

Title Page

No clear monogenic links between left-handedness and *situs inversus*

Merel C. Postema¹, Amaia Carrion-Castillo¹, Simon E. Fisher^{1,2}, Guy Vingerhoets³, Clyde Francks^{1,2*}

¹ Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands

² Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands

³ Department of Experimental Psychology, Ghent University, Belgium

*Correspondence to:

Clyde Francks D.Phil.

Max Planck Institute for Psycholinguistics

Wundtlaan 1, Nijmegen 6525XD

The Netherlands

Tel +31 24 35 21929

clyde.francks@mpi.nl

Conflicts of interest

The authors declare no conflicts of interest.

1 Abstract

2 Left-handedness is a complex trait which might sometimes involve rare, monogenic
3 contributions. *Situs inversus* (SI) of the visceral organs can occur with Primary Ciliary
4 Dyskinesia (PCD), due to mutations which affect left-right axis formation. Roughly 10% of
5 people with SI and PCD are left-handed, similar to the general population. However, in non-
6 PCD SI, the rate of left-handedness may be elevated. We sequenced the genomes of nine non-
7 PCD SI people who show an elevated rate of left-handedness (five out of nine). We also
8 sequenced six SI people with PCD as positive controls, and fifteen unaffected people as
9 technical controls. Recessive mutations in known PCD genes were found in all positive controls
10 with PCD. Of the nine non-PCD SI cases, two had recessive mutations in known PCD genes,
11 suggesting reduced penetrance for PCD, and one had a recessive mutation in the non-PCD
12 laterality gene *PKD1L1*. However, six of the nine non-PCD SI cases, including most of the left-
13 handers, had no mutations in likely candidate genes, nor any significant biological pathways
14 affected by their mutations. Therefore we did not identify a molecular link between visceral
15 and brain laterality. While we cannot exclude a monogenic basis for non-PCD SI with left-
16 handedness, multifactorial and non-genetic models must also be considered.

17

18 **Keywords:** *Situs inversus*, primary ciliary dyskinesia, left-handedness, whole genome
19 sequencing

20

21 Introduction

22 A fundamental question in human neurobiology is how the brain becomes functionally left-
23 right asymmetrical. For example, approximately 90% of people are right-handed and have left-
24 hemisphere dominance for language, among other lateralized functions, but the developmental
25 basis for this asymmetry remains unknown¹. One possibility is that early embryonic
26 mechanisms which give rise to asymmetries of the visceral organs also impact on brain
27 asymmetries. However, this has not been previously addressed by genetic mutation screening
28 in people who are both left-handed and have altered forms of visceral laterality.

29 Roughly 1:6,000-8,000 people have *situs inversus* (SI), a mirror reversal of the normal
30 asymmetrical arrangement of the viscera^{2,3}. SI can occur alone or in combination with Primary
31 Ciliary Dyskinesia (PCD), a recessive genetic disorder which involves mutations that disrupt
32 motile cilia². Cilia are hair-like organelles that protrude from the cell surface into the
33 extracellular space⁴. They are expressed in various tissues including the respiratory epithelium
34⁵, so that a disruption of ciliary motility can cause symptoms such as chronic bronchitis,
35 inflamed or infected sinuses⁶, which are often present in PCD.

36 Motile cilia are also expressed early in development, within an embryonic structure called the
37 'node', where they generate a leftward fluid flow that helps to create the left-right body axis⁵.
38 The leftward direction of the nodal flow may be explained by a posterior tilt of the cilia together
39 with their clockwise rotation, arising ultimately from molecular chirality of their component
40 proteins⁷⁻⁹. When leftward nodal flow is absent due to recessive PCD-causing mutations, many
41 of which affect component proteins of the ciliary cytoskeleton, it becomes a matter of chance
42 whether the viscera will take up the normal or mirror-reversed positioning¹⁰.

43 However, roughly three quarters of people with SI do not have PCD², and the causes of their
44 SI remain largely unknown. A few genes have been reported to be involved in SI without PCD,
45 and some of these can also cause partial disruptions of visceral laterality, known as heterotaxy
46 or *situs ambiguus* (SA), including *ZIC3* [MIM:300265]¹¹, *CCDC11* [MIM:614759]¹², *WDR16*

47 [MIM:609804]¹³, *NME7* [MIM:613465]¹⁴, and *PKD1L1* [MIM:609721]¹⁵. The mechanisms
48 by which these non-PCD, SI-causing genes influence visceral laterality are not well understood,
49 but most code for cilia-associated proteins, rather than coding directly for cytoskeletal
50 components of cilia.

51 Intriguingly, the general population rate of 85–90% right-handedness is not altered in SI people
52 with PCD^{16,17}. This implies a developmental dissociation between brain laterality for hand
53 motor control and nodal-ciliary visceral patterning. However, in the only study of handedness
54 in SI to include non-PCD cases, Vingerhoets *et al.* reported that five of nine SI cases without
55 PCD were left-handed¹⁸. Although based on a small sample, this suggests developmental
56 mechanisms which might indeed link handedness and visceral laterality, but independently of
57 genes involved in PCD.

58 One study reported a possible genetic link between a continuous measure of left-versus-right
59 hand motor skill and genes involved in visceral laterality¹⁹, based on analyzing genetic variants
60 which are common in the population. However, the sample size of under 3000 subjects was low
61 for complex-trait genome-wide association analysis using common genetic variants. A much
62 larger study of over 300,000 subjects from the UK Biobank found no support for a link of left-
63 handedness to genes involved in visceral asymmetry²⁰. The same large study identified an
64 association of a common variant at the *MAP2* gene with left-handedness, with a very small
65 effect²⁰. Left-handedness has a heritability of roughly 25% based on twin and family data²¹,
66 but only around 2% based on genome-wide genotype data for common polymorphisms, within
67 the UK Biobank dataset²².

68 It has been proposed that left-handedness may sometimes occur due to genetic mutations which
69 are rare in the population, but might have substantial effects on brain laterality when present
70^{23,24}. Rare genetic effects are not well captured in genome-wide association studies, which are
71 focused on relatively common variation²⁰. Here we performed an exploratory whole genome
72 sequencing study in the same set of 15 SI subjects studied by Vingerhoets *et al.*, as well as 15
73 healthy controls matched for age, sex, education, and handedness (**Table 1**). The goal was to
74 identify rare, highly penetrant mutations in the nine people with non-PCD SI, as they show an
75 elevated rate of left-handedness. This approach had the potential to yield novel insights into the
76 developmental origins of left-right patterning of both brain and body.

77

78 **Methods**

79 **Participants**

80 Fifteen people with radiologically documented SI, and 15 controls with normal *situs* matched
81 for age, sex, education and handedness, were recruited from Ghent University Hospital and
82 Middelheim Hospital Antwerp (approved by Research Ethics Committee). Table 1 gives an
83 overview of the participants and their characteristics. All participants gave informed consent
84 for DNA sample collection and genomic analysis in relation to body, brain and behavioural
85 laterality. All methods were performed in accordance with the relevant guidelines and
86 regulations.

87 Details about the recruitment, diagnosis and selection/exclusion procedure have been described
88 previously¹⁸. Radiological information (RX or CT) of thorax and complete abdomen was
89 available in eight SI participants, and of thorax and upper abdomen in seven SI participants.
90 The medical reports confirmed that all 15 participants presented with radiologically
91 documented SI.

