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Abstract 19 

Isogenic bacterial populations are known to exhibit phenotypic heterogeneity at the 20 

single cell level. Because of difficulties in assessing the phenotypic heterogeneity of a 21 

single taxon in a mixed community, the importance of this deeper level of organisation 22 

remains relatively unknown for natural communities. In this study, we have used 23 

membrane-based microcosms that allow the probing of the phenotypic heterogeneity of 24 

a single taxon while interacting with a synthetic or natural community. Individual taxa 25 

were studied under axenic conditions, as members of a coculture with physical 26 

separation, and as a mixed culture. Phenotypic heterogeneity was assessed through 27 

both flow cytometry and Raman spectroscopy. Using this setup, we investigated the 28 

effect of microbial interactions on the individual phenotypic heterogeneities of two 29 

interacting drinking water isolates. We have demonstrated that interactions between 30 

these bacteria lead to an adjustment of their individual phenotypic diversities, and that 31 

this adjustment is conditional on the bacterial taxon.  32 

Importance 33 

Laboratory studies have shown the impact of phenotypic heterogeneity on the survival 34 

and functionality of isogenic populations. As phenotypic heterogeneity is known to play 35 

an important role in pathogenicity and virulence, antibiotics resistance, 36 

biotechnological applications and ecosystem properties, it is crucial to understand its 37 

influencing factors. An unanswered question is whether bacteria in mixed communities 38 

influence the phenotypic heterogeneity of their community partners. We found that 39 

coculturing bacteria leads to a reduction in their individual phenotypic heterogeneities, 40 
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which led us to the hypothesis that the individual phenotypic diversity of a taxon is 41 

dependent on the community composition.  42 
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Introduction 43 

Genetically identical bacteria are known to exhibit single cell heterogeneity under 44 

controlled laboratory conditions (1–3). These heterogeneous traits include 45 

morphological traits, such as cell size, as well as biochemical properties, such as protein 46 

and mRNA content. The individualisation of identical sister cells in clonal populations 47 

occurs rapidly after cell division (4). Cells can be partitioned into clusters of cells with 48 

similar traits, called phenotypes. The variation in phenotypes within sympatric isogenic 49 

populations is referred to as the phenotypic heterogeneity (5).  50 

Noise in gene expression is known to be one of the main drivers of phenotypic 51 

heterogeneity (6–8). At first glance, a heterogeneous gene expression appears to be 52 

disadvantageous, as it may reduce the mean fitness of the population under the 53 

prevailing environmental conditions (9). However, several studies have indicated that 54 

biological noise is an evolved and regulated trait (10, 11), which offers benefits for the 55 

survival (12, 13) and functionality (14–16) of a clonal population. The aforementioned 56 

studies have revealed that isogenic bacterial populations are not homogeneous 57 

populations. Instead, they behave as communities consisting of phenotypic subgroups, 58 

which may differ in quantitative (i.e. continuous variation in phenotypic traits) and 59 

qualitative (i.e. distinct phenotypic states) aspects.  60 

In nature, bacteria are not encountered as isolated populations, but they are a part of a 61 

larger association where many microorganisms coexist. To date few research has been 62 

devoted to the occurrence and functional consequences of phenotypic heterogeneity in 63 

natural, mixed communities (17, 18) and our knowledge regarding factors that 64 

influence phenotypic heterogeneity is limited. One of the reasons for this is that it is 65 
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difficult to assess the heterogeneity of a single taxon within a mixed community. 66 

Recently, several experimental approaches that assess the metabolic diversity of a 67 

single taxon in natural communities have been developed (19, 20). However, these 68 

approaches rely on FISH-probes that bind to 16S rRNA gene sequences for 69 

identification of the taxon of interest. Hence, they do not allow to exclude the possibility 70 

that some of the observed phenotypic differences are caused by minor genetic 71 

differences between bacteria with very similar 16S rRNA genes. 72 

Two laser-based methods that are suitable for assessing phenotypes are flow cytometry 73 

and Raman spectroscopy (21–23). Two types of light can be detected by the flow 74 

cytometer, that is scattered light and fluorescence. The scattered light provides 75 

information about the basic characteristics of the cells (e.g. size, shape and surface 76 

properties), while the fluorescence data provides additional information about the cell 77 

properties for which it has been stained (e.g. nucleic acid content, metabolic activity, 78 

etc.) (24). Flow cytometry thus gives information regarding morphological as well as 79 

specific physiological properties of single-cells. The Raman spectrum of a single cell 80 

consists of a combination of the individual spectra of all the compounds that make up 81 

this cell (e.g. proteins, nucleic acids, fatty acids, etc.). This results in a complex spectrum, 82 

which can be interpreted as a chemical fingerprint of the cell (25, 26). Hence, single-cell 83 

