considering only uracil and thymine it remained impossible to draw a
213 conclusion regarding whether DNA or RNA differences contributed most to the
214 observed phenotypic shift (**Fig. S8**).

215 **Discussion**

216 There is an interest in understanding the implications of phenotypic heterogeneity in
217 both natural and engineered microbial ecosystems. Our current knowledge is mainly
218 based on experimental set-ups using axenic cultures. This is partly due to the fact that it
219 is not straightforward to assess the phenotypic heterogeneity of an isogenic population
220 in a mixed community. In order to circumvent this issue we present a membrane-based
221 synthetic community setup. Using this setup we investigated the effect of microbial
222 interactions on the individual phenotype and phenotypic diversities of the interacting
223 taxa.

224 **Effect of interaction on phenotype and phenotypic diversity**

225 Based on flow cytometric fingerprinting, the phenotypic diversity of both community
226 members was lower when they were grown in a coculture compared to when they were
227 grown as axenic cultures (**Fig. 2 A, S6 and S7**). This effect of interaction on population
228 diversity was more pronounced for *Enterobacter* than for *Pseudomonas*, indicating that
229 different taxa had different phenotypic responses to the interaction. When comparing
230 the phenotypes of the populations through beta-diversity assessment (**Fig. 3**) and
231 Raman spectroscopy (**Fig. 5**) a similar observation was found. The differences between
232 the phenotypic state of *Pseudomonas* in the coculture and in the axenic culture were
233 smaller compared to the differences between *Enterobacter* in the coculture and in the
234 axenic culture.

235 Differences in scattering patterns were limited for both taxa, implying that there were
236 no large changes in cell morphology (44). Since SG staining is a stoichiometric staining,
237 a higher fluorescence signal is directly related to a higher concentration of stained

238 nucleic acids (45, 46). In terms of nucleic acid content, large differences were observed
239 for *Enterobacter* and limited differences for *Pseudomonas*, with *Enterobacter* shifting
240 towards high nucleic acid individuals (**Fig. 2 B and C, Fig. S7**). This can indicate
241 different physiological shifts. On the one hand, the DNA copy number could be
242 increased, implying an adaptation of the cell cycle. Although both bacteria were
243 expected to be in stationary phase at all sampling points (**Fig. S1**), it is possible that
244 under stress, the bacteria adapted their cell cycle behaviour and DNA concentration
245 (47). On the other hand, the bacteria might have maintained a similar DNA
246 concentration but a higher RNA concentration, indicating a shift in their gene
247 expression. The bacteria could have been more actively expressing the same genes as
248 they were in the axenic cultures, or they might have shifted towards expression of other
249 genes compared to the axenic cultures. Lastly, also an increased membrane
250 permeability may explain higher fluorescence signals.

251 Through single-cell Raman spectroscopy, which offers an in depth view on the
252 biochemical phenotype, we attempted to investigate which of the above mentioned
253 scenarios was most likely to be occurring. Using a reference-based peak assignment, the
254 Raman spectra indicated differences in wavenumbers which were potentially related to
255 DNA and RNA, and in this way support both hypotheses (**Fig. S8**). It should be noted
256 that the tentative peak assignment resulted in inconsistent conclusions regarding the
257 intensity change of nucleic acid related wavenumbers for both taxa under the different
258 conditions (*i.e.* axenic or coculture). This might be explained by the fact that the signal
259 intensity at every wavenumber is the superposition of all compounds signals at this
260 wavenumber, thereby prohibiting biomolecule-specific interpretation.

261 Several uptake- or metabolic pathways are often simultaneously active in a single
262 taxon's population (48, 49). Interspecies interactions are known to alter the intensity of
263 the production pathways that are active in interacting bacteria (50, 51), and hence, they
264 may be influencing population heterogeneity. For example, the interspecies interactions
265 may allow species to share products of costly pathways, and in this way deprioritize
266 some functions which would be necessary for the proliferation in monoculture, such as
267 production of certain amino acids (50, 52). Since costly production pathways are often
268 expressed by only a fraction of a clonal population (15, 53), sharing of these pathways
269 between genotypes might allow one or both interacting genotypes to steer the
270 distribution of their costly phenotypes, and hence reduce their population
271 heterogeneity. This would enable each genotype to occupy the functions at which it is
272 most performant, thus, creating a mixed community with a higher overall performance.
273 The increased cell density in the mixed culture as compared to the axenic cultures may
274 indicate this increased performance (**Fig. S5**). The idea of pathway sharing is in line
275 with the observation that the gene-essentiality for a specific taxon is dependent on its
276 community partners (54). Asides these cooperative interactions, competition may also
277 explain the reduction in phenotypic diversity. It may confer a competitive advantage for
278 a taxon to reduce its heterogeneity and in that way reduce the fraction of individuals
279 that are in a suboptimal state for exploiting the current environmental conditions (13).
280 In this study, the community was predicted to be dominated by *Pseudomonas* (**Fig. 4**). A
281 possible explanation for the fact that *Enterobacter* showed a stronger reduction in
282 phenotypic diversity may be that *Enterobacter* needed to reduce its heterogeneity more
283 in order to compete with *Pseudomonas*.

284 **Evaluation of the experimental setup**

285 In literature, phenotypic heterogeneity is most often studied through the assessment of
286 single cell metabolic activity, using isotope labelling with stable or radioactive probes
287 (49, 55), or through the quantification of gene-expression variability with fluorescent
288 labelled proteins (2, 11, 48). Both isotope labelling and fluorescent labelled proteins
289 allow to study heterogeneity in clonal populations. However, they require either a
290 modification of the organisms under study by inserting a fluorescent protein or the use
291 of rather expensive, and sometimes dangerous, isotopes. Using phenotypic
292 fingerprinting through flow cytometry does not require any tagging of bacteria or the
293 use of isotopes. Moreover, it is possible to assess the phenotypic diversity of bacterial
294 populations without prior knowledge on potentially relevant metabolic pathways
295 (isotope labelling) or genes (fluorescent labelling). The main benefits of the flow
296 cytometric approach are its speed and the fact that large amounts of cells can be
297 analysed. This allows to have good coverage of the phenotypic landscape of the
298 community and to achieve a highly resolved sampling frequency.

