

1 Paternal knockdown of *Dnmt2* increases offspring 2 susceptibility to bacterial infection

3

4 Nora K E Schulz¹, Maike F Diddens-de Buhr¹ & Joachim Kurtz^{1*}

5

6 ¹Institute for Evolution and Biodiversity

7 University of Münster

8 Hüfferstr. 1

9 48149 Münster

10 Germany

11

12 *Corresponding author: Joachim Kurtz, Email: joachim.kurtz@uni-muenster.de

13

14 **Keywords:** *Tribolium castaneum*, tRNA methylation, methyltransferase, non-genetic inheritance,
15 immune priming, paternal effects

16

17 Abstract

18 CpG Methylation of polynucleotides is one of the most studied epigenetic mechanisms that enable
19 organisms to change their phenotype without altering the genotype. More recently CpG methylation
20 occurring on small noncoding RNAs, especially of certain transfer RNAs has come into focus. This
21 modification is established by the most conserved member of the DNA methyltransferase family,
22 *Dnmt2*.

23 *Dnmt2* has been indicated in transferring paternal phenotypes to offspring in mice and its absence leads
24 to an increased sensitivity to a variety of stressors in *Drosophila melanogaster*. We therefore
25 hypothesise that it also might play a role in paternal transgenerational immune priming, which can be
26 observed in the red flour beetle *Tribolium castaneum*, where exposure to a non-lethal dose of bacteria
27 in fathers protects their offspring against a potentially lethal dose of the same pathogen.

28 We were able to show that *Dnmt2* is expressed throughout the entire life cycle of the beetle and that
29 expression is significantly higher in the testes. We then combined a knockdown of *Dnmt2* via pupal
30 RNAi with a bacterial priming treatment in the eclosed adults and monitored the effects on their
31 offspring. We used the entomopathogenic bacterium *Bacillus thuringiensis* for priming and challenge
32 injections in adult fathers and offspring respectively.

33 In the paternal generation, neither viability nor fertility were affected by either RNAi or priming
34 treatment compared to the respective controls. *Dnmt2* RNAi treatment led to a significant

35 downregulation and slowed down the development in the offspring larvae. Although, we could not
36 observe a significant paternal priming effect independent of treatment, paternal knockdown led to
37 increased mortality after bacterial injection with *B. thuringiensis*.

38 This demonstrates again an increased stress sensitivity caused by a lack of *Dnmt2*. Furthermore, to the
39 best of our knowledge this is the first instance where this effect was observed in the offspring
40 generation. In conclusion, our results highlight the importance of *Dnmt2* and show the need to further
41 investigate this enzyme and its function in tRNA methylation and paternal non-genetic inheritance.

42

43 1 Introduction

44 Phenotypic plasticity is enabled by epigenetic mechanisms such as the methylation of polynucleotides
45 (1,2). In insects, we can find many instances of this phenomenon, ranging from caste determination to
46 phase polyphenism (3–7). One of these epigenetic modifications is the covalent binding of a methyl
47 group to a cytosine followed by a guanine, *i.e.* CpG methylation (8). This not only occurs on DNA,
48 where it has been extensively studied but also on a variety of RNAs, including small ncRNAs. The
49 reaction is facilitated by a conserved family of enzymes called DNA methyltransferases, which are
50 found in most but not all animals (8,9). *Dnmt2* is the most evolutionary conserved member of this gene
51 family. It can be found in many fungi, plant and animal species, sometimes occurring in the absence
52 of any functional DNA methylation machinery (10). While *Dnmt1* and *Dnmt3* are responsible for
53 methylation of DNA, *Dnmt2* is involved in modifying RNAs, especially tRNAs (11–13). The
54 methylation mark on certain tRNA protects the molecule against cleavage, which can be induced by
55 different stressors (12). It has been shown that tRNA derived small RNAs (tsRNAs) regulate mRNAs
56 and therefore differences in tRNA cleavage could lead to altered phenotypes. In mice dietary stress
57 can cause increased fragmentation of tRNAs and the resulting metabolic phenotype is paternally
58 transmitted to the offspring through the altered levels of tsRNAs (14,15). Furthermore, this paternal
59 transmission is dependent on *Dnmt2* which demonstrates the importance of the enzyme in non-genetic
60 inheritance (16).

61 The function of *Dnmt2*, has also been studied in *Drosophila melanogaster*. Mutants lacking *Dnmt2*
62 were less protected against a variety of stressors, as increased rearing temperatures led to a reduced
63 lifespan and herbicide treatment caused higher mortality compared to wildtype and control flies (12).
64 Furthermore, heat shock treatment of flies lacking *Dnmt2* led to the accumulation of transposable
65 elements and changed gene expression (17). Also, other studies have demonstrated that *Dnmt2* plays
66 a crucial role in managing endogenous and exogenous RNA stress, by silencing retrotransposons and
67 inhibiting RNA virus replication (18,19). It has been therefore proposed that the enzyme is involved
68 in adaptive immunity and aid in defending against or adapting to pathogens (10).

69 A wealth of studies on invertebrates has shown so-called immune priming, an increased survival rate
70 upon a secondary encounter with a pathogen, which can be considered a phenotypic plastic trait that
71 enables the individual to adapt instantaneously to a changed environment (20–22). In some species it

72 has been shown that the immune priming can also be transferred to the offspring (21,23,24). While
73 maternal transfer appears to be a relatively common phenomenon, reports about paternal
74 transgenerational immune priming (TGIP) are scarce (21,25). The red flour beetle, *Tribolium*
75 *castaneum* is one example where paternal TGIP against a variety of bacterial pathogens has been
76 demonstrated (25–27). However, the mechanisms underlying TGIP remain elusive. But the paternal
77 route of priming narrows down the possibilities by which the information could be transferred, due to
78 the limited contact between father and sired offspring and thereby makes the involvement of epigenetic
79 modifications, especially methylation of sperm RNA more likely (22). Finally, in another beetle,
80 *Tenebrio molitor* priming of adults and larvae decreased overall RNA methylation within the
81 generation, hinting at a possible involvement of *Dnmt2* (28).