Raman spectra offer an in depth view on the biochemical composition of each 84 

phenotype.  85 

A tool that can help to answer questions that are difficult to study directly in natural 86 

communities is a synthetic ecosystem. A synthetic ecosystem consists of a selected set 87 

of species under specific conditions. They are controllable and have a reduced 88 

complexity in comparison to natural communities (27). Hence, they provide a way to 89 
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test ecological theories in order to better understand the rules of nature (28). A specific 90 

setup for these synthetic ecosystems are co-cultures. The principle of such a system is 91 

that two or more bacterial populations are cultivated together with some degree of 92 

contact between them, which allows to study their interactions (29). 93 

An unanswered question, and the focus of this study, is whether bacteria in mixed 94 

communities influence the phenotypic heterogeneity of their community partners. Here, 95 

we used a synthetic community setup where two isolates were used as model 96 

organisms. Four synthetic communities were created. The isolates were grown in 97 

axenic cultures as a reference for non-interacting genotypes. To be able to study the 98 

individual community members separately after they have been interacting via their 99 

joint medium, a coculture with physical separation by a membrane was created. Lastly, 100 

a mixed culture without physical separation, representing ‘full interaction’, was created. 101 

Phenotypes were assessed through flow cytometry and single-cell Raman spectroscopy. 102 

Furthermore, we applied and evaluated a novel machine learning approach to quantify 103 

synthetic community composition through flow cytometric fingerprinting.   104 
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Results 105 

We aimed to evaluate whether the phenotype and phenotypic heterogeneity of a single 106 

taxon in a dual-species coculture is mediated by interactions with a partner taxon. Two 107 

drinking water isolates, an Enterobacter sp. and a Pseudomonas sp., were used as model 108 

organisms. The experimental design consisted of four synthetic communities: two 109 

axenic cultures, a coculture with physical separation between the taxa (partial 110 

interaction), and a mixed culture (full interaction) (Fig. 1). The synthetic communities 111 

were monitored for 72 h. Every 24 h population phenotypic diversity was assessed by 112 

flow cytometry. At 72 h, populations were analysed using single-cell Raman 113 

spectroscopy. Cell viability throughout the experiment was verified through SGPI 114 

staining (Fig. S4). Cell populations remained viable throughout the course of the 115 

experiment and viability was found to be similar between the cocultures and axenic 116 

cultures (Fig. S4). In the following results the physically separated culture is referred to 117 

as the ‘coculture’, while ‘mixed culture’ indicates the culture without physical 118 

separation. 119 

Flow cytometric diversity assessment 120 

To evaluate whether microbial interactions can lead to changes in the phenotypic 121 

heterogeneity of interacting organisms, cytometric diversity estimates were used as 122 

measures of phenotypic heterogeneity. For this, an equal spaced binning grid was used 123 

to arbitrarily split up the cytometric parameter space in operational phenotypic units. 124 

The signals of both scatter and fluorescence detectors were used, implying that the 125 

diversity is a measure of population heterogeneity in terms of both morphological traits 126 

and nucleic acid content. Note that the calculated diversity metrics are independent of 127 
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the taxon abundances (Fig. S5), as all populations were subsampled to equal cell counts 128 

prior to diversity estimation.  129 

The phenotypic community structure was first investigated through an alpha-diversity 130 

(i.e. within sample diversity) assessment. For both taxa, the diversity of the individual 131 

taxon was larger when present in the axenic culture compared to when the same taxon 132 

was present as a member of the coculture. Not only the phenotypic diversity (D1 and 133 

D2,), which include both richness and evenness, decreased (Fig. S6), but the phenotypic 134 

richness (D0) of the coculture members decreased as compared to the axenic cultures 135 

(Fig. 2A). This indicates that the interaction did not only lead to a reorganization of the 136 

phenotypic community structure (i.e. change in the relative abundances of the 137 

cytometric bins), but that the number of non-empty bins on the cytometric fingerprint 138 

was reduced due to the interaction, implying not only a redistribution of trait 139 

abundance, but a reduction in trait heterogeneity.  140 

Using a contrast analysis, differences between the phenotypic fingerprints of 141 

populations can easily be visualised in bivariate parameter spaces. To evaluate whether 142 

the observed lower diversities were linked with specific shifts in the cytometric 143 

fingerprint, differences in scatter and fluorescence patterns of the axenic cultures and 144 

the cocultures were assessed. The differences in scatter patterns were limited for both 145 

taxa (Fig. S10). In contrast, a clear difference in fluorescence intensity was observed 146 

(Fig. 2, B and C, Fig. S7). For Enterobacter there was a shift towards high fluorescence 147 

cells in the coculture as compared to the axenic culture. This difference became larger 148 

over time. For Pseudomonas there was a more limited difference, with a small 149 

enrichment of lower fluorescence cells. Thus, there was not only a reduction in 150 
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population diversity, but there was also a shift of the population fingerprint. Moreover, 151 

this shift was taxon-dependent. 152 

To further compare the cytometric fingerprints of the different populations, a PCoA 153 

ordination was generated based on the Bray-Curtis dissimilarities between the 154 

fingerprints (Fig. 3). In this ordination, the fingerprints of the taxa, both under axenic 155 

and under coculture growth, are separated, with the mixed culture in between. The 156 

populations show a significant shift in their phenotypic structure through time (p = 157 

0.001, r2 = 0.154). In addition, there is a significant difference in the fingerprint of 158 

