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Abstract 

Background: Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells 

survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been 

studied at the transcriptome level, how post-transcriptional regulation contributes to their 

chemoresistance remains unknown. 

Results: We induced chemoresistant and quiescent (G0) leukemic cells by serum-starvation or 

chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we 

systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 

cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 

cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly 

translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) 

are significantly enriched in the up-regulated G0 translatome and transcriptome. Mechanistically, we 

find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by 

phosphorylation and inactivation of mRNA decay factor, tristetraprolin (TTP) in G0. This permits 

expression of ARE-bearing TNFα and DUSP1 that promote chemoresistance. Conversely, inhibition of 

TTP phophorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE 

mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and 

TNFα—prior to or along with chemotherapy—substantially reduced chemoresistance in primary 

leukemic cells ex vivo and in vivo. 

Conclusions: These studies uncover post-transcriptional regulation underlying chemoresistance in 

leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE 

bearing mRNAs that promote chemoresistance. By disrupting this pathway, we developed an effective 

combination therapy against chemosurvival.  

 

Key words: quiescence, chemoresistance, post-transcriptional regulation, AU-rich elements, TTP 
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Background 

Quiescent (G0) cells are an assortment of reversibly arrested cells, including dormant stem cells, which 

are found as a clinically relevant subpopulation in cancers (1-4). Such cells are anti-proliferative, anti-

differentiation, and anti-apoptotic, and show distinct properties including resistance to harsh conditions  

(1;2;5-10). G0 cells show specific gene expression that may underlie their resistance and other 

properties (1;2;8-10). Analyses from multiple groups revealed some genes up-regulated at the 

transcriptional level (1;8;11). Altered polyadenylation site selection on mRNAs produces longer 3�-

untranslated regions (3�UTRs) in G0 compared to proliferating cells— which increases 3�UTR 

elements that can mediate post-transcriptional gene expression regulation (12). Our previous data 

demonstrated that translation mechanisms are distinct in G0 leukemic cells, with decreased canonical 

translation mechanisms and increase in mRNA translation by alternative mechanisms that involve non-

canonical translation initiation factors (13) and 3′UTR mediated specific mRNA translation (14). These 

data suggest that alternate post-transcriptional mechanisms in G0 cancer cells may regulate a distinct 

translatome to mediate their resistance. Translated genes, post-transcriptional mechanisms involved, 

and outcomes on cancer persistence remain to be investigated.  

We analyzed the translatome and proteome of chemotherapy-surviving G0 cancer cells, focusing on 

acute monocytic leukemia (AML), to provide comprehensive information that complement and expand 

previous transcriptome analyses (1;2;8;11;15;16), revealing critical genes that are post-transcriptionally 

regulated for chemo-survival. G0 can be induced by growth factor-deprivation or serum-starvation and 

other conditions that isolate dormant cancer stem cells in distinct cell types (1;6;7). Our data 

demonstrate that serum-starvation induced G0 AML cells are chemoresistant—similar to surviving AML 

cells, isolated after chemotherapy. Chemoresistant cells isolated via serum-starvation, or as surviving 

cells post-chemotherapy, show inhibition of canonical translation mechanisms, indicating that non-

canonical mechanisms express specific mRNAs when these cells are chemoresistant. Consistently, the 

translatomes and proteomes of serum-starved G0 and chemo-surviving cells show greater similarity 
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than the transcriptome alone. Our data reveal that DNA damage and stress signaling cause post-

transcriptional alterations to produce a specialized gene expression program of pro-inflammatory, 

immune effectors that elicit chemosurvival. 

 

Results  

Serum-starvation or AraC treatment induces a quiescent and chemoresistant state of leukemic 

cells 

To study clinical resistance in cancer, THP1 human AML cells were used as they show significant 

resistance to AraC (17) (cytosine arabinoside, Fig. S1A), a standard anti-leukemic chemotherapeutic 

that targets DNA replication and thus proliferating cells (referred to as S+). Our data and others find 

that serum-starvation of THP1 (13) and other cell lines (1;8;11;18) induces a transient G0 state with 

known G0 and cell cycle arrest markers expressed (Fig. 1C-D, S1B-C). Such serum-starvation induced 

G0 cells (referred to as SS) can be returned to the cell cycle upon serum addition (Fig. 1D), verifying 

that they are quiescent and transiently arrested, unlike senescence or differentiation that are not easily 

reversed. We find that serum-starvation induced G0 SS cells show resistance to AraC chemotherapy. 

