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Abstract 

Obesity is a global health crisis that is influenced by both genetic and environmental factors.   

Rodent model organisms can be used to understand the biological and genetic basis of obesity 

and related morphological traits. A major advantage of model organisms is that they can be 

studied under uniform environmental conditions, thus reducing the complex role of environment 

and gene by environment interactions. Furthermore, fat pads and other tissues can be dissected 

and weighed, so that their role in determining body weight can be precisely defined. Highly 

recombinant populations allow for genetic fine-mapping of complex traits, greatly reducing the 

number of plausible candidate genes.  We performed the largest rat GWAS ever undertaken, 

using 3,173 male and female adult N/NIH heterogeneous stock (HS) rats, which were created by 

mixing 8 inbred strains. We identified 31 independent loci for body weight, body length, body 

mass index, fat pad weight (retroperitoneal, epididymal, and parametrial), and fasting glucose. 

We observed strong evidence of pleotropic effects across multiple phenotypes.  Three loci 

contained only a single gene (Epha5, Nrg1 and Klhl14), whereas others were larger and 

contained many genes. We replicated a locus containing Prlhr, and a second locus containing 

Adcy3, which we had previously identified in a smaller HS rat study. Finally, by subsampling our 

dataset, we showed an exponential growth of significant loci as sample size increased towards 

3,173.  Our results demonstrate the potential for rodent studies to add to our understanding of the 

molecular genetic factors that contribute to obesity-relevant traits and emphasize the importance 

of sample size.   
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Introduction 

Obesity is a growing health epidemic; over one third of the adult population and almost one fifth 

of all children in the United States are considered obese. There has been a steady increase in 

prevalence of obesity since the 1970’s, and prevalence is continuing to rise (Hales et al. 2018).  

Obesity is a major risk factor for multiple diseases including cardiovascular disease, type 2 

diabetes, cancer, and stroke (Wang et al. 2011), thereby placing a tremendous burden on society.  

Obesity is caused by interaction of genetic and environmental factors with genetic factors 

accounting for up to 70% of the population variance (Maes et al. 1997).  Although human 

genome wide association studies (GWAS) of obesity have been extremely productive (Loos 

2018), our biological understanding of the genetic architecture of obesity is far from complete.   

 

Model organism studies of body weight, morphometric, and metabolic traits represent a 

complementary approach to understanding the genetic basis of obesity. GWAS in model 

organisms have traditionally been limited by the lack of recombination present in laboratory 

crosses. Heterogeneous stocks (HS) rats were created in 1984 by interbreeding eight inbred 

founder strains and maintaining them as an outbred population in a way that minimizes 

inbreeding (Hansen and Spuhler 1984).  This strategy has made HS rats ideal for fine-mapping 

genetic loci (Solberg Woods 2014).  Furthermore, HS founder strains have been fully sequenced 

(Baud et al. 2013), such that coding polymorphisms can be rapidly identified (Keele et al. 2018).  

A third advantage of using HS rats is the ability to collect tissues under controlled environmental 

conditions. These tissues can be used to measure gene expression, thus permitting the 

identification of expression QTLs (eQTLs; (Tsaih et al. 2014; Parker et al. 2016; Keele et al. 

2018)).  Our group has previously mapped adiposity traits in HS rats using 743 male HS rats, 

which identified two genetic loci for visceral adiposity and body weight (Keele et al. 2018).  

 

Through the NIDA-funded Center for GWAS in outbred rats (P50DA037844; see 

www.ratgenes.org), behavioral traits that are relevant to drug abuse have been assessed in 

thousands of male and female HS rats at three institutions throughout the United States.  To more 

fully utilize these rats, we have collected phenotypic data on body weight and length (which 

permit calculation of body mass index (BMI)), fat pad weight and fasting glucose levels.  This 

dataset provides an unprecedented opportunity to map adiposity traits in a large number HS rats. 
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Methods 

Animals 

The NMcwi:HS colony, hereafter referred to as HS, was initiated by the NIH in 1984 using the 

following eight inbred founder strains: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, 

WKY/N  and WN/N  (Hansen and Spuhler 1984).  The breeding colony has been maintained at 

the Medical College of Wisconsin (MCW) since 2006. The colony for the current studies 

consisted of 64 breeder pairs maintained using a mating scheme that takes into account the 

kinship coefficient such that closely related animals are not bred together.  For this study, rats 

from generations 73 to 80 were used.    Breeding rats at MCW were given ad libitum access to 

Teklad 5010 diet (Harlan Laboratories).   