82 *T. castaneum* possesses two sequences encoding for DNMTs, one *Dnmt1* and one *Dnmt2* homolog
83 (29). Although, the beetle seems to lack any functional levels of CpG DNA methylation (30,31),
84 *Dnmt1* is nevertheless expressed across all life stages and is needed for proper embryonic development
85 (submitted). But to our knowledge no research has been dedicated yet to study the role and function
86 of *Dnmt2* in *T. castaneum*. We therefore used gene expression analysis and RNAi to further investigate
87 this enzyme. Finally, we combined a knockdown with paternal TGIP, to investigate whether *Dnmt2* is
88 involved in and possibly provides the epigenetic mechanism behind this phenomenon.

89

90 2 Materials and methods

91 2.1 Model organism

92 *T. castaneum* has become a well-established model organism in many fields of biology including
93 evolutionary ecology. Its status is aided by the availability of a fully sequenced genome (29) and
94 modern molecular tools, *e.g.* RNAi (32–34). For this study a *T. castaneum* line was used, which was
95 established from about 200 wild caught beetles collected in Croatia in June 2010 (35). Beetles were
96 maintained in plastic breeding boxes with foam stoppers to ensure air circulation. Standard breeding
97 conditions were 30°C and 70% humidity with a 12-hour light/dark cycle. As food source 250g of heat
98 sterilised (75°C) organic wheat flour (type550) containing 5% brewer's yeast were given.

99 2.2 Gene expression of *Dnmt2*

100 To assess the expression of *Dnmt2* throughout the life cycle of the beetle, the four distinct life stages
101 were sampled (eggs (n=4 pools of 100-200µl, 24h-48h post oviposition), larvae (n=7 pools of 10
102 larvae, 14-19 days post oviposition (dpo)) pupae (n=8 pools of 6 individuals), virgin adults (n=8 pools
103 of 6 individuals, one week after eclosion)). For pupae and adults, half of the pooled samples contained
104 females and the other half males in order to test also for differential expression between the sexes.
105 Furthermore, gonads were dissected from unmated adult males. All samples were shock frozen in
106 liquid nitrogen. Total RNA was extracted, and genomic DNA digested by combining Trizol (Ambion
107 RNA by Life Technologies GmbH, Darmstadt, Germany) and chloroform treatment with the use of

108 the Total RNA extraction kit (Promega GmbH, Mannheim, Germany) as described in Eggert *et al.*
109 (26).

110 Extracted RNA was reverse transcribed to cDNA with the RevertAid First Strand cDNA kit (Thermo
111 Fisher Scientific, Waltham, MA USA) using provided oligo-dTs. In the following RT qPCR with a
112 Light-Cycler480 (Roche) and Kapa SYBR Fast (Kapa Biosystems, Sigma-Aldrich), each sample was
113 used in two technical replicates. Further analysis was conducted as described in Eggert *et al.* (26) and
114 replicates were used in further analysis if the standard deviation between their crossing point values
115 was below 0.5, otherwise the reaction was repeated. Previously, high primer efficiency had been
116 confirmed and where possible it was made sure that primers crossed exon-intron boundaries (Table
117 S1). The housekeeping genes ribosomal proteins rp49 and rpl13a were used for normalisation of the
118 expression of the target genes.

119 **2.3 Paternal *Dnmt2* knockdown and TGIP**

120 We aimed to downregulate *Dnmt2* through paternal RNAi and to investigate whether this knockdown
121 would affect paternal TGIP. For this, around 2000 one-week old adult beetles were allowed to lay eggs
122 for 24h. Two weeks later, larvae were collected and put into individual wells of a 96 well plate, which
123 contained flour and yeast. The oviposition was repeated with two more, independent beetle populations
124 on the two following days, producing three experimental replicates.

125 **2.3.1 Paternal RNAi**

126 Upon reaching the pupal stage, the sex of the beetles was determined, and male pupae were prepped
127 for RNAi treatment, while females were individualised and kept for mating. For injections of dsRNA,
128 male pupae (22 dpo) were glued with the hindmost segment of the abdomen to a glass slide to
129 immobilise them. One glass slide held between 16 and 20 pupae. Pupae were either injected with
130 dsRNA of the target gene *Dnmt2* or for the control of the treatment procedure with dsRNA transcribed
131 from the *asparagine synthetase A* (asnA) gene found in *Escherichia coli* (RNAi control), which bears
132 no sequence similarity to any known *T. castaneum* gene (34, Table S1). The dsRNA construct for the
133 RNAi control was produced in our lab via cloning followed by PCR and *in vitro* transcription using
134 the T7 MEGAscript Kit (Ambion by Life TechnologiesTM GmbH, Darmstadt, Germany) (34). The
135 *Dnmt2* dsRNA construct has been previously used in the ibeetle RNAi scan (33; <http://ibeetle-base.uni-goettingen.de/details/TC005511>) and was obtained from EupheriaBiotech (Dresden, Germany).
136 Injections were carried out with a microliter injector (FemtoJet, Eppendorf AG, Hamburg, Germany)
137 and borosilicate glass capillaries (100 mm length, 1.0 mm outside diameter, 0.021 mm wall thickness;
138 Hilgenberg GmbH, Malsfeld, Deutschland) using dsRNA at a concentration of 1000 ng/μl dissolved
139 in water. We injected pupae between the second and third lowest segment of their abdomen.

141 Over the three experimental blocks a total of 583 pupae were injected with *Dnmt2* dsRNA and 585
142 pupae served as RNAi control and were therefore injected with *asnA* dsRNA. Eclosion and survival
143 of the procedure was recorded daily from three to six days post injection.