Serum-grown S+ cells show a dose-dependent decrease in cell viability with AraC as expected, while 

SS cells persist, indicating their chemoresistance (Fig. 1E). Chemoresistant cancer cells include cancer 

stem cells and are a subpopulation that can be isolated from cancers after treatment with 

chemotherapy (2;6-10) that targets and eliminates S+ cells. We find that AraC-surviving THP1 (referred 

to as AraCS) cells are transiently arrested, like SS cells (Fig. 1C-D, S1B); both AraCS and SS cells 

survive chemotherapy (Fig. 1E). AraCS cells recover from their transient arrest upon AraC removal, 

proliferate (Fig. 1D), affirming the reversible G0 arrest state of chemoresistant cells, similar to SS cells 

(1;2;6-10).  
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G0 cells induced by SS or AraC have similar translatomes and proteome features that 

recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models 

To study post-transcriptionally regulated genes in G0, we profiled S+, SS cells and AraCS cells at the 

proteome, translatome and transcriptome levels using multiplexed quantitative proteomics (14), 

microarray analysis of heavy polysome-associated mRNAs (13;14;19), and total RNAs respectively 

(Fig. 1A-B, S1D-F). Notably, we find that AraCS and SS cells show more similar gene expression 

profiles at the proteome and translatome levels, compared to transcriptome levels (Fig. 1F). These data 

suggest that although these chemoresistant G0 cells are isolated via two different methods, they exhibit 

a common set of translatome and proteome, which could underlie their common characteristic of 

chemoresistance. These data indicate the relevance of examining both the translatome and 

transcriptome. Time-course translatome analysis revealed that SS G0 cells that were serum-starved for 

short periods (4 hours and 1 day), are distinct from SS G0 cells that were serum-starved for long 

periods (2 days and 4 days) (Fig. S1E-F). This is consistent with G0 as a continuum of assorted, 

arrested states (1), with temporal differences in underlying gene expression in early G0 compared to 

more homogeneity at late G0. SS and AraCS cells provide sufficient material to perform concurrent 

translatome, proteome and transcriptome profiling, compared to limited cells from in vivo resistance 

models where only transcriptomes were profiled. To test whether our G0 leukemic cells are relevant 

models to study chemoresistance and G0, gene expression profiles of AraCS and SS cells were 

compared to published transcriptome profiles of leukemia stem cells (LSC) from AML (16), dormant 

leukemic cells (LRC), and minimal residual disease (MRD) from chemotherapy surviving patient 

samples with acute lymphocytic leukemia (ALL) (15), as well as SS G0 fibroblasts (G0 HFF) (1). 

Importantly, we find that these published transcriptome signatures for in vivo chemoresistance and G0 

models were significantly up-regulated in our SS and AraCS cells (referred to as resistant G0 leukemic 

cells), compared to S+ cells (Fig. 1G, S1G). These data indicate that our resistant G0 leukemic cells 
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are relevant models to study post-transcriptional regulation in chemoresistance as they have similar 

gene expression profiles to known transcriptional profiles from in vivo chemoresistance models.  

 

Inhibition of canonical translation initiation in resistant G0 leukemic cells 

We find overall protein synthesis is reduced at least 2-fold in AraCS, compared to S+ cells (Fig. 2B, 

S1D). Mechanistically, both rate-limiting steps in canonical translation initiation: recruitment of initiator 

tRNA, and mRNA cap recognition to recruit mRNAs to ribosomes are inhibited in G0 leukemic cells 

(Fig. 2A). Recruitment of initiator tRNA by eIF2 can be blocked by eIF2α phosphorylation as a stress 

response (13;20-25). We find that two eIF2 kinases, PKR and PERK, are activated and increase eIF2α 

phosphorylation (Fig. 2C) in G0 leukemic cells to inhibit canonical translation initiation. Consistent with 

our previous study (14), we observed dephosphorylation of 4E-BP (Fig. 2C) that inhibits cap-dependent 

translation initiation (26;27). Low mTOR activity is known to reduce translation of terminal 

oligopyrimidine tract (TOP) mRNAs such as ribosomal protein mRNAs (26;28;29), which is decreased 

in SS and AraCS cells (Fig. 2D). Decreased canonical translation can enable post-transcriptional 

regulation of specific genes, as observed previously (13;14) and lead to survival of G0 leukemic cells.  

