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Abstract
OBJECTIVE: Individuals at high risk for schizophrenia may benefit from early intervention but
few validated risk predictors are available. Genetic profiling is one approach to risk stratification
that has been extensively validated in research cohorts, but its utility in clinical settings remains
largely unexplored. Moreover, the broad health consequences of a high genetic risk of
schizophrenia are poorly understood, despite being relevant to treatment decisions.
METHOD: We used eectronic health records for 106,160 patients from four healthcare systems
to evaluate the penetrance and pleiotropy of genetic risk for schizophrenia. Polygenic risk scores
(PRSs) for schizophrenia were calculated from summary statistics and tested for association with
1359 disease categories, including schizophrenia and psychosis, in phenome-wide association
studies. Effects were combined through meta-analysis across sites.
RESULTS: PRSs were robustly associated with schizophrenia (odds ratio per standard deviation
increase in PRS=1.55 [95% confidence interval (Cl), 1.4-1.7], p=4.48 x 10"*®) and patientsin the
highest risk decile of the PRS distribution had up to 4.6-fold increased odds of schizophrenia
compared to those in the bottom decile (95% Cl, 2.9-7.3, p=1.37 x 10%). PRSs were also
positively associated with arange of other phenotypes, including anxiety, mood, substance use,
neurological, and personality disorders, aswell as suicidal behavior, memory loss, and urinary
syndromes; they were inversely related to obesity.
CONCLUSIONS: We demonstrate that an available measure of genetic risk for schizophreniais
robustly associated with schizophreniain healthcare settings and has pleiotropic effects on
related psychiatric disorders as well as other medical syndromes. Our results provide an initial
indication of the opportunities and limitations that may arise with the future application of PRS

testing in healthcare systems.
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Introduction

Psychiatric disorders are common and responsible for an enormous burden of suffering™?.
Approximately 18% of individuals globally suffer from mental illness every year®, 44.7 million
of whom livein the US". Early detection and intervention for serious mental illness is associated
with improved outcomes™®. However, few reliable predictors of risk or clinical outcomes have
been identified. Given the substantial heritability of many psychiatric disorders’ and their
polygenic architecture™, thereisincreasing interest in using quantitative measures of genetic risk
for risk stratification™. Polygenic risk scores (PRSs), in particular, are easy and inexpensive to
generate and can be applied well before iliness onset, making them a promising candidate for
clinical integration™. In fact, a recent study investigating the clinical utility of PRSs for several
common, non-psychiatric diseases found that PRS can identify alarger fraction of high risk
individuals than are identified by clinically-validated monogenic mutations, and called explicitly
for evaluations of these scoresin clinical settings'.

To date, PRSs for neuropsychiatric disorders have primarily been evaluated in highly
ascertained research samples. Typically, cases have obtained a diagnosis through lengthy
clinician interviews and controls have no psychiatric history (“clean” cases and controls). In
order to bring PRSs to the clinic, however, they must first demonstrate association with
diagnosesin real-world clinical settings, where data are often much messier. Among psychiatric
disorders, schizophreniais perhaps the best candidate for future clinical integration of PRS
profiling asit is highly heritable, has the best performing PRS among psychiatric disordersin
terms of proportion of phenotypic variance explained (7%), and can be difficult to distinguish

from other psychiatric conditions that involve psychosis and mood disturbance. Accordingly, we
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selected the schizophrenia PRS for the present study asit isthe most viable test case for eventual
clinical validation of a psychiatric PRS.

We recently established the PsycheM ERGE consortium within the NIH-funded
Electronic Medical Records and Genomics (eM ERGE) Network™>*® to leverage electronic health
record (EHR) data linked to genomic data to facilitate psychiatric genetic research®’. In this first
report from PsycheM ERGE, we evaluated the performance of a schizophrenia PRS generated
from summary statistics published by the Psychiatric Genomics Consortium™ using EHR data on
more than 100,000 patients from four large healthcare systems (Geisinger Health System, Mount
Sina Health System, Partners Healthcare System, and VVanderbilt University Medical Center).
We assessed the relative and absolute risk for schizophrenia among individuals at the highest
level of genetic risk and considered the clinical utility of the PRS for risk gtratification. We also
examined pleotropic effects of the schizophrenia PRS with real-world clinical data by
conducting a phenome-wide association study (PheWAYS) of 1359 disease categories. To our
knowledge thisisthe first effort to combine Phe WAS effects across multiple hospital-based
biobanks.