Enterobacter when present as an axenic culture compared to being present in the 159 

coculture (p = 0.001, r2 = 0.455). For Pseudomonas the differences between the axenic 160 

cultures and coculture members were not significant (p = 0.092, r2 = 0.170). The mixed 161 

culture shifted from a community that is more resembling Enterobacter at the first 162 

measurement, towards a community that is more similar to Pseudomonas at the second 163 

and third measurement. 164 

To better understand the interaction that was occurring between Enterobacter and 165 

Pseudomonas, we applied a novel machine learning approach to infer the relative 166 

abundances of both taxa in the mixed community. Previous results confirmed our initial 167 

hypothesis that the phenotypic diversity of a taxon can be influenced by the presence of 168 

other taxa. In order to take this into account, a random forest classifier was trained, for 169 

each time point separately, on the fingerprints of the coculture members at the 170 

corresponding time point, as these are expected to be the most biologically accurate 171 

(Supplementary Results and Discussion). The predictions indicate a higher abundance 172 

of Enterobacter in the community at 24 h, followed by a gradual enrichment of 173 

Pseudomonas at the second and third time point (Fig. 4).  174 
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In summary, both Enterobacter and Pseudomonas showed lower phenotypic diversities 175 

in the coculture compared to their axenic culture counterparts. However, while the 176 

overall phenotypic community structure did not change substantially for Pseudomonas 177 

(i.e. small differences in beta-diversity and limited shift towards lower fluorescence 178 

intensity cells), there was a clear shift in the phenotypes of the Enterobacter population 179 

(i.e. large differences in beta-diversity and a clear shift towards higher fluorescence 180 

intensity cells). 181 

Raman phenotyping  182 

The cytometric phenotype only takes into account the morphological characteristics 183 

and nucleic acid content of the cells. However, phenotypes can differ in more cell 184 

constituents than nucleic acids alone. The Raman spectrum of a single cell offers a more 185 

in depth view on the biochemical phenotype compared to flow cytometry. Raman 186 

spectroscopy was used to measure single cell spectra for each of the populations of 187 

Enterobacter and Pseudomonas in the axenic cultures and the coculture at 72 h.  188 

The spectra hold 333 wavenumbers over the selected biologically relevant range. To 189 

gain insight in the separability of cells from the different populations, spectra were 190 

visualised through PCA after preprocessing of the data (see materials & methods) (Fig. 191 

5 A). The spectra of the Enterobacter populations were clearly separated. A large 192 

overlap between the spectra of Pseudomonas that was grown in axenic culture and 193 

Pseudomonas that was grown in the coculture was observed. However, when 194 

performing PCA for each taxon separately, cells from each synthetic community were 195 

separated well (Fig. 5 B and C). This confirms the previous results, indicating that for 196 

both taxa a phenotypic shift occurred, but that this shift was larger for Enterobacter 197 

than for Pseudomonas. 198 
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Since the Raman spectrum of a single cell is a combination of the spectra of all 199 

compounds that make up this cell (e.g. proteins, nucleic acids, fatty acids, etc.), the 200 

signal intensity at every wavenumber is the result of all compounds that produce a 201 

signal at this wavenumber. The Raman spectra of all DNA and RNA bases are available 202 

from literature (42) as well as information regarding peak regions that are assumed to 203 

be related to nucleic acids in general (43). We aimed to investigate whether the shift in 204 

fluorescence intensity that was observed through flow cytometry was caused by a 205 

changing DNA or RNA content, and in this way get more information about the cause of 206 

the observed phenotypic shift. Based on this tentative peak assignment, differences in 207 

nucleic acids between the coculture and the axenic populations were observed for both 208 

taxa (Fig. S8). However, there was no consistency in whether this considered an 209 

increase or a decrease (i.e. for some wavenumbers the average intensity was higher in 210 

the coculture, while for other wavenumbers the intensity was higher in the axenic 211 

culture). When considering only uracil and thymine it remained impossible to draw a 212 

conclusion regarding whether DNA or RNA differences contributed most to the 213 

observed phenotypic shift (Fig. S8).   214 
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Discussion 215 

There is an interest in understanding the implications of phenotypic heterogeneity in 216 

both natural and engineered microbial ecosystems. Our current knowledge is mainly 217 

based on experimental set-ups using axenic cultures. This is partly due to the fact that it 218 

is not straightforward to assess the phenotypic heterogeneity of an isogenic population 219 

in a mixed community. In order to circumvent this issue we present a membrane-based 220 

synthetic community setup. Using this setup we investigated the effect of microbial 221 

interactions on the individual phenotype and phenotypic diversities of the interacting 222 

taxa.  223 

Effect of interaction on phenotype and phenotypic diversity 224 

Based on flow cytometric fingerprinting, the phenotypic diversity of both community 225 

members was lower when they were grown in a coculture compared to when they were 226 

grown as axenic cultures (Fig. 2 A, S6 and S7). This effect of interaction on population 227 

diversity was more pronounced for Enterobacter than for Pseudomonas, indicating that 228 

different taxa had different phenotypic responses to the interaction. When comparing 229 

the phenotypes of the populations through beta-diversity assessment (Fig. 3) and 230 