 

Global translatome analysis shows that inflammatory response genes are selectively translated 

in resistant G0 cancer cells 

We measured the number of genes upregulated at the transcriptome, translatome and proteome levels 

in resistant G0 leukemic cells, compared to S+ cells. A significantly greater number of genes were 

upregulated in the translatome (580 genes, Table S1) and proteome (716 genes), compared to the 

transcriptome (318 genes) as shown in Fig. 2E. Importantly, 57% of upregulated genes were 

upregulated only in the translatome level (Fig. 2F) but not in the transcriptome, indicating post-
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transcriptional regulation. To investigate the biological function of these differentially expressed genes, 

gene ontology (GO) analysis was performed.  Gene categories up-regulated in G0 translatomes include 

inflammatory response, immune modulators (receptors, antigen presentation and processing genes), 

cell adhesion, cell migration, lipid biosynthesis and cholesterol pathway genes (Fig. 2G, S2E). Down-

regulated genes include RNA processing and ribosome genes (Fig. 2G). To identify translationally up-

regulated genes, we measured the change in ribosome occupancy (RO) which is the ratio of polysome-

associated mRNA levels to total mRNA levels of each gene (Fig. 2F, Venn diagram, heat map). We find 

180 genes are translationally up-regulated above RNA level changes. These genes include antigen 

processing and presentation genes (30) (HLA-G, HLA-E) and immune receptors (CD47, Fig. 2F-G, S2I) 

(31-33) that regulate anti-tumor immune response and are associated with leukemic stem cells and 

resistance (34;35). 

We asked if this specific gene expression profile in resistant G0 leukemic cells is conserved in G0 cells 

of other tumors and normal cells. Therefore, global translatome profiling was conducted in G0 cells 

from four different cells lines: breast cancer (MCF7), liver cancer (HEP-G2), and osteosarcoma (U2OS) 

as well as non-cancerous fibroblasts (HFF) (Fig. S2). Their translatome profiles were compared with 

resistant G0 leukemic cells, using GSEA and DAVID tools (Fig. 2H-I, S2E-F). We find that 580 

signature genes of resistant G0 leukemic cells (Table S1) were highly upregulated at the translatome 

level in G0 cells of these other cell types (Fig. 2H). As expected for these arrested cells, genes related 

to cell cycle, ribosome biogenesis, and DNA replication were commonly down-regulated (Fig. 2I, S2E). 

Importantly, inflammatory response genes were commonly up-regulated in cancer G0 cells but not 

normal G0 fibroblasts and do not significantly overlap with senescence-associated secretory pathway 

(SASP) (Fig. 2I, S2G) (36;37), indicating a specific role in chemoresistant cancer cells.  
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Stabilization of ARE-bearing mRNAs is mediated by phosphorylation of TTP in resistant G0 

leukemic cells  

To identify cis-acting elements that mediate post-transcriptional regulation, the untranslated regions 

(UTRs) of differentially expressed genes were examined. We find that a GC-rich motif was enriched on 

5′UTRs of translationally up-regulated genes and an AU-rich motif, on 5′UTRs of down-regulated genes, 

indicating that mRNAs with structured 5′UTRs are highly translated in G0 cells (Fig. S3A-B). 

Importantly, 3’UTR AU-rich elements (AREs) are significantly enriched in the up-regulated translatome 

as well as transcriptome (Fig 3A). Furthermore, 30% of the translatome signature of G0 leukemic cells 

bear AREs (Table S2), including proinflammatory cytokines such as TNFα and chemokines (Fig. 3B-C). 

AREs are important post-transcriptional regulatory elements that mediate rapid degradation and 

repression of mRNAs (38). To understand how ARE mRNAs are highly expressed in G0 cells, we 

assessed the expression level of RNA-binding proteins. As expected, ARE-binding proteins known to 

cause mRNA decay or translation repression (39;40) are significantly reduced in G0 cells (Fig. S3F). 