Finally, we conducted follow-up analyses to characterize the nature of the pleiotropic
effects of the schizophrenia PRS. Cross-phenotype associations of polygenic liability to
schizophrenia may occur in at least two scenarios'®. In the first (“biological pleiotropy”), the
PRS contributes independently to multiple phenotypes. In the second scenario (“mediated
pleiotropy”), the PRS increases liability to a second disorder that occurs as a consequence of
schizophreniaitself. For example, an association between schizophrenia polygenic risk and
diabetes could occur because individuals diagnosed with schizophrenia are more likely to have

both elevated schizophrenia PRS and to be prescribed antipsychotic medications which may
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result in weight gain and increased liability to diabetes. In this case, the observed relationship
between schizophreniarisk and diabetes is mediated by the use of antipsychotic medication.
These scenarios may be difficult to completely disentangle. However, here we use individual-
level EHR data to determine whether associations with genetic risk for schizophrenia persist
after conditioning on aclinical diagnosis of schizophrenia, related psychosis, or prescription of

antipsychotic medications.

Methods

Hospital-based Biobanks

Patients that consented to participate in one of four large healthcare system-based
biobanks — the MyCode Community Health Initiative at the Geisinger Health System (GHS)™,
the BioM e Biobank at the Mount Sinai School of Medicine (MSSM)?, the Partners Healthcare
System (PHS) biobank?*, or the VVanderbilt University Medical Center (VUMC) biobank
(BioVU)? — and had available EHR and genotype data were included in these analyses. At each
site, patients were recruited from the general healthcare system population without systematic
recruitment for any particular disease or diagnosis. It iswell known that PRS calculated from
GWAS performed primarily in one ancestry demonstrates poorer performance in other ancestries
as afunction of differing LD structures with causal variants and lack of diversity on genotyping
platforms®®2*. Thus, this study was limited to patients of European-American ancestry with
genetic datathat met standard quality control thresholds (see Quality Control of Genetic Data).
Besides these data availability and ancestry filters, no further inclusion or exclusion criteriawere
applied. Our final sample included 44,436 patients from GHS, 9,569 patients from M SSM,

18,461 patients from PHS, and 33,694 patients from VUMC (106,160 total participants). All
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patients gave informed consent for biobank research for which IRB approval was obtained at
each gte.
Quality Control of Genetic Data

Samples were genotyped, imputed, and cleaned at each site individually, the details of
which are described in Supplementary Methods. However, quality control procedures at each site
followed a smilar standard pipeline. DNA from blood samples obtained from biobank
participants were assayed using |llumina bead arrays (OmniExpress Exome, Global Screening,
MEGA, MEGA™, or MEG BeadChips) containing approximately 700,000 to two million
markers. Samples at each site were genotyped in multiple batches; indicators for genotyping
platform and batch were included as covariates in the analyses. As described in Supplementary
Methods, single nucleotide polymorphisms (SNPs) were excluded using filters for call rate,
minor alele frequency, and heterozygosity at a minimum. Individuals were excluded for
excessive missing data or sex errors; arandom individual from any pair of related individuals
was also excluded (pihat > .2). Principal components or self-reported ancestry was used to
identify individuals of European ancestry. SNPs that passed the initial phase of quality control
were imputed and then converted to best-guess genotypes where only high-quality markers were
retained. Ten principal components were generated within the European sample to use as
ancestry covariates in all subsequent analyses.
Polygenic Risk Scores

In order to quantify genetic risk for schizophrenia, we calculated PRSs using summary
statistics from the Psychiatric Genomics Consortium genome-wide association study (GWAS) of
schizophrenia®*, which included odds ratios (ORs) for 9,444,230 variants. PRSs were calcul ated

via two methods, a simple and widely used approach where SNPs are pruned based on linkage
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disequilibrium (LD) and association p-values, and a Bayesian approach that can increase
accuracy by directly modeling LD structure and adjusting SNP weights accordingly.