 

The animals used for this study are part of a large multi-centered project focused on genetic 

analysis of behavioral phenotypes related to drug abuse.  HS rats from MCW were sent to three 

institutions throughout the United States: University of Tennessee Health Science Center (TN), 

University at Buffalo (NY), and University of Michigan (MI).  Rats were shipped at 3-6 weeks 

of age and each site received multiple shipments over more than two years (from 10/27/2014 – 

03/07/2017).  Once they arrived, rats in TN were fed Teklad Irradiated LM-485 Mouse/Rat Diet; 

rats in NY were fed Envigo Teklad 18% Protein Rodent Diet, and rats in MI were fed Labdiet 

Picolab Laboritory Rodent Diet Irradiated. 

 

Rats were exposed to a different battery of behavioral testing at each site (see Supplemental 

Table 1) followed by euthanasia, which occurred at different ages at each site. All phenotypes 

presented in this paper were collected at the time of euthanasia. Briefly, in MI, rats were housed 

in trios, exposed to cocaine for five days (15 mg/kg), and euthanized 4-7 days after cocaine 

exposure at 89 + 6 days of age.  In NY, rats were housed in pairs, tested for multiple behaviors 

over 16 weeks, exposed to cocaine for three days (10 mg/kg) and euthanized 7-10 days after 

cocaine exposure at 198 + 13 days of age.  In TN, there were two separate cohorts: breeders (sent 

from MCW) and experimental rats (bred in TN).  Female breeders had mostly one, sometimes 

two litters but underwent no behavioral testing. The experimental rats were tested for multiple 

behaviors, exposed to nicotine (self-administration) for 12 days, and euthanized at 73 + 12 days 

of age.  The number of rats phenotyped at each site, as well as ages when adiposity phenotypes 

were collected are shown in Table 1).  Details of the experimental pipelines are shown in the 

Supplemental Table 1. 
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Table 1. Age and number of rats at time adiposity phenotypes were collected. 

Phenotyping 

site Males, N Females, N Total N 

Age, days, 

mean +SD 

MI 519 514 1,033 89 +/- 6 

NY 449 443 892 198 +/- 13 

TN experiment 458 451 909 73 +/- 12 

TN breeders 182 157 339 169 +/- 34 

 1,608 1,565 3,173  

 

Phenotyping and Tissue collection  

Several days after completion of behavioral experiments (see above), rats were fasted overnight 

(17 +/-2 hours), and body weight was measured.  Under anesthesia (phentobarbital at MI and 

NY, isoflurane at TN), two measures of body length (from nose to base of the tail (body 

length_NoTail) and from nose to end of tail (body length_Tail)) were collected, allowing us to 

calculate two measures of body mass index: BMI_NoTail and BMI_Tail.  BMI was calculated 

as: (body weight/body length
2
) x 10.  For animals in MI and NY, we also measured fasting 

glucose levels using the Contour Next EZ system  (Bayer, Elkhart, IN).  Several tissues were 

dissected and weighed including retroperitoneal, epididymal (males), and parametrial (females) 

visceral fat pads, hereafter referred to as RetroFat, EpiFat, and ParaFat respectively.  Spleen was 

dissected and sent to University of California, San Diego (UCSD) for DNA extraction and 

genotyping (described below).  All protocols were approved by the Institutional Animal Care and 

Use Committees of each institution.  

 

Genotyping  

DNA was extracted from spleen using a salting out procedure or the Agencourt DNAdvance kit 

(Beckmann).  Genotypes were determined using genotyping-by-sequencing (GBS), as described 

elsewhere (Parker et al. 2016).   GBS is a reduced representation genotyping method that 

sequences the small fraction of the genome comprised of restriction fragments of a certain size.  

Briefly, DNA was digested with endonucleases PstI and NlaIII, then custom adapters barcoded 

for individual subjects were ligated to the fragments. The correct ligation product selectively 

amplified for 12 cycles of PCR, the resulting libraries were quantitated and pooled to make 48 

samples per sequencing lane, then size-selected using PippinPrep to retain fragments between 
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300 and 450 base pairs. Purified, pooled libraries were sequenced at 100 bp (single end), on 

Illumina 4000 instrument, producing ~7 million reads per sample. The reads were processed to 

remove barcode and adaptor sequences, filtered for quality, and mapped to the rn6 rat genome 

assembly. Variant calling was done with ANGSD (Korneliussen et al. 2014), missing genotypes 

within the sample were imputed with BEAGLE. Imputation to a reference panel was done using 

IMPUTE2. This protocol produced 3,400,759 SNPs with error rate below 1%. Variants for X- 

and Y-chromosomes were not called. Prior to GWAS, SNPs in high linkage disequilibrium were 

removed using function LDprune (REF: https://www.cog-genomics.org/plink/1.9/ld ) with r
2
 cut-

off 0.95; this produced set of 128,447 SNPs which were used for GWAS, genetic correlations, 

and heritability estimates. The unpruned set of SNPs was used for LocusZoom plots. 