299 However, when assessing phenotypic heterogeneity, there needs to be a definition of
300 the phenotypes between which will be distinguished. Using the previously published
301 protocol by Props *et al.*, (2016), a binning grid was applied to each of the bivariate
302 parameter combinations (*i.e.* scatter and fluorescence parameters). Bacteria that fell
303 within the same bin were defined as the same phenotype. Thus, phenotypes, and by
304 extension the phenotypic diversity metrics, were defined *ad hoc*. Moreover, when
305 evaluating phenotypic heterogeneity based on flow cytometry, the phenotypic traits on
306 which information is gained are morphological parameters and nucleic acid content (in
307 case of SG staining). But only a certain level of information is retained in the scatter and
308 fluorescence parameters (*e.g.* morphology cannot be inferred directly from scatter

309 values) (56). Thus the phenotypic traits derived through flow cytometry are an abstract
310 representation of the phenotype. Additionally, only taking into account these traits is an
311 abstraction of the entire phenotypic diversity of the bacteria. The fact that phenotypes
312 were defined using a predefined binning grid and based on a limited number of
313 phenotypic traits, makes it difficult to make a link with functionality and to fully
314 understand the underlying biological or ecological process that caused the phenotypic
315 diversity shift. Additional examination of the transcriptome (52, 57, 58) or
316 exometabolite profiles (59) could provide valuable insights in the cause of the
317 phenotypic adaptation and the functional consequences that the change in phenotypic
318 state might bring. Additionally, more validated and automated pipelines for detection of
319 biomolecules based on single-cell Raman spectra would be an interesting improvement.

320 **Conclusion**

321 In conclusion, we have used a synthetic community setup in which the individual
322 phenotypic heterogeneity of environmental isolates in mixed or synthetic communities
323 can be studied. We demonstrated that interactions between bacterial populations lead
324 to an adjustment of the individual phenotypic diversities of the interacting populations.
325 As phenotypic heterogeneity is playing an important role in pathogenicity and virulence
326 (14), antibiotics resistance (12, 60), biotechnological applications (20, 23, 61, 62),
327 ecosystem properties (63), it is crucial to understand its influencing factors. The
328 experimental design presented in this study provides a framework within which further
329 ecological hypotheses regarding phenotypic heterogeneity and microbial interactions
330 can be tested.

331 **Materials and Methods**

332 **Isolates**

333 An *Enterobacter* sp. and a *Pseudomonas* sp. were selected from a set of drinking water
334 isolates which were isolated on R2A agar and provided by Pidpa (Provinciale en
335 Intercommunale Drinkwatermaatschappij der Provincie Antwerpen, Belgium).
336 Preliminary tests showed that these isolates had distinct cytometric fingerprints, as
337 determined by the method of Rubbens et al. (30), and reached stationary growth phase
338 in M9 supplemented with 200 mg/L glucose within 24 hours at 28°C, starting from a
339 cell density of 10^6 cells mL⁻¹ (**Fig. S1**). The isolates were identified with Sanger
340 sequencing (LGC Genomics GmbH, Germany). The strains were deposited into the
341 BCCM/LMG Bacteria Collection under accession IDs LMG 30741 (*Enterobacter* sp.) and
342 LMG 30742 (*Pseudomonas* sp.).

343 **Experimental setup**

344 Bacteria were cultured in Transwell plates (Corning® Costar® 6-well cell culture plates,
345 Corning Incorporated) where apical and basal compartments were created using cell
346 culture inserts (ThinCert™ Cell Culture Inserts with pore diameter 0.4 µm, Greiner Bio-
347 One). The membranes of the culture inserts were replaced by membranes with smaller
348 pore sizes to avoid migration of bacteria between the two compartments (Whatman®
349 Cyclopore® polycarbonate and polyester membranes with 0.2 µm pore size, GE Life
350 Sciences). Four synthetic communities were created, being two axenic cultures, a
351 physically separated culture and a mixed culture (**Fig. 1**). Each community was
352 prepared in triplicate and randomised over the plates to account for plate effects.
353 Before the start of the experiment, both bacteria were grown on nutrient agar (Oxoid,

354 UK) plates. A single colony was picked from each plate and transferred to liquid
355 minimal medium (M9 with 200 mg/L glucose as carbon source). After two days of
356 incubation at 28°C, cell densities in the liquid cultures were determined by flow
357 cytometry and the cultures were diluted to the desired starting cell densities in fresh
358 medium. The required dilution was high enough to neglect differences in volume of
359 fresh medium, and thus resources for growth, that were needed to prepare the cultures.
360 The starting cell densities were set to have the same initial cell density of 10^6 cells mL⁻¹
361 in each synthetic community, and with equal relative abundances for both community
362 members in the cocultures and mixed cultures (**Table S1**).

363 The 6-well plates were incubated at 28°C and gently shaken (25 rpm) to aid diffusion of
364 metabolites between the compartments. The communities were monitored over a
365 period of 72 hours. Every 24 hours samples were analysed by flow cytometry. After 72
366 hours samples were fixed with 4% paraformaldehyde for Raman spectroscopic analysis
367 (Supplementary material and methods). Sample fixation was necessary since single-cell
368 Raman measurements were too time consuming for immediate analysis. The first
369 sampling moment was at 24 h, which suggests, based on the previously determined
370 growth kinetics, that both taxa were in stationary phase at every sampling point (**Fig.**
371 **S1**).

372 **Flow cytometry**

373 For flow cytometric analysis, the samples were diluted and stained with 1 vol% SYBR®
374 Green I (SG, 100x concentrate in 0.22 µm-filtered DMSO, Invitrogen) for total cell
375 analysis, and with 1 vol% SYBR® Green I combined with propidium iodide (SGPI, 100x
376 concentrate SYBR® Green I, Invitrogen, and 50x 20 mM propidium iodide, Invitrogen, in
377 0.22 µm-filtered dimethyl sulfoxide) for live-dead analysis. SG primarily stains double

378 stranded DNA, but will also stain the RNA (31). Staining was performed as described
379 previously, with an incubation period of 20 min at 37°C in the dark (32). Samples were
380 analysed immediately after incubation on a FACSVerse™ flow cytometer (BD
381 Biosciences, Belgium), which was equipped with eight fluorescence detectors (527/32
382 nm, 783/56 nm, 586/42 nm, 700/54 nm, 660/10 nm, 783/56 nm, 528/45 nm and
383 488/45 nm), two scatter detectors and a blue 20-mW 488-nm laser, a red 40-mW 640-
384 nm laser and a violet 40-mW 405-nm laser. The flow cytometer was operated with
385 FACSFlow™ solution (BD Biosciences, Belgium) as sheath fluid. Instrument performance
386 was verified daily using FACSuite™ CS&T beads (BD Biosciences, Belgium).

387 **Raman spectroscopy**

388 Prior to analysis, the fixed sample was centrifuged for 5 minutes at room temperature
389 and 5000 g, and the pellet was resuspended in 0.22 µm-filtered milli-Q (4°C). 10 µL of
390 cell suspension was spotted onto a CaF₂ slide (Crystran Ltd., UK) and air-dried for a few
391 minutes. The dry sample was analysed using an Alpha 300 R confocal Raman
392 microscope (WITec GmbH, Germany) with a 100x/0.9NA objective (Nikon, Japan), a 785
393 nm excitation diode laser (Toptica, Germany) and a UHTS 300 spectrometer (WITec
394 GmbH, Germany) with a -60°C cooled iDus 401 BR-DD CCD camera (Andor Technology
395 Ltd., UK). Laser power before the objective was measured daily and was about 150 mW.
396 Spectra were acquired in the range of 110-3375 cm⁻¹ with 300 grooves/mm diffraction
397 grating. For each single cell spectrum, the Raman signal was integrated over 40 s. All
398 Raman samples were analysed within 1 week after sampling, with minimal time
399 between them to limit possible differences caused by differences in storage duration.
400 For each population between 51 and 55 single cell spectra were measured from a single
401 biological replicate population. To allow for a fair comparison, 51 spectra were selected

402 from each population for further analysis. The spectra with the lowest intensity were
403 assumed to be of lesser quality, and were therefore discarded.