Additionally, the exosome and proteasome complexes that are implicated in ARE mRNA decay (41) 

(42) are reduced (Fig. S3C-E). However, a key ARE mRNA decay and translation repression factor, 

Tristetraprolin (TTP) was surprisingly increased in AraCS from multiple AML cell lines (Fig. 3D-E). 

However, we find that TTP is phosphorylated in SS and AraCS cells (Fig. 3E, right). TTP 

phosphorylation is established to increase its levels (43), and block its ability to destabilize ARE 

mRNAs, thus enabling ARE mRNA translation upon LPS treatment (44;45). To test whether 

phosphorylation of TTP was required for the increased expression of ARE mRNAs in G0 leukemic cells, 

we generated non-phosphorylatable mutant TTP with key phosphorylation sites (Ser 52, 178) replaced 

by alanine (TTP-AA). TTP-AA has been shown to dominantly maintain ARE mRNA decay activity and 

reduce pro-inflammatory cytokines like TNFα in immune cells (43-45). Expression of myc-tagged TTP-

AA significantly reduced TNFα mRNA in both THP1 and K562 AraCS cells (Fig. 3F), overturning the 

decay inactivity of endogenous phospho-TTP. To determine the effect of TTP phosphorylation on the 
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stability of ARE mRNAs, we measured the half-life of TNFα mRNA. Expression of TTP-AA mutant more 

significantly reduced the half-life of TNFα mRNA than TTP wild-type expressed in AraC-treated TTP-

deficient macrophages 48 (Fig 3G). Furthermore, immunoprecipitation demonstrated that TTP-AA was 

associated with TNFα mRNA in AraCS cells (Fig 3H). These data indicate that inactivation of ARE 

mRNA decay by TTP phosphorylation (43;45;46) is a key regulator of expression of a pro-inflammatory 

gene, TNFα, in chemoresistant G0 cells. These results are consistent with our findings of increased 

levels and translation of ARE bearing mRNAs due to decreased ARE mRNA decay activity in G0 cells 

(Fig. 3A-C, S3C-F).  

 

The p38 MAPK-MK2 pathway phosphorylates TTP to promote expression of ARE-bearing 

mRNAs in resistant G0 leukemic cells 

To investigate how TTP is phosphorylated in resistant G0 leukemic cells, we examined key signaling 

molecules involved in DNA-damage response (DDR) (Fig. 4A) that is induced by chemotherapies like 

AraC (47-50). As expected, AraC treatment induced rapid phosphorylation and activation of ATM (Fig. 

4B). Importantly, we find that these conditions lead to phosphorylation and activation of p38 MAPK and 

its downstream effector, MAPKAPK2 (MK2) (51;52) (Fig. 4B). MK2 has been shown to phosphorylate 

TTP in macrophages treated with lipopolysaccharide (LPS) (43;45;46). To examine whether the p38 

MAPK-MK2 pathway phosphorylates TTP in resistant G0 leukemic cells, two different inhibitors of p38 

MAPK were tested. Treatment with p38 MAPKα/β inhibitor, LY2228820 (LY) (52;53), or a pan-p38 

MAPK inhibitor that targets all isoforms, BIRB796 (BIRB) (54), blocked phosphorylation of MK2 and 

prevented MK2-mediated TTP phosphorylation and reduces TNFα in AraCS cells (Fig. 4C). These 

results suggest that p38 MAPK-MK2 phosphorylates TTP, resulting in enhanced expression of ARE 

mRNAs such as TNFα upon AraC treatment (Fig. 4A). To test if the p38 MAPK-MK2-TTP pathway 

regulates TNFα expression via its ARE, a firefly luciferase reporter bearing the 3′ UTR ARE of TNFα, 
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and as control, Renilla luciferase, were co-transfected. Luciferase activity of the ARE reporter increased 

by 2-fold in AraCS cells compared to S+ cells but not when p38 MAPK was inhibited (Fig. 4D). These 

data suggest that the p38 MAPK-MK2-TTP axis up-regulates expression of specific genes via AREs in 

G0 leukemic cells.  