92 In five participants with SI, a formal diagnosis of PCD or Kartagener syndrome was found in
93 their medical records. Kartagener syndrome refers to the clinical triad of situs inversus, chronic
94 sinusitis, and bronchiectasis¹⁰. A sixth SI-participant was identified on account of a radiological
95 consultation regarding infertility. The participant also presented with chronic sinusitis, mild
96 chronic bronchitis. Although no formal diagnosis of PCD was obtained in this case, the presence
97 of chronic upper and lower respiratory infection and infertility in an individual with SI warrants
98 suspicion of Kartagener syndrome. Consequently, we included the participant within the PCD
99 group. In addition, all six members of the PCD group reported having a daily wet cough, and
100 had PICADAR scores of between 8 and 12²⁵, and thus predictive probabilities of having PCD
101 of between 66% and 99%, based on this recently-developed, questionnaire-based tool (note that
102 five of these subjects anyway had formal medical diagnoses).

103 A seventh SI subject (SI03) had no medical record pertaining to PCD but did report daily wet
104 cough. This subject had a PICADAR score of 8. In the study of Vingerhoets *et al.* this SI subject
105 was classified as non-PCD, before the PICADAR assessment was available. For the purposes
106 of the present study, we also treated this subject as non-PCD given the lack of formal medical
107 history of PCD and the ambiguous PICADAR score, but we repeated some genetic analyses
108 having excluded the person from the non-PCD group, in order to account for this uncertainty
109 (see below).

110 Eight other SI subjects had no medical record of PCD or PCD-like symptoms, and were
111 classified as non-PCD SI cases. Six of these reported no daily wet cough, and two did not
112 answer in this regard. PICADAR scores can only be calculated in the presence of daily wet
113 cough, so that none of these eight cases received PICADAR scores. Three of these cases had
114 been previously diagnosed with congenital heart disease that required surgical treatment, and
115 their radiological files all referred to their cardiac condition. Congenital heart disease is a
116 frequent comorbidity of SI, as the cardiac circulation appears particularly sensitive to
117 perturbation in normal left-right positional information²⁶.

118 Handedness was assessed using the Edinburgh Handedness Inventory (EHI)²⁷. Note that one
119 non-PCD SI subject reported being forced to switch from left- to right-handedness in childhood,
120 in which case five out of nine non-PCD SI cases were naturally left-handed. One of the six
121 cases with PCD also reported forced left-to-right switching, otherwise the rest were right-
122 handed (**Table 1**).

123 **Whole Genome Sequencing (WGS) and Pre-processing**

124 DNA was extracted from saliva samples using the Oragene kit (Oragene). WGS was performed
125 by Novogene (Hong Kong) using Illumina high throughput sequencing (HiSeq-PE150),
126 creating paired end reads with a length of 150 base pairs (bp). Raw reads, stored in BAM files,
127 were aligned to the human reference genome (the extended “decoy” version of b37) using
128 Burrows-Wheeler Aligner (BWA) software²⁸, and sorted and reordered using SAMtools
129 (v1.3.1)²⁹. PCR duplicates, which could arise during cluster amplification, were marked using
130 Picard (v2.9.0). Genome Analysis Toolkit (GATK v3.7)³⁰ software was used to realign reads
131 around insertions/deletions (indels) and to recalibrate base quality scores per sample.

132 **Variant Calling and Quality Control**

133 Indels (insertion/deletions) and single nucleotide polymorphisms (SNPs) were called as
134 recommended by the GATK Best Practices workflow. Variant Quality Score Recalibration
135 (VQSR) was performed, and variants with a high probability of being false positive were
136 flagged according to their sensitivity tranche (90, 99, 99.9 and 100). All SNPs and indels within
137 a VQSR tranche of 99.9% or higher were discarded. Variants with a quality depth ≤ 9 or a call
138 rate ≤ 0.8 were also removed. Vcftools v1.13 was used to create a summary table in the Variant

139 Call Format (vcf). A total of 13,989,941 SNPs and indels were identified across the 30 subjects,
140 with an average number of 5,186,055 (min= 5,053,188, max = 5,272,561) alternative alleles
141 per subject (i.e. different to the reference genome, build37 decoy version).

142 **Genomic-level evaluation**

143 For overall descriptive analysis of the participant genomes, a subset of 40,387 variants
144 distributed genome-wide was used that had known Minor Allele Frequencies (MAFs) > 0.1,
145 and were the result of pruning to be in low linkage disequilibrium with one another. For this,
146 the flag --indep-pairwise function in Plink (v.1.90b3w)³¹ was applied with a pairwise linkage
147 disequilibrium r^2 greater than 0.2, based on a SNP-SNP correlation matrix of 1500 by 150 in
148 window size. The resulting data were then used as the basis for inferring pairwise identity by
149 descent (IBD) sharing between subjects (i.e. genetic relatedness), inbreeding, and
150 inconsistencies with reported sex, using the Plink operations --genome, --ibc/het, and --check-
151 sex.

152 A different subset of 61,467 independent variants distributed genome-wide was used for
153 visualizing population structure through Multi-Dimensional Scaling (MDS) analysis with
154 respect to the 1000 genomes reference dataset (v37)³² (downloaded from:
155 ftp://climb.genomics.cn/pub/10.5524/100001_101000/100116/1kg_phase1_all.tar.gz) using
156 the Plink operation --mds-plot.

157 **Annotation and filtering of single nucleotide variants affecting protein sequences**

158 Variants were normalized using the software tool *vt normalize* (v0.5772-60f436c3)³³, which
159 ensures consistent representation of variants across the genome. Normalized SNVs were
160 annotated using Annovar³⁴ and Variant Effect Predictor (v88)³⁵. Gemini (v 0.20.0) was used
161 to select protein coding variants with 'MEDIUM' or 'HIGH' impact severity annotations, as
162 well as non-coding variants with 'HIGH' impact severity annotations (in practice those altering
163 splice donor or acceptor sites). Additional filtering was done in R and comprised the removal
164 of synonymous variants, and of 'MEDIUM' variants with a PolyPhen³⁶ or Sift³⁷ prediction
165 score of "benign" or "tolerant" respectively. Data were then processed and analyzed separately
166 under recessive and dominant models:

167 *Recessive model*

168 For the recessive model we further excluded variants with a known population frequency >
169 0.005 in any of the following databases: GNOMAD³⁸, ESP³⁹, 1000 Genomes³² and ExAC
170 databases³⁸. The remaining low-frequency variants were considered as putative mutations.
171 Gene-level mutation counts per subject were then made, with a given gene being assigned as
172 recessively mutated when it carried two copies of the same mutation (homozygous) or two
173 different mutations (possible compound heterozygous). Integrative Genome Viewer (IGV
174 v2.3.97)⁴⁰ was used to visualize the possible compound heterozygous mutations, and genes
175 carrying these were discarded when both mutations were definitely present on the same allele
176 (i.e. "in phase") on a given sequence read. Finally, genes recessively mutated according to these
177 criteria in any of the fifteen unaffected control subjects were excluded as being potentially
178 causative in cases, and also removed for the purposes of Gene Set Enrichment Analysis (GSEA;
179 see below): this step had the advantage of removing false variants from potential technical
180 artifacts, or variants which are common in the population but not annotated as such in on-line
181 databases. In total, 17 genes were excluded based on overlap with the unaffected control
182 subjects. Genes on chromosome X were processed as part of the recessive pipeline, such that
183 females would need to carry two mutations in a given gene, and males one mutation.

184 *Dominant model*

185 A maximum population frequency threshold of 5×10^{-5} was applied in this case, and genes
186 carrying at least one rare variant according to this criterion were considered as potentially
187 causative. Again, genes mutated according to this criterion in any of the fifteen unaffected
188 control subjects (N = 47 genes) were excluded as being potentially causative in cases, and
189 removed for the purposes of GSEA analysis (below).