404 A large peak in the range of 850 - 1030 cm⁻¹ was present in the spectra of *Enterobacter*
405 in the axenic culture, while this peak was not observed in the other populations or
406 during preliminary tests (Fig. S2). Moreover, intensity values showed large variability
407 for this region. This might be the result of technical issues during fixation or storage of
408 the sample. Similar to the study of García-Timermans et al. (33), this region was
409 excluded for further analysis (Fig. S3).

410 **Data analysis**

411 **Flow cytometry**

412 **Phenotypic diversity analysis**

413 The flow cytometry data was imported in R (v3.3.1) (34) using the flowCore package
414 (v1.40.3) (35). A quality control of the dataset was performed through the flowAI
415 package (v1.6.2) (36). The data was transformed using the arcsine hyperbolic function
416 and the background of the fingerprints was removed by manually creating a gate on the
417 primary fluorescent channels (32). The Phenoflow package (v1.1.1.) (37) was used to
418 assess the phenotypic community structure of the bacterial populations. Based on the
419 study of Rubbens et al. (38), which assessed the usefulness of information captured by
420 additional detectors (*i.e.* detectors that are not directly targeted) for bacterial
421 population identification, an optimal subset of detectors was selected to include in the
422 analysis. The subset included the scatter-detectors, the detector for which had been
423 stained (*i.e.* FITC), and some additional detectors that received spill-over signals
424 (AmCyan, dsRed and eCFP).

425 Prior to diversity estimation, all populations were subsampled to 30,000 cells in order
426 to account for sample size differences. In short, for each bivariate parameter
427 combination (*i.e.* combination of the scatter and fluorescence parameters) an 128x128
428 equal space binning grid is applied, which discretizes the parameter space, and in which
429 each bin represents a hypothetical phenotype. For each bin a kernel density estimation
430 is performed. All density estimations are summed to the total density estimation of the
431 community. Finally, the density values for each of the bins are concatenated into a 1D-
432 vector, which is called the ‘phenotypic fingerprint’. From this fingerprint, alpha and beta
433 diversity are calculated, which are used as measures for phenotypic population
434 heterogeneity. The alpha diversity (*i.e.* within sample diversity) is calculated by means
435 of the first three Hill diversity numbers D_0 , D_1 and D_2 , which correspond to the observed
436 richness, the exponential of Shannon entropy, and the inverse Simpson index,
437 respectively (39). Beta diversity (*i.e.* between sample diversity) is evaluated by
438 principal coordinate analysis (PCoA) on the Bray-Curtis dissimilarities between the
439 fingerprints. Significance of the differences between fingerprints was assessed by
440 means of PERMANOVA on the Bray-Curtis dissimilarity matrix. Homogeneity of
441 variance in groups was assessed before performing PERMANOVA. A significance level of
442 0.01 was used.

443 **In silico communities**

444 Relative abundances in the mixed cultures were predicted using the supervised in silico
445 community methodology of Rubbens, Props, Boon, *et al.* (2017), implemented in the
446 Phenoflow (v1.1.1) software package. In short, a cytometric fingerprint of the taxa that
447 make up the synthetic community is made. Next, the single-cell data of the axenic
448 cultures is aggregated to a so-called ‘in silico community’. This in silico community

449 consists of labelled data, which allows the use of supervised machine learning
450 techniques, such as random forests, to discriminate between different community
451 members. The label to be predicted is the taxon and the predictors are the scatter and
452 fluorescence parameters. Once this classifier has been trained on the dataset, it can use
453 the single-cell data to predict the relative abundances of both taxa in a mixture. For
454 training of the random forests, the biological replicates were pooled together and
455 10,000 cells of both *Enterobacter* and *Pseudomonas* were randomly sampled.

456 **Raman spectra**

457 The data was analysed in R (v3.3.1). Spectral processing was adapted from the study of
458 Berry et al. (40), and was performed using the MALDIquant package (v1.16) (41). In
459 short, baseline correction was performed using the statistics-sensitive nonlinear
460 iterative peak-clipping (SNIP) algorithm. Next, the biologically relevant part of the
461 spectrum (600-1800 cm⁻¹) was selected (25) and the spectra were normalised by
462 surface normalisation. The intensity values were zero centred and scaled to unit
463 variance before performing PCA (stats package, v3.3.4).

464 **Data availability**

465 The entire data-analysis pipeline is available as an R Markdown document at
466 <https://github.com/jeheyse/Cocultures2018>. The Raman data and accompanying
467 metadata are available at <https://github.com/jeheyse/Cocultures2018>. Raw FCM data
468 and metadata are available on FlowRepository under accession ID FR-FCM-ZYWN (for
469 review:
470 <https://flowrepository.org/id/RvFrlZ3CQpF6XTlkKEtSHYE9VPTRoJREiYJJz8HKfd09nI>
471 TuTMc2JA3HiXvPt5fE).

472 **Acknowledgements**

473 The authors want to thank Katrien De Maeyer (Pidpa) for providing the isolates. We
474 thank Tom Bellon for his assistance during the flow cytometric measurements and
475 Dmitry Khalenkow for his assistance in the Raman spectroscopy measurements. This
476 work was supported through the Geconcentreerde Onderzoeksactie (GOA) from Ghent
477 University (BOF15/GOA/006). JH is supported by the Flemish Fund for Scientific
478 research (FWO-Vlaanderen, project 1S80618N). BB is supported by the Institute for
479 Innovation by Science and Technology in Flanders (IWT, project 131370). RP is
480 supported by Ghent University (BOFDOC2015000601). PR is supported by Ghent
481 University (BOFSTA2015000501).

482 **Contributions**

483 JH, RP, PR, BB, AS, WW and NB conceived the study. JH carried out the laboratory work
484 and analysed the data. JH, BB, RP and PR interpreted the results and wrote the paper.
485 NB, WW and AS supervised the findings of this work. All authors reviewed and
486 approved the manuscript.

487 **Conflict of Interest**

488 The authors declare that there are no conflicts of interest.

489 **References**

490 1. Spudich JL, Koshland DE. 1976. Non-genetic individuality: chance in the single
491 cell. *Nature* 262:467–471. <https://doi.org/10.1038/262467a0>.

