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Abstract

Obesity is a global health crisis that is influenced by both genetic and environmental factors.
Rodent model organisms can be used to understand the biological and genetic basis of obesity
and related morphological traits. A major advantage of model organisms is that they can be
studied under uniform environmental conditions, thus reducing the complex role of environment
and gene by environment interactions. Furthermore, fat pads and other tissues can be dissected
and weighed, so that their role in determining body weight can be precisely defined. Highly
recombinant populations allow for genetic fine-mapping of complex traits, greatly reducing the
number of plausible candidate genes. We performed the largest rat GWAS ever undertaken,
using 3,173 male and female adult N/NIH heterogeneous stock (HS) rats, which were created by
mixing 8 inbred strains. We identified 31 independent loci for body weight, body length, body
mass index, fat pad weight (retroperitoneal, epididymal, and parametrial), and fasting glucose.
We observed strong evidence of pleotropic effects across multiple phenotypes. Three loci
contained only a single gene (Epha5, Nrgl and Klhl14), whereas others were larger and
contained many genes. We replicated a locus containing Prlhr, and a second locus containing
Adcy3, which we had previously identified in a smaller HS rat study. Finally, by subsampling our
dataset, we showed an exponential growth of significant loci as sample size increased towards
3,173. Our results demonstrate the potential for rodent studies to add to our understanding of the
molecular genetic factors that contribute to obesity-relevant traits and emphasize the importance

of sample size.
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Introduction

Obesity is a growing health epidemic; over one third of the adult population and almost one fifth
of all children in the United States are considered obese. There has been a steady increase in
prevalence of obesity since the 1970’s, and prevalence is continuing to rise (Hales et al. 2018).
Obesity is a major risk factor for multiple diseases including cardiovascular disease, type 2
diabetes, cancer, and stroke (Wang et al. 2011), thereby placing a tremendous burden on society.
Obesity is caused by interaction of genetic and environmental factors with genetic factors
accounting for up to 70% of the population variance (Maes et al. 1997). Although human
genome wide association studies (GWAS) of obesity have been extremely productive (Loos

2018), our biological understanding of the genetic architecture of obesity is far from complete.

Model organism studies of body weight, morphometric, and metabolic traits represent a
complementary approach to understanding the genetic basis of obesity. GWAS in model
organisms have traditionally been limited by the lack of recombination present in laboratory
crosses. Heterogeneous stocks (HS) rats were created in 1984 by interbreeding eight inbred
founder strains and maintaining them as an outbred population in a way that minimizes
inbreeding (Hansen and Spuhler 1984). This strategy has made HS rats ideal for fine-mapping
genetic loci (Solberg Woods 2014). Furthermore, HS founder strains have been fully sequenced
(Baud et al. 2013), such that coding polymorphisms can be rapidly identified (Keele et al. 2018).
A third advantage of using HS rats is the ability to collect tissues under controlled environmental
conditions. These tissues can be used to measure gene expression, thus permitting the
identification of expression QTLs (eQTLs; (Tsaih et al. 2014; Parker et al. 2016; Keele et al.
2018)). Our group has previously mapped adiposity traits in HS rats using 743 male HS rats,
which identified two genetic loci for visceral adiposity and body weight (Keele et al. 2018).

Through the NIDA-funded Center for GWAS in outbred rats (P50DA037844; see
www.ratgenes.org), behavioral traits that are relevant to drug abuse have been assessed in
thousands of male and female HS rats at three institutions throughout the United States. To more
fully utilize these rats, we have collected phenotypic data on body weight and length (which
permit calculation of body mass index (BMI)), fat pad weight and fasting glucose levels. This

dataset provides an unprecedented opportunity to map adiposity traits in a large number HS rats.
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Methods

Animals

The NMcwi:HS colony, hereafter referred to as HS, was initiated by the NIH in 1984 using the
following eight inbred founder strains: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N,
WKY/N and WN/N (Hansen and Spuhler 1984). The breeding colony has been maintained at
the Medical College of Wisconsin (MCW) since 2006. The colony for the current studies
consisted of 64 breeder pairs maintained using a mating scheme that takes into account the
kinship coefficient such that closely related animals are not bred together. For this study, rats
from generations 73 to 80 were used. Breeding rats at MCW were given ad libitum access to
Teklad 5010 diet (Harlan Laboratories).