Raman spectroscopy (Fig. 5) a similar observation was found. The differences between 231 

the phenotypic state of Pseudomonas in the coculture and in the axenic culture were 232 

smaller compared to the differences between Enterobacter in the coculture and in the 233 

axenic culture. 234 

Differences in scattering patterns were limited for both taxa, implying that there were 235 

no large changes in cell morphology (44). Since SG staining is a stoichiometric staining, 236 

a higher fluorescence signal is directly related to a higher concentration of stained 237 
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nucleic acids (45, 46). In terms of nucleic acid content, large differences were observed 238 

for Enterobacter and limited differences for Pseudomonas, with Enterobacter shifting 239 

towards high nucleic acid individuals (Fig. 2 B and C, Fig. S7). This can indicate 240 

different physiological shifts. On the one hand, the DNA copy number could be 241 

increased, implying an adaptation of the cell cycle. Although both bacteria were 242 

expected to be in stationary phase at all sampling points (Fig. S1), it is possible that 243 

under stress, the bacteria adapted their cell cycle behaviour and DNA concentration 244 

(47). On the other hand, the bacteria might have maintained a similar DNA 245 

concentration but a higher RNA concentration, indicating a shift in their gene 246 

expression. The bacteria could have been more actively expressing the same genes as 247 

they were in the axenic cultures, or they might have shifted towards expression of other 248 

genes compared to the axenic cultures. Lastly, also an increased membrane 249 

permeability may explain higher fluorescence signals. 250 

Through single-cell Raman spectroscopy, which offers an in depth view on the 251 

biochemical phenotype, we attempted to investigate which of the above mentioned 252 

scenarios was most likely to be occurring. Using a reference-based peak assignment, the 253 

Raman spectra indicated differences in wavenumbers which were potentially related to 254 

DNA and RNA, and in this way support both hypotheses (Fig. S8). It should be noted 255 

that the tentative peak assignment resulted in inconsistent conclusions regarding the 256 

intensity change of nucleic acid related wavenumbers for both taxa under the different 257 

conditions (i.e. axenic or coculture). This might be explained by the fact that the signal 258 

intensity at every wavenumber is the superposition of all compounds signals at this 259 

wavenumber, thereby prohibiting biomolecule-specific interpretation. 260 
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Several uptake- or metabolic pathways are often simultaneously active in a single 261 

taxon’s population (48, 49). Interspecies interactions are known to alter the intensity of 262 

the production pathways that are active in interacting bacteria (50, 51), and hence, they 263 

may be influencing population heterogeneity. For example, the interspecies interactions 264 

may allow species to share products of costly pathways, and in this way deprioritize 265 

some functions which would be necessary for the proliferation in monoculture, such as 266 

production of certain amino acids (50, 52). Since costly production pathways are often 267 

expressed by only a fraction of a clonal population (15, 53), sharing of these pathways 268 

between genotypes might allow one or both interacting genotypes to steer the 269 

distribution of their costly phenotypes, and hence reduce their population 270 

heterogeneity. This would enable each genotype to occupy the functions at which it is 271 

most performant, thus, creating a mixed community with a higher overall performance. 272 

The increased cell density in the mixed culture as compared to the axenic cultures may 273 

indicate this increased performance (Fig. S5). The idea of pathway sharing is in line 274 

with the observation that the gene-essentiality for a specific taxon is dependent on its 275 

community partners (54). Asides these cooperative interactions, competition may also 276 

explain the reduction in phenotypic diversity. It may confer a competitive advantage for 277 

a taxon to reduce its heterogeneity and in that way reduce the fraction of individuals 278 

that are in a suboptimal state for exploiting the current environmental conditions (13). 279 

In this study, the community was predicted to be dominated by Pseudomonas (Fig. 4). A 280 

possible explanation for the fact that Enterobacter showed a stronger reduction in 281 

phenotypic diversity may be that Enterobacter needed to reduce its heterogeneity more 282 

in order to compete with Pseudomonas. 283 

Evaluation of the experimental setup 284 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 23, 2018. ; https://doi.org/10.1101/423715doi: bioRxiv preprint 

https://doi.org/10.1101/423715
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

In literature, phenotypic heterogeneity is most often studied though the assessment of 285 

single cell metabolic activity, using isotope labelling with stable or radioactive probes 286 

(49, 55), or though the quantification of gene-expression variability with fluorescent 287 

labelled proteins (2, 11, 48). Both isotope labelling and fluorescent labelled proteins 288 

allow to study heterogeneity in clonal populations. However, they require either a 289 

modification of the organisms under study by inserting a fluorescent protein or the use 290 

of rather expensive, and sometimes dangerous, isotopes. Using phenotypic 291 

fingerprinting through flow cytometry does not require any tagging of bacteria or the 292 

use of isotopes. Moreover, it is possible to assess the phenotypic diversity of bacterial 293 

populations without prior knowledge on potentially relevant metabolic pathways 294 