LD-pruned PRS We excluded rare variants (minor allele frequency <1%) and variants on
the X chromosome and then, at each site, clumped SNPs based on association p-vaue (the
variant with the smallest p-value within a 250kb range was retained and all thosein LD, r*> .1,
were removed). The resulting SNP lists included 146,464 at GHS, 79,837 at MSSM, 166,477 at
PHS, and 229,355 variantsat VUMC. Using all available variants (i.e., using a p-value threshold
of 1.0 for inclusion), we generated PRSs for each individual by summing all risk-associated
variants weighted by the log(OR) for that allele from the GWAS. PRSs were converted to z-
scores within each healthcare system to standardize effects across al sites. LD pruning and PRS
generation were done using PRSice™.

Bayesian PRS We used PRS-CS, a Bayesian polygenic prediction method, as an
alternative approach for PRS calculation. PRS-CS places a continuous shrinkage (CS) prior on
SNP effect sizes and infers posterior SNP weights using GWAS summary statistics and an
external LD reference panel (1000 Genomes Project European samples; N=503). PRS-CS
enables multivariate modeling of local LD patterns and is robust to diverse underlying genetic
architectures, and thus can increase the accuracy of PRS over conventional approaches™. At each
site, weights for all imputed SNPs present on the 1000 Genomes reference pane and HapMap3
panel were estimated using PRS-CS, resulting in 833,502 available SNPs at GHS, 971,463 at
MSSM, 833,502 at PHS, and 604,645 at VUMC. The global shrinkage parameter in the CS prior
was fixed at 1 to reflect the highly polygenic genetic architecture of schizophrenia. We generated
PRSs for each individual by summing all risk-associated variants weighted by the posterior

effect size inferred by PRS-CS for that allele and then converted PRSs to z-scores within each
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healthcare system. A Python package for PRS-CSis available on GitHub repository

(https://github.com/getian107/PRScs). PRSs were calculated using PLINK 1.9

EHR-derived Phenotypes

EHRs contain thousands of diagnostic billing codes from the International Classification
of Diseases, 9" and 10" editions (ICD-9/10) which are arranged hierarchically. For example,
ICD9:295 is ‘ schizophrenic disorders’, ICD9:295.1 is ‘disorganized type schizophrenia’, and
ICD9:295.12 is “disorganized type schizophrenia, chronic state’; in total, the ICD9:295 category
contains 71 individual ICD-9 codes. To define case status for a variety of diseases, we extracted
al 1ICD-9 and ICD-10 codes available for participating subjects and grouped codes into 1860
disease categories (called ‘ phecodes’) using a hierarchical structure previously developed and
validated®?°. For “schizophrenia and other psychotic disorders’, for example, 89 individual
ICD-9 codes—all 71 1CD9:295 codes and 18 related codes (e.g., 298.9, unspecified psychosis) —
and 22 ICD-10 codes were mapped to this disease category.

Cases and controls were designated for each phecode. Individuals with two or more
relevant ICD-9/10 codes were considered a case, those with zero relevant codes were considered
acontrol, and individuals with only one code were excluded™. To enable analyses of phenome-
wide diagnoses that may have varying ages of onset, we did not restrict the age range of
participants. The proportion of patients (cases and controls) included in a given PRS-phecode
association varied depending on the prevalence of single-code individuals, but the median was
98%-100% at each site. Phecodes for which there were fewer than 100 cases were excluded from
the PheWAS.

Satistical Analyses

10
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Penetrance of schizophrenia PRSin healthcare systems. To assess the penetrance of
schizophrenia PRS, we measured absolute risk (case prevalence as a function of PRS) and
relative risk (ORs for the top decile of schizophrenia PRS relative to the remaining population, as
well as the bottom decile) for schizophrenia and psychotic disorders. ORs were calculated at
each site for both PRS methods (LD-pruned and Bayesian), regardless of the number of available
cases, and then the log(OR)s were combined through fixed-effect inverse variance-weighted
meta-analysis using the metafor R package (https://cran.r-project.org/web/packages/metafor/).