The animals used for this study are part of a large multi-centered project focused on genetic
analysis of behavioral phenotypes related to drug abuse. HS rats from MCW were sent to three
institutions throughout the United States: University of Tennessee Health Science Center (TN),
University at Buffalo (NY), and University of Michigan (MI). Rats were shipped at 3-6 weeks
of age and each site received multiple shipments over more than two years (from 10/27/2014 —
03/07/2017). Once they arrived, rats in TN were fed Teklad Irradiated LM-485 Mouse/Rat Diet;
rats in NY were fed Envigo Teklad 18% Protein Rodent Diet, and rats in M| were fed Labdiet
Picolab Laboritory Rodent Diet Irradiated.

Rats were exposed to a different battery of behavioral testing at each site (see Supplemental
Table 1) followed by euthanasia, which occurred at different ages at each site. All phenotypes
presented in this paper were collected at the time of euthanasia. Briefly, in MI, rats were housed
in trios, exposed to cocaine for five days (15 mg/kg), and euthanized 4-7 days after cocaine
exposure at 89 + 6 days of age. In NY, rats were housed in pairs, tested for multiple behaviors
over 16 weeks, exposed to cocaine for three days (10 mg/kg) and euthanized 7-10 days after
cocaine exposure at 198 + 13 days of age. In TN, there were two separate cohorts: breeders (sent
from MCW) and experimental rats (bred in TN). Female breeders had mostly one, sometimes
two litters but underwent no behavioral testing. The experimental rats were tested for multiple
behaviors, exposed to nicotine (self-administration) for 12 days, and euthanized at 73 + 12 days
of age. The number of rats phenotyped at each site, as well as ages when adiposity phenotypes
were collected are shown in Table 1). Details of the experimental pipelines are shown in the
Supplemental Table 1.
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Table 1. Age and number of rats at time adiposity phenotypes were collected.

Phenotyping Age, days,
site Males, N Females, N Total N mean +SD
Ml 519 014 1,033 89 +/- 6
NY 449 443 892 198 +/- 13
TN experiment 458 451 909 73 +/- 12
TN breeders 182 157 339 169 +/- 34
1,608 1,565 3,173

Phenotyping and Tissue collection

Several days after completion of behavioral experiments (see above), rats were fasted overnight
(17 +/-2 hours), and body weight was measured. Under anesthesia (phentobarbital at M1 and
NY, isoflurane at TN), two measures of body length (from nose to base of the tail (body
length_NoTail) and from nose to end of tail (body length_Tail)) were collected, allowing us to
calculate two measures of body mass index: BMI_NoTail and BMI_Tail. BMI was calculated
as: (body weight/body length?) x 10. For animals in Ml and NY, we also measured fasting
glucose levels using the Contour Next EZ system (Bayer, Elkhart, IN). Several tissues were
dissected and weighed including retroperitoneal, epididymal (males), and parametrial (females)
visceral fat pads, hereafter referred to as RetroFat, EpiFat, and ParaFat respectively. Spleen was
dissected and sent to University of California, San Diego (UCSD) for DNA extraction and
genotyping (described below). All protocols were approved by the Institutional Animal Care and

Use Committees of each institution.

Genotyping

DNA was extracted from spleen using a salting out procedure or the Agencourt DNAdvance kit
(Beckmann). Genotypes were determined using genotyping-by-sequencing (GBS), as described
elsewhere (Parker et al. 2016). GBS is a reduced representation genotyping method that
sequences the small fraction of the genome comprised of restriction fragments of a certain size.
Briefly, DNA was digested with endonucleases Pstl and Nlalll, then custom adapters barcoded
for individual subjects were ligated to the fragments. The correct ligation product selectively
amplified for 12 cycles of PCR, the resulting libraries were quantitated and pooled to make 48

samples per sequencing lane, then size-selected using PippinPrep to retain fragments between
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300 and 450 base pairs. Purified, pooled libraries were sequenced at 100 bp (single end), on
[llumina 4000 instrument, producing ~7 million reads per sample. The reads were processed to
remove barcode and adaptor sequences, filtered for quality, and mapped to the rn6 rat genome
assembly. Variant calling was done with ANGSD (Korneliussen et al. 2014), missing genotypes
within the sample were imputed with BEAGLE. Imputation to a reference panel was done using
IMPUTEZ2. This protocol produced 3,400,759 SNPs with error rate below 1%. Variants for X-
and Y-chromosomes were not called. Prior to GWAS, SNPs in high linkage disequilibrium were
removed using function LDprune (REF: https://www.cog-genomics.org/plink/1.9/1d ) with r? cut-
off 0.95; this produced set of 128,447 SNPs which were used for GWAS, genetic correlations,

and heritability estimates. The unpruned set of SNPs was used for LocusZoom plots.