(isotope labelling) or genes (fluorescent labelling). The main benefits of the flow 295 

cytometric approach are its speed and the fact that large amounts of cells can be 296 

analysed. This allows to have good coverage of the phenotypic landscape of the 297 

community and to achieve a highly resolved sampling frequency.  298 

However, when assessing phenotypic heterogeneity, there needs to be a definition of 299 

the phenotypes between which will be distinguished. Using the previously published 300 

protocol by Props et al., (2016), a binning grid was applied to each of the bivariate 301 

parameter combinations (i.e. scatter and fluorescence parameters). Bacteria that fell 302 

within the same bin were defined as the same phenotype. Thus, phenotypes, and by 303 

extension the phenotypic diversity metrics, were defined ad hoc. Moreover, when 304 

evaluating phenotypic heterogeneity based on flow cytometry, the phenotypic traits on 305 

which information is gained are morphological parameters and nucleic acid content (in 306 

case of SG staining). But only a certain level of information is retained in the scatter and 307 

fluorescence parameters (e.g. morphology cannot be inferred directly from scatter 308 
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values) (56). Thus the phenotypic traits derived through flow cytometry are an abstract 309 

representation of the phenotype. Additionally, only taking into account these traits is an 310 

abstraction of the entire phenotypic diversity of the bacteria. The fact that phenotypes 311 

were defined using a predefined binning grid and based on a limited number of 312 

phenotypic traits, makes it difficult to make a link with functionality and to fully 313 

understand the underlying biological or ecological process that caused the phenotypic 314 

diversity shift. Additional examination of the transcriptome (52, 57, 58) or 315 

exometabolite profiles (59) could provide valuable insights in the cause of the 316 

phenotypic adaptation and the functional consequences that the change in phenotypic 317 

state might bring. Additionally, more validated and automated pipelines for detection of 318 

biomolecules based on single-cell Raman spectra would be an interesting improvement. 319 

Conclusion 320 

In conclusion, we have used a synthetic community setup in which the individual 321 

phenotypic heterogeneity of environmental isolates in mixed or synthetic communities 322 

can be studied. We demonstrated that interactions between bacterial populations lead 323 

to an adjustment of the individual phenotypic diversities of the interacting populations. 324 

As phenotypic heterogeneity is playing an important role in pathogenicity and virulence 325 

(14), antibiotics resistance (12, 60), biotechnological applications (20, 23, 61, 62), 326 

ecosystem properties (63), it is crucial to understand its influencing factors. The 327 

experimental design presented in this study provides a framework within which further 328 

ecological hypotheses regarding phenotypic heterogeneity and microbial interactions 329 

can be tested.  330 
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Materials and Methods 331 

Isolates 332 

An Enterobacter sp. and a Pseudomonas sp. were selected from a set of drinking water 333 

isolates which were isolated on R2A agar and provided by Pidpa (Provinciale en 334 

Intercommunale Drinkwatermaatschappij der Provincie Antwerpen, Belgium). 335 

Preliminary tests showed that these isolates had distinct cytometric fingerprints, as 336 

determined by the method of Rubbens et al. (30), and reached stationary growth phase 337 

in M9 supplemented with 200 mg/L glucose within 24 hours at 28°C, starting from a 338 

cell density of 106 cells mL-1 (Fig. S1). The isolates were identified with Sanger 339 

sequencing (LGC Genomics GmbH, Germany). The strains were deposited into the 340 

BCCM/LMG Bacteria Collection under accession IDs LMG 30741 (Enterobacter sp.) and 341 

LMG 30742 (Pseudomonas sp.). 342 

Experimental setup 343 

Bacteria were cultured in Transwell plates (Corning® Costar® 6-well cell culture plates, 344 

Corning Incorporated) where apical and basal compartments were created using cell 345 

culture inserts (ThinCert™ Cell Culture Inserts with pore diameter 0.4 µm, Greiner Bio-346 

One). The membranes of the culture inserts were replaced by membranes with smaller 347 

pore sizes to avoid migration of bacteria between the two compartments (Whatman® 348 

Cyclopore® polycarbonate and polyester membranes with 0.2 µm pore size, GE Life 349 

Sciences). Four synthetic communities were created, being two axenic cultures, a 350 

physically separated culture and a mixed culture (Fig. 1). Each community was 351 

prepared in triplicate and randomised over the plates to account for plate effects. 352 

Before the start of the experiment, both bacteria were grown on nutrient agar (Oxoid, 353 
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UK) plates. A single colony was picked from each plate and transferred to liquid 354 

minimal medium (M9 with 200 mg/L glucose as carbon source). After two days of 355 

incubation at 28°C, cell densities in the liquid cultures were determined by flow 356 

cytometry and the cultures were diluted to the desired starting cell densities in fresh 357 

medium. The required dilution was high enough to neglect differences in volume of 358 

fresh medium, and thus resources for growth, that were needed to prepare the cultures. 359 

The starting cell densities were set to have the same initial cell density of 106 cells mL-1 360 

in each synthetic community, and with equal relative abundances for both community 361 

members in the cocultures and mixed cultures (Table S1). 362 

The 6-well plates were incubated at 28°C and gently shaken (25 rpm) to aid diffusion of 363 

metabolites between the compartments. The communities were monitored over a 364 

period of 72 hours. Every 24 hours samples were analysed by flow cytometry. After 72 365 

hours samples were fixed with 4% paraformaldehyde for Raman spectroscopic analysis 366 