144 **2.3.2 TGIP**

145 When it was certain that all surviving beetles from the RNAi treatment had reached sexual maturity
146 seven days after eclosion, they were injected with heat killed bacteria to achieve a priming effect.
147 Beetles were injected with a suspension of heat killed *B. thuringiensis* (DSM no. 2046, obtained from
148 the German Collection of Microorganisms and Cell Cultures (DSMZ)) containing around 37,000 cells
149 in phosphate buffered saline (PBS). *B. thuringiensis* has been successfully used in prior TGIP
150 experiments and is pathogenic to the beetle when introduced through septic wounding (25,26).
151 Bacterial cultures were grown overnight as previously described (36). They were washed with PBS
152 and heat killed by exposure to 95°C for 30 minutes. Control groups were either injected with PBS
153 (injection control) containing no bacterial cells or were left naïve. Injections were performed using the
154 nanolitre injector Nanoject II (Drummond Scientific Company, Broomall, PA, USA) and individuals
155 were injected between head and thorax. Beetles were kept individually before and after the injections.
156 Survival of the priming procedure was recorded 24h later.

157 **2.3.3 Gene expression after RNAi and priming treatment**

158 Twenty-four hours post priming, a subgroup of males was used for gene expression analysis to confirm
159 the knockdown success for *Dnmt2*. Additionally, to the expression of *Dnmt2*, the expression of three
160 immunity or stress related genes (*hsp83*, *nimB* and *PGRP*; Table S1) was analysed, which expression
161 can be affected in the offspring upon paternal priming (26). For each RNAi*priming treatment
162 combination and block five samples were taken consisting of a pool of two to five individuals. RNA
163 extraction, cDNA reverse transcription and RT qPCR were performed as described above (2.2).
164 Finally, we also analysed the expression of seven transposable elements (Table S1), because the
165 absence of *Dnmt2* can cause the activation of some of these (17). Because of the lack of
166 polyadenylation on TE transcripts, we in this case used random hexamer primers for cDNA reverse
167 transcription (Thermo Fisher Scientific, Waltham, MA USA).

168 **2.3.4 Production and development of offspring generation**

169 One day after the priming procedure, single pair matings were carried out for 24h with virgin females
170 from the same population (n=12-50 mating pairs per treatment combination and experimental
171 replicate). Twelve days after the oviposition for the F1 generation, larvae from each pair were counted
172 and up to six individuals were individualised and kept for further analyses. Additionally, one larva
173 from each mating pair that produced offspring was used for developmental checks until it died or
174 eclosed as an adult. The development was monitored daily from 21 to 23 dpo to check for pupation
175 and 26 dpo we recorded the proportion of eclosed adults.

176 **2.3.5 Gene expression in the offspring generation**

177 One week after the majority of the offspring generation had eclosed, five pools per RNAi*priming
178 treatment combination and experimental replicate were sampled for gene expression analysis. Each
179 sample consisted of five adult beetles of unknown sex. To avoid pseudo replication only one beetle
180 per family was used. Again, the expression of *Dnmt2* and three potential TGIP marker genes (*hsp83*,
181 *nimB*, *PGRP*; 26) was analysed as described above (2.3.3).

182 **2.3.6 Bacterial challenge of adult offspring**

183 One week after their eclosion, adults of the F1 generation were submitted to a potentially lethal
184 bacterial injection (challenge). For this challenge, bacteria from the same *B. thuringiensis* stock as for
185 the priming were used. Again, an overnight culture from a glycerol stock was grown in liquid medium
186 and washed in PBS. The injection procedure was the same as for the priming and again included an
187 injection control and a naïve group. The dose was adjusted to around 370 bacterial cells per animal.
188 From each family one sibling each was used for the treatment and controls. Again, beetles were kept
189 individually before and after injection to avoid any cross contaminations. Survival of the challenge
190 was recorded one day and four days post injection.

191 **2.4 Statistics**

192 All gene expression data was analysed with the REST2009 software as described in Eggert *et al.* (26).
193 All other analyses were performed in RStudio version 0.99.467 (37) under R version 3.3.3 (38) using
194 additional packages lme4 (39) and MASS (40).

195 Survival of injections for RNAi and priming in the parental generation, the fertility of the treated males
196 as well as the development of the offspring (proportion of pupae 21-23 dpo and proportion of adults
197 26 dpo) and their survival after bacterial challenge were analysed in generalized linear mixed effect
198 models (GLMMs) with the according error distributions and experimental replicate as a random factor.

199 **3 Results**

200 **3.1 Expression of *Dnmt2***

201 Before investigating a possible role or function of *Dnmt2* in *T. castaneum*, we monitored its expression
202 throughout the life cycle of the beetle. We compared the expression of *Dnmt2* relative to two
203 housekeeping genes across the four different life stages (egg, larvae, pupae and adult) of the
204 holometabolous life cycle. The levels of *Dnmt2* transcripts in eggs and pupae closely resembled those
205 in adults (eggs: relative expression=0.932, n=4, p=0.76; pupae: relative expression=0.989, n=8,
206 p=0.94). Although while still a detectable amount, larvae expressed significantly less *Dnmt2* than
207 adults (relative expression=0.352, n=7, p<0.001). Additionally, *Dnmt2* appears to serve functions in
208 both sexes as its expression did not differ significantly between the sexes for pupae (female: relative
209 expression=0.784, n=4, p=0.23) or adults (female: relative expression=0.709, n=4, p=0.14).

210 Furthermore, we analysed the expression of *Dnmt2* in the reproductive tissue of the male beetles and
211 compared it to whole body samples of the same sex. Expression in the testes could hint at an
212 involvement of the gene in the transfer of information from father to offspring as possibly needed for
213 TGIP. *Dnmt2* mRNA levels in the testes were significantly higher than in whole-body samples
214 (relative expression=2.497, n=6, p=0.001), suggest a possible relevance of the protein in male
215 reproduction.

216 **3.2 Paternal *Dnmt2* knockdown and TGIP**

217 To determine whether *Dnmt2* is somehow involved in the paternal transfer of immunity, we combined
218 a knockdown with paternal TGIP treatment and exposed the offspring to a bacterial challenge.