Rats were removed from subsequent analysis if they were discordant between recorded and
genetically determined sex (n=6) or coat color (n=8), indicating errors in record keeping or a

sample mix up.

Phenotypic and genetic correlations and heritability estimates

Each trait within each research site was quantile normalized, separately for males and females,
using R function gnorm. Relevant covariates (including age, batch number and dissector) were
identified for each trait, and covariate effects were regressed out if they were significant and
explained more than 2% of the variance (see Supplemental Table 2). Residuals were then
quantile normalized again, after which the data for each sex and site was pooled prior to further
analysis (phenotypic and genetic correlations, heritability and GWAS). Phenotypic correlations
were determined using Spearman's test. Genetic correlations were calculated using bivariate
GREML analysis as implemented by GTCA (Yang et al. 2011; Lee et al. 2012). GCTA-GREML

analysis was used to estimate proportion of variance attributable to SNPs.

Genetic mapping

GWAS analysis employed a linear mixed model, as implemented in the software GEMMA
(Wang et al. 2016), using dosages and a genetic relatedness matrix (GRM) to account for the
complex family relationships within the HS population. We used the Leave One Chromosome
Out (LOCO) method to guard against proximal contamination, as previously described (Cheng et
al. 2013; Gonzales et al. 2018). Significance thresholds were calculated using permutation,
because all traits were quantile normalized, we were able to use the same threshold for all traits
(Cheng and Palmer 2013). To identify QTLS, we scanned each chromosome to determine if

there was at least one SNP that exceeded the permutation-derived threshold of —log(p) > 5.6,
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that was supported by a second SNP within 0.5 Mb to have a p-value that was within 2 —log(p) of
the index SNP. This algorithm failed to identify 2 SNPs, which were then identified by using
wider supporting interval (chr10:85082795 for body length_tail and chr12:5782829 for
RetroFat). Then correlation between the top SNP and all other SNPs in the 6 Mb vicinity was
calculated. The QTL was defined as an interval containing SNPs with r2 > 0.6. Other QTLS on
the same chromosome were tested to ensure that they were independent of the first. To establish
independence, we used top SNP from the first QTL as a covariate, and performed a second
GWAS. If the resulting GWAS had a additional SNP (on the same chromosome) with a p-value
that exceeded our permutation-derived threshold, it was considered to be a second, independent
locus. This process was repeated (including all previously significant SNPs as covariates), until

no more QTLs were detected on a given chromosome.

Linkage disequilibrium (LD) intervals for the identified QTL were determined by identifying
those markers that had a high correlation coefficient with the peak marker (r* = 0.6). Credible
set analysis (Wellcome Trust Case Control et al. 2012) was also performed for each locus. The
credible set analysis uses a Bayesian approach to calculate the posterior probability for each SNP
(“probability of being causal’’). This method also chooses the credible set of SNPs, that is the

smallest set of SNPs that can account for 99% of the posterior probability.

Sample size and QTL detection

To determine the number of QTLs detected by different samples sizes, we subsampled data from
three phenotypes chosen to have low (~0.15; fasting glucose), medium (~0.3; BMI) and high
(~0.45; body weight) chip heritabilities. For each dataset, we performed 100 random subsamples
in which we retained 500, 1,000, 1,500, 2,000, or 2,500 individuals (for fasting glucose we could
not include 2,000 and 2,500 because the total sample size was smaller than 2,000). Thus, we
produced 1,300 total subsamples for the three phenotypes. We then performed a GWAS for each
subsampled dataset, using covariates and procedures identical to those described in the previous
section. We recorded the number of significant QTLs in each subsampled dataset using an
algorithm to automatically record the number of QTLs detected. First, we scanned each
chromosome to determine if there was at least one SNP that exceeded the threshold of —log(p) >
5.6. To avoid situations where only a single, presumably anomalous, SNP showed a significant
association, we required at least one other SNP within 0.5 Mb have a p-value that was within 2 —
log(p) of the index SNP. If we found a second supporting SNP, we recorded the identification of
a QTL for that dataset. Some chromosomes were expected to contain more than one independent