 

Phosphorylation of TTP induced by p38 MAPK-MK2 promotes chemoresistance 

We noted that the p38 MAPK-MK2 pathway was rapidly activated to phosphorylate TTP within one day 

of SS or AraC treatment (Fig. 4B, S4A-B). To test the effect of inhibition of TTP phosphorylation on 

chemoresistance, p38 MAPK was inhibited before (or along with) as well as after treatment with AraC—

and then chemosurvival was measured using multiple assays, including cell death and two cell viability 

assays (Fig. 4E-G). Inhibition of p38 MAPK with BIRB or LY, one day after AraC treatment, when TTP 

was already phosphorylated, did not show any significant reduction in survival of AraC-resistant cells 

(Fig. 4F-G). Conversely, inhibition of p38 MAPK at earlier time points prior to AraC treatment, when 

TTP was not phosphorylated, increased apoptosis and reduced survival of AraC-resistant cells (Fig. 4F-

G). As a control, p38 MAPK inhibition alone does not affect viability of S+ cells that are not treated with 

AraC (Fig. 4F-G). These results suggest that p38 MAPK is rapidly activated upon AraC treatment to 

turn on downstream survival pathways such as phosphorylation of TTP. Thus, to inhibit phosphorylation 

of TTP and hence overcome AraC resistance effectively, p38 MAPK needs to be targeted at early time 

points.  

To confirm that phosphorylation of TTP induces chemoresistance, we over-expressed TTP mutant 

(TTP-AA) that cannot be phosphorylated by p38 MAPK-MK2, followed by AraC treatment. Importantly, 

we find that TTP-AA mutant expression reduces survival of AraC-resistant cells in THP1 and K562 

leukemic cell lines (Fig. 4H). Furthermore, TTP-AA mutant, expressed in TTP-knockout macrophages, 
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induced  apoptosis of AraC-surviving cells more significantly, compared to TTP wild-type (Fig. 4I). 

Consistently, in multiple AML cell lines, early inhibition of p38 MAPK showed dramatically reduced 

chemosurvival but not in non-cancerous CD34+ cells (Fig. 4J). When treated with p38 MAPK inhibitor 

alone, viability of S+ cells in multiple AML cell lines remained unchanged, indicating the synergism of 

AraC and p38 MAPK inhibitors (Fig. 4J). Interestingly, p38 MAPK inhibition eliminated resistant cells 

more significantly at increasing concentrations of AraC (Fig. 4K). This indicates that treatment with high 

concentrations of AraC would increase the number of cells induced into the resistant G0 state with 

strong phosphorylation of p38 MAPK-MK2-TTP. Conversely, even low concentrations of BIRB were 

sufficient to reduce chemoresistance (Fig. S4C). Unlike in solid tumors, where activation of p38 MAPK-

MK2 induces resistance by arresting the cell cycle (38;51;52), p38 MAPK inhibition did not affect the 

cell cycle in AML cells (Fig. S4D). These data uncover rapid activation of a p38 MAPK-MK2 pathway 

that enables chemosurvival of G0 leukemic cells via inhibition of TTP activity. 

 

TNFα, induced by phosphorylation of TTP, promotes chemoresistance  

We demonstrated that TTP regulates the stability of ARE mRNAs such as TNFα in AraCS cells (Fig. 

3G). Furthermore, inactivation of TTP allowed elevated TNFα translatome and protein levels in 

resistant G0 leukemic cells (Fig 5B-C). To assess the effect of TNFα on chemoresistance, we altered 

TNFα levels genetically and phamacologically in G0 cells (Fig. 5A). Induction of TNFα depletion prior to 

AraC effectively reduced AraC resistance, compared to depleting TNFα after AraC treatment, while no 

effect was observed with TNFα depletion alone without AraC (Fig. 5D). In contrast, addition of 

recombinant TNFα enhanced survival of AraCS cells (Fig. 5D). TNFα-mediated chemoresistance is not 

due to arrested cell cycle as TNFα treatment without subsequent AraC does not alter the cell cycle 
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(Fig. S5C). These data suggest that phosphorylation of TTP and subsequent expression of TNFα, 

which are induced by p38 MAPK-MK2, are responsible for survival of G0 leukemic cells.  