219 **3.2.1 Survival of RNAi and priming injections**

220 The RNAi treatment with *Dnmt2* dsRNA did not increase mortality or hinder the eclosion of the treated
221 pupae (Figure S1). Injections of male pupae did not significantly alter survival rates neither following
222 the RNAi (GLMM, df=1, $\chi^2=0.16$, p=0.69) nor the priming treatment in the mature adults ten days
223 later (GLMM, df=1, $\chi^2=0.04$, p=0.84). However, the priming procedure itself led to significantly
224 increased mortality regardless whether the beetles were injected with heat killed bacteria or the PBS
225 treatment control, which can be attributed to the wounding during these injections as none of the naïve
226 individuals died (GLMM, df=2, $\chi^2=15.89$, p<0.001; Figure 1).

227 **3.2.2 Successful knockdown of *Dnmt2***

228 One day after the priming procedure, we confirmed the successful knockdown of *Dnmt2* after pupal
229 RNAi in a subgroup of the adults. *Dnmt2* was significantly downregulated compared to RNAi control
230 regardless of the received priming treatment (Table 1). As expected, *Dnmt2* mRNA levels had returned
231 to normal in the adult offspring and there were no significant differences between the RNAi treatments

232 detectable (Table 1). Additionally, the paternal priming procedure did not affect *Dnmt2* expression in
233 the adult offspring (Table 1).

234 **3.2.3 Knockdown of *Dnmt2* and adult priming do not affect male fertility**

235 Neither the knockdown of *Dnmt2* nor the bacterial priming appear to affect the fitness of the treated
236 individuals, as neither treatment significantly altered male fertility. The number of live offspring
237 obtained from a 24 h single pair mating period did not differ significantly for either of the treatments
238 (GLMM: RNAi, df=1, $X^2=2.11$, p=0.15; priming, df=2, $X^2=0.44$, p=0.8).

239 **3.2.4 Paternal knockdown but not priming affects offspring development**

240 We monitored offspring development by measuring the proportion of pupae over three consecutive
241 days and the proportion of eclosed adults 26 dpo. Animals from all six treatment combinations
242 (RNAi*priming) showed similar pupation rates 21 and 22 dpo (Figure 2, Figure S2). But 23 dpo,
243 significantly less larvae had reached pupation in the *Dnmt2* paternal knockdown group than in the
244 RNAi control, independent of paternal priming treatment (GLMM: RNAi, df=1, $X^2=3.9$, p<0.05;
245 priming, df=2, $X^2=0.19$, p=0.91; Figure 2, Figure S2). The proportion of eclosed adults 26 dpo was
246 not significantly affected by any paternal treatment (Figure 2; Figure S2).

247 **3.2.5 Expression of TGIP marker genes and TEs is not affected by *Dnmt2* knockdown or
248 priming**

249 In fathers and offspring alike, we measured the expression of three genes, which are related to stress
250 or immune responses and were previously shown to be upregulated in the adult offspring of primed
251 fathers (26). By measuring the expression in the fathers, we intended to see whether these genes would
252 already be affected within the treated generation. None of the three candidate genes (*hsp83*, *nimB* and
253 *PGRP*) showed any significant differential expression neither in the paternal nor in the adult offspring
254 generation (Table S2). Also, none of the paternal treatments (RNAi*priming) did affect the expression
255 of *Dnmt2* in the adult offspring (Table 1).

256 For the same animals from the paternal generation we also measured the expression of seven TEs.
257 Genenncher *et al.* (17) observed that the absence of *Dnmt2* and the exposure to heat stress lead to the
258 activation and accumulation of certain TEs in *D. melanogaster*. Here, we could not observe any
259 significant upregulation in the expression of TEs after the exposure to a wounding stress (priming
260 injection) (Table S3).

261 **3.2.6 Paternal *Dnmt2* knockdown reduces survival after bacterial challenge**

262 Finally, we injected adult beetles from the offspring generation with a potentially lethal dose of
263 *B. thuringiensis* to see whether the immune priming was transmitted to the offspring and if this was
264 affected by the downregulation of *Dnmt2* in the fathers. Paternal priming treatment did not affect

265 offspring survival after bacterial challenge (GLMM, $df=2$, $X^2= 0.17$, $p=0.92$; Figure S3), which
266 possibly can be explained by the additional wounding all fathers received during the RNAi treatment.
267 However, offspring of individuals that had received a knockdown were significantly less likely to
268 survive the bacterial challenge (GLMM, $df=2$, $X^2=7.78$, $p=0.0053$, Figure 3), demonstrating that
269 *Dnmt2* impacts stress sensitivity and that its reduction can increase susceptibility towards pathogens.

270 **4 Discussion**

271 *Dnmt2* can be found in almost every species and is the most conserved member of the Dnmt family
272 (41). It has also a function in some organisms lacking all other Dnmts and a functional DNA
273 methylation system (10). This also appears to be the case in *T. castaneum*, which has an incomplete
274 set of Dnmts and no functional DNA methylation (29–31), but still expresses *Dnmt2*. We observed
275 that *Dnmt2* mRNA transcripts are present in all life stages and in similar levels in both sexes of the
276 beetle, therefore the enzyme might have a sex-independent role throughout the entire life cycle. *Dnmt2*
277 exclusively methylates a small set of tRNAs (8), which are highly abundant in sperm (42) and have
278 been shown to be involved in paternal transmission of phenotypes in mice (14,15). The significantly
279 higher expression in *T. castaneum* testes indicates the possibility that this might also be a major
280 function of *Dnmt2* in the beetle.