 

Rats were removed from subsequent analysis if they were discordant between recorded and 

genetically determined sex (n=6) or coat color (n=8), indicating errors in record keeping or a 

sample mix up. 

 

Phenotypic and genetic correlations and heritability estimates  

Each trait within each research site was quantile normalized, separately for males and females, 

using R function qnorm.  Relevant covariates (including age, batch number and dissector) were 

identified for each trait, and covariate effects were regressed out if they were significant and 

explained more than 2% of the variance (see Supplemental Table 2).  Residuals were then 

quantile normalized again, after which the data for each sex and site was pooled prior  to further 

analysis (phenotypic and genetic correlations, heritability and GWAS).  Phenotypic correlations 

were determined using Spearman's test.  Genetic correlations were calculated using bivariate 

GREML analysis as implemented by GTCA (Yang et al. 2011; Lee et al. 2012). GCTA-GREML 

analysis was used to estimate proportion of variance attributable to SNPs.  

 

Genetic mapping 

GWAS analysis employed a linear mixed model, as implemented in the software GEMMA 

(Wang et al. 2016), using dosages and a genetic relatedness matrix (GRM) to account for the 

complex family relationships within the HS population. We used the Leave One Chromosome 

Out (LOCO) method to guard against proximal contamination, as previously described (Cheng et 

al. 2013; Gonzales et al. 2018). Significance thresholds were calculated using permutation, 

because all traits were quantile normalized, we were able to use the same threshold for all traits 

(Cheng and Palmer 2013).  To identify QTLs, we scanned each chromosome to determine if 

there was at least one SNP that exceeded the permutation-derived threshold of –log(p) > 5.6,  
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that was supported by a second SNP within 0.5 Mb to have a p-value that was within 2 –log(p) of 

the index SNP.  This algorithm failed to identify 2 SNPs, which were then identified by using 

wider supporting interval (chr10:85082795 for body length_tail and chr12:5782829 for 

RetroFat). Then correlation between the top SNP and all other SNPs in the 6 Mb vicinity was 

calculated. The QTL was defined as an interval containing SNPs with r2 > 0.6. Other QTLs on 

the same chromosome were tested to ensure that they were independent of the first. To establish 

independence, we used top SNP from the first QTL as a covariate, and performed a second 

GWAS.  If the resulting GWAS had a additional SNP (on the same chromosome) with a p-value 

that exceeded our permutation-derived threshold, it was considered to be a second, independent 

locus. This process was repeated (including all previously significant SNPs as covariates), until 

no more QTLs were detected on a given chromosome.  

 

Linkage disequilibrium (LD) intervals for the identified QTL were determined by identifying 

those markers that had a high correlation coefficient with the peak marker (r
2
 = 0.6).  Credible 

set analysis (Wellcome Trust Case Control et al. 2012) was also performed for each locus. The 

credible set analysis uses a Bayesian approach to calculate the posterior probability for each SNP 

(“probability of being causal”). This method also chooses the credible set of SNPs, that is the 

smallest set of SNPs that can account for 99% of the posterior probability.   

 

Sample size and QTL detection 

To determine the number of QTLs detected by different samples sizes, we subsampled data from 

three phenotypes chosen to have low (~0.15; fasting glucose), medium (~0.3; BMI) and high 

(~0.45; body weight) chip heritabilities.  For each dataset, we performed 100 random subsamples 

in which we retained 500, 1,000, 1,500, 2,000, or 2,500 individuals (for fasting glucose we could 

not include 2,000 and 2,500 because the total sample size was smaller than 2,000). Thus, we 

produced 1,300 total subsamples for the three phenotypes. We then performed a GWAS for each 

subsampled dataset, using covariates and procedures identical to those described in the previous 

section. We recorded the number of significant QTLs in each subsampled dataset using an 

algorithm to automatically record the number of QTLs detected. First, we scanned each 

chromosome to determine if there was at least one SNP that exceeded the threshold of –log(p) > 

5.6. To avoid situations where only a single, presumably anomalous, SNP showed a significant 

association, we required at least one other SNP within 0.5 Mb have a p-value that was within 2 –

log(p) of the index SNP. If we found a second supporting SNP, we recorded the identification of 

a QTL for that dataset. Some chromosomes were expected to contain more than one independent 

QTL, but we were also concerned that we might count a single locus twice. To avoid counting 
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the same locus twice, we excluded all SNPs with r
2
 > 0.4 relative to the just identified index 