190 Gene Set Enrichment Analysis

191 To test whether a list of mutated genes in a given set of subjects contained functionally related
192 genes across subjects, we performed Gene Set Enrichment Analysis (GSEA) using the
193 g:Profiler R package (version 0.6.1)⁴¹. A gene classification scheme derived from the Gene
194 Ontology (GO) database^{42,43} was used. This specified a total of 6380 functionally defined gene-
195 sets, based on a background of 19,327 genes with functional annotations. Many genes are not
196 represented in the GO, particularly mRNA transcripts of no known function or homology, so
197 that the numbers of mutated genes in a given set of subjects was always higher than the subset
198 used as input for GSEA.

199 Mutated genes on chromosome X were combined with recessively mutated autosomal genes
200 for the purposes of GSEA. GSEAs were performed separately for the mutated gene lists in SI
201 subjects with PCD (54 genes, of which 40 are in the GO), non-PCD SI subjects (60 genes, 38
202 in the GO), left handed non-PCD SI subjects (42 genes, 26 in the GO), and cases that were
203 unsolved under the recessive model (42 genes, 22 in the GO). These analyses were also repeated
204 after excluding subject SI03 (see above and **Table 1**), in the non-PCD SI group (55 genes, 35
205 in the GO), the left handed non-PCD SI group (37 genes, 23 in the GO), and in the unsolved
206 group (36 genes, 19 in the GO).

207 For the dominant model, GSEA was performed separately for mutated genes in the non-PCD
208 SI subjects (330 genes, 271 in the GO), the subset of non-PCD SI subjects that remained
209 unsolved under the recessive model (217 genes, 175 in the GO), and the left handed subset of
210 non-PCD subjects (201 genes, 163 in the GO). PCD subjects were not tested under a dominant
211 model, as PCD is known to be a recessive phenotype. Dominant analyses were repeated after
212 excluding subject SI03, for non-PCD SI subjects (285 genes, 235 in the GO), unsolved non-
213 PCD SI subjects (170 genes, 139 in the GO) and non-PCD left handed SI subjects (156 genes,
214 127 in the GO).

215 In order to confirm that unaffected controls showed no significant pathway enrichment among
216 their mutated genes, a mirrored exclusion was performed whereby any genes mutated in cases
217 were excluded from the control gene lists. This resulted in 56 genes exclusively mutated in
218 controls for the recessive model (of which 34 genes are in the GO), and 533 genes exclusively
219 mutated in controls under the dominant model (440 in the GO).

220 The identities of genes were first converted using the g:Convert tool⁴¹ to ensure recognition by
221 the GO schema. The following settings were then used for GSEA: minimum set size = 15,
222 maximum set size = 500, minimum intersect number = 2, hierarchical filtering = moderate. P-
223 values were corrected for multiple testing across gene sets, based on the gSCS correction
224 method in g:Profiler, separately for each input list of mutated genes corresponding to a given
225 set of subjects. This method of multiple testing correction takes into account the hierarchical
226 structure of the sets⁴¹. We applied a cut-off P value of adjusted 0.01.

227 Candidate Gene Lists

228 We queried the genetic data with respect to candidate gene lists for some purposes (see Results).
229 An initial list of candidate genes was created in R (v3.3), based on searching the Online
230 Mendelian Inheritance in Man (OMIM) database⁴⁴ for the terms: “situs inversus”, “heterotaxy
231 | heterotaxia | situs ambiguus”, “congenital heart disease”, “PCD | ciliary dyskinesia |

232 Kartagener”, “left-right”, and “asymmetry | laterality”. Additionally, the Clinvar column of our
233 annotated variant data, which contains information based on the Clinvar database ⁴⁵, was
234 searched for these terms, and genes that were not yet in the initial list of candidate genes were
235 accordingly included.

236 A broader candidate gene list was also created which included genes from the literature that
237 were suggested to be associated with human laterality phenotypes and/or ciliopathies, but not
238 (yet) present in our initial list of candidate genes (**Supplementary Table S1**). Specifically, a
239 list of ciliopathy genes from a review of this topic ⁶ was searched for the terms: “PCD”,
240 “heterotaxy”, “situs”, “left-right”, “asymmetry” or “laterality”, yielding 18 additional candidate
241 genes. Additionally, a list of genes potentially associated with human laterality disorders, as
242 compiled in a 2015 review ², resulted in the addition of 25 candidate genes. Eleven additional
243 genes were included, of which three were reported as potentially associated with PCD or
244 heterotaxy ⁴⁶, three had potential associations with non-syndromic heterotaxy ⁴⁷, and five were
245 considered as possibly causal in a recent exome sequencing study of various laterality defects
246 ⁴⁸. Finally, 39 more genes – arising from a search for the ‘situs inversus’ phenotype - were
247 retrieved from the Mouse Genome Database (MGD) ⁴⁹ at the Mouse Genome Informatics
248 website, the Jackson laboratory, Bar Harbor, Maine. (URL: <http://www.informatics.jax.org>)
249 [Oct, 2017].

250 Structural Variants

251 For all participant genomes, structural Variants (SVs) (>50 kilobases in length) were called
252 using a combination of two SV calling algorithms: CNVnator (v0.3.3) ⁵⁰ and Lumpy (v 0.2.13)
253 ⁵¹. These algorithms complement each other regarding the kinds of signals in WGS data that
254 they can detect, as CNVnator is based on read-depth, whereas Lumpy is based on paired-end
255 mapping ⁵². For CNVnator the bin size was set to 100 base pairs for all genomes except for two,
256 where it was 150 base pairs (we determined a roughly optimal bin size for each subject’s
257 genome, such that that the average read depth for that genome would be at least 4 standard
258 deviations from zero). Lumpy was run using default parameters in “lumpyexpress”.

259 SVs were then annotated using SV2 ⁵³. Variants that were present in any of the 15 healthy
260 controls were removed from consideration as potentially causative for SI. Only variants that
261 passed the default SV2 filtering criteria for quality were included ⁵³.

262

263 Results

264 Protein-altering single nucleotide variants

265 Recessive mutations

266 Our variant calling, filtering and annotation pipeline produced between 5 and 15 recessively
267 mutated genes per SI subject. We included six SI subjects with PCD as positive controls, in
268 order to ensure that the variant calling and mutation definition criteria were well calibrated. As
269 PCD is known to be a recessive phenotype for which at least 30 different genes have already
270 been identified ², we expected most, or all, of these six subjects to have identifiable mutations
271 in known PCD-causing genes. As expected, each of these six cases had just one recessively
272 mutated gene which was annotated ‘Kartagener’ or ‘PCD’ in the Clinvar database ⁴⁵, and was
273 therefore the most likely monogenic cause for their condition (**Table 1**). These genes were
274 *LRRC6* [MIM:614930], *DNAH11* [MIM:603339], *DNAAF1* [MIM:613190], *CCDC114*
275 [MIM:615038], and *DNAH5* [MIM: 603335] (the latter mutated in two SI cases with PCD,
276 consistent with *DNAH5* being the most common cause of PCD in European-ancestry
277 populations ⁵⁴) (**Table 1**). The PCD subject with a homozygous *LRRC6* mutation (subject SI06)

278 was the only individual to show an elevated inbreeding coefficient and non-European ancestry
279 (**Supplementary Table S2, Supplementary Figure S1**).

280 None of the fifteen unaffected control subjects had any recessively mutated genes annotated
281 'Kartagener', 'PCD', 'SA' or 'SI' in Clinvar.

282 Surprisingly, two of the nine non-PCD SI cases had recessive mutations in genes annotated
283 'Kartagener' in the Clinvar database⁴⁵. These were subject SI12 (again involving mutations in
284 *DNAH5*), and subject SI16 (in *CCDC151*) (**Table 1**). As these subjects had no medical records
285 pertaining to PCD-like symptoms, and no daily wet cough, then the findings suggest reduced
286 penetrance for PCD.