492 2. Elowitz MB, Levine AJ, Siggia ED, Swain PS. 2002. Stochastic Gene Expression in a
493 Single Cell. *Science* 297:1183–1186. <https://doi.org/10.1126/science.1070919>.

494 3. Rainey PB, Kerr B. 2010. Cheats as first propagules: A new hypothesis for the
495 evolution of individuality during the transition from single cells to
496 multicellularity. *BioEssays* 32:872–880.
497 <https://doi.org/10.1002/bies.201000039>.

498 4. Govers SK, Adam A, Blockeel H, Aertsen A. 2017. Rapid phenotypic
499 individualization of bacterial sister cells. *Sci Rep* 7:1–9.
500 <https://doi.org/10.1038/s41598-017-08660-0>.

501 5. Ackermann M. 2015. A functional perspective on phenotypic heterogeneity in
502 microorganisms. *Nat Rev Microbiol* 13:497–508.
503 <https://doi.org/10.1038/nrmicro3491>.

504 6. Raser JM, O’Shea EK. 2005. Noise in gene expression: origins, consequences, and
505 control. *Science* 309:2010–2013. <https://doi.org/10.1126/science.1105891>.

506 7. Avery S V. 2006. Microbial cell individuality and the underlying sources of
507 heterogeneity. *Nat Rev Microbiol* 4:577–587.
508 <https://doi.org/10.1038/nrmicro1460>.

509 8. Ansel J, Bottin H, Rodriguez-Beltran C, Damon C, Nagarajan M, Fehrman S,
510 François J, Yvert G. 2008. Cell-to-cell stochastic variation in gene expression is a

511 complex genetic trait. PLoS Genet 4:1–10.

512 <https://doi.org/10.1371/journal.pgen.1000049>.

513 9. Fraser D, Kærn M. 2009. A chance at survival: Gene expression noise and
514 phenotypic diversification strategies. Mol Microbiol 71:1333–1340.
<https://doi.org/10.1111/j.1365-2958.2009.06605.x>.

515

516 10. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A. 2002.
517 Regulation of noise in the expression of a single gene. Nat Genet 31:69–73.
<https://doi.org/10.1038/ng869>.

518

519 11. Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL,
520 Weissman JS. 2006. Single-cell proteomic analysis of *S. cerevisiae* reveals the
521 architecture of biological noise. Nature 441:840–846.
<https://doi.org/10.1038/nature04785>.

522

523 12. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. 2004. Bacterial Persistence as
524 a Phenotypic Switch. Science 305:1622–1626.
<https://doi.org/10.1126/science.1099390>.

525

526 13. Acar M, Mettetal JT, Van Oudenaarden A. 2008. Stochastic switching as a survival
527 strategy in fluctuating environments. Nat Genet 40:471–475.
<https://doi.org/10.1038/ng.110>.

528

529 14. Ackermann M, Stecher B, Freed NE, Songhet P, Hardt W-D, Doebeli M. 2008. Self-
530 destructive cooperation mediated by phenotypic noise. Nature 454:987–990.
<https://doi.org/10.1038/nature07067>.

531

532 15. Veening JW, Igoshin OA, Eijlander RT, Nijland R, Hamoen LW, Kuipers OP. 2008.

533 Transient heterogeneity in extracellular protease production by *Bacillus subtilis*.
534 *Mol Syst Biol* 4:1–15. <https://doi.org/10.1038/msb.2008.18>.

535 16. Rosenthal AZ, Qi Y, Hormoz S, Park J, Li SH-J, Elowitz MB. 2018. Metabolic
536 interactions between dynamic bacterial subpopulations. *Elife* 7:1–18.
537 <https://doi.org/10.7554/eLife.33099>.

538 17. Ackermann M. 2013. Microbial individuality in the natural environment. *ISME J*
539 7:465–467. <https://doi.org/10.1038/ismej.2012.131>.

540 18. Ackermann M, Schreiber F. 2015. A growing focus on bacterial individuality.
541 *Environ Microbiol* 17:2193–2195. <https://doi.org/10.1111/1462-2920.12877>.

542 19. Zimmermann M, Escrig S, Hübschmann T, Kirf MK, Brand A, Inglis RF, Musat N,
543 Müller S, Meibom A, Ackermann M, Schreiber F. 2015. Phenotypic heterogeneity
544 in metabolic traits among single cells of a rare bacterial species in its natural
545 environment quantified with a combination of flow cell sorting and NanoSIMS.
546 *Front Microbiol* 6:1–11. <https://doi.org/10.3389/fmicb.2015.00243>.

547 20. Sheik AR, Muller EEL, Audinot JN, Lebrun LA, Grysant P, Guignard C, Wilmes P.
548 2016. *In situ* phenotypic heterogeneity among single cells of the filamentous
549 bacterium *Candidatus Microthrix parvicella*. *ISME J* 10:1274–1279.
550 <https://doi.org/10.1038/ismej.2015.181>.

551 21. Brehm-stecher BF, Johnson EA. 2004. Single-Cell Microbiology: Tools,
552 Technologies, and Applications. *Microbiol Mol Biol Rev* 68:538–559.
553 <https://doi.org/10.1128/MMBR.68.3.538>.

554 22. Davis KM, Isberg RR. 2016. Defining heterogeneity within bacterial populations

555 via single cell approaches. *BioEssays* 38:782–790.

556 <https://doi.org/10.1002/bies.201500121>.

557 23. González-Cabaleiro R, Mitchell AM, Smith W, Wipat A, Ofiteru ID. 2017.

558 Heterogeneity in Pure Microbial Systems : Experimental Measurements and

559 Modeling. *Front Microbiol* 8:1–8. <https://doi.org/10.3389/fmicb.2017.01813>.

560 24. Nebe-Von-Caron G, Stephens PJ, Hewitt CJ, Powell JR, Badley RA. 2000. Analysis of

561 bacterial function by multi-colour fluorescence flow cytometry and single cell

562 sorting. *J Microbiol Methods* 42:97–114. [https://doi.org/10.1016/S0167-7012\(00\)00181-0](https://doi.org/10.1016/S0167-7012(00)00181-0).

564 25. Read DS, Woodcock DJ, Strachan NJC, Forbes KJ, Colles FM, Maiden MCJ, Clifton-

565 hadley F, Ridley A, Vidal A, Rodgers J, Whiteley AS, Sheppard K. 2013. Evidence

566 for Phenotypic Plasticity among Multihost *Campylobacter jejuni* and *C. coli*

567 Lineages, Obtained Using Ribosomal Multilocus Sequence Typing and Raman

568 Spectroscopy. *Appl Environ Microbiol* 79:965–973.

569 <https://doi.org/10.1128/AEM.02521-12>.

570 26. van de Vossenberg J, Tervahauta H, Maquelin K, Blokker- Koopmans CHW,

571 Uytewaal-Aarts M, van der Kooij D, VanWezel AP, van der Gaag B. 2013.

572 Identification of bacteria in drinking water with Raman. *Anal Methods* 5:2679–

573 2687. <https://doi.org/10.1039/c3ay40289d>.