281 We combined the knockdown of *Dnmt2* with a TGIP treatment, to determine whether this enzyme is
282 involved in the transfer of the information from father to offspring. We did not observe a TGIP effect
283 in this study. Offspring survival did not depend on paternal priming treatment. Furthermore, we did
284 not observe an upregulation in certain marker immune and stress response genes as has been previously
285 described for paternal TGIP in *T. castaneum* (26) nor did TEs increase in abundance as observed in
286 *D. melanogaster* *Dnmt2* mutants (17). The absence of TGIP in this case might be caused by the
287 wounding of the animals during pupal RNAi treatment. To our knowledge there is no data on how
288 injuries sustained during the pupal phase might influence later responses. But, in a few experiments
289 wounding during control treatment also increased survival of a later bacterial challenge (25,43).
290 Therefore, a potential wounding effect might have masked the survival benefits of TGIP. On the other
291 hand, the pupal RNAi injections could possibly also inhibit any later priming. Lastly, although TGIP
292 in *T. castaneum* is robust and repeatable (25,26,43), it also has become apparent that this phenomenon
293 cannot be observed in every experiment (43) nor beetle population (44).

294 In plants, flies and mice the absence of *Dnmt2* is not lethal under standard conditions and mutants
295 remain fertile (11). The same appears to be true in the case of *T. castaneum*, where we did not observe
296 any additional mortality nor apparent phenotypic changes after a significant downregulation of *Dnmt2*.
297 Additionally, male fertility was not affected by the knockdown under *ad libitum* condition. Therefore,
298 at least at first sight *Dnmt2* does not seem to fulfil an essential function in the beetle and maintenance
299 of knockout lines appears feasible, which makes this gene a suitable target for CRISPR/Cas knockout
300 to further study its function without the necessity of repeated RNAi injections for each experiment.

301 In our experiment the offspring of *Dnmt2* RNAi treated fathers developed more slowly and exhibited
302 a higher stress sensitivity. They took longer to reach pupation, were less well equipped to deal with a
303 *B. thuringiensis* infection and died at a significantly higher rate than the offspring of the RNAi control.
304 This was independent of the paternal priming treatment. In recent years, it has become clear that
305 biological functions of *Dnmt2* are more easily detected under stress conditions (10). Increased
306 sensitivity to thermal and oxidative stress has been observed in *D. melanogaster* *Dnmt2* mutants (12),
307 while overexpression of the same gene has led to increased stress tolerance (45). During the stress
308 response, *Dnmt2* appears to control for the fragmentation of tRNA and can be located at cellular stress
309 compartments (12,46). Finally, its absence disrupts the small interfering RNA pathway by inhibiting
310 dsRNA degradation by *Dicer* (46). However, the increased stress sensitivity to bacterial infection we
311 observed here occurred in the offspring generation, which exhibited normal *Dnmt2* expression. It
312 remains unclear if the same mechanisms are involved in this transgenerational effect. Therefore,
313 further studies are needed to investigate more directly the effects *Dnmt2* has on tRNA methylation in
314 *T. castaneum* and other insects besides *D. melanogaster*. Nevertheless, we here demonstrated for the
315 first time in an invertebrate that paternal *Dnmt2* levels affect offspring phenotype, giving a new scope
316 for non-genetic inheritance of a phenotype.

317 **5 References**

- 318 1. Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. *Nature* [Internet].
319 2007 May 24 [cited 2018 Jun 15];447(7143):433–40. Available from:
320 <http://www.nature.com/doifinder/10.1038/nature05919>
- 321 2. Duncan EJ, Gluckman PD, Dearden PK. Epigenetics, plasticity, and evolution: How do we
322 link epigenetic change to phenotype? *J Exp Zool Part B Mol Dev Evol* [Internet]. Wiley-
323 Blackwell; 2014 Jun [cited 2018 Jun 15];322(4):208–20. Available from:
324 <http://doi.wiley.com/10.1002/jez.b.22571>
- 325 3. Ernst UR, Van Hiel MB, Depuydt G, Boerjan B, De Loof A, Schoofs L. Epigenetics and
326 locust life phase transitions. *J Exp Biol* [Internet]. 2015;218(1):88–99. Available from:
327 <http://www.ncbi.nlm.nih.gov/pubmed/25568455>
- 328 4. Pasquier C, Clément M, Dombrovsky A, Penaud S, Da Rocha M, Rancurel C, et al.
329 Environmentally Selected Aphid Variants in Clonality Context Display Differential Patterns
330 of Methylation in the Genome. Jeltsch A, editor. *PLoS One* [Internet]. 2014 Dec
331 31;9(12):e115022. Available from: <http://dx.plos.org/10.1371/journal.pone.0115022>
- 332 5. Falckenhayn C, Boerjan B, Raddatz G, Frohme M, Schoofs L, Lyko F. Characterization of
333 genome methylation patterns in the desert locust *Schistocerca gregaria*. *J Exp Biol* [Internet].
334 2013 Apr 15 [cited 2014 Feb 21];216(Pt 8):1423–9. Available from:
335 <http://jeb.biologists.org/cgi/doi/10.1242/jeb.080754>
- 336 6. Elango N, Hunt BG, Goodisman M a D, Yi S V. DNA methylation is widespread and
337 associated with differential gene expression in castes of the honeybee, *Apis mellifera*. *Proc*

338 Natl Acad Sci U S A [Internet]. 2009 Jul 7;106(27):11206–11. Available from:
339 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708677/>&tool=pmcentrez&rende
340 rtype=abstract

341 7. Kucharski R, Maleszka J, Foret S, Maleszka R. Nutritional control of reproductive status in
342 honeybees via DNA methylation. Science (80-) [Internet]. 2008 Mar 28 [cited 2014 Feb
343 20];319(5871):1827–30. Available from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC18339900/>

344 8. Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat
345 Rev Genet [Internet]. Nature Publishing Group; 2018 Oct 16 [cited 2018 May 15];19(2):81–
346 92. Available from: <http://www.nature.com/doifinder/10.1038/nrg.2017.80>

347 9. Goll M, Bestor TH. Eukaryotic Cytosine Methyltransferases. Annu Rev Biochem [Internet].
348 2005 Jan [cited 2014 Jan 20];74(1):481–514. Available from:
349 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC15952895/>

350 10. Durdevic Z, Schaefer M. Dnmt2 methyltransferases and immunity: An ancient overlooked
351 connection between nucleotide modification and host defense? BioEssays.
352 2013;35(12):1044–9.