287 One of the nine non-PCD subjects – i.e., SI02 - had a recessive mutation in a gene that is
288 annotated in Clinvar as '*situs ambiguus*' and '*situs inversus totalis*', but not annotated as PCD-
289 causing (**Table 1**). This gene is *PKD1L1* [MIM: 617205]. A homozygous missense mutation in
290 *PKD1L1* was previously reported in an individual with SI and congenital heart disease but no
291 PCD, as well as recessive splicing mutations in two individuals with heterotaxy¹⁵. Our subject
292 SI02 had no diagnosis of congenital heart disease (CHD) (**Table 1**). As *PKD1L1* is a known
293 recessive cause of non-PCD SI, we consider this gene to be the most likely cause of the non-
294 PCD SI in subject SI02.

295 Subject SI03, who had no formal medical history of PCD, but had reported an intermediate
296 PICADAR score, showed no recessive mutations in known PCD genes, which tends to support
297 non-PCD status for this subject. This meant that six non-PCD SI cases did not have recessive
298 mutations in genes known to cause human laterality disorders, as annotated in Clinvar, and
299 therefore remained 'unsolved' under a recessive model (**Table 1**). Among these six non-PCD
300 SI cases, four were left-handed, and were therefore of primary interest for the present study.
301 Three of these same subjects also had CHD (**Table 1**).

302 We constructed an extended list of known or suspected laterality genes with reference to the
303 literature and mouse laterality phenotypes (Methods; **Supplementary Table S1**), but none of
304 these genes had recessive mutations in the six unsolved non-PCD SIT subjects.

305 We note possible compound heterozygous mutations in *PKD1* [MIM:601313], as a paralogue
306 of *PKD1L1* [MIM:609721], in subject SI14 (**Supplementary Table S3**). However, mutations
307 in this gene would be expected to cause autosomal dominant Polycystic Kidney Disease^{55,56},
308 and since there was no such diagnostic record for this subject, one or both of these specific
309 mutations probably has limited functional impact and is therefore unlikely to be a monogenic
310 cause for SI either.

311 *KIF13B* [MIM:607350] was putatively recessively mutated in subjects SI14 (unsolved) and
312 SI12 (solved) (**Supplementary Table S3**). Although no literature has linked *KIF13B* to PCD
313 or laterality phenotypes, *KIF3A* [MIM:604683], another kinesin encoding gene, is known to be
314 involved in LR determination⁵⁷. Moreover, *KIF3B* [MIM: 603754] is known to affect motility
315 of nodal cilia, accordingly affecting LR determination⁵⁸. Together with dyneins, kinesins allow
316 ciliary proteins to enter the organelle via the transition zone by transporting them as cargo^{59,60},
317 and accordingly play an important role in ciliary construction and maintenance^{59,60}. The
318 mutations in *KIF13B* might therefore potentially cause SI without PCD in subject SI14, and
319 perhaps also affect the phenotypic outcome in subject SI12 who has likely causal mutations in
320 *DNAH5*, but we cannot confidently assign a role to *KIF13B* on the basis of this evidence.

321 *Dominant mutations*

322 For the six non-PCD SI cases who remained unsolved under a recessive model, we also
323 considered a dominant model using a maximum known mutation frequency of 5×10^{-5} , and again

324 cross-referenced the mutated genes against Clinvar and our extended candidate gene list
325 (**Supplementary Table S1**), but no likely causative genes emerged (**Supplementary Table**
326 **S3**) (see Discussion).

327 Subject SI05 showed a heterozygous mutation in *LRRC6* [MIM:614930] (**Supplementary**
328 **Table 3**), which was included among our candidate genes. However, since recessive – but not
329 dominant - mutations in this gene have been associated with PCD⁶¹, it is unlikely that this
330 mutation is causal for non-PCD SI in this subject.

331 We also note a heterozygous mutation in *WDR62* [MIM:613583] in the unsolved case SI09
332 (**Supplementary Table 3**). Although mice with mutations in this gene have shown dextrocardia
333 and right pulmonary isomerism (MGI:5437081)⁴⁹, humans with recessive *WDR62* mutations
334 do not show altered laterality. Instead, they have shown infantile spasm, microcephaly and
335 intellectual disability⁶². It is therefore unlikely that *WDR62* is a dominant cause of altered
336 laterality in humans.

337 The gene *CEP290* [MIM:610142], mutated in subject SI14 (**Supplementary Table 3**), is linked
338 to left sided isomerism in mice (MGI:5438068)⁴⁹. In humans, recessive mutations have been
339 linked to a variety of ciliopathies, ranging from nephronophthisis, retinal degeneration and
340 Joubert syndrome, to Bardet-Biedl syndrome and Meckel-Grüber syndrome^{63,64}. However,
341 similar to the aforementioned genes, mutations in *CEP290* have not been associated with
342 laterality phenotypes in humans, and we therefore consider this to be an unlikely cause of non-
343 PCD SI.

344 Subject SI09 had a heterozygous mutation in *PLXND1* (Supplementary Table 3), a gene which
345 appears among search results for the phenotype ‘situs inversus’ within the Mouse Genome
346 Database⁴⁹. However, while *PLXND1* is annotated as a cause of aortic arch and atrial
347 abnormalities in this database, it is not annotated with situs inversus or heterotaxia, so that the
348 basis for the search result is unclear. We did not find evidence for this gene’s involvement in
349 visceral laterality in a further literature search.

350 **Gene set enrichment analysis**

351 We first performed gene set enrichment analysis using the positive control set of six SI subjects
352 with PCD. As noted above, the six PCD subjects had likely recessive monogenic causes in five
353 different genes (two subjects had mutations in the same gene, *DNAH5*). As expected, from the
354 total combined list of recessively or X-linked mutated genes in these subjects, of which 40
355 genes were included in the GO schema, we obtained significant results for various cilia-related
356 pathways, such as ‘axoneme’ ($p = 0.004$), ‘outer dynein arm assembly’ ($p = 3.85 \times 10^{-5}$), ‘dynein
357 complex’ ($p = 4.89 \times 10^{-5}$), and ‘microtubule based movement’ ($p = 1.41 \times 10^{-5}$) (**Table 2**) (all
358 P values adjusted for multiple testing across gene sets, see Methods). As expected, when the
359 single most likely causative gene for each PCD subject was removed from the gene list, which
360 left 36 recessively or X-linked mutated genes in these subjects that are present in the GO
361 schema, there were no longer any significant enrichment terms, which further supports that the
362 monogenic causes had been correctly identified in these subjects. The gene set enrichment
363 analysis in the PCD subjects confirmed that, despite a relatively small number of subjects (i.e.
364 six), the analysis was well powered to identify affected biological processes, even when most
365 individual subjects had monogenic causes in different genes, and each subject had other, non-
366 causative mutated genes.

367 With this in mind, we then performed gene set enrichment analysis in the non-PCD SI cases,
368 who were of primary interest for the present study due to a potential link with left-handedness.
369 However, no significant enrichments were found when testing the list of recessively or X-linked
370 mutated genes in the nine subjects with non-PCD SI, of which 38 genes were included in the

371 GO schema. There was also no significant functional enrichment when testing the recessively
372 mutated or X-linked genes in the five left-handed subjects with non-PCD SI, of which 26 genes
373 were in the GO schema, and neither when testing the list of genes in the six unsolved non-PCD
374 SI subjects, of which 22 genes were present in the GO schema (**Table 2**). Repeating the analysis
375 after excluding subject SI03 from these subsets made no difference, there were still no
376 significant gene sets. In addition, gene-set enrichment analysis with dominantly mutated genes
377 as input did not produce significant results in the non-PCD SI cases, nor the left-handed or
378 unsolved subsets.