574 27. De Roy K, Marzorati M, Van den Abbeele P, Van de Wiele T, Boon N. 2014.

575 Synthetic microbial ecosystems: an exciting tool to understand and apply

576 microbial communities. *Environ Microbiol* 16:1472–1481.

577 <https://doi.org/10.1111/1462-2920.12343>.

578 28. Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A, Rainey PB, Bohannan BJM.

579 2004. Big questions, small worlds: Microbial model systems in ecology. *Trends*

580 *Ecol Evol* 19:189–197. <https://doi.org/10.1016/j.tree.2004.01.008>.

581 29. Goers L, Freemont P, Polizzi KM. 2014. Co-culture systems and technologies:

582 taking synthetic biology to the next level. *J R Soc Interface* 11:1–13.

583 <https://doi.org/10.1098/rsif.2014.0065>.

584 30. Rubbens P, Props R, Boon N, Waegeman W. 2017. Flow cytometric single-cell

585 identification of populations in synthetic bacterial communities. *PLoS One* 12:1–

586 19. <https://doi.org/10.1371/journal.pone.0169754>.

587 31. Johnson I, Spence MTZ. 2010. *The Molecular Probes Handbook: A Guide to*

588 *Fluorescent Probes and Labeling Technologies*.

589 32. Prest EI, Hammes F, Kötzsch S, van Loosdrecht MCM, Vrouwenvelder JS. 2013.

590 Monitoring microbiological changes in drinking water systems using a fast and

591 reproducible flow cytometric method. *Water Res* 47:7131–7142.

592 <https://doi.org/10.1016/j.watres.2013.07.051>.

593 33. García-Timermans C, Rubbens P, Kerckhof FM, Buysschaert B, Khalenkov D,

594 Waegeman W, Skirtach AG, Boon N. 2018. Label-free Raman characterization of

595 bacteria calls for standardized procedures. *J Microbiol Methods* 151:69–75.

596 <https://doi.org/10.1016/j.mimet.2018.05.027>.

597 34. R Core Team. 2017. *R: A Language and Environment for Statistical Computing*. R

598 Found Stat Comput.

599 35. Hahne F, LeMeur N, Brinkman RR, Ellis B, Haaland P, Sarkar D, Spidlen J, Strain E,

600 Gentleman R. 2009. flowCore: a Bioconductor package for high throughput flow
601 cytometry. *BMC Bioinformatics* 10:1–8. <https://doi.org/10.1186/1471-2105-10-106>.

603 36. Monaco G, Chen H, Poidinger M, Chen J, De Magalhães JP, Larbi A. 2016. flowAI: automatic and interactive anomaly discerning tools for flow cytometry data. *Bioinformatics* 32:2473–2480.
604 <https://doi.org/https://doi.org/10.1093/bioinformatics/btw191>.

607 37. Props R, Monsieurs P, Mysara M, Clement L, Boon N. 2016. Measuring the
608 biodiversity of microbial communities by flow cytometry. *Methods Ecol Evol*
609 7:1376–1385. <https://doi.org/10.1111/2041-210X.12607>.

610 38. Rubbens P, Props R, Garcia-Timermans C, Boon N, Waegeman W. 2017. Stripping
611 flow cytometry: How many detectors do we need for bacterial identification?
612 *Cytom Part A* 91:1184–1191. <https://doi.org/10.1002/cyto.a.23284>.

613 39. Hill MO. 1973. Diversity and Evenness : A Unifying Notation and Its
614 Consequences. *Ecology* 54:427–432. <https://doi.org/10.2307/2937365>.

615 40. Berry D, Mader E, Lee TK, Woebken D, Wang Y, Zhu D, Palatinszky M,
616 Schintlmeister A, Schmid MC, Hanson BT, Shterzer N, Mizrahi I, Rauch I, Decker T,
617 Bocklitz T, Popp J, Gibson CM, Fowler PW, Huang WE, Wagner M. 2015. Tracking
618 heavy water (D_2O) incorporation for identifying and sorting active microbial cells.
619 *PNAS* 112:194–203. <https://doi.org/10.1073/pnas.1420406112>.

620 41. Gibb S, Strimmer K. 2012. MALDIquant: a versatile R package for the analysis of
621 mass spectrometry data. *Bioinformatics* 28:2270–2271.
622 <https://doi.org/10.1093/bioinformatics/bts447>.

623 42. De Gelder J, Gussem K De, Vandenabeele P, Moens L. 2007. Reference database of
624 Raman spectra of biological molecules. *J Raman Spectrosc* 38:1133–1147.
625 <https://doi.org/10.1002/jrs>.

626 43. Teng L, Wang X, Wang X, Gou H, Ren L, Wang T, Wang Y, Ji Y, Huang WE, Xu J.
627 2016. Label-free, rapid and quantitative phenotyping of stress response in *E. coli*
628 via ramanome. *Sci Rep* 6:1–10. <https://doi.org/10.1038/srep34359>.

629 44. Gatza E, Hammes F, Prest E. 2013. Assessing Water Quality with the BD AccuriTM
630 C6 Flow Cytometer.

631 45. Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T. 2007. Assessment and
632 interpretation of bacterial viability by using the LIVE/DEAD BacLight kit in
633 combination with flow cytometry. *Appl Environ Microbiol* 73:3283–3290.
634 <https://doi.org/10.1128/AEM.02750-06>.

635 46. Müller S, Nebe-Von-Caron G. 2010. Functional single-cell analyses: Flow
636 cytometry and cell sorting of microbial populations and communities. *FEMS*
637 *Microbiol Rev* 34:554–587. <https://doi.org/10.1111/j.1574-6976.2010.00214.x>.

638 47. Lieder S, Jahn M, Koepff J, Müller S, Takors R. 2016. Environmental stress speeds
639 up DNA replication in *Pseudomonas putida* in chemostat cultivations. *Biotechnol J*
640 11:155–163. <https://doi.org/10.1002/biot.201500059>.

641 48. Nikolic N, Barner T, Ackermann M. 2013. Analysis of fluorescent reporters
642 indicates heterogeneity in glucose uptake and utilization in clonal bacterial
643 populations. *BMC Microbiol* 13:258–270. <https://doi.org/10.1186/1471-2180-13-258>.

645 49. Schreiber F, Littmann S, Lavik G, Escrig S, Meibom A, Kuypers MMM, Ackermann
646 M. 2016. Phenotypic heterogeneity driven by nutrient limitation promotes
647 growth in fluctuating environments. *Nat Microbiol* 1:1–7.
648 <https://doi.org/10.1038/nmicrobiol.2016.55>.

649 50. Pande S, Merker H, Bohl K, Reichelt M, Schuster S, De Figueiredo LF, Kaleta C, Kost
650 C. 2014. Fitness and stability of obligate cross-feeding interactions that emerge
651 upon gene loss in bacteria. *ISME J* 8:953–962.
652 <https://doi.org/10.1038/ismej.2013.211>.

