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Abstract 

OBJECTIVE: Individuals at high risk for schizophrenia may benefit from early intervention but 

few validated risk predictors are available. Genetic profiling is one approach to risk stratification 

that has been extensively validated in research cohorts, but its utility in clinical settings remains 

largely unexplored. Moreover, the broad health consequences of a high genetic risk of 

schizophrenia are poorly understood, despite being relevant to treatment decisions.  

METHOD: We used electronic health records for 106,160 patients from four healthcare systems 

to evaluate the penetrance and pleiotropy of genetic risk for schizophrenia. Polygenic risk scores 

(PRSs) for schizophrenia were calculated from summary statistics and tested for association with 

1359 disease categories, including schizophrenia and psychosis, in phenome-wide association 

studies. Effects were combined through meta-analysis across sites.  

RESULTS: PRSs were robustly associated with schizophrenia (odds ratio per standard deviation 

increase in PRS=1.55 [95% confidence interval (CI), 1.4-1.7], p=4.48 x 10-16) and patients in the 

highest risk decile of the PRS distribution had up to 4.6-fold increased odds of schizophrenia 

compared to those in the bottom decile (95% CI, 2.9-7.3, p=1.37 x 10-10). PRSs were also 

positively associated with a range of other phenotypes, including anxiety, mood, substance use, 

neurological, and personality disorders, as well as suicidal behavior, memory loss, and urinary 

syndromes; they were inversely related to obesity.  

CONCLUSIONS: We demonstrate that an available measure of genetic risk for schizophrenia is 

robustly associated with schizophrenia in healthcare settings and has pleiotropic effects on 

related psychiatric disorders as well as other medical syndromes. Our results provide an initial 

indication of the opportunities and limitations that may arise with the future application of PRS 

testing in healthcare systems.  
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Introduction 

Psychiatric disorders are common and responsible for an enormous burden of suffering1,2. 

Approximately 18% of individuals globally suffer from mental illness every year3, 44.7 million 

of whom live in the US4. Early detection and intervention for serious mental illness is associated 

with improved outcomes5–8. However, few reliable predictors of risk or clinical outcomes have 

been identified. Given the substantial heritability of many psychiatric disorders9 and their 

polygenic architecture10, there is increasing interest in using quantitative measures of genetic risk 

for risk stratification11. Polygenic risk scores (PRSs), in particular, are easy and inexpensive to 

generate and can be applied well before illness onset, making them a promising candidate for 

clinical integration12. In fact, a recent study investigating the clinical utility of PRSs for several 

common, non-psychiatric diseases found that PRS can identify a larger fraction of high risk 

individuals than are identified by clinically-validated monogenic mutations, and called explicitly 

for evaluations of these scores in clinical settings13. 

To date, PRSs for neuropsychiatric disorders have primarily been evaluated in highly 

ascertained research samples. Typically, cases have obtained a diagnosis through lengthy 

clinician interviews and controls have no psychiatric history (“clean” cases and controls). In 

order to bring PRSs to the clinic, however, they must first demonstrate association with 

diagnoses in real-world clinical settings, where data are often much messier. Among psychiatric 

disorders, schizophrenia is perhaps the best candidate for future clinical integration of PRS 

profiling as it is highly heritable, has the best performing PRS among psychiatric disorders in 

terms of proportion of phenotypic variance explained (7%)14, and can be difficult to distinguish 

from other psychiatric conditions that involve psychosis and mood disturbance. Accordingly, we 
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selected the schizophrenia PRS for the present study as it is the most viable test case for eventual 

clinical validation of a psychiatric PRS.  

We recently established the PsycheMERGE consortium within the NIH-funded 

Electronic Medical Records and Genomics (eMERGE) Network15,16 to leverage electronic health 

record (EHR) data linked to genomic data to facilitate psychiatric genetic research17. In this first 

report from PsycheMERGE, we evaluated the performance of a schizophrenia PRS generated 

from summary statistics published by the Psychiatric Genomics Consortium14 using EHR data on 

more than 100,000 patients from four large healthcare systems (Geisinger Health System, Mount 

Sinai Health System, Partners Healthcare System, and Vanderbilt University Medical Center). 