TNFα can also be inhibited pharmacologically with the drug pirfenidone (PFD) that can block TNFα 

translation in RAW264.7 cells and is used to treat idiopathic pulmonary fibrosis (52;55;56). In G0 

leukemic cells, PFD reduced TNFα translatome and protein levels but not mRNA levels (Fig. 5E, S5F). 

PFD treatment at least 18 hours prior to or along with AraC or SS significantly reduced viability of G0 

leukemic cells but failed to reduce resistance when added after AraC treatment (Fig. 5F, S5D). As 

observed with p38 MAPK-MK2 activation (Fig. 4A-B), TNFα translatome level also is rapidly and 

dramatically increased upon SS treatment (Fig. 5B). These data indicate that activation of TNFα is an 

early event in G0 induction, which leads to resistance, and needs to be inhibited early to preclude 

downstream survival regulators. PFD treatment alone does not affect the viability of untreated S+ cells, 

indicating that the cytotoxic effect of PFD is specific to G0 leukemic cells (Fig. 5F). PFD treatment 

reduced chemotherapy survival in multiple AML cell lines (Fig. 5G).  Similar results were observed in 

MCF7 cells, where PFD reduced doxorubicin resistance (Fig. S5H).  

TNFα activates the NFκB pathway that increases anti-apoptotic gene expression to promote cell 

survival (57-59). Our observation of early activation of p38 MAPK-MK2 (Fig. 4A-B) suggested that 

TNFα could be rapidly up-regulated upon G0 induction. Time-course translatome analysis affirmed that 

TNFα is highly increased (16-fold) at the earliest time point of 4 h after serum-starvation or AraC 

treatment (Fig. 5B) along with its receptors, leading to rapid elevation of downstream NFκB target 

genes including anti-apoptotic BCL family members (59-61) (Fig. 5B, S5A-B). Similar to our 

observations with TNFα inhibitor PFD, NFκB inhibitor, BAY11-7082(62) prior to or along with AraC or 

SS decreases survival of G0 cells, while treatment after AraC or SS had no effect (Fig. 5H). These data 

suggest that the TNFα-NFκB inflammatory pathway is upregulated as an early survival pathway in G0 

cells. 
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TTP regulates a pro-apoptotic JNK pathway via targeting DUSP1  

 We asked what other ARE mRNAs are targeted by TTP and affect cell survival. DUSP1 mRNA 

contains AREs in its 3' UTR. TTP has been shown to target DUSP1 mRNA for degradation upon LPS 

treatment of macrophages or dendritic cells (44;45;63). To determine if TTP phosphorylation regulates 

DUSP1 in AraCS, we expressed TTP-AA mutant that is not phosphorylated in BMDM cells that lack 

TTP (Fig. 6A). Immunoprecipitation showed that TTP-AA associated with DUSP1 mRNA in AraCS cells 

(Fig. 6B). Expression of TTP-AA mutant more significantly reduced DUSP1 mRNA and protein levels 

compared to cells expressing TTP wild-type (Fig. 6C-D). Furthermore, inhibition of phosphorylation of 

TTP by p38 MAPK inhibitor decreased DUSP1 protein level (Fig. 6E). DUSP1 is a MAPK phosphatase 

which dephosphorylates JNK (64).  In AraCS cells, DUSP1 protein level is negatively correlated with 

phosphorylated JNK (Fig. 6C, 6E), consistent with DUSP1-mediated suppression of JNK(64). To 

determine the effect of JNK on survival of leukemic cells, JNK inhibitor, JNK-IN-8 was used (Fig. 6A). 

Importantly, JNK inhibition reversed apoptosis of leukemic cells treated with AraC, LY and PFD, but did 

not affect the viability of untreated cells (Fig. 6F), indicating that inhibition of JNK pathway contributes to 

chemoresistance. Together, these results suggest that TTP-DUSP1 axis promotes chemoresistance via 

suppressing JNK-mediated apoptosis (Fig. 6A).    