QTL, but we were also concerned that we might count a single locus twice. To avoid counting
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the same locus twice, we excluded all SNPs with r* > 0.4 relative to the just identified index
SNP. We then rescanned the chromosome to see if any additional SNPs on this chromosome
exceeded the threshold of —log(p) > 5.6, if they did and they were supported by a second SNP
within 0.5 Mb to have a p-value that was within 2 —log(p) of the index SNP, we recorded an
additional QTL for that dataset. We then repeated these steps as often as needed until no further
significant QTLs could be identified on a given chromosome. We then continued this process
for all subsequent chromosomes. After scanning the last chromosome, we tabulated the number
of QTLs detected for that dataset and then repeated this procedure for each of the 1,300
subsampled datasets. In this way, we determined the number of significant QTLs in 100 possible
subsamplings of the each of three traits at when using 500, 1,000, 1,500, 2,000, and 2,500
individuals, and in maximal number of individuals. This algorithm is slightly different from our
approach to the main analysis presented in this paper because we removed SNPs with r2>0.4

rather than conditioning on the index SNP.
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Results

Strong phenotypic and genetic correlations between multiple adiposity traits

We observed strong phenotypic and genetic correlations between adiposity traits (Figure 1).
Although less strong, fasting glucose levels were also significantly correlated with body weight,
BMI_Tail, BMI_NoTail, RetroFat and EpiFat, but not with body length or ParaFat. Genetic
correlations for fasting glucose levels differ from the phenotypic correlations, with a negative
correlation seen with body length_NoTail and a positive correlation with ParaFat and
BMI_NoTail.
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Figure 1. Genetic and phenotypic correlation between adiposity traits and fasting
glucose. Phenotypic correlations are depicted in the upper part, genetic — in the lower
part of the matrix. Number inside squares show p-value > 0.05.

Adiposity traits exhibit strong heritability
Heritability estimates for adiposity traits ranged from 0.26 + 0.03 (BMI_NoTail) to 0.46 + 0.03
(body weight; Table 2), where heritability estimates for fasting glucose were lower.
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Table 2. SNP Heritability estimates

Trait Heritability + SE
body weight 0.46 +0.03
body length_Tail 0.36 + 0.03
body length_NoTail |0.30 + 0.03
BMI_Tail 0.31+0.03
BMI_NoTail 0.26 + 0.03
RetroFat 0.42 +0.03
EpiFat 0.37 +0.03
ParaFat 0.38 + 0.04
Fasting Glucose 0.15+0.03

Identification of multiple GWAS hits

We identified a total of 29 independent loci for eight adiposity traits, with four loci mapping to
more than one trait (Figure 2). We identified two additional loci for fasting glucose. LD
intervals were 0.2-9.2 Mb and contained anywhere from 1 to 96 genes. Table 3 provides a
summary of these findings; Supplementary Table 3 contains all information within Table 3
with additional information such as the strain distribution pattern of the founder strains as well as
the full list of genes within each interval, and credible set analysis results. The genotype and
phenotype data needed to reproduce these analyses have been deposited to Gene Network

(www.genenetwork.orq)
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Figure 2. Combined Manhattan plots of GWAS data for eight adipose traits. Genome-wide
association results from the GWA analysis. The chromosomal distribution of all the P-values ( -
log10 P-values) is shown, with top SNPs highlighted.
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Pleiotropic Loci: To determine if traits that mapped to the same location are pleiotropic, we
considered the mean allele frequency (MAF), and the strain distribution pattern of the founder
strains. In a few cases, we found loci that overlapped, but the MAF and strains distribution
pattern were very different, suggesting different causal loci that happened to map to
approximately the same genetic location. We also observed a few cases where the strains
distribution pattern was similar but not identical (e.g. one strains’ genotype was dissimilar
between the two loci), we assumed that those situations were consistent with pleiotropy. Note
that this approach is conceptually similar to the estimation of the phenotype associated with
founder haplotypes in the diversity outcross, which was first introduced in Sevenson et al
(Svenson et al. 2012), but would not perform well if there were more than two causal alleles.
Using these criteria, we designated four loci as pleiotropic, which are highlighted in purple in
Table 3. The chr 1: 281 Mb is the strongest, with —logP values that range from 7-20 for nearly
all of the adiposity traits, including body weight, BMI_Tail, and all three fat pads (RetroFat,
EpiFat and ParaFat). Although BMI_Tail maps to the pleitropic locus on chr 1: 281 Mb,
BMI_NoTail does not. Interestingly there are other striking differences between body length
with and without tail when analyzed on their own and when used to calculate BMI. In addition
to the pleiotropic loci on chromosome 1, chr 6: ~27 Mb maps both RetroFat and EpiFat. Finally,
chromosomes 3 and 7 map body weight, body length_Tail and body length_NoTail.