We assessed the relative and absolute risk for schizophrenia among individuals at the highest 

level of genetic risk and considered the clinical utility of the PRS for risk stratification. We also 

examined pleiotropic effects of the schizophrenia PRS with real-world clinical data by 

conducting a phenome-wide association study (PheWAS) of 1359 disease categories. To our 

knowledge this is the first effort to combine PheWAS effects across multiple hospital-based 

biobanks.  

Finally, we conducted follow-up analyses to characterize the nature of the pleiotropic 

effects of the schizophrenia PRS. Cross-phenotype associations of polygenic liability to 

schizophrenia may occur in at least two scenarios18. In the first (“biological pleiotropy”), the 

PRS contributes independently to multiple phenotypes. In the second scenario (“mediated 

pleiotropy”), the PRS increases liability to a second disorder that occurs as a consequence of 

schizophrenia itself. For example, an association between schizophrenia polygenic risk and 

diabetes could occur because individuals diagnosed with schizophrenia are more likely to have 

both elevated schizophrenia PRS and to be prescribed antipsychotic medications which may 
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result in weight gain and increased liability to diabetes. In this case, the observed relationship 

between schizophrenia risk and diabetes is mediated by the use of antipsychotic medication. 

These scenarios may be difficult to completely disentangle. However, here we use individual-

level EHR data to determine whether associations with genetic risk for schizophrenia persist 

after conditioning on a clinical diagnosis of schizophrenia, related psychosis, or prescription of 

antipsychotic medications.  

 

Methods 

Hospital-based Biobanks 

 Patients that consented to participate in one of four large healthcare system-based 

biobanks – the MyCode Community Health Initiative at the Geisinger Health System (GHS)19, 

the BioMe Biobank at the Mount Sinai School of Medicine (MSSM)20, the Partners Healthcare 

System (PHS) biobank21, or the Vanderbilt University Medical Center (VUMC) biobank 

(BioVU)22 – and had available EHR and genotype data were included in these analyses. At each 

site, patients were recruited from the general healthcare system population without systematic 

recruitment for any particular disease or diagnosis. It is well known that PRS calculated from 

GWAS performed primarily in one ancestry demonstrates poorer performance in other ancestries 

as a function of differing LD structures with causal variants and lack of diversity on genotyping 

platforms23,24. Thus, this study was limited to patients of European-American ancestry with 

genetic data that met standard quality control thresholds (see Quality Control of Genetic Data). 

Besides these data availability and ancestry filters, no further inclusion or exclusion criteria were 

applied. Our final sample included 44,436 patients from GHS, 9,569 patients from MSSM, 

18,461 patients from PHS, and 33,694 patients from VUMC (106,160 total participants). All 
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patients gave informed consent for biobank research for which IRB approval was obtained at 

each site.  

Quality Control of Genetic Data 

 Samples were genotyped, imputed, and cleaned at each site individually, the details of 

which are described in Supplementary Methods. However, quality control procedures at each site 

followed a similar standard pipeline. DNA from blood samples obtained from biobank 

participants were assayed using Illumina bead arrays (OmniExpress Exome, Global Screening, 

MEGA, MEGAEX, or MEG BeadChips) containing approximately 700,000 to two million 

markers. Samples at each site were genotyped in multiple batches; indicators for genotyping 

platform and batch were included as covariates in the analyses. As described in Supplementary 

Methods, single nucleotide polymorphisms (SNPs) were excluded using filters for call rate, 

minor allele frequency, and heterozygosity at a minimum. Individuals were excluded for 

excessive missing data or sex errors; a random individual from any pair of related individuals 

was also excluded (pihat > .2). Principal components or self-reported ancestry was used to 

identify individuals of European ancestry. SNPs that passed the initial phase of quality control 

were imputed and then converted to best-guess genotypes where only high-quality markers were 

retained. Ten principal components were generated within the European sample to use as 

ancestry covariates in all subsequent analyses.  

Polygenic Risk Scores 

 In order to quantify genetic risk for schizophrenia, we calculated PRSs using summary 

statistics from the Psychiatric Genomics Consortium genome-wide association study (GWAS) of 

schizophrenia14, which included odds ratios (ORs) for 9,444,230 variants. PRSs were calculated 

via two methods, a simple and widely used approach where SNPs are pruned based on linkage 
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disequilibrium (LD) and association p-values, and a Bayesian approach that can increase 

accuracy by directly modeling LD structure and adjusting SNP weights accordingly.  