 

Co-inhibition of p38 MAPK and TNFα sensitizes resistant leukemic cells to AraC treatment  

Although chemoresistant cells are sensitive to individual inhibition of either TNFα or p38 MAPK by PFD or 

LY respectively, a substantial proportion of cells still survived (Fig. 4F, 5G). Therefore, we asked if co-

inhibition of p38 MAPK and TNFα with LY and PFD respectively, could eliminate the remaining resistant 

cells. We find that individual treatment with either of LY or PFD prior to or along with AraC, reduces 

approximately 50% of surviving leukemic cells (Fig. 7B). Importantly, the combination of PFD and 

LY2228820 prior to AraC treatment−called PLA therapy−eliminates about 90% of chemoresistant cells in 
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multiple AML cell lines (Fig. 7A-C). Furthermore, PLA therapy decreased colony formation capacity of 

leukemic cells on methylcellulose by 10-fold, compared to AraC-treatment alone (Fig. 7D). These data 

indicate a severe loss of stem cell capacity of leukemic cells treated with PLA therapy. In contrast, in the 

absence of AraC treatment, the combination of PFD and LY2228820 did not affect cell viability, apoptosis 

and colony formation capacity, indicating the synergistic effect between AraC and anti-inflammatory drugs 

(Fig. 7B-D). Despite the fact that stromal niche cells have been shown to protect leukemic cells from 

chemotherapy (65), we find that AML cells co-cultured with stromal cells remained sensitive to PLA 

therapy (Fig. S5E). We investigated the molecular mechanism by which PLA therapy enhanced 

chemosensitivity. We find that LY treatment destabilizes TNFα mRNAs by TTP dephosphorylation (43) 

(Fig. 3G, 4C), while PFD suppresses translation of TNFα mRNA (56) (Fig. 5E). Therefore, in PLA therapy, 

TNFα remains more effectively blocked, compared to individual drug treatments (Fig. 6E). Furthermore, a 

pro-apoptotic JNK pathway was more significantly activated in cells treated with PLA therapy than single-

drug treatments (Fig. 6E). Together, these results suggest that PLA therapy reduces TNFα and promotes 

a pro-apoptotic JNK pathway, leading to apoptosis of chemoresistant cells. 

 

PLA therapy reduces chemoresistance in primary AML cells ex vivo and in vivo 

To test the anti-leukemic activity of PLA therapy in primary AML (66), primary cells from AML patients 

as well as two murine AML models driven by Hoxa9/Meis1 or MLL/AF9 (SI Methods), were used. When 

either p38 MAPK or TNFα was inhibited prior to AraC treatment, moderate apoptosis of chemoresistant 

cells was observed in primary AML cells (Fig. 8A-B). Importantly, co-inhibition of p38 MAPK and TNFα 

by PLA therapy (pre-treatment before AraC) significantly reduced AraC resistance in fourteen out of 

fifteen AML patient samples as well as in primary cells from two AML mouse models ex vivo (Fig. 8A-

B). In contrast, the viability of normal CD34+ cells from healthy donors was not affected by treatment 

with LY or PFD (Fig. 4J, 8A-B), consistent with clinical studies that have shown that PFD and LY have 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/418715doi: bioRxiv preprint 

https://doi.org/10.1101/418715
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

acceptable safety and tolerance (53;55). To further investigate the therapeutic potential of PLA therapy 

in vivo, human AML cells expressing luciferase (MOLM13-Luc, SI Methods) were intravenously or 

subcutaneously injected into NSG mice. After confirmation of engraftment by measuring tumor volume 

or bioluminescent imaging (BLI), the mice were treated with PLA therapy or AraC for two weeks. 

Consistent with ex vivo results (Fig. 7B), PLA therapy significantly decreased the leukemic burden and 

tumor volume by 6-fold, compared to AraC treatment alone (Fig. 8C-D). Next, primary Hoxa9/Meis1 or 

MLL/AF9 leukemia cells were generated as described previously (67), and transplanted to second 

recipient mice. These mice were treated with PLA therapy or AraC. Consistently, BLI shows that PLA 

therapy eliminated 78% or 96% of chemoresistant cells in a dosage-dependent manner (Fig. 8E-F) and 

extended mice survival (Fig. 8H and S5G). In the absence of AraC treatment, the combination of PFD 

and LY2228820 did not affect leukemic burden, suggesting that cytotoxic effects of this combination are 

limited to AraC-resistant cells, rather than proliferating cells (Fig. 8G). Together, these results suggest 

PLA therapy has potential for improving AraC-mediated apoptosis in AML.  