Schizophrenia PRS Phe WAS. We conducted PheWASs for both PRS methods in each of
the four healthcare systems using all phecodes with sufficient sample size (at least 100 cases).
Logistic regressions between schizophrenia PRSs and each phecode were run with 10 ancestry
principal components, median age within the medical record calculated for each individual using
all of their records in the EHR, sex, genotyping platform, and genotyping batch when available,
included as covariates using the PheWAS R package®. We used a Bonferroni correction for
establishing statistical significance based on the number of phecodes tested at each site. We then
meta-analyzed PheWAS effects across healthcare systems within a given PRS method with a
fixed-effect inverse variance-weighted model using the PheWAS R package. Phecodes
significantly associated with schizophrenia PRS in the PheWAS meta-analysis were carried
forward for a follow-up analysisin which we quantified the risk of the phecode at the extremes
of the PRS distribution at each site. Effects were combined across sites through meta-analysis
using the metafor R package.

Sensitivity Analyses to Assess Secondary Effects of Schizophrenia. To explore whether
pleiotropic effects of the schizophrenia PRS were mediated by the diagnosis of schizophrenia

itself or by the prescription of antipsychotic medications (the most common treatment for

11


https://doi.org/10.1101/421164
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/421164; this version posted March 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

schizophrenia), we conducted four follow-up PheWAS analyses. Given the similarity of primary
PheWAS results from the two PRS methods, sensitivity analyses were conducted using the LD-
pruned PRS method only. For each follow-up analysis, a PheWAS analysis was conducted as
above, with only one of the following alterations. an additional covariate for diagnosis of
psychotic disorders (phecode 295; the broadest schizophrenia-related phecode), an additional
covariate for any prescriptions of antipsychotic medication, removing psychosis cases (phecode

295), and removing patients with any antipsychotic medication prescription history.

Results

Our sample included 106,160 patients (56% female) across four large US healthcare
systems that had collectively received over 35 million ICD-9/10 billing codes. The median
length of the electronic health record across sites ranged from 8-15 years and patients had a
median range of 52-142 unique visits (Table 1).
Penetrance of Schizophrenia PRSin Healthcare Systems

Polygenic risk scores were robustly associated with schizophreniain the cross-site meta-
analysis (OR per standard deviation increase in PRS = 1.55 [95% confidence interval (Cl), 1.4-
1.7], p = 4.48 x 10™*®) (Table S1); extremely similar effects were observed using the Bayesian
PRS (Table S2), aswell asin each individual healthcare system (Table S3; Table $4). Absolute
risk for schizophreniain the top decile was 0.8% (Figure 1), equating to 1.9-fold increased odds
of schizophrenia compared to those below the 90th percentile (95% CI, 1.5-2.4, p= 7.81 x 10®)
and 3.3-fold increased odds compared to the bottom decile (95% Cl, 2.1-5.2, p=1.16 x 10°)
(Figure 2; Table 2). Smilarly, for the Bayesian PRS, absolute risk for the top decile was 1.0%

(Figure 1), with an OR of 2.3 compared to the bottom 90" percentile (95% CI, 1.9-2.9, p = 1.98
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x 10™) and 4.6 compared to the bottom decile (95% Cl, 2.9-7.3, p = 1.37 x 10™°) (Figure S1;
Table 2).
Schizophrenia PRS Phe WAS

After excluding codes for which no site had at least 100 cases, we conducted PheWAS
using 1359 disease categories for two PRS methods. The cross-site LD-pruned PRS Phe WAS
meta-analysis yielded significant associations between schizophrenia PRSs and 29 medical
phenotypes including schizophrenia (Table S1; Figure 3). Very similar results were observed
using the Bayesian PRS (Table S2) and at each site (Table S3; Table $4). As shown, the
strongest cross-site associations were with psychiatric phenotypes for which positive genetic
correlations with schizophrenia have been reported, including bipolar disorder, depression,
substance use disorders, and anxiety disorders’. We additionally found associations with
personality disorders, suicidal behavior, neurological disorders, memory loss, viral hepatitis,
urinary syndromes and nonspecific somatic symptoms. Obesity and synovitis were inversely
associated with schizophrenia PRSs. Effect sizes for all significant phenotypes were plotted in
Figures 2 and 2.
Sengitivity Analyses to Assess Secondary Effects of Schizophrenia