Nearby loci that were not considered pleotropic are highlighted in grey in Table 3. We identified
two sets of QTLs that mapped to similar regions, and therefore might have appeared to be
pleiotropic; however, after applying the criteria described above, we determined that they were
not truly pleiotropic because the MAF and strain distribution pattern of the founder strains (see
Supplementary Table 3) were not similar. These loci were chr 10: ~110 Mb for fasting glucose
and body weight and chr 12: 6 Mb for body weight, RetroFat and body length_NoTail.
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Table 3. Summary of QTLs

) Peak Marker LD Interval Genes in the LD interval
Trait Position -logP Ref Allele | Allele frequency | Effect size start (bp) stop (bp) size (Mb)
BMI_Tail chr1:106866154 6.05 G 0.29 0.15+0.03 | 105,730,059 | 109,396,142 | 3.67 7
RetroFat chr1:160530456 751 T 0.53 -0.14+0.02 | 157,254290 | 162,857,247 |  5.60 15
Body Weight chr1:185730317 7.58 C 0.74 0.16 + 0.02 184,463,432 | 187,738,111 3.27 6
BMI_NoTail chr1:187300775 6.72 A 0.66 015+0.02 | 184,772,656 | 189,346,447 | 457 27
ParaFat chr1:280924549 7.22 G 0.57 0.20+0.03 | 280,876,316 | 282114080 | 1.24 9
Body Weight chr1:281756885 | 16.21 C 0.58 021+002 | 280924333 | 282114080 | 1.19 Fam204a, Prihr, Cacull
RetroFat chr1:281777218 | 20.21 A 0.57 024+002 | 280924333 | 282114080 | 1.19 9
EpiFat chr1:281802657 | 14.00 c 0.56 029+003 | 280924333 | 282736277 | 1.1 13
BMI_Tail chr1:282049439 | 11.44 c 0.55 0.18+002 | 280924333 | 282736277 | 1.1 13
Body Weight chr2:65816485 6.55 A 0.91 0.20 +0.03 62,570,942 | 71,814,490 | 9.24 6
RetroFat chr3:95389621 13.12 A 0.44 -0.19 +0.02 92,336,188 | 97,685,154 | 5.35 30
Body Length_NoTail | cnr3:136021511 6.92 A 0.77 -0.16+0.03 | 132,291573 | 137,146,532 | 4.85 10
Body Length_Tail chr3:136021511 5.97 A 0.77 -0.14+0.03 | 132,291573 | 137,146532 | 4.85 10
Body Weight chr3:136021511 7.34 A 0.77 -016+0.02 | 132,291573 | 137,146532 | 4.85 10
RetroFat chr3:137537161 8.21 G 0.44 -0.15+0.02 | 136,161,761 | 138849437 |  2.69 20
Body Weight chr5:50933779 6.99 A 0.78 -0.16 +0.03 49,152,709 | 50,940,275 |  1.79 12
EpiFat chr6:26266960 7.25 G 0.59 -0.20 +0.03 22,684,886 | 28,223,800 | 5.54 55
RetroFat chr6:28148338 19.50 G 0.65 -0.26 +0.02 25954450 | 28,752,109 |  2.80 58
Body Length_Tail chr6:137745191 5,89 c 0.54 -0.12+0.02 | 136,769,305 | 138,087,183 | 1.32 24
Body Weight chr7:24886476 7.29 G 0.07 0.26 +0.04 24,869,800 | 25213445 | 0.34 Tcplll2, Nuakl, Ckap4
Body Weight chr7:36497588 9.77 c 0.14 -0.24 +0.03 34,119,928 | 36,522,260 |  2.40 21
Body Length_NoTail | chr7:36517726 7.88 T 0.12 -0.25 +0.04 34,119,928 36,522,260 |  2.40 15
Body Length_Tail chr7:36517726 14.37 T 0.12 -0.33 + 0.04 34,119,928 | 36,522,260 |  2.40 21
Body Length_Tail chr8:118711320 5.72 A 0.67 0134002 | 116,614,801 | 119,781,444 | 3.7 96
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Body Length_Tail chr9:65078205 6.81 c 0.76 0.16 +0.03 64,013,585 | 65,670,399 |  1.66 20
BMI_Tail chr10:84080794 8.21 G 0.57 -0.16 +0.02 83,442,285 85,006,252 1.56 42