353 11. Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh C, Zhang X, et al. Methylation of tRNA
354 Asp by the DNA Methyltransferase Homolog *Dnmt2*. Science. 2006;311(January):395–8.

355 12. Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, et al. RNA methylation
356 by *Dnmt2* protects transfer RNAs against stress-induced cleavage. Genes Dev [Internet].
357 2010 Aug 1 [cited 2016 Mar 10];24(15):1590–5. Available from:
358 <http://genesdev.cshlp.org/content/24/15/1590>

359 13. Raddatz G, Guzzardo PM, Olova N, Fantappié MR, Rampp M, Schaefer M, et al. Dnmt2-
360 dependent methylomes lack defined DNA methylation patterns. Proc Natl Acad Sci U S A
361 [Internet]. 2013;110(21):8627–31. Available from:
362 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3666705/>&tool=pmcentrez&rende
363 rtype=abstract

364 14. Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, et al. Sperm tsRNAs contribute to
365 intergenerational inheritance of an acquired metabolic disorder. Science (80-).
366 2016;351(6271):397–400.

367 15. Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, et al. Biogenesis and
368 function of tRNA fragments during sperm maturation and fertilization in mammals. Science
369 (80-). 2016;351(6271):391–6.

370 16. Zhang Y, Zhang X, Shi J, Tuorto F, Li X, Liu Y, et al. Dnmt2 mediates intergenerational
371 transmission of paternally acquired metabolic disorders through sperm small non-coding
372 RNAs. Nat Cell Biol [Internet]. Nature Publishing Group; 2018 May 25 [cited 2018 Jun
373 15];20(5):535–40. Available from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955601/>

374 17. Genenncher B, Durdevic Z, Hanna K, Zinkl D, Momin MB, Senturk N, et al. Mutations in

375 Cytosine-5 tRNA Methyltransferases Impact Mobile Element Expression and Genome
376 Stability at Specific DNA Repeats. *Cell Rep.* 2018;22(7):1861–74.

377 18. Phalke S, Nickel O, Walluscheck D, Hortig F, Onorati MC, Reuter G. Retrotransposon
378 silencing and telomere integrity in somatic cells of *Drosophila* depends on the cytosine-5
379 methyltransferase DNMT2. *Nat Genet* [Internet]. Nature Publishing Group; 2009 Jun 3 [cited
380 2018 Jun 15];41(6):696–702. Available from: <http://www.nature.com/articles/ng.360>

381 19. Durdevic Z, Hanna K, Gold B, Pollex T, Cherry S, Lyko F, et al. Efficient RNA virus control
382 in *Drosophila* requires the RNA methyltransferase Dnmt2. *EMBO Rep* [Internet]. EMBO
383 Press; 2013 Mar 1 [cited 2018 Jun 15];14(3):269–75. Available from:
384 <http://www.ncbi.nlm.nih.gov/pubmed/23370384>

385 20. Schmid-Hempel P. Natural insect host-parasite systems show immune priming and
386 specificity: puzzles to be solved. *BioEssays* [Internet]. Wiley-Blackwell; 2005 Oct [cited
387 2018 Jun 7];27(10):1026–34. Available from: <http://doi.wiley.com/10.1002/bies.20282>

388 21. Milutinović B, Kurtz J. Immune memory in invertebrates. *Semin Immunol* [Internet].
389 Academic Press; 2016 Aug 1 [cited 2018 Jun 7];28(4):328–42. Available from:
390 <https://www.sciencedirect.com/science/article/pii/S1044532316300434>

391 22. Roth O, Beemelmanns A, Baribeau SM, Sadd BM. Recent advances in vertebrate and
392 invertebrate transgenerational immunity in the light of ecology and evolution. *Heredity*
393 (Edinb) [Internet]. Nature Publishing Group; 2018 Jun 18 [cited 2018 Jun 18];1. Available
394 from: <http://www.nature.com/articles/s41437-018-0101-2>

395 23. Kurtz J, Armitage SAO. Dissecting the dynamics of trans-generational immune priming. *Mol*
396 *Ecol* [Internet]. Wiley/Blackwell (10.1111); 2017 Aug [cited 2018 Jun 11];26(15):3857–9.
397 Available from: <http://doi.wiley.com/10.1111/mec.14190>

398 24. Zanchi C, Troussard J-P, Moreau J, Moret Y. Relationship between maternal transfer of
399 immunity and mother fecundity in an insect. *Proc R Soc B Biol Sci* [Internet]. 2012 Aug 22
400 [cited 2018 Jun 18];279(1741):3223–30. Available from:
401 <http://rsbp.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2012.0493>

402 25. Roth O, Joop G, Eggert H, Hilbert J, Daniel J, Schmid-Hempel P, et al. Paternally derived
403 immune priming for offspring in the red flour beetle, *Tribolium castaneum*. *J Anim Ecol*.
404 2010;79(2):403–13.

405 26. Eggert H, Kurtz J, Diddens-de Buhr MF. Different effects of paternal trans-generational
406 immune priming on survival and immunity in step and genetic offspring. *Proc R Soc B Biol*
407 *Sci* [Internet]. 2014 Oct 29;281(1797):20142089. Available from:
408 <http://rsbp.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2014.2089>

409 27. Milutinović B, Peuß R, Ferro K, Kurtz J. Immune priming in arthropods: an update focusing
410 on the red flour beetle. *Zoology* [Internet]. Urban & Fischer; 2016 Aug 1 [cited 2018 Jun
411 7];119(4):254–61. Available from:

412 https://www.sciencedirect.com/science/article/pii/S0944200616300186

413 28. Castro-Vargas C, Linares-López C, López-Torres A, Wrobel K, Torres-Guzmán JC,
414 Hernández GAG, et al. Methylation on RNA: A potential mechanism related to immune
415 priming within but not across generations. *Front Microbiol.* 2017;8(MAR):1–11.