LD-pruned PRS. We excluded rare variants (minor allele frequency <1%) and variants on 

the X chromosome and then, at each site, clumped SNPs based on association p-value (the 

variant with the smallest p-value within a 250kb range was retained and all those in LD, r2 > .1, 

were removed). The resulting SNP lists included 146,464 at GHS, 79,837 at MSSM, 166,477 at 

PHS, and 229,355 variants at VUMC. Using all available variants (i.e., using a p-value threshold 

of 1.0 for inclusion), we generated PRSs for each individual by summing all risk-associated 

variants weighted by the log(OR) for that allele from the GWAS. PRSs were converted to z-

scores within each healthcare system to standardize effects across all sites. LD pruning and PRS 

generation were done using PRSice25. 

Bayesian PRS. We used PRS-CS, a Bayesian polygenic prediction method, as an 

alternative approach for PRS calculation. PRS-CS places a continuous shrinkage (CS) prior on 

SNP effect sizes and infers posterior SNP weights using GWAS summary statistics and an 

external LD reference panel (1000 Genomes Project European samples; N=503). PRS-CS 

enables multivariate modeling of local LD patterns and is robust to diverse underlying genetic 

architectures, and thus can increase the accuracy of PRS over conventional approaches26. At each 

site, weights for all imputed SNPs present on the 1000 Genomes reference panel and HapMap3 

panel were estimated using PRS-CS, resulting in 833,502 available SNPs at GHS, 971,463 at 

MSSM, 833,502 at PHS, and 604,645 at VUMC. The global shrinkage parameter in the CS prior 

was fixed at 1 to reflect the highly polygenic genetic architecture of schizophrenia. We generated 

PRSs for each individual by summing all risk-associated variants weighted by the posterior 

effect size inferred by PRS-CS for that allele and then converted PRSs to z-scores within each 
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healthcare system. A Python package for PRS-CS is available on GitHub repository 

(https://github.com/getian107/PRScs). PRSs were calculated using PLINK 1.927. 

EHR-derived Phenotypes 

 EHRs contain thousands of diagnostic billing codes from the International Classification 

of Diseases, 9th and 10th editions (ICD-9/10) which are arranged hierarchically. For example, 

ICD9:295 is ‘schizophrenic disorders’, ICD9:295.1 is ‘disorganized type schizophrenia’, and 

ICD9:295.12 is ‘disorganized type schizophrenia, chronic state’; in total, the ICD9:295 category 

contains 71 individual ICD-9 codes. To define case status for a variety of diseases, we extracted 

all ICD-9 and ICD-10 codes available for participating subjects and grouped codes into 1860 

disease categories (called ‘phecodes’) using a hierarchical structure previously developed and 

validated28,29. For “schizophrenia and other psychotic disorders”, for example, 89 individual 

ICD-9 codes – all 71 ICD9:295 codes and 18 related codes (e.g., 298.9, unspecified psychosis) – 

and 22 ICD-10 codes were mapped to this disease category.  

Cases and controls were designated for each phecode. Individuals with two or more 

relevant ICD-9/10 codes were considered a case, those with zero relevant codes were considered 

a control, and individuals with only one code were excluded30. To enable analyses of phenome-

wide diagnoses that may have varying ages of onset, we did not restrict the age range of 

participants. The proportion of patients (cases and controls) included in a given PRS-phecode 

association varied depending on the prevalence of single-code individuals, but the median was 

98%-100% at each site. Phecodes for which there were fewer than 100 cases were excluded from 

the PheWAS.  

Statistical Analyses 
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Penetrance of schizophrenia PRS in healthcare systems. To assess the penetrance of 

schizophrenia PRS, we measured absolute risk (case prevalence as a function of PRS) and 

relative risk (ORs for the top decile of schizophrenia PRS relative to the remaining population, as 

well as the bottom decile) for schizophrenia and psychotic disorders. ORs were calculated at 

each site for both PRS methods (LD-pruned and Bayesian), regardless of the number of available 

cases, and then the log(OR)s were combined through fixed-effect inverse variance-weighted 

meta-analysis using the metafor R package (https://cran.r-project.org/web/packages/metafor/). 

Schizophrenia PRS PheWAS. We conducted PheWASs for both PRS methods in each of 

the four healthcare systems using all phecodes with sufficient sample size (at least 100 cases). 