SNP. We then rescanned the chromosome to see if any additional SNPs on this chromosome 

exceeded the threshold of –log(p) > 5.6, if they did and they were supported by a second SNP 

within 0.5 Mb to have a p-value that was within 2 –log(p) of the index SNP, we recorded an 

additional QTL for that dataset. We then repeated these steps as often as needed until no further 

significant QTLs could be identified on a given chromosome.  We then continued this process 

for  all subsequent chromosomes. After scanning the last chromosome, we tabulated the number 

of QTLs detected for that dataset and then repeated this procedure for each of the 1,300 

subsampled datasets. In this way, we determined the number of significant QTLs in 100 possible 

subsamplings of the each of three traits at when using 500, 1,000, 1,500, 2,000, and 2,500 

individuals, and in maximal number of individuals. This algorithm is slightly different from our 

approach to the main analysis presented in this paper because we removed SNPs with r2>0.4 

rather than conditioning on the index SNP.  
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Results  

Strong phenotypic and genetic correlations between multiple adiposity traits 

We observed strong phenotypic and genetic correlations between adiposity traits (Figure 1).  

Although less strong, fasting glucose levels were also significantly correlated with body weight, 

BMI_Tail, BMI_NoTail, RetroFat and EpiFat, but not with body length or ParaFat.  Genetic 

correlations for fasting glucose levels differ from the phenotypic correlations, with a negative 

correlation seen with body length_NoTail and a positive correlation with ParaFat and 

BMI_NoTail. 

 

 

Figure 1. Genetic and phenotypic correlation between adiposity traits and fasting 

glucose. Phenotypic correlations are depicted in the upper part, genetic – in the lower 

part of the matrix. Number inside squares show p-value > 0.05. 

 

Adiposity traits exhibit strong heritability  

Heritability estimates for adiposity traits ranged from 0.26 + 0.03 (BMI_NoTail) to 0.46 + 0.03 

(body weight; Table 2), where heritability estimates for fasting glucose were lower. 
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Table 2. SNP Heritability estimates  

Trait Heritability + SE 

body weight 0.46 + 0.03 

body length_Tail 0.36 + 0.03 

body length_NoTail 0.30 + 0.03 

BMI_Tail 0.31 + 0.03 

BMI_NoTail 0.26 + 0.03 

RetroFat 0.42 + 0.03 

EpiFat 0.37 + 0.03 

ParaFat 0.38 + 0.04 

Fasting Glucose 0.15 + 0.03 

 

Identification of multiple GWAS hits 

We identified a total of 29 independent loci for eight adiposity traits, with four loci mapping to 

more than one trait (Figure 2).  We identified two additional loci for fasting glucose.  LD 

intervals were 0.2-9.2 Mb and contained anywhere from 1 to 96 genes.  Table 3 provides a 

summary of these findings; Supplementary Table 3 contains all information within Table 3 

with additional information such as the strain distribution pattern of the founder strains as well as 

the full list of genes within each interval, and credible set analysis results. The genotype and 

phenotype data needed to reproduce these analyses have been deposited to Gene Network 

(www.genenetwork.org) 

 

 

Figure 2. Combined Manhattan plots of GWAS data for eight adipose traits. Genome-wide 

association results from the GWA analysis. The chromosomal distribution of all the P-values ( - 

log10 P-values) is shown, with top SNPs highlighted. 
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Pleiotropic Loci:  To determine if traits that mapped to the same location are pleiotropic, we 

considered the mean allele frequency (MAF), and the strain distribution pattern of the founder 

strains. In a few cases, we found loci that overlapped, but the MAF and strains distribution 

pattern were very different, suggesting different causal loci that happened to map to 

approximately the same genetic location. We also observed a few cases where the strains 

distribution pattern was similar but not identical (e.g. one strains’ genotype was dissimilar 

between the two loci), we assumed that those situations were consistent with pleiotropy. Note 

that this approach is conceptually similar to the estimation of the phenotype associated with 

founder haplotypes in the diversity outcross, which was first introduced in Sevenson et al 

(Svenson et al. 2012), but would not perform well if there were more than two causal alleles.    

Using these criteria, we designated four loci as pleiotropic, which are highlighted in purple in 

Table 3.  The chr 1: 281 Mb is the strongest, with –logP values that range from 7-20 for nearly 

all of the adiposity traits, including body weight, BMI_Tail, and all three fat pads (RetroFat, 

EpiFat and ParaFat).  Although BMI_Tail maps to the pleitropic locus on chr 1: 281 Mb, 

BMI_NoTail does not.  Interestingly there are other striking differences between body length 

with and without tail when analyzed on their own and when used to calculate BMI.  In addition 

to the pleiotropic loci on chromosome 1, chr 6: ~27 Mb maps both RetroFat and EpiFat.  Finally, 

chromosomes 3 and 7 map body weight, body length_Tail and body length_NoTail.  