653 51. Vaz Jauri P, Kinkel LL. 2014. Nutrient overlap, genetic relatedness and spatial
654 origin influence interaction-mediated shifts in inhibitory phenotype among
655 *Streptomyces* spp. *FEMS Microbiol Ecol* 90:264–275.
656 <https://doi.org/10.1111/1574-6941.12389>.

657 52. Hansen LBS, Ren D, Burmølle M, Sørensen SJ. 2017. Distinct gene expression
658 profile of *Xanthomonas retroflexus* engaged in synergistic multispecies biofilm
659 formation. *ISME J* 11:300–303. <https://doi.org/10.1038/ismej.2016.107>.

660 53. van Gestel J, Nowak MA. 2016. Phenotypic Heterogeneity and the Evolution of
661 Bacterial Life Cycles. *PLoS Comput Biol* 12:1–23.
662 <https://doi.org/10.1371/journal.pcbi.1004764>.

663 54. Ibberson CB, Stacy A, Fleming D, Dees JL, Rumbaugh K, Gilmore MS, Whiteley M.
664 2017. Co-infecting microorganisms dramatically alter pathogen gene essentiality
665 during polymicrobial infection. *Nat Microbiol* 2:1–6.
666 <https://doi.org/10.1038/nmicrobiol.2017.79>.

667 55. Wang Y, Huang WE, Cui L, Wagner M. 2016. Single cell stable isotope probing in

668 microbiology using Raman microspectroscopy. *Curr Opin Biotechnol* 41:34–42.

669 <https://doi.org/10.1016/j.copbio.2016.04.018>.

670 56. Fontana S, Jokela J, Pomati F. 2014. Opportunities and challenges in deriving

671 phytoplankton diversity measures from individual trait-based data obtained by

672 scanning flow-cytometry. *Front Microbiol* 5:1–12.

673 <https://doi.org/10.3389/fmicb.2014.00324>.

674 57. González-Torres P, Pryszcz LP, Santos F, Martínez-García M, Gabaldón T, Antón J.

675 2015. Interactions between closely related bacterial strains are revealed by deep

676 transcriptome sequencing. *Appl Environ Microbiol* 81:8445–8456.

677 <https://doi.org/10.1128/AEM.02690-15>.

678 58. Schulze S, Schleicher J, Guthke R, Linde J. 2016. How to Predict Molecular

679 Interactions between Species? *Front Microbiol* 7:1–13.

680 <https://doi.org/10.3389/fmicb.2016.00442>.

681 59. Chodkowski JL, Shade A. 2017. A new synthetic community system for probing

682 microbial interactions driven by exometabolites. *mSystems* 2:1–14.

683 <https://doi.org/10.1128/mSystems.00129-17>.

684 60. Wiuff C, Zappala RM, Regoes RR, Garner KN, Levin BR. 2005. Phenotypic

685 Tolerance : Antibiotic Enrichment of Noninherited Resistance in Bacterial

686 Populations. *Antimicrob Agents Chemother* 49:1483–1494.

687 <https://doi.org/10.1128/AAC.49.4.1483>.

688 61. Lencastre Fernandes R, Nierychlo M, Lundin L, Pedersen AE, Puentes Tellez PE,

689 Dutta A, Carlquist M, Bolic A, Schäpper D, Brunetti AC, Helmark S, Heins AL,

690 Jensen AD, Nopens I, Rottwitt K, Szita N, van Elsas JD, Nielsen PH, Martinussen J,

691 Sørensen SJ, Lantz AE, Gernaey KV. 2011. Experimental methods and modeling
692 techniques for description of cell population heterogeneity. *Biotechnol Adv*
693 29:575–599. <https://doi.org/10.1016/j.biotechadv.2011.03.007>.

694 62. Delvigne F, Goffin P. 2014. Microbial heterogeneity affects bioprocess robustness:
695 Dynamic single-cell analysis contributes to understanding of microbial
696 populations. *Biotechnol J* 9:61–72. <https://doi.org/10.1002/biot.201300119>.

697 63. Fontana S, Thomas MK, Moldoveanu M, Spaak P, Pomati F. 2018. Individual-level
698 trait diversity predicts phytoplankton community properties better than species
699 richness or evenness. *ISME J* 12:356–366.
700 <https://doi.org/10.1038/ismej.2017.160>.

701

702 **Figure legends**

703 **FIG 1** Illustration of the experimental setup. Bacteria in apical and basal phase can
704 interact via metabolites in their shared medium while they are physically separated by
705 the membrane of the cell culture inserts. Four synthetic communities were created: two
706 axenic cultures, a coculture and a mixed culture. There were biological replicates ($n = 3$)
707 for each synthetic community.

708 **FIG 2** Phenotypic alpha diversity D_0 for both individual bacterial taxa in communities of
709 axenic cultures, cocultures and mixed cultures **(A)**. The taxa are denoted as taxon E
710 (*Enterobacter* sp.) and P (*Pseudomonas* sp.), respectively. The populations are indicated
711 with names in the form of 'X treated with Y', where X is the taxon in the sample (E, P or
712 EP) and Y is what was present on the other side of the membrane (E, P or fresh
713 medium). There were biological replicates ($n = 3$) for each community. The dashed lines
714 indicate the average trend of the replicates. Contrast analysis of the phenotypic
715 fingerprints to compare the phenotypic community structure of axenic cultures and
716 coculture members with respect to fluorescence intensity. Each plot is a comparison
717 between the axenic culture and coculture of the same taxon at the same time point,
718 averaged over the three biological replicates. The colour gradient indicates whether
719 density in the coculture increased (purple) or decreased (dark green) relative to their
720 respective axenic culture at the specified time point. The upper row presents contrast
721 results for *Enterobacter* **(B)**. The lower row presents contrast results for *Pseudomonas*
722 **(C)**. If the difference between the two communities is lower than 0.01 no contrast value
723 is shown on the graphs, which causes the appearance of different cluster. Note that
724 different scales were used for the different taxa.

725 **FIG 3** PCoA ordination of the Bray-Curtis dissimilarities between the phenotypic
726 fingerprints for both individual bacterial taxa in communities of axenic cultures,
727 cocultures and mixed cultures. The ordination is shown in three graphs, split according
728 to time, since this allows for easier interpretation of how the different communities are
729 relating to each other at each time point. The taxa are denoted as taxon E (*Enterobacter*
730 sp.) and P (*Pseudomonas* sp.), respectively. The populations are indicated with names in
731 the form of 'X treated with Y', where X is the taxon in the sample (E, P or EP) and Y is
732 what was present on the other side of the membrane (E, P or fresh medium). There
733 were biological replicates (n = 3) for each community.