Logistic regressions between schizophrenia PRSs and each phecode were run with 10 ancestry 

principal components, median age within the medical record calculated for each individual using 

all of their records in the EHR, sex, genotyping platform, and genotyping batch when available, 

included as covariates using the PheWAS R package29. We used a Bonferroni correction for 

establishing statistical significance based on the number of phecodes tested at each site. We then 

meta-analyzed PheWAS effects across healthcare systems within a given PRS method with a 

fixed-effect inverse variance-weighted model using the PheWAS R package. Phecodes 

significantly associated with schizophrenia PRS in the PheWAS meta-analysis were carried 

forward for a follow-up analysis in which we quantified the risk of the phecode at the extremes 

of the PRS distribution at each site. Effects were combined across sites through meta-analysis 

using the metafor R package.  

Sensitivity Analyses to Assess Secondary Effects of Schizophrenia. To explore whether 

pleiotropic effects of the schizophrenia PRS were mediated by the diagnosis of schizophrenia 

itself or by the prescription of antipsychotic medications (the most common treatment for 
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schizophrenia), we conducted four follow-up PheWAS analyses. Given the similarity of primary 

PheWAS results from the two PRS methods, sensitivity analyses were conducted using the LD-

pruned PRS method only. For each follow-up analysis, a PheWAS analysis was conducted as 

above, with only one of the following alterations: an additional covariate for diagnosis of 

psychotic disorders (phecode 295; the broadest schizophrenia-related phecode), an additional 

covariate for any prescriptions of antipsychotic medication, removing psychosis cases (phecode 

295), and removing patients with any antipsychotic medication prescription history.  

 

Results 

 Our sample included 106,160 patients (56% female) across four large US healthcare 

systems that had collectively received over 35 million ICD-9/10 billing codes. The median 

length of the electronic health record across sites ranged from 8-15 years and patients had a 

median range of 52-142 unique visits (Table 1).  

Penetrance of Schizophrenia PRS in Healthcare Systems 

Polygenic risk scores were robustly associated with schizophrenia in the cross-site meta-

analysis (OR per standard deviation increase in PRS = 1.55 [95% confidence interval (CI), 1.4-

1.7], p = 4.48 x 10-16) (Table S1); extremely similar effects were observed using the Bayesian 

PRS (Table S2), as well as in each individual healthcare system (Table S3; Table S4). Absolute 

risk for schizophrenia in the top decile was 0.8% (Figure 1), equating to 1.9-fold increased odds 

of schizophrenia compared to those below the 90th percentile (95% CI, 1.5-2.4, p = 7.81 x 10-8) 

and 3.3-fold increased odds compared to the bottom decile (95% CI, 2.1-5.2, p = 1.16 x 10-7) 

(Figure 2; Table 2). Similarly, for the Bayesian PRS, absolute risk for the top decile was 1.0% 

(Figure 1), with an OR of 2.3 compared to the bottom 90th percentile (95% CI, 1.9-2.9, p = 1.98 
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x 10-14) and 4.6 compared to the bottom decile (95% CI, 2.9-7.3, p = 1.37 x 10-10) (Figure S1; 

Table 2).  

Schizophrenia PRS PheWAS 

After excluding codes for which no site had at least 100 cases, we conducted PheWAS 

using 1359 disease categories for two PRS methods. The cross-site LD-pruned PRS PheWAS 

meta-analysis yielded significant associations between schizophrenia PRSs and 29 medical 

phenotypes including schizophrenia (Table S1; Figure 3). Very similar results were observed 

using the Bayesian PRS (Table S2) and at each site (Table S3; Table S4). As shown, the 

strongest cross-site associations were with psychiatric phenotypes for which positive genetic 

correlations with schizophrenia have been reported, including bipolar disorder, depression, 

substance use disorders, and anxiety disorders9. We additionally found associations with 

personality disorders, suicidal behavior, neurological disorders, memory loss, viral hepatitis, 

urinary syndromes and nonspecific somatic symptoms. Obesity and synovitis were inversely 

associated with schizophrenia PRSs. Effect sizes for all significant phenotypes were plotted in 

Figures 2 and S2.  