Nearby loci that were not considered pleotropic are highlighted in grey in Table 3. We identified 

two sets of QTLs that mapped to similar regions, and therefore might have appeared to be 

pleiotropic; however, after applying the criteria described above, we determined that they were 

not truly pleiotropic because the MAF and strain distribution pattern of the founder strains (see 

Supplementary Table 3) were not similar.  These loci were chr 10: ~110 Mb for fasting glucose 

and body weight and chr 12: 6 Mb for body weight, RetroFat and body length_NoTail. 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/422428doi: bioRxiv preprint 

https://doi.org/10.1101/422428
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3. Summary of QTLs 

Trait 
Peak Marker LD Interval Genes in the LD interval 

Position -logP Ref Allele Allele frequency Effect size start (bp) stop (bp) size (Mb)  

BMI_Tail  chr1:106866154  6.05  G  0.29   0.15 + 0.03 105,730,059 109,396,142 3.67 7 

RetroFat  chr1:160530456  7.51  T  0.53  -0.14 + 0.02 157,254,290 162,857,247 5.60 15 

Body Weight  chr1:185730317  7.58  C  0.74   0.16 + 0.02 184,463,432 187,738,111 3.27 6 

BMI_NoTail  chr1:187300775  6.72  A  0.66   0.15 + 0.02 184,772,656 189,346,447 4.57 27 

ParaFat  chr1:280924549  7.22  G  0.57   0.20 + 0.03 280,876,316 282,114,080 1.24 9 

Body Weight  chr1:281756885  16.21  C  0.58   0.21 + 0.02 280,924,333 282,114,080 1.19 Fam204a, Prlhr, Cacul1 

RetroFat  chr1:281777218  20.21  A  0.57   0.24 + 0.02 280,924,333 282,114,080 1.19 9 

EpiFat  chr1:281802657  14.00  C  0.56   0.29 + 0.03 280,924,333 282,736,277 1.81 13 

BMI_Tail  chr1:282049439  11.44  C  0.55   0.18 + 0.02 280,924,333 282,736,277 1.81 13 

Body Weight  chr2:65816485  6.55  A  0.91   0.20 + 0.03 62,570,942 71,814,490 9.24 6 

RetroFat  chr3:95389621  13.12  A  0.44  -0.19 + 0.02 92,336,188 97,685,154 5.35 30 

Body Length_NoTail  chr3:136021511  6.92  A  0.77  -0.16 + 0.03 132,291,573 137,146,532 4.85 10 

Body Length_Tail  chr3:136021511  5.97  A  0.77  -0.14 + 0.03 132,291,573 137,146,532 4.85 10 

Body Weight  chr3:136021511  7.34  A  0.77  -0.16 + 0.02 132,291,573 137,146,532 4.85 10 

RetroFat  chr3:137537161  8.21  G  0.44  -0.15 + 0.02 136,161,761 138,849,437 2.69 20 

Body Weight  chr5:50933779  6.99  A  0.78  -0.16 + 0.03 49,152,709 50,940,275 1.79 12 

EpiFat  chr6:26266960  7.25  G  0.59  -0.20 + 0.03 22,684,886 28,223,800 5.54 55 

RetroFat  chr6:28148338  19.50  G  0.65  -0.26 + 0.02 25,954,450 28,752,109 2.80 58 

Body Length_Tail  chr6:137745191  5.89  C  0.54  -0.12 + 0.02 136,769,305 138,087,183 1.32 24 

Body Weight  chr7:24886476  7.29  G  0.07   0.26 + 0.04 24,869,890 25,213,445 0.34 Tcp11l2, Nuak1, Ckap4 

Body Weight  chr7:36497588  9.77  C  0.14  -0.24 + 0.03 34,119,928 36,522,260 2.40 21 

Body Length_NoTail  chr7:36517726  7.88  T  0.12  -0.25 + 0.04 34,119,928 36,522,260 2.40 15 

Body Length_Tail  chr7:36517726  14.37  T  0.12  -0.33 + 0.04 34,119,928 36,522,260 2.40 21 

Body Length_Tail  chr8:118711320  5.72  A  0.67   0.13 + 0.02 116,614,891 119,781,444 3.17 96 
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Body Length_Tail  chr9:65078205  6.81  C  0.76   0.16 + 0.03 64,013,585 65,670,399 1.66 20 

BMI_Tail  chr10:84080794  8.21  G  0.57  -0.16 + 0.02 83,442,285 85,006,252 1.56 42 