416 29. Richards S, Gibbs R a, Weinstock GM, Brown SJ, Denell R, Beeman RW, et al. The genome
417 of the model beetle and pest *Tribolium castaneum*. *Nature* [Internet]. 2008 Apr 24 [cited 2012
418 Oct 29];452(7190):949–55. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/18362917>

419 30. Zemach A, Mcdaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of
420 eukaryotic DNA methylation. *Science* [Internet]. 2010 May 14 [cited 2012 Oct
421 29];328(5980):916–9. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/20395474>

422 31. Bewick AJ, Vogel KJ, Moore AJ, Schmitz RJ. Evolution of DNA Methylation across Insects.
423 *Mol Biol Evol* [Internet]. 2017 Mar 1;34(3):654–65. Available from:
424 <https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msw264>

425 32. Bucher G, Scholten J, Klingler M. Parental RNAi in *Tribolium* (Coleoptera). *Curr Biol*
426 [Internet]. 2002 Feb 5;12(3):R85-6. Available from:
427 <http://www.ncbi.nlm.nih.gov/pubmed/11839285>

428 33. Schmitt-Engel C, Schultheis D, Schwirz J, Ströhlein N, Troelenberg N, Majumdar U, et al.
429 The iBeetle large-scale RNAi screen reveals gene functions for insect development and
430 physiology. *Nat Commun* [Internet]. Nature Publishing Group; 2015 Jul 28 [cited 2018 May
431 14];6:7822. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/26215380>

432 34. Peuß R, Wensing KU, Woestmann L, Eggert H, Milutinović B, Sroka MGU, et al. *Down*
433 *syndrome cell adhesion molecule 1* : testing for a role in insect immunity, behaviour and
434 reproduction. *R Soc Open Sci* [Internet]. The Royal Society; 2016 Apr 20 [cited 2018 May
435 9];3(4):160138. Available from:
436 <http://rsos.royalsocietypublishing.org/lookup/doi/10.1098/rsos.160138>

437 35. Milutinović B, Stolpe C, Peuß R, Armitage SAO, Kurtz J. The Red Flour Beetle as a Model
438 for Bacterial Oral Infections. *PLoS One*. 2013;8(5).

439 36. Behrens S, Peuß R, Milutinović B, Eggert H, Esser D, Rosenstiel P, et al. Infection routes
440 matter in population-specific responses of the red flour beetle to the entomopathogen *Bacillus*
441 *thuringiensis*. *BMC Genomics*. 2014;15(1).

442 37. Roth O, Kurtz J. Phagocytosis mediates specificity in the immune defence of an invertebrate,
443 the woodlouse *Porcellio scaber* (Crustacea: Isopoda). *Dev Comp Immunol* [Internet]. Elsevier
444 Ltd; 2009 Nov [cited 2012 Jul 17];33(11):1151–5. Available from:
445 <http://www.ncbi.nlm.nih.gov/pubmed/19416736>

446 38. RStudio Team. R-Studio: integrated development for R. 2015 [cited 2018 May 7]; Available
447 from: <https://www.rstudio.com/>

448 39. R Development Core Team. R: A language and environment for statistical computing

449 [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2008. Available from:
450 <http://www.r-project.org>

451 40. Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. *J
452 Stat Softw* [Internet]. 2015 Oct 7 [cited 2018 May 7];67(1):1–48. Available from:
453 <http://www.jstatsoft.org/v67/i01/>

454 41. Venables WN, Ripley BD. Modern Applied Statistics with S [Internet]. 4th ed. New York,
455 NY: Springer New York; 2002 [cited 2018 May 7]. (Statistics and Computing). Available
456 from: <http://link.springer.com/10.1007/978-0-387-21706-2>

457 42. Schaefer M, Lyko F. Solving the Dnmt2 enigma. *Chromosoma* [Internet]. 2010 Feb 3 [cited
458 2018 Jun 21];119(1):35–40. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/19730874>

459 43. Peng H, Shi J, Zhang Y, Zhang H, Liao S, Li W, et al. A novel class of tRNA-derived small
460 RNAs extremely enriched in mature mouse sperm. *Cell Res* [Internet]. Nature Publishing
461 Group; 2012 Nov [cited 2018 Jun 21];22(11):1609–12. Available from:
462 <http://www.ncbi.nlm.nih.gov/pubmed/23044802>

463 44. Tate AT, Andolfatto P, Demuth JP, Graham AL. The within-host dynamics of infection in
464 trans-generationally primed flour beetles. *Mol Ecol*. 2017;26(14):3794–807.

465 45. Khan I, Prakash A, Agashe D. Divergent immune priming responses across flour beetle life
466 stages and populations. *Ecol Evol* [Internet]. Wiley-Blackwell; 2016 Nov [cited 2018 Jun
467 21];6(21):7847–55. Available from: <http://doi.wiley.com/10.1002/ece3.2532>

468 46. Lin M-J, Tang L-Y, Reddy MN, Shen C-KJ. DNA methyltransferase gene dDnmt2 and
469 longevity of Drosophila. *J Biol Chem* [Internet]. American Society for Biochemistry and
470 Molecular Biology; 2005 Jan 14 [cited 2018 Jun 21];280(2):861–4. Available from:
471 <http://www.ncbi.nlm.nih.gov/pubmed/15533947>

472 47. Durdevic Z, Mobin MB, Hanna K, Lyko F, Schaefer M. The RNA methyltransferase dnmt2
473 is required for efficient dicer-2-dependent siRNA pathway activity in Drosophila. *Cell Rep*
474 [Internet]. The Authors; 2013;4(5):931–7. Available from:
475 <http://dx.doi.org/10.1016/j.celrep.2013.07.046>

476

477 **6 Contributions**

478 All authors conceived and designed the experiments. NS conducted the experiments, analysed the data
479 and wrote the manuscripts with comments from all authors.