Sensitivity Analyses to Assess Secondary Effects of Schizophrenia  

We explored whether some of the observed associations might be mediated through a 

clinical diagnosis of schizophrenia or antipsychotic medication use through a series of sensitivity 

analyses. Nearly all associations remained significant across all sensitivity analyses (Table S5; 

Figure S2), although for some phecodes, there was minor variability. Nonetheless, in every 

analysis, phecodes related to anxiety disorders, mood disorders, substance use disorders, obesity 

phenotypes, urinary syndromes, and malaise and fatigue remained significant. Associations with 

suicidal behavior, personality disorders, neurological disorders, memory loss, synovitis and 
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tenosynovitis, and viral hepatitis were less robust, although they remained top phenotypes 

consistently (Table S5).  

 

Discussion 

We investigated the impact of genetic risk for schizophrenia across the medical phenome 

in 106,160 patients from four large healthcare systems. Several findings from our analyses are 

particularly noteworthy. First, externally-derived polygenic risk scores for schizophrenia 

robustly detected risk for diagnosis of schizophrenia in real-world healthcare settings (p’s < 4.48 

x 10-16). The effect sizes (Table 2) were similar to those observed for corresponding PRSs for 

atrial fibrillation, type 2 diabetes, inflammatory bowel disease, many common cancers13,31. 

Second, we leveraged the phenome-wide data available in EHRs to conduct the first psychiatric 

PRS PheWAS in multiple U.S. healthcare systems, revealing a range of pleiotropic relationships. 

While we reported strong associations with schizophrenia, the effect sizes were more 

modest than those reported in schizophrenia case-control cohorts ascertained for research 

purposes. For example, in the original report by the PGC from which the risk scores were 

derived, individuals in the top decile of schizophrenia PRS relative to the bottom decile had a 

7.8-20.3 increased odds of schizophrenia14, whereas we observed odds ratios of 3.3 and 4.6, 

depending on the PRS method (Table 2). There are several potential reasons for this discrepancy. 

First, cases in the PGC meta-analysis met relatively stringent criteria based on clinical interviews 

by trained research personnel, and control ascertainment often included screening for history of 

psychiatric or neurological disorders. This approach, typical for research samples, maximizes 

power for genetic discovery by extreme sampling from the tails of the genetic liability 

distribution. In contrast, our analysis was expressly designed to approximate use of a PRS in a 
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typical clinical setting by applying a simple definition for both cases (two or more schizophrenia-

related codes) and controls (no schizophrenia-related codes). Thus, although the effect size we 

observed is likely attenuated due to some degree of misclassification, it may better reflect results 

that would be seen in real-world clinical settings where PRSs are applied to a broad healthcare 

population with little a priori knowledge of clinical symptoms. In addition, we did not restrict 

the age range of cases and controls, which may have further reduced the apparent effect size of 

the schizophrenia PRS (some individuals in our sample who have not yet reached the age of 

illness onset may have been misclassified as controls).  

Although the PRS effects we observed were not large enough on their own to stratify risk 

in a clinical setting (i.e., to discriminate between cases and controls on an individual level with 

high accuracy), they are comparable to those of risk factors in established risk calculators. For 

example, two well-established coronary artery disease (CAD) risk factors – smoking and 

diabetes – were estimated in the Framingham Heart Study to have hazard ratios < 2.032 – similar 

to the observed risk for the top schizophrenia PRS decile here. Additionally, in a risk calculator 

for the transition to psychosis among high-risk individuals – one of the few individualized risk 

calculators developed within psychiatry – the best predictor was a symptom severity index with a 

hazard ratio of 2.1 (95% CI, 1.6-2.7)33. While this risk calculator was not validated for clinical 

use, it does reflect effects of variables used by clinicians to assess risk in the clinic.  

In light of this, we speculate that incorporating genetic risk could be impactful within 

psychiatry, especially as enhanced performance may be possible through a variety of means. For 

example, we implemented two PRS methods, a standard LD-pruning approach and a newer, 

Bayesian one, to evaluate the robustness and consistency of our results. While the differences in 

results were not large, the Bayesian method produced larger effect estimates overall, including 
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for schizophrenia (Table 2). These findings support the use of newer risk scoring methods that 

can incorporate more genetic variants by directly modeling LD structure. Precision of PRSs may 

also increase through larger discovery sample sizes12 and with refinement of EHR-based case 

definitions. Nonetheless, it remains to be seen whether combining PRS risk estimates with other 

clinical predictors can meaningfully contribute to individualized risk assessment in psychiatry. 