379 As expected, the lists of recessively/X-linked and dominantly mutated genes in the fifteen
380 unaffected control subjects did not produce any significant gene set enrichment terms (**Table**
381 **2**).

382 Structural variant analysis

383 We additionally screened the genomes of all subjects for structural variants (such as larger-
384 scale deletions and duplications), using two complementary algorithms (see Methods). SI
385 subjects had SVs affecting an average of 9.7 genes per subject (min = 2 SVs, max = 16 SVs),
386 and controls had SVs affecting an average of 9.6 genes per subject (min = 5 SVs, max = 16
387 SVs). None of the SI subjects, regardless of PCD status, had SVs affecting genes that were
388 annotated SI, PCD, Kartagener, *situs ambiguus* (SA), or Heterotaxy (HTX) in Clinvar, nor
389 affecting genes from our broader list of candidate laterality genes.

390

391 Discussion

392 In this study we aimed to identify rare, highly penetrant genetic mutations that might link
393 visceral body asymmetry with handedness, by analysing whole genome sequence data from
394 nine SI subjects without medical histories of PCD, five of whom were left-handed. We
395 additionally included six SI subjects with PCD as positive technical controls, and fifteen
396 unaffected subjects as negative controls.

397 Likely monogenic causes were identified in all positive controls, i.e. each of the six PCD
398 subjects had one recessively mutated gene (usually a different gene in each subject) that is
399 already known to cause PCD when mutated. The six PCD subjects also confirmed that
400 significant pathway enrichment could be detected on the basis of their mutated gene lists, as
401 multiple gene sets related to ciliary functions were detected. The fifteen unaffected control
402 subjects showed no recessive mutations in genes known to cause PCD or laterality phenotypes,
403 as expected.

404 Two of the nine non-PCD SI subjects had likely recessive monogenic causes in known PCD
405 genes. This may indicate reduced penetrance of these mutations for PCD-like symptoms such
406 as lung symptoms, although they can apparently affect *situs* in early development. One non-
407 PCD SI subject, who was right-handed, had a homozygous mutation in a gene already known
408 to cause SI without PCD, i.e. *PKD1L1*¹⁵. This gene encodes a component of a calcium channel
409 which is associated with non-motile cilia⁶⁵.

410 However, the six remaining non-PCD SI subjects had no obvious monogenic basis for their
411 condition, i.e. they did not have likely causative mutations in genes known to cause human
412 laterality disorders as annotated in the Clinvar database, nor within an extended list of known
413 or suspected laterality genes based on literature searching and mouse phenotypes. Among the
414 six non-PCD SI subjects, four were left-handed, and therefore comprised the bulk of left-
415 handers in the dataset. Furthermore, gene set enrichment analysis of their mutated genes did not
416 identify significant biological pathways, in either the whole set, or the left-handed subset, or

417 the subset that was ‘unsolved’ by recessive monogenic causes. In other words, the biology of
418 their non-PCD SI could not be linked via the mutations that they carried. Finally, we also
419 considered larger genomic rearrangements known as Copy Number Variants (CNVs), but no
420 obvious candidate genes emerged.

421 A monogenic model is still possible for the majority of the non-PCD SI cases, and/or for the
422 left-handed subset specifically, but would have to involve genetic heterogeneity across a set of
423 genes which are not currently linked in terms of their known biology, at least to an extent which
424 would have been discernible in this dataset, as it was for the PCD subjects. We did not therefore
425 identify a genetic-developmental pathway that links handedness and visceral asymmetry in this
426 study. The question of whether, and how, functional brain laterality is linked developmentally
427 to visceral laterality in humans remains unanswered²⁰.

428 Genetic contributions to non-PCD SI and left-handedness might also involve non-coding
429 variation, or rare combinations of multiple common variants. The noncoding genome comprises
430 98% of the genome, but interpreting the variation within these regions is challenging. Several
431 attempts have been made to rank potentially causative variants across the genome based on
432 scores that integrate different types of information, including conservation of DNA sequence,
433 regulatory information⁶⁶, and population genomic data⁶⁷⁻⁷². However, these ranking
434 approaches are currently not very concordant with each other⁷³. For the present study we did
435 not address these possibilities, which must await larger sample sizes and an improved
436 understanding of the role of rare, non-coding mutations in phenotypic variation.

437 *In utero* environmental effects such as prenatal drug exposure might also affect left-right
438 determination of body and brain⁷⁴. Handedness itself is known to associate with various early
439 life factors including birthweight and breastfeeding, although not to a degree which is remotely
440 predictive at the individual level⁷⁵. As noted in the introduction, left-handedness has a modest
441 heritability of roughly 25% in family and twin studies, and lower in SNP-based heritability
442 studies. Regardless, the primary causes of this trait remain unknown.

443 In this study there was a degree of diagnostic uncertainty as regards the PCD status of some SI
444 subjects. However, it was not the purpose of the present study to achieve a clinical diagnosis of
445 the presence or absence of PCD, nor to confirm already-known PCD genes. In this context we
446 did not, for example, sequence the mutations in the PCD subjects by another technique for
447 validation, nor confirm allelic phase in the compound heterozygotes. Rather, we were
448 concerned to identify potentially causative mutations in the nine SI subjects without medical
449 histories of PCD who show an elevated rate of left-handedness, with the potential to yield
450 important basic insights into body and brain laterality. If we had found clear candidate
451 mutations in left-handed members of the non-PCD SI group, in genes not previously linked to
452 PCD, then further validation and functional characterisation of those mutations would have
453 been appropriate, but this did not arise.

454 Regardless of the PCD status of any individual SI subject in this study, the overall pattern of
455 results was clearly different between the PCD and non-PCD groups, where all six positive
456 control subjects in the PCD group had mutations in known PCD-causing genes, while six out
457 of nine in the non-PCD group had no obvious monogenic mutations, among whom were most
458 of the left-handers. Also, the pathway analyses in various different subsets of the non-PCD
459 group showed a consistent lack of significant enrichment, whereas clear signals emerged from
460 the PCD group, which further supports an overall distinction of the groups. Nonetheless, further
461 detailed investigation of subjects SI03, SI12 and SI16 with PCD diagnostic tools might reveal
462 lung and other ciliary symptoms to an extent⁷⁶.

463 Although ciliary-induced nodal flow plays a crucial role in symmetry breaking, some
464 organisms, such as chicks and fruit flies (*Drosophila melanogaster*), do not have motile nodal

465 cilia, yet they do show asymmetrical organs ⁷⁷. For example, left-right asymmetry in chicks
466 involves rearranging the relative orientations of cells expressing critical genes at the node, in a
467 non-ciliary-dependent manner ⁷⁸. Furthermore, left-right asymmetry of the *Drosophila* gut is
468 established by intracellular cytoskeletal organization that may give rise to cellular shape
469 chirality, by means of unidirectional tilting of radial fibers, and anti-clockwise swirling of
470 transverse fibers ⁷⁹. Whether such mechanisms also influence left-right organ asymmetry in
471 mammals is unclear. In the present study we saw no mutations in the homologues of two genes
472 implicated in cellular chirality in *Drosophila*, *MYOID* or *MYOIC* ⁸⁰, nor in the homologues of
473 two genes thought to affect laterality in chicks and frogs, *SLC6A4* and *SLC18A2* ⁸¹

474 Future studies in larger human cohorts may help to identify genetic contributions to non-PCD
475 SI and left-handedness in some cases. Candidate biological pathways which emerge from
476 research on non-mammalian mechanisms of asymmetry development should be considered in
477 future studies.

478 **Data availability**

479 Requests to access the genomic datasets generated for the current study will be considered in
480 relation to the consents, relevant rules and regulations, and can be made via the corresponding
481 author.