We explored whether some of the observed associations might be mediated through a
clinical diagnosis of schizophrenia or antipsychotic medication use through a series of sensitivity
analyses. Nearly all associations remained significant across all sensitivity analyses (Table S5;
Figure S2), although for some phecodes, there was minor variability. Nonetheless, in every
analysis, phecodes related to anxiety disorders, mood disorders, substance use disorders, obesity
phenotypes, urinary syndromes, and malaise and fatigue remained significant. Associations with

suicidal behavior, personality disorders, neurological disorders, memory loss, synovitis and
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tenosynovitis, and viral hepatitis were less robust, although they remained top phenotypes

consistently (Table S5).

Discussion

We investigated the impact of genetic risk for schizophrenia across the medical phenome
in 106,160 patients from four large healthcare systems. Several findings from our analyses are
particularly noteworthy. First, externally-derived polygenic risk scores for schizophrenia
robustly detected risk for diagnosis of schizophreniain real-world healthcare settings (p’s < 4.48
x 10%°). The effect sizes (Table 2) were similar to those observed for corresponding PRSs for
atrial fibrillation, type 2 diabetes, inflammatory bowel disease, many common cancers™*.
Second, we leveraged the phenome-wide data available in EHRs to conduct the first psychiatric
PRS PheWAS in multiple U.S. healthcare systems, revealing a range of pleiotropic relationships.

While we reported strong associations with schizophrenia, the effect sizes were more
modest than those reported in schizophrenia case-control cohorts ascertained for research
purposes. For example, in the original report by the PGC from which the risk scores were
derived, individualsin the top decile of schizophrenia PRS relative to the bottom decile had a
7.8-20.3 increased odds of schizophrenia™, whereas we observed odds ratios of 3.3 and 4.6,
depending on the PRS method (Table 2). There are several potential reasons for this discrepancy.
First, casesin the PGC meta-analysis met relatively stringent criteria based on clinical interviews
by trained research personnel, and control ascertainment often included screening for history of
psychiatric or neurological disorders. This approach, typical for research samples, maximizes
power for genetic discovery by extreme sampling from the tails of the genetic liability

digtribution. In contrast, our analysis was expressly designed to approximate use of aPRSin a
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typical clinical setting by applying a smple definition for both cases (two or more schizophrenia-
related codes) and controls (no schizophrenia-related codes). Thus, although the effect size we
observed is likely attenuated due to some degree of misclassification, it may better reflect results
that would be seen in real-world clinical settings where PRSs are applied to a broad healthcare
population with little a priori knowledge of clinical symptoms. In addition, we did not restrict
the age range of cases and controls, which may have further reduced the apparent effect size of
the schizophrenia PRS (some individuals in our sample who have not yet reached the age of
illness onset may have been misclassified as controls).

Although the PRS effects we observed were not large enough on their own to stratify risk
inaclinical setting (i.e., to discriminate between cases and controls on an individual level with
high accuracy), they are comparable to those of risk factors in established risk calculators. For
example, two well-established coronary artery disease (CAD) risk factors—smoking and
diabetes — were estimated in the Framingham Heart Study to have hazard ratios < 2.0 — similar
to the observed risk for the top schizophrenia PRS decile here. Additionally, in arisk calculator
for the transition to psychosis among high-risk individuals — one of the few individualized risk
calculators developed within psychiatry — the best predictor was a symptom severity index with a
hazard ratio of 2.1 (95% Cl, 1.6-2.7)*.While this risk calculator was not validated for clinical
use, it does reflect effects of variables used by clinicians to assess risk in the clinic.

In light of this, we speculate that incorporating genetic risk could be impactful within
psychiatry, especially as enhanced performance may be possible through a variety of means. For
example, we implemented two PRS methods, a standard L D-pruning approach and a newer,
Bayesian one, to evaluate the robustness and consistency of our results. While the differencesin

results were not large, the Bayesian method produced larger effect estimates overall, including
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for schizophrenia (Table 2). These findings support the use of newer risk scoring methods that
can incorporate more genetic variants by directly modeling LD structure. Precision of PRSs may
also increase through larger discovery sample sizes™ and with refinement of EHR-based case
definitions. Nonetheless, it remainsto be seen whether combining PRS risk estimates with other
clinical predictors can meaningfully contribute to individualized risk assessment in psychiatry.