Schizophrenia PRSs were also associated with broader effects on mental health including 

increased risk for anxiety, mood, substance use, personality, and neurological disorders, as well 

as memory loss and suicidal behavior. Anxiety, mood, and substance use disorders have all 

previously been linked to genetic risk for schizophrenia9,34–36 and our results confirm in a clinical 

setting that these disorders share genetic risk. Certain personality disorders have also been linked 

to genetic liability for schizophrenia37,38 (e.g., schizotypal or schizoid) and there is some 

evidence that personality dimensions in adolescence predict future psychopathology, including 

schizophrenia39. Similarly, family history of schizophrenia has been associated with suicidal 

behavior40. However, results from our sensitivity analyses suggested that the relationships 

between schizophrenia and neurological disorders, personality disorders, suicidal behavior, and 

memory loss may be consequences of a schizophrenia diagnosis rather than due to shared genetic 

risk (Figure S2).  

Genetic liability for schizophrenia was associated with many non-psychiatric syndromes 

as well, including obesity, urinary syndromes, viral hepatitis, synovitis and tenosynovitis, and 

malaise and fatigue. Intriguingly, obesity and morbid obesity were significantly negatively 

associated with schizophrenia PRSs (Table S1). This is somewhat surprising given the known 

phenotypic correlation between schizophrenia and obesity41. Nonetheless, three prior reports 

found significant inverse genetic correlations between body mass index and schizophrenia42–44, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 23, 2019. ; https://doi.org/10.1101/421164doi: bioRxiv preprint 

https://doi.org/10.1101/421164
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

17

while a fourth reported an inverse, but non-significant relationship45. This may suggest that 

increased rates of obesity among patients with schizophrenia may be a consequence of the 

disease, potentially due to antipsychotic use or poor support for proper nutrition. We also found 

an inverse association between genetic liability for schizophrenia and diabetes, but only in 

sensitivity analyses controlling for a schizophrenia diagnosis or antipsychotic medication history. 

It may be that this negative genetic correlation was attenuated in the primary analysis (i.e., 

including patients with schizophrenia and antipsychotic medication history with no statistical 

control) due to diabetes-promoting effects of antipsychotic medications within the same 

individuals that were at high genetic risk for schizophrenia41. In general, pleiotropic effects may 

have implications for risk communication if PRS testing is deployed in clinical settings in the 

future. 

Our results should be interpreted in light of several limitations. First, due to small 

numbers of patients of other ancestries, our analyses were restricted to patients of European 

descent, and the generalizability to individuals of non-European ancestry remains to be 

determined. Second, our phenotype definitions relied on very simple rules and disregarded many 

variables of potential importance including medical history of related disorders, setting of 

diagnosis (i.e., in- or outpatient; physician specialty), and treatment for the disease of interest. 

This was by design in order to mimic a real-world clinical population where PRSs may be 

implemented for clinical decision support, however, the approach is sensitive to 

misclassifications that occur in a clinical setting. Future work refining case and control 

definitions using natural language processing algorithms may improve the predictive 

performance of PRSs and other risk factors for clinically-derived phenotypes47,48. Third, our 

results varied to some degree between sites (Table S3; Table S4), perhaps most notably for 
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schizophrenia, suggesting that demographic and disease distributions in any given healthcare 

system will influence penetrance and pleiotropy. However, we tested for between-site 

heterogeneity for schizophrenia, and though this test has relatively low power, it showed no 

evidence of significant heterogeneity (p’s > .45). Relatedly, disease prevalence was often lower 

in the overall healthcare system relative to the participants enrolled in the biobanks (a subset of 

those patients) (Table S6). In general, case prevalence in the biobanks was more representative 

of population-level prevalence than was that in the healthcare systems, suggesting that the 

discrepancies may be due to biobank patients generally having a longer duration of EHR follow-

up and therefore more opportunity to receive a diagnosis than patients in the overall healthcare 

system (Table S6). Finally, although our analyses comprise the largest test of a schizophrenia 

PRS in EHR data to date, additional phenotypes may show significant association in future, 

larger-scale PheWAS.  

In conclusion, we demonstrate that an available measure of polygenic risk for 

schizophrenia is robustly associated with schizophrenia across four large healthcare systems 

using EHR data. While the observed penetrance of schizophrenia PRS is attenuated in these 

settings compared to prior estimates derived from research cohorts, effect sizes are comparable 

to those seen for risk factors commonly used in clinical settings. We also find that polygenic risk 

for schizophrenia has pleiotropic effects on related psychiatric disorders as well as several non-

psychiatric symptoms and syndromes. Our results provide an initial indication of the 

opportunities and limitations that may arise with the future application of PRS testing in 

healthcare systems.  
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Table 1. 