Body Length_Tail  chr10:85082795  7.37  C  0.72   0.17 + 0.03 84,902,901 85,239,899 0.34 10 

BMI_NoTail  chr10:96804258  7.66  T  0.48  -0.16 + 0.02 96,561,667 98,097,621 1.54 16 

Fasting Glucose 
 

chr10:109944213  6.33  A  0.75  -0.18 + 0.03 108,350,175 110,315,359 1.97 
49 

Body Weight 
 

chr10:111010289  6.10  T  0.41   0.13 + 0.02 110,664,101 111,022,246 0.36 
Tbcd, Znf750, B3gntl1, Metrnl 

Body Length_Tail  chr12:2199384  8.94  C  0.18  -0.22 + 0.03 846,435 5,587,624 4.74 50 

Body Weight  chr12:5738696  9.12  C  0.59   0.16 + 0.02 4,938,015 6,078,451 1.14 6 

RetroFat  chr12:5782829  7.12  T  0.73   0.14 + 0.02 455,837 6,259,634 5.80 59 

Body Length_NoTail  chr12:6239515  6.26  A  0.52   0.13 + 0.02 6,078,237 7,035,028 0.96 9 

Body Length_Tail  chr12:43060205  6.27  G  0.75  -0.15 + 0.02 42,024,283 43,190,584 1.17 Oas1g, Tbx3, Tbx5 

RetroFat  chr13:55021887  7.16  C  0.67   0.14 + 0.02 54,910,667 56,487,438 1.58 7 

Body Length_NoTail  chr14:26365986  6.54  A  0.73  -0.16 + 0.03 25,129,356 26,478,660 1.35 Epha5 

Fasting Glucose  chr14:86029588  6.27  T  0.27  -0.17 + 0.03 82,473,632 87,575,807 5.10 34 

Body Length_NoTail  chr16:64014119  6.35  G  0.55   0.13 + 0.02 64,003,027 64,416,540 0.41 Nrg1 

EpiFat  chr18:12674871  6.47  G  0.22  -0.22 + 0.04 12,597,378 12,792,162 0.19 Klhl14 

BMI_NoTail  chr18:25190274  5.78  T  0.04  -0.34 + 0.07 23,785,532 25,418,376 1.63 20 
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Candidate gene identification 

The number of genes within the identified QTL ranges from 1 to 96 (Table 3).  There are three 

regions that contain a single gene: Epha5 within chr 14: 26 Mb for body length_NoTail, Nrg1 

within chr 16: 64 Mb for body length_NoTail and Klh14 within chr18: 12 Mb for EpiFat.   Both 

Epha5 and Nrg1 are known to be involved in growth and development and are therefore logical 

  

 

Figure 3. Regional association plots.  X-

axis shows chromosomal position. Top 

panel: Regional association plot. The SNPs 

with the lowest p-value (“top SNP”) is 

shown in purple, and its chromosomal 

position is indicated on the plot.  Correlation 

of each SNP with the top SNP is shown in 

color. Middle panel: Credible set track 

shows posterior probability for being causal 

for the SNPs which were identified as the 

smallest set of SNPs accounting for 99% of 

the posterior probability (see Methods). 

Bottom panel: Genes in the region, as 

annotated by the Refseq. 

A. Regional association plot for Body 

weight at Chromosome 1, 280 Mb to 283 

Mb. B. Regional association plot for Body 

Length_NoTail at Chromosome 16, 62.5 Mb 

to 65 Mb. C. Regional association plot for 

Body Length_NoTail at Chromosome 18, 12 

Mb to 13.5 Mb. 
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candidate genes.  In contrast, very little is known about Klhl14, meaning that if this gene is 

responsible for the observed QTL it would offer novel biological insight.  

 

Several other loci contained many genes.  Within the chr 1: 282 Mb locus that is associated with 

multiple adiposity traits, however, we have previously identified a coding polymorphism in Prlhr 

as the likely causal variant for Retrofat (Keele et al. 2018) and it is likely that this gene is driving 

the other traits that map to this highly pleiotropic locus.  In addition, previous work has identified 

multiple genes, including Adcy3, Krtcap3 and Slc30a3, as candidate genes within chr 6: 27 Mb 

locus for RetroFat and EpiFat.  Representative LocusZoom plots for select loci are shown in 

Figure 3, locus zoom plots for all other loci are in Supplemental Figure 1.  