Schizophrenia PRSs were also associated with broader effects on mental health including
increased risk for anxiety, mood, substance use, personality, and neurological disorders, aswell
as memory loss and suicidal behavior. Anxiety, mood, and substance use disorders have all

9,34-36
a

previously been linked to genetic risk for schizophreni and our results confirm in aclinical

setting that these disorders share genetic risk. Certain personality disorders have aso been linked

to genetic liability for schizophrenia®*®

(e.g., schizotypal or schizoid) and there is some
evidence that personality dimensions in adolescence predict future psychopathology, including
schizophrenia®. Similarly, family history of schizophrenia has been associated with suicidal
behavior®®. However, results from our sensitivity analyses suggested that the relationships
between schizophrenia and neurological disorders, personality disorders, suicidal behavior, and
memory loss may be consequences of a schizophrenia diagnosis rather than due to shared genetic
risk (Figure S2).

Genetic liability for schizophrenia was associated with many non-psychiatric syndromes
aswell, including obesity, urinary syndromes, viral hepatitis, synovitis and tenosynovitis, and
malaise and fatigue. Intriguingly, obesity and morbid obesity were significantly negatively
associated with schizophrenia PRSs (Table S1). Thisis somewhat surprising given the known
phenotypic correlation between schizophrenia and obesity*. Nonetheless, three prior reports

found significant inverse genetic correlations between body mass index and schizophrenia®™,

16


https://doi.org/10.1101/421164
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/421164; this version posted March 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

while a fourth reported an inverse, but non-significant relationship™. This may suggest that
increased rates of obesity among patients with schizophrenia may be a consequence of the
disease, potentially due to antipsychotic use or poor support for proper nutrition. We also found
an inverse association between genetic liability for schizophrenia and diabetes, but only in
sengitivity analyses controlling for a schizophrenia diagnosis or antipsychotic medication history.
It may be that this negative genetic correlation was attenuated in the primary analysis (i.e.,
including patients with schizophrenia and antipsychotic medication history with no statistical
control) due to diabetes-promoting effects of antipsychotic medications within the same
individuals that were at high genetic risk for schizophrenia™. In general, pleiotropic effects may
have implications for risk communication if PRS testing is deployed in clinical settingsin the
future.

Our results should be interpreted in light of several limitations. First, due to small
numbers of patients of other ancestries, our analyses were restricted to patients of European
descent, and the generalizability to individuals of non-European ancestry remains to be
determined. Second, our phenotype definitions relied on very simple rules and disregarded many
variables of potential importance including medical history of related disorders, setting of
diagnosis (i.e., in- or outpatient; physician specialty), and treatment for the disease of interest.
Thiswas by design in order to mimic areal-world clinical population where PRSs may be
implemented for clinical decision support, however, the approach is sensitive to
misclassifications that occur in aclinical setting. Future work refining case and control
definitions using natural language processing algorithms may improve the predictive
performance of PRSs and other risk factors for clinically-derived phenotypes*’ . Third, our

results varied to some degree between sites (Table S3; Table $4), perhaps most notably for
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schizophrenia, suggesting that demographic and disease distributions in any given healthcare
system will influence penetrance and pleiotropy. However, we tested for between-site
heterogeneity for schizophrenia, and though this test has relatively low power, it showed no
evidence of significant heterogeneity (p’s > .45). Relatedly, disease prevalence was often lower
in the overall healthcare system relative to the participants enrolled in the biobanks (a subset of
those patients) (Table S6). In general, case prevalence in the biobanks was more representative
of population-level prevalence than was that in the healthcare systems, suggesting that the
discrepancies may be due to biobank patients generally having a longer duration of EHR follow-
up and therefore more opportunity to receive a diagnosis than patientsin the overall healthcare
system (Table S6). Finally, although our analyses comprise the largest test of a schizophrenia
PRSin EHR datato date, additional phenotypes may show significant association in future,
larger-scale PheWAS.