Body Length_Tail chr10:85082795 7.37 c 0.72 0.17 +0.03 84,902,001 | 85239,899 | 0.34 10
BMI_NoTail chr10:96804258 7.66 T 0.48 -0.16 +0.02 96,561,667 98,097,621 1.54 16

e chr10:109944213 | 6.33 A 0.75 018+003 | 108350,175 | 110,315350 | 1.7 i
7N chr10:111010289 | 6.10 T 0.41 013+002 | 110,664,101 | 111022246 | o036 | '°cd Znf7S0, B3gntll, Metml
Body Length_Tail chr12:2199384 8.94 c 0.18 -0.22 +0.03 846,435 5587,624 | 474 50

Body Weight chr12:5738696 9.12 c 0.59 0.16 +0.02 4,938,015 6,078,451 | 1.14 6
RetroFat chr12:5782829 7.12 T 0.73 0.14 +0.02 455,837 6,259,634 | 5.80 59

Body Length_NoTail | ¢chr12:6239515 6.26 A 0.52 0.13 +0.02 6,078,237 7,035,028 | 0.96 9

Body Length_Tail chr12:43060205 | 6.27 G 0.75 -0.15 +0.02 42,024,283 | 43190584 | 117 Oaslg, Thx3, Thx5
RetroFat chr13:55021887 7.16 c 0.67 0.14 +0.02 54,910,667 | 56,487,438 | 158 !

Body Length_NoTail | chr14:26365986 | 6.54 A 0.73 -0.16 + 0.03 25129356 | 26,478,660 | 1.35 Epha5
Fasting Glucose chr14:86029588 6.27 T 0.27 -0.17 +0.03 82,473,632 | 87575807 | 5.10 34

Body Length_NoTail chr16:64014119 6.35 G 0.55 0.13 + 0.02 64,003,027 64,416,540 0.41 Nrgl
EpiFat chr18:12674871 | 6.47 G 0.22 -0.22 +0.04 12597,378 | 12,792,162 | 0.19 Kihl14
BMI_NoTail chr18:25190274 5.78 T 0.04 -0.34 +0.07 23785532 | 25418376 | 163 20
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Candidate gene identification

The number of genes within the identified QTL ranges from 1 to 96 (Table 3). There are three
regions that contain a single gene: Epha5 within chr 14: 26 Mb for body length_NoTail, Nrgl
within chr 16: 64 Mb for body length_NoTail and Klh14 within chrl18: 12 Mb for EpiFat. Both
Ephab and Nrgl are known to be involved in growth and development and are therefore logical
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candidate genes. In contrast, very little is known about Klhl14, meaning that if this gene is

responsible for the observed QTL it would offer novel biological insight.

Several other loci contained many genes. Within the chr 1: 282 Mb locus that is associated with
multiple adiposity traits, however, we have previously identified a coding polymorphism in Prlhr
as the likely causal variant for Retrofat (Keele et al. 2018) and it is likely that this gene is driving
the other traits that map to this highly pleiotropic locus. In addition, previous work has identified
multiple genes, including Adcy3, Krtcap3 and Slc30a3, as candidate genes within chr 6: 27 Mb
locus for RetroFat and EpiFat. Representative LocusZoom plots for select loci are shown in

Figure 3, locus zoom plots for all other loci are in Supplemental Figure 1.

Exponential increase in the number of QTL detected with increased sample size

In an effort to assess the importance of sample size for QTL discovery, we examined the number
of QTLs identified in sub-samples of the full data-set. We found that the number of QTL
detected exponentially increases with larger sample size (Figure 4). The sub-sampling analysis
was conducted in three traits with low, medium and high chip heritabilities: ~0.15 for fasting
glucose, ~0.3 for BMI and ~0.45 for body weight, using sample sizes of 500, 1,000, 1,500 for all
three traits and including samples sizes of 2,000, and 2,500 for BMI and body weight. We note
the largest increase in number of QTL detected for body weight, the trait with the highest
heritability, with more than a ten-fold increase in detected QTL when the sample size is

increased from 500 to 2500. Similar trends are seen for both BMI and fasting glucose.