 

Exponential increase in the number of QTL detected with increased sample size 

In an effort to assess the importance of sample size for QTL discovery, we examined the number 

of QTLs identified in sub-samples of the full data-set. We found that the number of QTL 

detected exponentially increases with larger sample size (Figure 4).  The sub-sampling analysis 

was conducted in three traits with low, medium and high chip heritabilities: ~0.15 for fasting 

glucose, ~0.3 for BMI and ~0.45 for body weight, using sample sizes of 500, 1,000, 1,500 for all 

three traits and including samples sizes of 2,000, and 2,500 for BMI and body weight.  We note 

the largest increase in number of QTL detected for body weight, the trait with the highest 

heritability, with more than a ten-fold increase in detected QTL when the sample size is 

increased from 500 to 2500.  Similar trends are seen for both BMI and fasting glucose.   

 

 

Figure 4. Number of detected 

QTLs increases with the 

increase of sample size. Each 

dot is an average number of 

QTLs obtained in 100 GWAS, 

each performed on a randomly 

selected subset of the actual 

dataset. Error bars indicate 

standard deviation. This 

simulation was performed on 

four  traits with different 

heritability: body weight (h2 = 

0.46 + 0.03), body length_Tail  

(h2 = 0.36 + 0.03), BMI_Tail 

(h2 = 0.31 + 0.03) and fasting 

glucose (h2 = 0.15 + 0.03). 
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Discussion 

The current work is the largest GWAS ever conducted in rodents. This study measured multiple 

adiposity traits collected at three different sites at multiple ages.  Traits measured include body 

weight, body length (with and without tail), BMI (calculated with and without tail), fat pad 

weights and fasting glucose. We identified 31 loci, several of which correspond to narrow 

regions that contained logical candidate genes.  We replicated previously identified loci and 

identified many additional novel loci. The large number of significant associations, the small 

regions implicated and the replication of previously reported loci despite age, diet and other 

environmental differences all underscore the power of HS rats for GWAS.  

 

With the exception of fasting glucose, all traits demonstrate strong phenotypic and genetic 

correlations indicating a common or at least overlapping genetic basis. The pleiotropic loci that 

we identified further underscore the common genetic basis of these traits.  The strongest 

pleiotropic locus identified falls on chr 1: 282 Mb and maps five of the adiposity traits.  

Interestingly this locus had previously been identified only for RetroFat in a study using only 

742 HS rats (Keele et al. 2018).  The locus on chr. 6: 37 Mb maps both RetroFat and EpiFat and 

was also previously identified using fewer HS rats (Keele et al. 2018).   We further identify 

novel pleiotropic loci for body weight and body length (with and without tail) on chromosomes 3 

and 7.  Interestingly, our data demonstrate that not all loci that map multiple traits should be 

considered pleiotropic. We identified two regions that map more than one trait, but because both 

the mean allele frequency and the founder strain distribution patterns do not match between the 

traits, these loci are likely driven by different genes and/or variants.   

 

One of the strengths of using a highly recombinant outbred strain such as the HS is the ability to 

map to relatively small regions of the genome, greatly narrowing the number of potential 

candidate genes that may drive the QTL.  In the current work, three of the identified loci contain 

only a single gene.  For example, Eph receptor A5 (Epha5) is the only gene that fall within the 

chr 14 locus for body length_NoTail.  Eph receptors make up the largest sub-family of the 

receptor protein tyrosine kinases and are known to be involved in embryonic development, cell 

migration and axon guidance.   Although Epha5 has not previously been associated with body 

weight or height in human GWAS, Epha5 knock-out mice have increased body weight relative 

to wild-type mice (Mamiya et al. 2008), suggesting a potential role for this gene at the QTL.  

Further work is needed to demonstrate how Epha5 may be involved in body length of HS rats.  

In addition, Neureglin1 (Nrg1) is the only gene that falls within the chr. 16 locus for body 
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length_NoTail.  Nrg1 mediates cell-cell signaling and plays a critical role in growth and 

development of multiple organ systems.  ICV injection of Nrg1 leads to increased food intake 

and weight gain in rodents (Ennequin et al. 2015) and a recent study has demonstrated positive 

metabolic effect of Nrg1 on multiple metabolic parameters, including body weight (Zhang et al. 

2018).  In addition, Nrg1 has been associated with BMI in a Korean population (Lee et al. 2016), 

making Nrg1 a highly plausible gene within this region.  Finally, Kelch like family member 14 

(Klhl14) is the only gene that falls within the Epifat locus at chr 18.  This gene localizes to the 

endoplasmic reticulum and has not previously been associated with adiposity traits in human or 

rat GWAS, suggesting that this finding could offer a novel biological insight.  Regions 

containing a single gene are attractive, but we note that these regions may also contain regulatory 

variants for neighboring genes or un-annotated genes or transcripts that underlie the association 

with these traits.      