(Supplementary material and methods). Sample fixation was necessary since single-cell 367 

Raman measurements were too time consuming for immediate analysis. The first 368 

sampling moment was at 24 h, which suggests, based on the previously determined 369 

growth kinetics, that both taxa were in stationary phase at every sampling point (Fig. 370 

S1). 371 

Flow cytometry 372 

For flow cytometric analysis, the samples were diluted and stained with 1 vol% SYBR® 373 

Green I (SG, 100x concentrate in 0.22 µm-filtered DMSO, Invitrogen) for total cell 374 

analysis, and with 1 vol% SYBR® Green I combined with propidium iodide (SGPI, 100x 375 

concentrate SYBR® Green I, Invitrogen, and 50x 20 mM propidium iodide, Invitrogen, in 376 

0.22 μm-filtered dimethyl sulfoxide) for live-dead analysis. SG primarily stains double 377 
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stranded DNA, but will also stain the RNA (31). Staining was performed as described 378 

previously, with an incubation period of 20 min at 37°C in the dark (32). Samples were 379 

analysed immediately after incubation on a FACSVerse™ flow cytometer (BD 380 

Biosciences, Belgium), which was equipped with eight fluorescence detectors (527/32 381 

nm, 783/56 nm, 586/42 nm, 700/54 nm, 660/10 nm, 783/56 nm, 528/45 nm and 382 

488/45 nm), two scatter detectors and a blue 20-mW 488-nm laser, a red 40-mW 640-383 

nm laser and a violet 40-mW 405-nm laser. The flow cytometer was operated with 384 

FACSFlow™ solution (BD Biosciences, Belgium) as sheath fluid. Instrument performance 385 

was verified daily using FACSuite™ CS&T beads (BD Biosciences, Belgium). 386 

Raman spectroscopy 387 

Prior to analysis, the fixed sample was centrifuged for 5 minutes at room temperature 388 

and 5000 g, and the pellet was resuspended in 0.22 µm-filtered milli-Q (4°C). 10 µL of 389 

cell suspension was spotted onto a CaF2 slide (Crystran Ltd., UK) and air-dried for a few 390 

minutes. The dry sample was analysed using an Alpha 300 R confocal Raman 391 

microscope (WITec GmbH, Germany) with a 100x/0.9NA objective (Nikon, Japan), a 785 392 

nm excitation diode laser (Toptica, Germany) and a UHTS 300 spectrometer (WITec 393 

GmbH, Germany) with a -60°C cooled iDus 401 BR-DD CCD camera (Andor Technology 394 

Ltd., UK). Laser power before the objective was measured daily and was about 150 mW. 395 

Spectra were acquired in the range of 110-3375 cm-1 with 300 grooves/mm diffraction 396 

grating. For each single cell spectrum, the Raman signal was integrated over 40 s. All 397 

Raman samples were analysed within 1 week after sampling, with minimal time 398 

between them to limit possible differences caused by differences in storage duration. 399 

For each population between 51 and 55 single cell spectra were measured from a single 400 

biological replicate population. To allow for a fair comparison, 51 spectra were selected 401 
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from each population for further analysis. The spectra with the lowest intensity were 402 

assumed to be of lesser quality, and were therefore discarded. 403 

A large peak in the range of 850 - 1030 cm-1 was present in the spectra of Enterobacter 404 

in the axenic culture, while this peak was not observed in the other populations or 405 

during preliminary tests (Fig. S2). Moreover, intensity values showed large variability 406 

for this region. This might be the result of technical issues during fixation or storage of 407 

the sample. Similar to the study of García-Timermans et al. (33), this region was 408 

excluded for further analysis (Fig. S3). 409 

Data analysis 410 

Flow cytometry 411 

Phenotypic diversity analysis 412 

The flow cytometry data was imported in R (v3.3.1) (34) using the flowCore package 413 

(v1.40.3) (35). A quality control of the dataset was performed through the flowAI 414 

package (v1.6.2) (36). The data was transformed using the arcsine hyperbolic function 415 

and the background of the fingerprints was removed by manually creating a gate on the 416 

primary fluorescent channels (32). The Phenoflow package (v1.1.1.) (37) was used to 417 

assess the phenotypic community structure of the bacterial populations. Based on the 418 

study of Rubbens et al. (38), which assessed the usefulness of information captured by 419 

additional detectors (i.e. detectors that are not directly targeted) for bacterial 420 

population identification, an optimal subset of detectors was selected to include in the 421 

analysis. The subset included the scatter-detectors, the detector for which had been 422 

stained (i.e. FITC), and some additional detectors that received spill-over signals 423 