30- Figure 4. Number of detected
Body weight, h* = .46 ° QTLs increases with the
Body length Tail, h? = .36 increase of sample size. Each
BMI Tail, h2= .31 dot is an average number of
QTLs obtained in 100 GWAS,
each performed on a randomly
selected subset of the actual
dataset. Error bars indicate
standard deviation. This
simulation was performed on
four traits with different
heritability: body weight (h2 =
0.46 + 0.03), body length_Tail
' ' ' y ' y (h2 =0.36 + 0.03), BMI_Tail
0 500 1000 1500 2000 2500 3000 (h2 = 0.31 +0.03) and fasting

sample size glucose (h2 = 0.15 + 0.03).
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Discussion

The current work is the largest GWAS ever conducted in rodents. This study measured multiple
adiposity traits collected at three different sites at multiple ages. Traits measured include body
weight, body length (with and without tail), BMI (calculated with and without tail), fat pad
weights and fasting glucose. We identified 31 loci, several of which correspond to narrow
regions that contained logical candidate genes. We replicated previously identified loci and
identified many additional novel loci. The large number of significant associations, the small
regions implicated and the replication of previously reported loci despite age, diet and other

environmental differences all underscore the power of HS rats for GWAS.

With the exception of fasting glucose, all traits demonstrate strong phenotypic and genetic
correlations indicating a common or at least overlapping genetic basis. The pleiotropic loci that
we identified further underscore the common genetic basis of these traits. The strongest
pleiotropic locus identified falls on chr 1: 282 Mb and maps five of the adiposity traits.
Interestingly this locus had previously been identified only for RetroFat in a study using only
742 HS rats (Keele et al. 2018). The locus on chr. 6: 37 Mb maps both RetroFat and EpiFat and
was also previously identified using fewer HS rats (Keele et al. 2018). We further identify
novel pleiotropic loci for body weight and body length (with and without tail) on chromosomes 3
and 7. Interestingly, our data demonstrate that not all loci that map multiple traits should be
considered pleiotropic. We identified two regions that map more than one trait, but because both
the mean allele frequency and the founder strain distribution patterns do not match between the

traits, these loci are likely driven by different genes and/or variants.

One of the strengths of using a highly recombinant outbred strain such as the HS is the ability to
map to relatively small regions of the genome, greatly narrowing the number of potential
candidate genes that may drive the QTL. In the current work, three of the identified loci contain
only a single gene. For example, Eph receptor A5 (Ephab5) is the only gene that fall within the
chr 14 locus for body length_NoTail. Eph receptors make up the largest sub-family of the
receptor protein tyrosine kinases and are known to be involved in embryonic development, cell
migration and axon guidance. Although Epha5 has not previously been associated with body
weight or height in human GWAS, Epha5 knock-out mice have increased body weight relative
to wild-type mice (Mamiya et al. 2008), suggesting a potential role for this gene at the QTL.
Further work is needed to demonstrate how Epha5 may be involved in body length of HS rats.

In addition, Neureglinl (Nrgl) is the only gene that falls within the chr. 16 locus for body
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length_NoTail. Nrgl mediates cell-cell signaling and plays a critical role in growth and
development of multiple organ systems. ICV injection of Nrgl leads to increased food intake
and weight gain in rodents (Ennequin et al. 2015) and a recent study has demonstrated positive
metabolic effect of Nrgl on multiple metabolic parameters, including body weight (Zhang et al.
2018). In addition, Nrgl has been associated with BMI in a Korean population (Lee et al. 2016),
making Nrgl a highly plausible gene within this region. Finally, Kelch like family member 14
(KIhl14) is the only gene that falls within the Epifat locus at chr 18. This gene localizes to the
endoplasmic reticulum and has not previously been associated with adiposity traits in human or
rat GWAS, suggesting that this finding could offer a novel biological insight. Regions
containing a single gene are attractive, but we note that these regions may also contain regulatory
variants for neighboring genes or un-annotated genes or transcripts that underlie the association
with these traits.