In conclusion, we demonstrate that an available measure of polygenic risk for
schizophreniais robustly associated with schizophrenia across four large healthcare systems
using EHR data. While the observed penetrance of schizophrenia PRSis attenuated in these
settings compared to prior estimates derived from research cohorts, effect sizes are comparable
to those seen for risk factors commonly used in clinical settings. We also find that polygenic risk
for schizophrenia has ple otropic effects on related psychiatric disorders aswell as several non-
psychiatric symptoms and syndromes. Our results provide an initial indication of the
opportunities and limitations that may arise with the future application of PRS testing in

healthcare systems.
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Table 1.

Demographics and Clinical Characteristics

GHS M SSM PHS vVUMC
N 44,436 9,569 18,461 33,694
Mean age, years (SD) 60.2(16.9) 57.2(19.8) 585(16.4) 57.9(20.0)
Females, n (%) 26,094 (59%) 4,955 (52%) 9,913 (54%) 18,089 (54%)
All ICD-9/10 codes 20,083,326 1,021,072 5,972,131 8,043,419
Unique ICD-9/10 codes 29,766 16,535 26,441 26,283
Median visits per patient 142 81 70 52
Median ICD9/10 codes per patient 317 44 184 150
Median EHR length, days 5,509 2,942 4,729 3,884

Age is defined as the patient’ s age at their most recent hospital visit in which they received an
ICD-9/10 code. A visit is both patient- and date-specific, but may include many individual 1CD-

9/10 codes. SD, standard deviation.
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Table 2.

Odds Ratios for Schizophrenia and Psychotic Disorders

Reference

PRS Risk Risk Case  Reference Case

Method Group Prevalence Group Prevalence OR 95% CI P Value
Schizophrenia LD-pruned  Top10%  0.8% Remaining 90%  0.5% 19 1524 7.81x10°

LD-pruned  Top10%  0.8% Bottom 10% 0.2% 33 2152 1.16x107

Bayesian Top10%  1.0% Remaining 90%  0.4% 23 1929 198x10™

Bayesian Top10%  1.0% Bottom 10% 0.2% 46 2973 137x10%
Schizophreniaand  LD-pruned  Top10%  2.1% Remaining 90% 1.3% 1.7 1520 200x10%
Related Psychotic ~ LD-pruned  Top10%  2.1% Bottom 10% 0.9% 22 1728 414x10%
Disorders Bayesian Top10%  2.1% Remaining 90% 1.3% 16 1419 175x10%

Bayesian Top10% 2.1% Bottom 10% 1.0% 21 1627 275x10°

Overall sample case prevalence was 0.5% for schizophrenia and 1.4% for schizophreniaand

related psychotic disorders. PRS, polygenic risk score; OR, odds ratio; Cl, confidence interval.
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Figure 1. Schizophrenia Case Prevalence by PRS Decile.

Schizophrenia case prevalence by site (dashed lines) and across all healthcare systems (solid
line) was plotted by schizophrenia PRS decile for both PRS methods. GHS, Geisinger Hesalth
System; MSSM, Mount Sinai School of Medicine; PHS, Partners Healthcare System; VUMC,

Vanderbilt University Medical Center; PRS, polygenic risk score.

Figure 2. Odds Ratiosfor Top Schizophrenia PRS Decile.

Odds ratios and 95% confidence intervals for phenotypes significant in LD-pruned PRS
PheWAS meta-analysis were plotted for the top PRS decile with reference to both the remaining
90% (red squares) and the bottom decile (blue circles). The vertical red line reflects no changein

risk (OR = 1).

Figure 3. Schizophrenia PRS PheWAS M eta-Analysis.

Manhattan plot for phenome-wide association with LD-pruned schizophrenia polygenic risk
scores meta-analyzed across four healthcare systems (1359 phenotypes; 106,160 patients).

The x axisis phenotype (grouped by broad disease category) and the y axisis significance (—
log,, P; 2-tailed) of association derived by logistic regression. The red line shows phenome-wide
level significance (3.7 x 10”°) using Bonferroni correction and all phenotypes passing this
threshold are labeled. All significant effects were positive (i.e., higher polygenic risk scores
resulted in higher incidence of the phenotype) with three exceptions. morbid obesity, obesity,

and synovitis and tenosynovitis.
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