(AmCyan, dsRed and eCFP).  424 
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Prior to diversity estimation, all populations were subsampled to 30,000 cells in order 425 

to account for sample size differences. In short, for each bivariate parameter 426 

combination (i.e. combination of the scatter and fluorescence parameters) an 128x128 427 

equal space binning grid is applied, which discretizes the parameter space, and in which 428 

each bin represents a hypothetical phenotype. For each bin a kernel density estimation 429 

is performed. All density estimations are summed to the total density estimation of the 430 

community. Finally, the density values for each of the bins are concatenated into a 1D-431 

vector, which is called the ‘phenotypic fingerprint’. From this fingerprint, alpha and beta 432 

diversity are calculated, which are used as measures for phenotypic population 433 

heterogeneity. The alpha diversity (i.e. within sample diversity) is calculated by means 434 

of the first three Hill diversity numbers D0, D1 and D2, which correspond to the observed 435 

richness, the exponential of Shannon entropy, and the inverse Simpson index, 436 

respectively (39). Beta diversity (i.e. between sample diversity) is evaluated by 437 

principal coordinate analysis (PCoA) on the Bray-Curtis dissimilarities between the 438 

fingerprints. Significance of the differences between fingerprints was assessed by 439 

means of PERMANOVA on the Bray–Curtis dissimilarity matrix. Homogeneity of 440 

variance in groups was assessed before performing PERMANOVA. A significance level of 441 

0.01 was used. 442 

In silico communities 443 

Relative abundances in the mixed cultures were predicted using the supervised in silico 444 

community methodology of Rubbens, Props, Boon, et al. (2017), implemented in the 445 

Phenoflow (v1.1.1) software package. In short, a cytometric fingerprint of the taxa that 446 

make up the synthetic community is made. Next, the single-cell data of the axenic 447 

cultures is aggregated to a so-called ‘in silico community’. This in silico community 448 
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consists of labelled data, which allows the use of supervised machine learning 449 

techniques, such as random forests, to discriminate between different community 450 

members. The label to be predicted is the taxon and the predictors are the scatter and 451 

fluorescence parameters. Once this classifier has been trained on the dataset, it can use 452 

the single-cell data to predict the relative abundances of both taxa in a mixture. For 453 

training of the random forests, the biological replicates were pooled together and 454 

10,000 cells of both Enterobacter and Pseudomonas were randomly sampled. 455 

Raman spectra  456 

The data was analysed in R (v3.3.1). Spectral processing was adapted from the study of 457 

Berry et al. (40), and was performed using the MALDIquant package (v1.16) (41). In 458 

short, baseline correction was performed using the statistics-sensitive nonlinear 459 

iterative peak-clipping (SNIP) algorithm. Next, the biologically relevant part of the 460 

spectrum (600-1800 cm-1) was selected (25) and the spectra were normalised by 461 

surface normalisation. The intensity values were zero centred and scaled to unit 462 

variance before performing PCA (stats package, v3.3.4). 463 

Data availability 464 

The entire data-analysis pipeline is available as an R Markdown document at 465 

https://github.com/jeheyse/Cocultures2018. The Raman data and accompanying 466 

metadata are available at https://github.com/jeheyse/Cocultures2018. Raw FCM data 467 

and metadata are available on FlowRepository under accession ID FR-FCM-ZYWN (for 468 

review: 469 

https://flowrepository.org/id/RvFrlZ3CQpF6XTlkKEtSHYE9VPTRoJREiYJJz8HKfdO9nI470 

TuTMc2JA3HiXvPt5fE).   471 
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Figure legends 702 

FIG 1 Illustration of the experimental setup. Bacteria in apical and basal phase can 703 

interact via metabolites in their shared medium while they are physically separated by 704 

the membrane of the cell culture inserts. Four synthetic communities were created: two 705 

axenic cultures, a coculture and a mixed culture. There were biological replicates (n = 3) 706 

for each synthetic community. 707 

FIG 2 Phenotypic alpha diversity D0 for both individual bacterial taxa in communities of 708 

axenic cultures, cocultures and mixed cultures (A). The taxa are denoted as taxon E 709 

(Enterobacter sp.) and P (Pseudomonas sp.), respectively. The populations are indicated 710 

with names in the form of ‘X treated with Y’, where X is the taxon in the sample (E, P or 711 

EP) and Y is what was present on the other side of the membrane (E, P or fresh 712 

medium). There were biological replicates (n = 3) for each community. The dashed lines 713 

indicate the average trend of the replicates. Contrast analysis of the phenotypic 714 

fingerprints to compare the phenotypic community structure of axenic cultures and 715 

coculture members with respect to fluorescence intensity. Each plot is a comparison 716 

between the axenic culture and coculture of the same taxon at the same time point, 717 

averaged over the three biological replicates. The colour gradient indicates whether 718 

density in the coculture increased (purple) or decreased (dark green) relative to their 719 

respective axenic culture at the specified time point. The upper row presents contrast 720 

results for Enterobacter (B). The lower row presents contrast results for Pseudomonas 721 

(C). If the difference between the two communities is lower than 0.01 no contrast value 722 

is shown on the graphs, which causes the appearance of different cluster. Note that 723 

different scales were used for the different taxa. 724 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 23, 2018. ; https://doi.org/10.1101/423715doi: bioRxiv preprint 

https://doi.org/10.1101/423715
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