In addition to identification of multiple novel loci, the current work replicates two previously
identified QTL for fat pad weight in HS rats (Keele et al. 2018): the pleiotropic locus on chr 1:
282 Mb and the locus for RetroFat and EpiFat on chr 6: 28 Mb. In previous work, these loci
both mapped to only RetroFat, likely because the previous study employed only 742 HS rats and
was therefore significantly underpowered relative to the current study. That study employed
multiple genetic and statistical tools to identify candidate genes and likely causal variants that
underlie these loci. Within the chromosome 1 locus, a highly conserved, likely damaging variant
was identified within the prolactin releasing hormone receptor (Prlhr) gene, which is known to
play a role in feeding behavior. ICV administration of prolactin into the hypothalamus decreases
food intake (Lawrence et al. 2000), and Prlhr knock-out mice exhibiting increased food intake,
body weight and fat pad weight (Gu et al. 2004). The variant falls within the start codon of the
gene and leads to removal of the first 65 amino acids of the protein (Keele et al. 2018). Previous
work also identified multiple genes within the chromosome 6 locus that could impact fat pad
weight: Adcy3, Krtcap3 and Slc30a3. Our previous work identified a highly conserved,
potentially damaging variant in Adcy3 that is located within the transmembrane pocket that likely
alters that way that ADCY 3 interacts with other proteins. In addition, using gene expression data
from HS liver, we identified Krtcap3 and Slc30a3 as likely mediators of fat pad weight at this
locus. Although Adcy3 has been found to play a role in both complex and monogenic forms of
obesity (Nordman et al. 2008; Speliotes et al. 2010; Grarup et al. 2018; Saeed et al. 2018) and
has recently been shown to interact with MC4R within the hypothalamic neuron to influence
weight gain (Siljee et al. 2018), neither Krtcap3 nor Slc30a3 have previously been associated

with adiposity in human studies. This work demonstrates the utility of the HS rat model of
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identifying both novel and known genes involved in human adiposity as well as the power of HS
rats to uncover multiple causal genes and likely variants underlying a single complex locus.
Future work will employ RNAseq in multiple tissues including brain, liver and adipose, to
identify potential transcripts whose abundance is influence by these same loci (that is, to identify
eQTLs that co-map with and share the same strain distribution pattern with, these phenotypic
QTLs).

This is the largest GWAS ever performed HS rats and has identified a similarly large number of
significant loci. We subsampled this dataset to demonstrate the well-understood role of sample
size on QTL identification. We find an exponential increase in the number of QTL identified
with increasing sample size, particularly for body weight, a trait with high heritability. This
indicates that many previous studies are likely underpowered and argues for increased sample
sizes in future genetic studies of complex traits in outbred rodents. Similar observations in
human genetics (Visscher et al. 2012; Sullivan et al. 2018) suggest an initial exponential growth
of discoveries, followed by a lineal phase when increasing sample size produces a linear increase
in the number of significant loci. Ongoing studies by the NIDA-funded Center for GWAS in
outbred rats (P50DA037844; see www.ratgenes.org) will allow us to increase the sample size

well above 5,000 rats in the future, which should produce even more significant loci for these

traits.

Although this is one of the most well powered genetic studies in a rodent model, there are
limitations. Despite the fact that adiposity measures were collected from both males and
females, we found that the current study is underpowered to confidently identify sex-specific
loci. We are continuing to collect adiposity traits in additional animals and plan to use large
sample sizes to identify sex-specific QTLs. A second limitation is that we do not currently have
expression QTL information, which would have been helpful for identifying alleles that might
alter these traits by modulating gene expression. Because these rats had essentially no
opportunities for exercise and also did not have the ability to select different foods, our study
would not be expected to identify some of the loci important for human obesity, which likely
influence propensity to exercise and food choice, both of which have obvious implications for
obesity. Finally, our study examined these traits at only one time point, which differed across the
three study sites, which prevented us from exploring the temporal specificity of these QTLs, and
may have diluted our power if different loci are important for these traits at the different ages

measured in our study.
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In conclusion, the current study is the largest GWAS using HS rats ever performed. We
replicated previously identified loci from a smaller GWAS and identified numerous novel loci
for multiple adiposity traits. Three of these loci contain only a single gene, indicating these are
the likely causal genes at these regions. Several other loci contain only a few genes, which
simplifies the identification of candidate genes. This work demonstrates the power of HS rats for
fine-mapping and gene identification of adiposity traits as well as demonstrates the importance

of large sample sizes for genetic dissection of complex traits.
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