482

483 **References**

- 484 1 Francks, C. Exploring human brain lateralization with molecular genetics and genomics. *Ann N
485 Y Acad Sci* **1359**, 1-13, doi:10.1111/nyas.12770 (2015).
- 486 2 Deng, H., Xia, H. & Deng, S. Genetic basis of human left-right asymmetry disorders. *Expert
487 Rev Mol Med* **16**, e19, doi:10.1017/erm.2014.22 (2015).
- 488 3 Arnold, G. L., Bixler, D. & Girod, D. Probable autosomal recessive inheritance of polysplenia,
489 situs inversus and cardiac defects in an Amish family. *American journal of medical genetics* **16**,
490 35-42, doi:10.1002/ajmg.1320160107 (1983).
- 491 4 Mirvis, M., Stearns, T. & James Nelson, W. Cilium structure, assembly, and disassembly
492 regulated by the cytoskeleton. *The Biochemical journal* **475**, 2329-2353,
493 doi:10.1042/bcj20170453 (2018).
- 494 5 Fliegauf, M., Benzing, T. & Omran, H. When cilia go bad: cilia defects and ciliopathies. *Nature
495 reviews. Molecular cell biology* **8**, 880-893, doi:10.1038/nrm2278 (2007).
- 496 6 Reiter, J. F. & Leroux, M. R. Genes and molecular pathways underpinning ciliopathies. *Nature
497 reviews. Molecular cell biology* **18**, 533-547, doi:10.1038/nrm.2017.60 (2017).
- 498 7 Okada, Y., Takeda, S., Tanaka, Y., Belmonte, J. I. & Hirokawa, N. Mechanism of nodal flow:
499 a conserved symmetry breaking event in left-right axis determination. *Cell* **121**, 633-644,
500 doi:10.1016/j.cell.2005.04.008 (2005).
- 501 8 Cartwright, J. H., Piro, O. & Tuval, I. Fluid-dynamical basis of the embryonic development of
502 left-right asymmetry in vertebrates. *Proc Natl Acad Sci U S A* **101**, 7234-7239,
503 doi:10.1073/pnas.0402001101 (2004).
- 504 9 Hilfinger, A. & Julicher, F. The chirality of ciliary beats. *Physical biology* **5**, 016003,
505 doi:10.1088/1478-3975/5/1/016003 (2008).
- 506 10 Leigh, M. W. *et al.* Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener
507 syndrome. *Genet Med* **11**, 473-487, doi:10.1097/GIM.0b013e3181a53562 (2009).
- 508 11 Ware, S. M. *et al.* Identification and functional analysis of ZIC3 mutations in heterotaxy and
509 related congenital heart defects. *Am J Hum Genet* **74**, 93-105, doi:10.1086/380998 (2004).
- 510 12 Gur, M. *et al.* Roles of the cilium-associated gene CCDC11 in left-right patterning and in
511 laterality disorders in humans. *The International journal of developmental biology* **61**, 267-276,
512 doi:10.1387/ijdb.160442yc (2017).
- 513 13 Ta-Shma, A. *et al.* A human laterality disorder associated with a homozygous WDR16 deletion.
514 *European journal of human genetics : EJHG* **23**, 1262-1265, doi:10.1038/ejhg.2014.265 (2015).

515 14 Reish, O. *et al.* A Homozygous Nme7 Mutation Is Associated with Situs Inversus Totalis. *Human mutation* **37**, 727-731, doi:10.1002/humu.22998 (2016).

516 15 Vetrini, F. *et al.* Bi-allelic Mutations in PKD1L1 Are Associated with Laterality Defects in Humans. *Am J Hum Genet* **99**, 886-893, doi:10.1016/j.ajhg.2016.07.011 (2016).

517 16 McManus, I. C., Martin, N., Stubbings, G. F., Chung, E. M. & Mitchison, H. M. Handedness and situs inversus in primary ciliary dyskinesia. *Proc Biol Sci* **271**, 2579-2582, doi:10.1098/rspb.2004.2881 (2004).

518 17 Afzelius, B. A. & Stenram, U. Prevalence and genetics of immotile-cilia syndrome and left-handedness. *The International journal of developmental biology* **50**, 571-573, doi:10.1387/ijdb.052132ba (2006).

519 18 Vingerhoets, G. *et al.* Brain structural and functional asymmetry in human situs inversus totalis. *Brain Struct Funct*, doi:10.1007/s00429-017-1598-5 (2018).

520 19 Bandler, W. M. *et al.* Common variants in left/right asymmetry genes and pathways are associated with relative hand skill. *PLoS genetics* **9**, e1003751, doi:10.1371/journal.pgen.1003751 (2013).

521 20 de Kovel, C. G. F. & Francks, C. The molecular genetics of hand preference revisited. *bioRxiv*, 447177, doi:10.1101/447177 (2018).

522 21 Medland, S. E. *et al.* Genetic influences on handedness: data from 25,732 Australian and Dutch twin families. *Neuropsychologia* **47**, 330-337, doi:10.1016/j.neuropsychologia.2008.09.005 (2009).

523 22 Neale, B. Heritability of >2,000 traits and disorders in the UK Biobank. (2017).

524 23 Armour, J. A., Davison, A. & McManus, I. C. Genome-wide association study of handedness excludes simple genetic models. *Heredity* **112**, 221-225, doi:10.1038/hdy.2013.93 (2014).

525 24 Kavaklıoglu, T., Ajmal, M., Hameed, A. & Francks, C. Whole exome sequencing for handedness in a large and highly consanguineous family. *Neuropsychologia* **93**, 342-349, doi:10.1016/j.neuropsychologia.2015.11.010 (2016).

526 25 Behan, L. *et al.* PICADAR: a diagnostic predictive tool for primary ciliary dyskinesia. *The European respiratory journal* **47**, 1103-1112, doi:10.1183/13993003.01551-2015 (2016).

527 26 Kosaki, K. & Casey, B. Genetics of human left-right axis malformations. *Seminars in cell & developmental biology* **9**, 89-99, doi:10.1006/scdb.1997.0187 (1998).

528 27 Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. *Neuropsychologia* **9**, 97-113 (1971).

529 28 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* **25**, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009).

530 29 Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078-2079, doi:10.1093/bioinformatics/btp352 (2009).

531 30 McKenna, A. *et al.* The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome research* **20**, 1297-1303, doi:10.1101/gr.107524.110 (2010).

532 31 Purcell, S. *et al.* PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am J Hum Genet* **81**, 559-575, doi:10.1086/519795 (2007).

533 32 Auton, A. *et al.* A global reference for human genetic variation. *Nature* **526**, 68-74, doi:10.1038/nature15393 (2015).

534 33 Tan, A., Abecasis, G. R. & Kang, H. M. Unified representation of genetic variants. *Bioinformatics* **31**, 2202-2204, doi:10.1093/bioinformatics/btv112 (2015).

535 34 Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic acids research* **38**, e164, doi:10.1093/nar/gkq603 (2010).

536 35 McLaren, W. *et al.* The Ensembl Variant Effect Predictor. *Genome biology* **17**, 122, doi:10.1186/s13059-016-0974-4 (2016).

537 36 Adzhubei, I. A. *et al.* A method and server for predicting damaging missense mutations. *Nature methods* **7**, 248-249, doi:10.1038/nmeth0410-248 (2010).

538 37 Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. *Nature protocols* **4**, 1073-1081, doi:10.1038/nprot.2009.86 (2009).

570 38 Lek, M. *et al.* Analysis of protein-coding genetic variation in 60,706 humans. *Nature* **536**, 285-291, doi:10.1038/nature19057 (2016).

571 39 Fu, W. *et al.* Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. *Nature* **493**, 216-220, doi:10.1038/nature11690 (2013).