734 **FIG 4** Predicted relative abundances in the mixed cultures. The random forest
735 classifiers that were used to infer community composition were constructed using the
736 fingerprints of the coculture members at the corresponding time point as input data.
737 Green lines indicate the predicted relative abundances of *Enterobacter*, blue lines
738 indicate the predicted relative abundances of *Pseudomonas*. The different shades
739 correspond to biological replicates (n = 3).

740 **FIG 5** Visualisation of the separability of the single cell Raman spectra for *Enterobacter*
741 and *Pseudomonas* in axenic culture and coculture at 72 h. There are 51 single cell
742 measurements for each population. The taxa are denoted as taxon E (*Enterobacter* sp.)
743 and P (*Pseudomonas* sp.), respectively. The populations are indicated with names in the
744 form of 'X treated with Y', where X is the taxon in the sample (E, P or EP) and Y is what
745 was present on the other side of the membrane (E, P or fresh medium). PCA was carried
746 out for the entire dataset **(A)**, for the spectra of *Enterobacter* separately **(B)** and for the
747 spectra of *Pseudomonas* separately **(C)**.

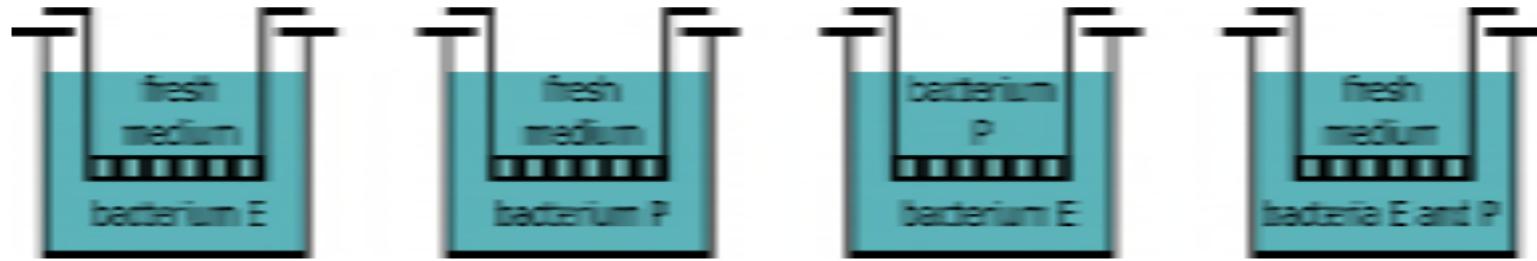


FIG 1 Illustration of the experimental setup. Bacteria in apical and basal phase can interact via metabolites in their shared medium while they are physically separated by the membrane of the cell culture inserts. Four synthetic communities were created: two axenic cultures, a coculture and a mixed culture. There were biological replicates ($n = 3$) for each synthetic community.

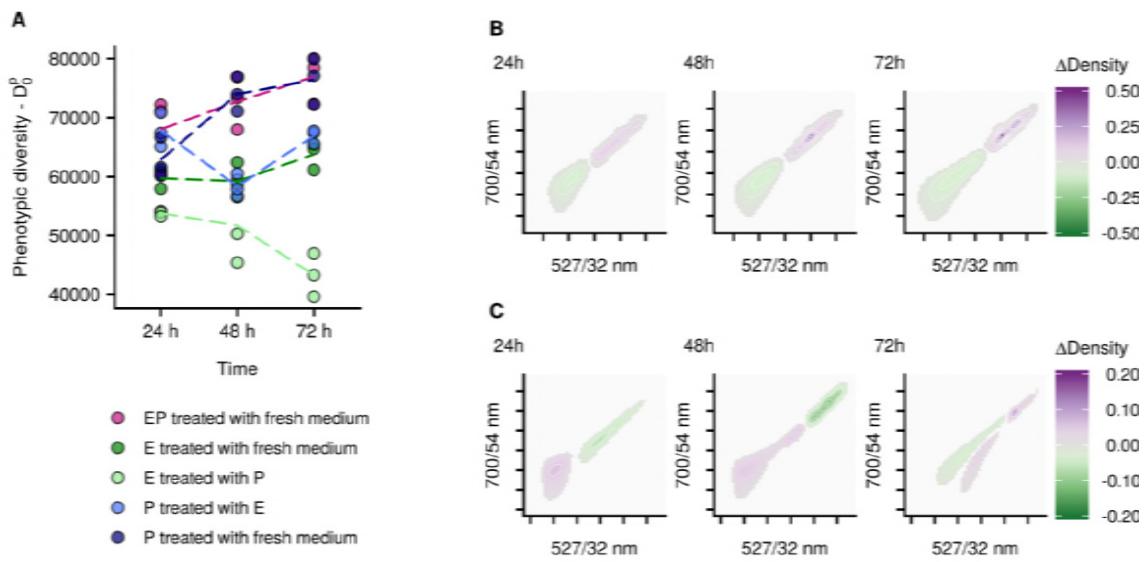


FIG 2 Phenotypic alpha diversity D_0 for both individual bacterial taxa in communities of axenic cultures, cocultures and mixed cultures **(A)**. The taxa are denoted as taxon E (*Enterobacter* sp.) and P (*Pseudomonas* sp.), respectively. The populations are indicated with names in the form of 'X treated with Y', where X is the taxon in the sample (E, P or EP) and Y is what was present on the other side of the membrane (E, P or fresh medium). There were biological replicates ($n = 3$) for each community. The dashed lines indicate the average trend of the replicates. Contrast analysis of the phenotypic fingerprints to compare the phenotypic community structure of axenic cultures and coculture members with respect to fluorescence intensity. Each plot is a comparison between the axenic culture and coculture of the same taxon at the same time point, averaged over the three biological replicates. The colour gradient indicates whether density in the coculture increased (purple) or decreased (dark green) relative to their respective axenic culture at the specified time point. The upper row presents contrast results for *Enterobacter* **(B)**. The lower row presents contrast results for *Pseudomonas* **(C)**. If the difference between the two communities is lower than 0.01 no contrast value is shown on the graphs, which causes the appearance of different cluster. Note that different scales were used for the different taxa.

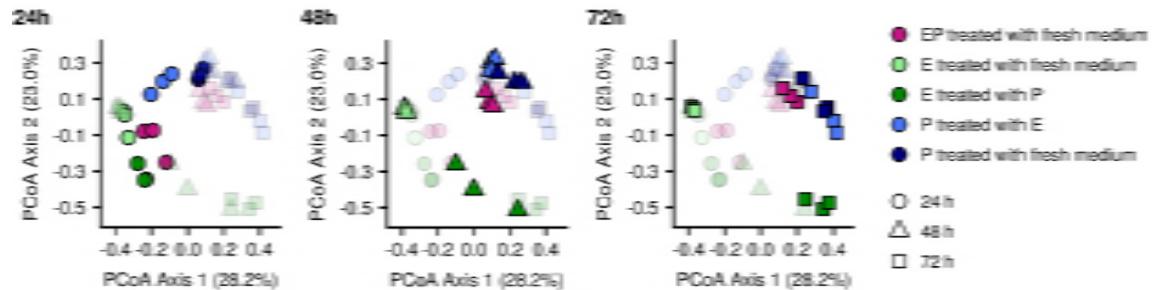


FIG 3 PCoA ordination of the Bray-Curtis dissimilarities between the phenotypic fingerprints for both individual bacterial taxa in communities of axenic cultures, cocultures and mixed cultures. The ordination is shown in three graphs, split according to time, since this allows for easier interpretation of how the different communities are relating to each other at each time point. The taxa are denoted as taxon E (*Enterobacter* sp.) and P (*Pseudomonas* sp.), respectively. The populations are indicated with names in the form of 'X treated with Y', where X is the taxon in the sample (E, P or EP) and Y is what was present on the other side of the membrane (E, P or fresh medium). There were biological replicates (n = 3) for each community.