480

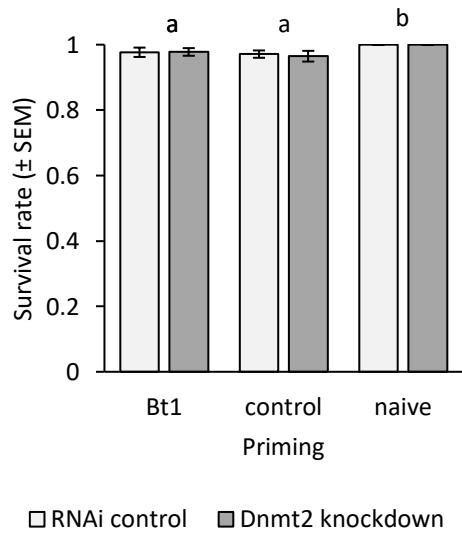
481 **7 Acknowledgements**

482 We thank Barbara Hasert and Kathrin Brüggemann for their help with lab work and Jürgen Schmitz
483 for providing TE primers.

484 This work was supported in part by the Volkswagen Stiftung, project number I/84 794.

485

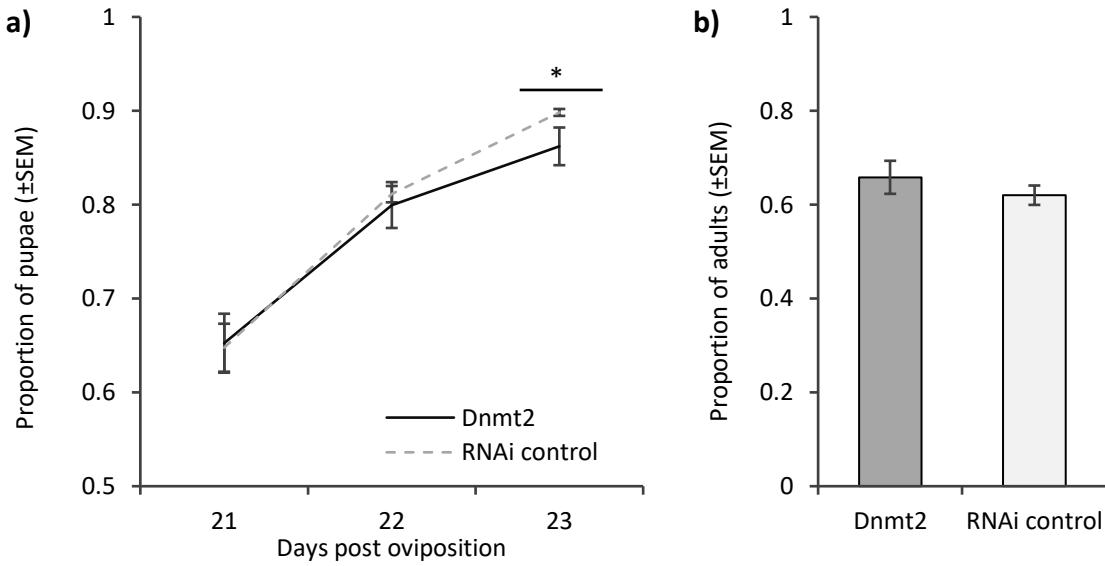
486 **8 Competing Interest Statement**


487 The authors declare no competing interests.

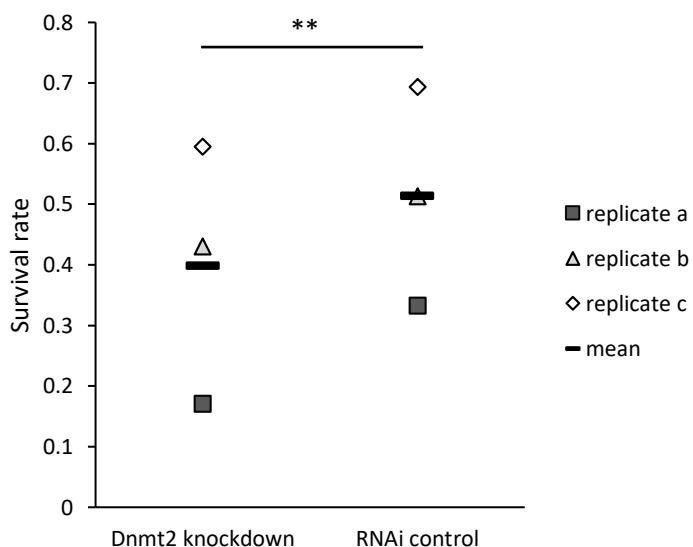
488 **9 Tables and figures**

489 Table 1 *Dnmt2* expression after paternal RNAi and priming in the treated males and their adult offspring. Given
490 is the relative expression compared to RNAi control*priming control group for the knockdown target gene
491 *Dnmt2* normalised over the expression of two housekeeping genes. Per treatment combination, generation
492 and three experimental replicates five samples comprised of 2-5 individuals were used.

Gene	Treatment		P ₀			F ₁		
	RNAi	Priming	rel. expression	95% C.I.	p value	rel. expression	95% C.I.	p value
<i>Dnmt2</i>	bacterial	control	0.088	0.04 - 0.48	<0.001	1.061	0.53 - 1.97	0.53
		naive	0.112	0.03 - 0.73	<0.001	0.955	0.5 - 1.76	0.62
		control	0.897	0.27 - 5.90	0.571	1.06	0.52 - 1.94	0.519
	naive	bacterial	1.175	0.26 - 7.21	0.384	1.092	0.53 - 3.63	0.48
		control						
		naive						


493

494


495 Figure 1 Survival of priming procedure according to RNAi and priming treatment 24 h post injections (\pm SEM
496 for three experimental replicates, N=950). Different letters indicate significant differences.

497

498

499 Figure 2 Development of offspring after paternal RNAi a) pupation rate (\pm SEM for three experimental
500 replicates) b) proportion of eclosed adults (\pm SEM for three experimental replicates) on 26 dpo. Asterisk
501 indicates significant differences.

502

503 Figure 3 Survival of F1 generation after bacterial challenge according to paternal RNAi treatment. Shown are
504 the proportions of adults that were alive four days post injection with a potentially lethal dose of
505 *B. thuringiensis*.