572 40 Robinson, J. T. *et al.* Integrative genomics viewer. *Nature biotechnology* **29**, 24-26, doi:10.1038/nbt.1754 (2011).

573 41 Reimand, J. *et al.* g:Profiler-a web server for functional interpretation of gene lists (2016 update). *Nucleic acids research* **44**, W83-89, doi:10.1093/nar/gkw199 (2016).

574 42 Ashburner, M. *et al.* Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nature genetics* **25**, 25-29, doi:10.1038/75556 (2000).

575 43 Ashburner, M. *et al.* Expansion of the Gene Ontology knowledgebase and resources. *Nucleic acids research* **45**, D331-d338, doi:10.1093/nar/gkw1108 (2017).

576 44 Amberger, J. S., Bocchini, C. A., Schiettecatte, F., Scott, A. F. & Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic disorders. *Nucleic acids research* **43**, D789-798, doi:10.1093/nar/gku1205 (2015).

577 45 Landrum, M. J. *et al.* ClinVar: improving access to variant interpretations and supporting evidence. *Nucleic acids research* **46**, D1062-d1067, doi:10.1093/nar/gkx1153 (2018).

578 46 Hagen, E. M. *et al.* Copy-number variant analysis of classic heterotaxy highlights the importance of body patterning pathways. *Human genetics* **135**, 1355-1364, doi:10.1007/s00439-016-1727-x (2016).

579 47 Peeters, H. & Devriendt, K. Human laterality disorders. *European journal of medical genetics* **49**, 349-362, doi:10.1016/j.ejmg.2005.12.003 (2006).

580 48 Li, A. H. *et al.* Genetic architecture of laterality defects revealed by whole exome sequencing. *European journal of human genetics : EJHG*, doi:10.1038/s41431-018-0307-z (2019).

581 49 Smith, C. L., Blake, J. A., Kadin, J. A., Richardson, J. E. & Bult, C. J. Mouse Genome Database (MGD)-2018: knowledgebase for the laboratory mouse. *Nucleic acids research* **46**, D836-d842, doi:10.1093/nar/gkx1006 (2018).

582 50 Abyzov, A., Urban, A. E., Snyder, M. & Gerstein, M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. *Genome research* **21**, 974-984, doi:10.1101/gr.114876.110 (2011).

583 51 Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a probabilistic framework for structural variant discovery. *Genome biology* **15**, R84, doi:10.1186/gb-2014-15-6-r84 (2014).

584 52 Pirooznia, M., Goes, F. S. & Zandi, P. P. Whole-genome CNV analysis: advances in computational approaches. *Front Genet* **6**, 138, doi:10.3389/fgene.2015.00138 (2015).

585 53 Antaki, D., Brandler, W. M. & Sebat, J. SV2: Accurate Structural Variation Genotyping and De Novo Mutation Detection from Whole Genomes. *Bioinformatics*, doi:10.1093/bioinformatics/btx813 (2017).

586 54 Hornef, N. *et al.* DNAH5 mutations are a common cause of primary ciliary dyskinesia with outer dynein arm defects. *American journal of respiratory and critical care medicine* **174**, 120-126, doi:10.1164/rccm.200601-084OC (2006).

587 55 Ranjzad, F. *et al.* Identification of Three Novel Frameshift Mutations in the PKD1 Gene in Iranian Families with Autosomal Dominant Polycystic Kidney Disease Using Efficient Targeted Next-Generation Sequencing. *Kidney & blood pressure research* **43**, 471-478, doi:10.1159/000488471 (2018).

588 56 Xu, D. *et al.* Novel Mutations in the PKD1 and PKD2 Genes of Chinese Patients with Autosomal Dominant Polycystic Kidney Disease. *Kidney & blood pressure research* **43**, 297-309, doi:10.1159/000487899 (2018).

589 57 Hirokawa, N., Tanaka, Y. & Okada, Y. Left-right determination: involvement of molecular motor KIF3, cilia, and nodal flow. *Cold Spring Harbor perspectives in biology* **1**, a000802, doi:10.1101/cshperspect.a000802 (2009).

590 58 Nonaka, S. *et al.* Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. *Cell* **95**, 829-837 (1998).

591 59 Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. *Nat Rev Genet* **11**, 331-344, doi:10.1038/nrg2774 (2010).

625 60 Verhey, K. J., Dishinger, J. & Kee, H. L. Kinesin motors and primary cilia. *Biochemical Society transactions* **39**, 1120-1125, doi:10.1042/bst0391120 (2011).

626 61 Horani, A. *et al.* LRRC6 mutation causes primary ciliary dyskinesia with dynein arm defects. *PLoS One* **8**, e59436, doi:10.1371/journal.pone.0059436 (2013).

627 62 Nardello, R. *et al.* A novel mutation of WDR62 gene associated with severe phenotype including infantile spasm, microcephaly, and intellectual disability. *Brain & development* **40**, 58-64, doi:10.1016/j.braindev.2017.07.003 (2018).

628 63 Zhang, Y. *et al.* BBS mutations modify phenotypic expression of CEP290-related ciliopathies. *Human molecular genetics* **23**, 40-51, doi:10.1093/hmg/ddt394 (2014).

629 64 Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. *The New England journal of medicine* **364**, 1533-1543, doi:10.1056/NEJMra1010172 (2011).

630 65 Masyuk, A. I., Gradilone, S. A. & LaRusso, N. F. Calcium signaling in cilia and ciliary-mediated intracellular calcium signaling: are they independent or coordinated molecular events? *Hepatology (Baltimore, Md.)* **60**, 1783-1785, doi:10.1002/hep.27331 (2014).

631 66 Dunham, I. *et al.* An integrated encyclopedia of DNA elements in the human genome. *Nature* **489**, 57-74 (2012).

632 67 Kircher, M. *et al.* A general framework for estimating the relative pathogenicity of human genetic variants. *Nat. Genet.* **46**, 310-315 (2014).

633 68 Quang, D., Chen, Y. & Xie, X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. *Bioinformatics* **31**, 761-763 (2015).

634 69 Ritchie, G. R., Dunham, I., Zeggini, E. & Flück, P. Functional annotation of noncoding sequence variants. *Nat. Methods* **11**, 294-296 (2014).

635 70 Jagadeesh, K. A. *et al.* M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. *Nat. Genet.* **48**, 1581-1586 (2016).

636 71 Dong, C. *et al.* Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. *Hum. Mol. Genet.* **24**, 2125-2137 (2015).

637 72 Ioannidis, N. M. *et al.* REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. *Am. J. Hum. Genet.* **99**, 877-885 (2016).

638 73 Eilbeck, K., Quinlan, A. & Yandell, M. Settling the score: variant prioritization and Mendelian disease. *Nat. Rev. Genet.* (2017).

639 74 van Veenendaal, N. R., Kusters, C. D., Oostra, R. J., Bergman, J. E. & Cobben, J. M. When the right (Drug) should be left: Prenatal drug exposure and heterotaxy syndrome. *Birth defects research. Part A, Clinical and molecular teratology* **106**, 573-579, doi:10.1002/bdra.23497 (2016).

640 75 de Kovel, C. G. F., Carrion-Castillo, A. & Francks, C. A large-scale population study of early life factors influencing left-handedness. *bioRxiv*, 305425, doi:10.1101/305425 (2018).

641 76 Shapiro, A. J. *et al.* Diagnosis of Primary Ciliary Dyskinesia. An Official American Thoracic Society Clinical Practice Guideline. *American journal of respiratory and critical care medicine* **197**, e24-e39, doi:10.1164/rccm.201805-0819ST (2018).

642 77 Vandenberg, L. N. & Levin, M. A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. *Developmental biology* **379**, 1-15, doi:10.1016/j.ydbio.2013.03.021 (2013).