FIG 3 PCoA ordination of the Bray-Curtis dissimilarities between the phenotypic 725 

fingerprints for both individual bacterial taxa in communities of axenic cultures, 726 

cocultures and mixed cultures. The ordination is shown in three graphs, split according 727 

to time, since this allows for easier interpretation of how the different communities are 728 

relating to each other at each time point. The taxa are denoted as taxon E (Enterobacter 729 

sp.) and P (Pseudomonas sp.), respectively. The populations are indicated with names in 730 

the form of ‘X treated with Y’, where X is the taxon in the sample (E, P or EP) and Y is 731 

what was present on the other side of the membrane (E, P or fresh medium). There 732 

were biological replicates (n = 3) for each community. 733 

FIG 4 Predicted relative abundances in the mixed cultures. The random forest 734 

classifiers that were used to infer community composition were constructed using the 735 

fingerprints of the coculture members at the corresponding time point as input data. 736 

Green lines indicate the predicted relative abundances of Enterobacter, blue lines 737 

indicate the predicted relative abundances of Pseudomonas. The different shades 738 

correspond to biological replicates (n = 3). 739 

FIG 5 Visualisation of the separability of the single cell Raman spectra for Enterobacter 740 

and Pseudomonas in axenic culture and coculture at 72 h. There are 51 single cell 741 

measurements for each population. The taxa are denoted as taxon E (Enterobacter sp.) 742 

and P (Pseudomonas sp.), respectively. The populations are indicated with names in the 743 

form of ‘X treated with Y’, where X is the taxon in the sample (E, P or EP) and Y is what 744 

was present on the other side of the membrane (E, P or fresh medium). PCA was carried 745 

out for the entire dataset (A), for the spectra of Enterobacter separately (B) and for the 746 

spectra of Pseudomonas separately (C). 747 
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FIG 1 Illustration of the experimental setup. Bacteria in apical and basal phase can interact 

via metabolites in their shared medium while they are physically separated by the 

membrane of the cell culture inserts. Four synthetic communities were created: two 

axenic cultures, a coculture and a mixed culture. There were biological replicates (n = 3) 

for each synthetic community. 
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FIG 2 Phenotypic alpha diversity D0 for both individual bacterial taxa in communities of 

axenic cultures, cocultures and mixed cultures (A). The taxa are denoted as taxon E 

(Enterobacter sp.) and P (Pseudomonas sp.), respectively. The populations are indicated with names in the form of ǮX treated with Yǯ, where X is the taxon in the sample (E, P or 
EP) and Y is what was present on the other side of the membrane (E, P or fresh medium). 

There were biological replicates (n = 3) for each community. The dashed lines indicate the average trend of the replicates. Contrast analysis of the phenotypic fingerprints to 
compare the phenotypic community structure of axenic cultures and coculture members 

with respect to fluorescence intensity. Each plot is a comparison between the axenic 

culture and coculture of the same taxon at the same time point, averaged over the three 

biological replicates. The colour gradient indicates whether density in the coculture 

increased (purple) or decreased (dark green) relative to their respective axenic culture at the specified time point. The upper row presents contrast results for Enterobacter (B). 

The lower row presents contrast results for Pseudomonas (C). If the difference between 

the two communities is lower than 0.01 no contrast value is shown on the graphs, which 

causes the appearance of different cluster. Note that different scales were used for the 

different taxa. 
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FIG 3 PCoA ordination of the Bray-Curtis dissimilarities between the phenotypic fingerprints for both individual bacterial taxa in communities of axenic cultures, 

cocultures and mixed cultures. The ordination is shown in three graphs, split according to 

time, since this allows for easier interpretation of how the different communities are 

relating to each other at each time point. The taxa are denoted as taxon E (Enterobacter 

sp.) and P (Pseudomonas sp.), respectively. The populations are indicated with names in the form of ǮX treated with Yǯ, where X is the taxon in the sample ȋE, P or EPȌ and Y is what 
was present on the other side of the membrane (E, P or fresh medium). There were 

biological replicates (n = 3) for each community. 
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FIG 4 Predicted relative abundances in the mixed cultures. The random forest classifiers 

that were used to infer community composition were constructed using the fingerprints 

of the coculture members at the corresponding time point as input data. Green lines 

indicate the predicted relative abundances of Enterobacter, blue lines indicate the 

predicted relative abundances of Pseudomonas. The different shades correspond to 

biological replicates (n = 3). 
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FIG 5 Visualisation of the separability of the single cell Raman spectra for Enterobacter 

and Pseudomonas in axenic culture and coculture at 72 h. There are 51 single cell 

measurements for each population. The taxa are denoted as taxon E (Enterobacter sp.) 

and P (Pseudomonas sp.), respectively. The populations are indicated with names in the form of ǮX treated with Yǯ, where X is the taxon in the sample ȋE, P or EPȌ and Y is what 
was present on the other side of the membrane (E, P or fresh medium). PCA was carried 

out for the entire dataset (A), for the spectra of Enterobacter separately (B) and for the 

spectra of Pseudomonas separately (C). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 23, 2018. ; https://doi.org/10.1101/423715doi: bioRxiv preprint 

https://doi.org/10.1101/423715
http://creativecommons.org/licenses/by-nc-nd/4.0/