In addition to identification of multiple novel loci, the current work replicates two previously 

identified QTL for fat pad weight in HS rats (Keele et al. 2018): the pleiotropic locus on chr 1: 

282 Mb and the locus for RetroFat and EpiFat on chr 6: 28 Mb.  In previous work, these loci 

both mapped to only RetroFat, likely because the previous study employed only 742 HS rats and 

was therefore significantly underpowered relative to the current study.  That study employed 

multiple genetic and statistical tools to identify candidate genes and likely causal variants that 

underlie these loci.  Within the chromosome 1 locus, a highly conserved, likely damaging variant 

was identified within the prolactin releasing hormone receptor (Prlhr) gene, which is known to 

play a role in feeding behavior. ICV administration of prolactin into the hypothalamus decreases 

food intake (Lawrence et al. 2000), and Prlhr knock-out mice exhibiting increased food intake, 

body weight and fat pad weight (Gu et al. 2004).  The variant falls within the start codon of the 

gene and leads to removal of the first 65 amino acids of the protein (Keele et al. 2018).  Previous 

work also identified multiple genes within the chromosome 6 locus that could impact fat pad 

weight: Adcy3, Krtcap3 and Slc30a3.  Our previous work identified a highly conserved, 

potentially damaging variant in Adcy3 that is located within the transmembrane pocket that likely 

alters that way that ADCY3 interacts with other proteins.  In addition, using gene expression data 

from HS liver, we identified Krtcap3 and Slc30a3 as likely mediators of fat pad weight at this 

locus.  Although Adcy3 has been found to play a role in both complex and monogenic forms of 

obesity (Nordman et al. 2008; Speliotes et al. 2010; Grarup et al. 2018; Saeed et al. 2018) and 

has recently been shown to interact with MC4R within the hypothalamic neuron to influence 

weight gain (Siljee et al. 2018), neither Krtcap3 nor Slc30a3 have previously been associated 

with adiposity in human studies.  This work demonstrates the utility of the HS rat model of 
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identifying both novel and known genes involved in human adiposity as well as the power of HS 

rats to uncover multiple causal genes and likely variants underlying a single complex locus. 

Future work will employ RNAseq in multiple tissues including brain, liver and adipose, to 

identify potential transcripts whose abundance is influence by these same loci (that is, to identify 

eQTLs that co-map with and share the same strain distribution pattern with, these phenotypic 

QTLs).  

This is the largest GWAS ever performed HS rats and has identified a similarly large number of 

significant loci.  We subsampled this dataset to demonstrate the well-understood role of sample 

size on QTL identification.  We find an exponential increase in the number of QTL identified 

with increasing sample size, particularly for body weight, a trait with high heritability.  This 

indicates that many previous studies are likely underpowered and argues for increased sample 

sizes in future genetic studies of complex traits in outbred rodents. Similar observations in 

human genetics (Visscher et al. 2012; Sullivan et al. 2018) suggest an initial exponential growth 

of discoveries, followed by a lineal phase when increasing sample size produces a linear increase 

in the number of significant loci. Ongoing studies by the NIDA-funded Center for GWAS in 

outbred rats (P50DA037844; see www.ratgenes.org) will allow us to increase the sample size 

well above 5,000 rats in the future, which should produce even more significant loci for these 

traits.  

Although this is one of the most well powered genetic studies in a rodent model, there are 

limitations.  Despite the fact that adiposity measures were collected from both males and 

females, we found that the current study is underpowered to confidently identify sex-specific 

loci.  We are continuing to collect adiposity traits in additional animals and plan to use large 

sample sizes to identify sex-specific QTLs.  A second limitation is that we do not currently have 

expression QTL information, which would have been helpful for identifying alleles that might 

alter these traits by modulating gene expression. Because these rats had essentially no 

opportunities for exercise and also did not have the ability to select different foods, our study 

would not be expected to identify some of the loci important for human obesity, which likely 

influence propensity to exercise and food choice, both of which have obvious implications for 

obesity. Finally, our study examined these traits at only one time point, which differed across the 

three study sites, which prevented us from exploring the temporal specificity of these QTLs, and 

may have diluted our power if different loci are important for these traits at the different ages 

measured in our study.  
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In conclusion, the current study is the largest GWAS using HS rats ever performed. We 

replicated previously identified loci from a smaller GWAS and identified numerous novel loci 

for multiple adiposity traits.  Three of these loci contain only a single gene, indicating these are 

the likely causal genes at these regions.  Several other loci contain only a few genes, which 

simplifies the identification of candidate genes.  This work demonstrates the power of HS rats for 

fine-mapping and gene identification of adiposity traits as well as demonstrates the importance 

of large sample sizes for genetic dissection of complex traits. 
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