643 78 Gros, J., Feistel, K., Viebahn, C., Blum, M. & Tabin, C. J. Cell movements at Hensen's node establish left/right asymmetric gene expression in the chick. *Science* **324**, 941-944, doi:10.1126/science.1172478 (2009).

644 79 Tee, Y. H. *et al.* Cellular chirality arising from the self-organization of the actin cytoskeleton. *Nature cell biology* **17**, 445-457, doi:10.1038/ncb3137 (2015).

645 80 Lebreton, G. *et al.* Molecular to organismal chirality is induced by the conserved myosin 1D. *Science* **362**, 949-952, doi:10.1126/science.aat8642 (2018).

646 81 Fukumoto, T., Blakely, R. & Levin, M. Serotonin transporter function is an early step in left-right patterning in chick and frog embryos. *Developmental neuroscience* **27**, 349-363, doi:10.1159/000088451 (2005).

647 82

648 83

649 84

650 85

651 86

652 87

653 88

654 89

655 90

656 91

657 92

658 93

659 94

660 95

661 96

662 97

663 98

664 99

665 100

666 101

667 102

668 103

669 104

670 105

671 106

672 107

673 108

674 109

675 110

676 111

677 112

678 113

679 **Acknowledgements**

680 Thanks to all of the study participants. This research was funded by the Max Planck Society
681 (Germany) and the Netherlands Organization for Scientific Research (NWO, grant No. 054-15-
682 101) as part of the FLAG-ERA consortium project 'MULTI-LATERAL', a Partner Project to
683 the European Union's Flagship Human Brain Project. The study was also funded by the Fonds
684 Wetenschappelijk Onderzoek-Vlaanderen (FWO-grant n° G.0114.16N) assigned to GV.

685

686 **Author contributions**

687 GV recruited and characterized the subjects. GV, SEF & CF conceived the study. MCP
688 performed the genetic data analysis with support from ACC. MCP and CF wrote the
689 manuscript. GV, ACC & SEF edited the manuscript. CF directed the study.

690

691 **Additional information**

692 The authors declare no competing interests.

693

694 **Tables (see next page)**

695

Table 1. The most likely causal recessive mutations in the fifteen SI subjects

Subj	SI group	Sex/ Age	EHI	NH	CHD	Daily wet cough	Type	Gene	Clinvar	rs ID	Start position	ref	alt	MAF	AAC	impact
SI02	non-PCD	M/50	0.9	R	0	?	hom	<i>PKD1L1</i>	SA SI	rs528302390	47870810	T	TCA	0.00109	-	splice donor
SI03	non-PCD	F/26	-0.8	L	0	yes		unsolved								
SI04	non-PCD	M/23	-1	L	1	no		unsolved								
SI05	non-PCD	M/27	0.9	R	0	no		unsolved								
SI07	non-PCD	F/35	0.9	R	1	?		unsolved								
SI09	non-PCD	F/36	0.7	L [§]	0	no		unsolved								
SI12	non-PCD	F/40	0.9	R	0	no	chet	<i>DNAH5</i>	Kartagener	None	13900415	A	C	-	E/*	stop gained
							chet	<i>DNAH5</i>	Kartagener	None	13769691	G	GC	0.00002	A/X	frameshift
SI14	non-PCD	M/18	-0.8	L	1	no		unsolved								
SI16	non-PCD	M/21	-1	L	0	no	hom	<i>CCDC151</i>	Kartagener	rs765121016	11533429	T	TCTC	0.00011	E/-	inframe deletion
SI06	PCD	M/46	1	R	0	yes	hom	<i>LRRC6</i>	Kartagener	rs767624733	133687728	T	C	0.00017	-	splice donor
SI08	PCD	F/23	0.9	R	0	yes	hom	<i>DNAH11</i>	PCD	rs373706559	21659620	A	C	0.00006	Y/*	stop gained
SI11	PCD	F/32	0.9	R	0	yes	chet	<i>DNAAF1</i>	Kartagener	rs569633512	84203963	C	T	-	-	splice donor
							chet	<i>DNAAF1</i>	Kartagener	rs373103805	84193302	G	C	0.00023	N/K	missense
SI13	PCD	M/48	0.6	L [§]	0	yes	hom	<i>CCDC114</i>	Kartagener	rs779459076	48814907	CACG	C	0.00093	-/R	Inframe insert
SI15	PCD	F/31	0.7	R	0	yes	chet	<i>DNAH5</i>	Kartagener	None	13786289	A	T	-	K/*	stop gained
							chet	<i>DNAH5</i>	Kartagener	rs397515540	13753397	G	GA	0.00034	D/X	frameshift
SI17	PCD	M/39	0.5	R	0	yes	chet	<i>DNAH5</i>	Kartagener	rs548521732	13839638	C	T	0.00021	-	splice acceptor
							chet	<i>DNAH5</i>	Kartagener	rs769458738	13753597	T	C	0.00004	R/H	missense

696 Subjects shown with two mutations have possible compound heterozygous mutations, otherwise they have homozygous mutations. The Genome Reference Consortium (GRC) build 37 decoy
 697 version was used as reference sequence. EHI: Edinburgh Handedness Inventory score; NH: natural handedness; CHD: Congenital Heart Disease. Type: type of genetic mutation, i.e.,
 698 homozygous (hom) or compound heterozygous (chet); MAF: minor allele frequency in population databases, if known; AAC: amino acid change. [§]Self-identified natural lefthander made to
 699 convert to right-handedness.

700

701 **Table 2.** Gene set enrichment analysis under a recessive mutation model

Group	p-value ¹	term size	query size ²	overlap size	term ID	term name	intersection	samples	Pval Fisher ³
Non-PCD SI (n=9) ⁴	NS		38						
Non-PCD SI LH (n=5) ⁴	NS		26						
Unsolved cases (n=6) ⁴	NS		22						
SI with PCD (n=6)	3.85×10 ⁻⁵	17	40	4	GO:0036158	outer dynein arm assembly	DNAH5, CCDC114, LRRC6, DNAAF1	SI06, SI11, SI12, SI13, SI15, SI17	7.39×10 ⁻¹³
SI with PCD (n=6)	1.41×10 ⁻⁴	296	40	8	GO:0007018	microtubule-based movement	DNAH5, CCDC114, DNAH11, WDR60, LRRC6, DNAAF1, FMN2, DNAH12	SI06, SI08, SI11, SI12, SI13, SI15, SI17	8.94×10 ⁻¹⁵
SI with PCD (n=6)	4.89×10 ⁻⁵	48	40	5	GO:0030286	dynein complex	DNAH5, CCDC114, DNAH11, WDR60, DNAH12	SI08, SI11, SI12, SI13, SI15, SI17	1.59×10 ⁻¹³
SI with PCD (n=6)	0.004	113	40	5	GO:0005930	axoneme	DNAH5, CCDC114, DNAH11, DNAAF1, RP1L1	SI03, SI08, SI11, SI12, SI13, SI15, SI17	1.31×10 ⁻¹¹
SI with PCD (n=6)	0.002	427	40	8	GO:0099568	cytoplasmic region	DNAH5, CCDC114, DNAH11, SHROOM2, DNAAF1, FMN2, RP1L1, PCLO	SI03, SI06, SI08, SI11, SI12, SI13, SI15, SI17	1.73×10 ⁻¹³
Unaffected controls (n=15)	NS		34						

702 LH: left-handed.¹ P-values are corrected for multiple testing using the gSCS method. NS: no significant gene sets. ² The number of mutated genes present in the GO schema.703 ³Uncorrected P-values were calculated using Fisher's exact test. ⁴ Results were the same after excluding subject SI03.

704