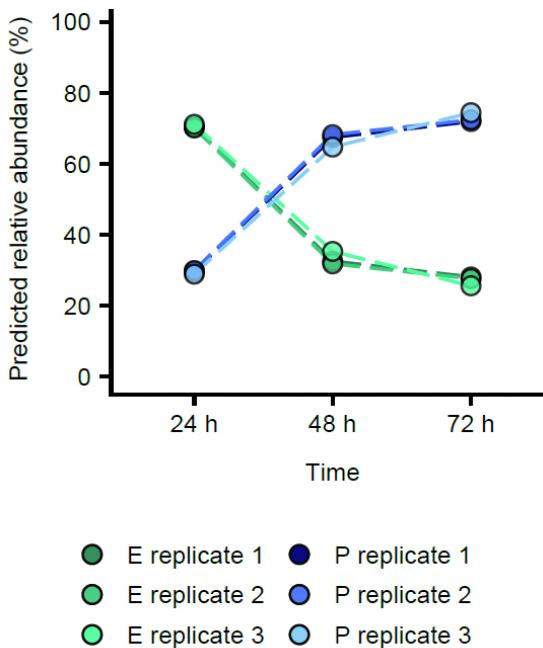


FIG 4 Predicted relative abundances in the mixed cultures. The random forest classifiers that were used to infer community composition were constructed using the fingerprints of the coculture members at the corresponding time point as input data. Green lines indicate the predicted relative abundances of *Enterobacter*, blue lines indicate the predicted relative abundances of *Pseudomonas*. The different shades correspond to biological replicates (n = 3).

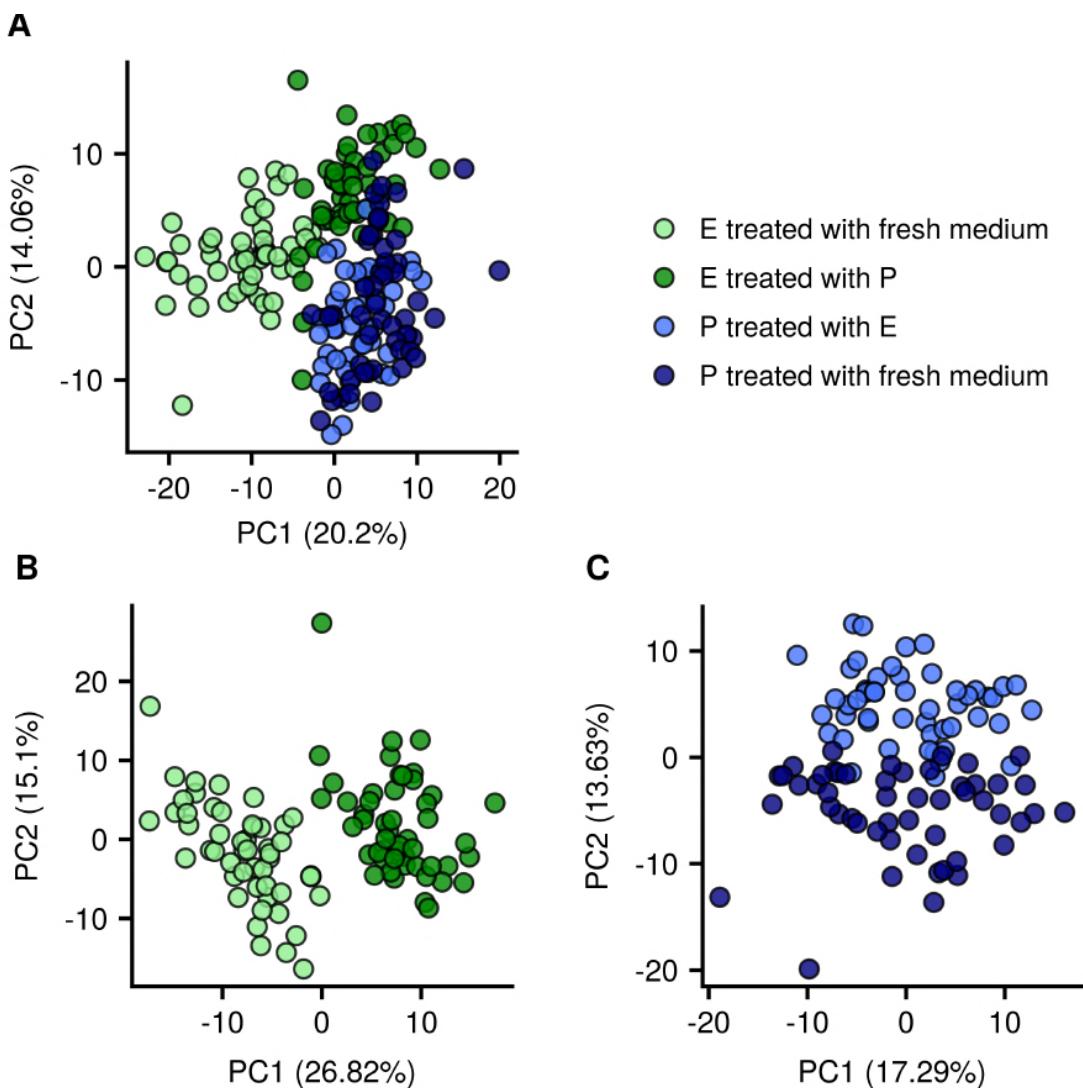


FIG 5 Visualisation of the separability of the single cell Raman spectra for *Enterobacter* and *Pseudomonas* in axenic culture and coculture at 72 h. There are 51 single cell measurements for each population. The taxa are denoted as taxon E (*Enterobacter* sp.) and P (*Pseudomonas* sp.), respectively. The populations are indicated with names in the form of 'X treated with Y', where X is the taxon in the sample (E, P or EP) and Y is what was present on the other side of the membrane (E, P or fresh medium). PCA was carried out for the entire dataset **(A)**, for the spectra of *Enterobacter* separately **(B)** and for the spectra of *Pseudomonas* separately **(C)**.