Demographics and Clinical Characteristics  

 GHS MSSM PHS VUMC 

N 44,436 9,569 18,461 33,694 

Mean age, years (SD) 60.2 (16.9) 57.2 (19.8) 58.5 (16.4) 57.9 (20.0) 

Females, n (%) 26,094 (59%) 4,955 (52%) 9,913 (54%) 18,089 (54%) 

All ICD-9/10 codes  20,083,326 1,021,072 5,972,131 8,043,419 

Unique ICD-9/10 codes 29,766 16,535 26,441 26,283 

Median visits per patient 142 81 70 52 

Median ICD9/10 codes per patient 317 44 184 150 

Median EHR length, days 5,509 2,942 4,729 3,884 

Age is defined as the patient’s age at their most recent hospital visit in which they received an 

ICD-9/10 code. A visit is both patient- and date-specific, but may include many individual ICD-

9/10 codes. SD, standard deviation. 
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Table 2. 

Odds Ratios for Schizophrenia and Psychotic Disorders  

 
PRS 

Method 

Risk 

Group 

Risk Case 

Prevalence 

Reference 

Group 

Reference 

Case 

Prevalence OR 95% CI P Value 

Schizophrenia LD-pruned Top 10% 0.8% Remaining 90% 0.5% 1.9 1.5-2.4 7.81 x 10-8 

LD-pruned Top 10% 0.8% Bottom 10% 0.2% 3.3 2.1-5.2 1.16 x 10-7 

Bayesian Top 10% 1.0% Remaining 90% 0.4% 2.3 1.9-2.9 1.98 x 10-14 

Bayesian Top 10% 1.0% Bottom 10% 0.2% 4.6 2.9-7.3 1.37 x 10-10 

Schizophrenia and 

Related Psychotic 

Disorders 

LD-pruned Top 10% 2.1% Remaining 90% 1.3% 1.7 1.5-2.0 2.00 x 10-12 

LD-pruned Top 10% 2.1% Bottom 10% 0.9% 2.2 1.7-2.8 4.14 x 10-10 

Bayesian Top 10% 2.1% Remaining 90% 1.3% 1.6 1.4-1.9 1.75 x 10-10 

Bayesian Top 10% 2.1% Bottom 10% 1.0% 2.1 1.6-2.7 2.75 x 10-9 

 

Overall sample case prevalence was 0.5% for schizophrenia and 1.4% for schizophrenia and 

related psychotic disorders. PRS, polygenic risk score; OR, odds ratio; CI, confidence interval.  
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Figure 1. Schizophrenia Case Prevalence by PRS Decile. 

Schizophrenia case prevalence by site (dashed lines) and across all healthcare systems (solid 

line) was plotted by schizophrenia PRS decile for both PRS methods. GHS, Geisinger Health 

System; MSSM, Mount Sinai School of Medicine; PHS, Partners Healthcare System; VUMC, 

Vanderbilt University Medical Center; PRS, polygenic risk score.  

 

Figure 2. Odds Ratios for Top Schizophrenia PRS Decile.  

Odds ratios and 95% confidence intervals for phenotypes significant in LD-pruned PRS 

PheWAS meta-analysis were plotted for the top PRS decile with reference to both the remaining 

90% (red squares) and the bottom decile (blue circles). The vertical red line reflects no change in 

risk (OR = 1).  

 

Figure 3. Schizophrenia PRS PheWAS Meta-Analysis. 

Manhattan plot for phenome-wide association with LD-pruned schizophrenia polygenic risk 

scores meta-analyzed across four healthcare systems (1359 phenotypes; 106,160 patients). 

The x axis is phenotype (grouped by broad disease category) and the y axis is significance (–

log10 P; 2-tailed) of association derived by logistic regression. The red line shows phenome-wide 

level significance (3.7 x 10-5) using Bonferroni correction and all phenotypes passing this 

threshold are labeled. All significant effects were positive (i.e., higher polygenic risk scores 

resulted in higher incidence of the phenotype) with three exceptions: morbid obesity, obesity, 

and synovitis and tenosynovitis.  
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