 

Discussion  

G0 cells are a transiently arrested, clinically relevant subpopulation in cancers (1;2;5-10).  Our previous 

data and others, revealed altered gene expression mechanisms in G0 leukemic cells, at the post-

transcriptional (8;12) and translational levels (13;14;18). This would lead to a distinct gene expression 

profile to enable G0 cell survival in harsh conditions. G0 cells are resistant to stress conditions like 

serum-starvation, with transient inhibition of apoptosis, and proliferation (1;11;18). Importantly, we find 

that serum-starved leukemic SS G0 cells exhibit chemoresistance (Fig. 1E); consistently, true chemo-

surviving AraCS cells are transiently arrested and chemoresistant (Fig. 1D-E, S1B-C). In accord, we 

find that SS cells are similar in translatome and proteome to AraCS cells (Fig. 1F), indicating that 

consistent with their common features of G0 arrest and chemosurvival, they show similar post-
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transcription gene expression. Published transcriptional signatures of in vivo chemoresistance leukemic 

models (1;2;8;11;15;16), are also highly expressed in SS and AraCS cells (Fig. 1G, S1G). Thus, the 

common G0 resistance gene expression profile observed in AraCS and SS G0 cells likely comprises 

genes that control survival and resistance. These data revealed that in addition to known transcriptional 

profiles, altered post-transcriptional mechanisms in G0 resistant cells contribute to their unique gene 

expression profile that underlies their chemoresistance.  

 

Our findings reveal the importance of DNA damage and stress signaling that can initiate a pro-

inflammatory response that causes survival (Fig. 4).  Differential genomic instability in cancers would 

lead to subpopulations within a tumor with disparate DDR and stress signaling (47-49) that we find, 

enables their chemotherapy survival via pro-inflammatory cytokines. Cytokines upregulated in SS and 

AraCS cells include some SASP factors but also other unique cytokines (36;37) (Fig. S2G). This is 

consistent with similarities and differences between G0 and senescence (1): both show low mTOR 

activity but G0 shows reversible arrest, stem cell markers, low p53 and lack of senescence markers 

(Fig. 2C-D, 2I, S1G) (14)—unlike senescence(18). These data indicate that a quiescence- and 

resistance-specific set of pro-inflammatory and signaling genes are expressed in these resistant cells 

(Fig. 2G). These include inflammatory cytokine, TNFα that promotes downstream NFκB activated pro-

survival target genes (57-59) including BCL family members of anti-apoptotic genes (59-61) (Fig. 5A-C, 

S5A-B). Treatment with anti-inflammatory reagents after chemotherapy is not very effective as the 

downstream survival effectors have already been induced; thus, targeting their upstream cytokine 

regulators would not be effective at this later time (Fig. 4F-G, 5F-H, S5D). Therefore, treatment with 

reagents that block these resistance pathways prior to (and continued with) or along with 

chemotherapy, enables the most effective reduction of resistance, as they prevent further enrichment of 

such resistant cells by blocking induction of pro-survival signaling.  
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 Increasing AraC, a nucleotide analog that inhibits replication (17), would activate DDR and 

downstream p38 MAPK signaling (47-49) and should lead to more cells expressing this inflammatory 

pathway that enables resistance. Consistently, increased AraC treatment leads to more cells in the 

inflammatory phase that can be targeted by LY to curb resistance (Fig. 4K). Non-cancerous cells do not 

show this pathway (Fig. 2I) and are not affected by inhibitors (Fig. 4J, 8A). These data suggest that 

certain chemotherapies and stresses like serum-starvation induce stress signaling (Fig. 4A-C) and 

enrich for resistant G0 cells—in addition to pre-existing subpopulations with genomic instability that 

trigger DDR and stress (47-49). Importantly, this resistance mechanism can be blocked, not only in 

different AML cell lines (Fig. 4J, 5G, 7B) but also in vivo (Fig. 8C-G) and in multiple patient-derived 

primary AML—without affecting normal cells (Fig. 8A)—supporting their potential applicability as a 

therapeutic against chemoresistance in AML. 

  

We find key signaling pathways induced by AraCS and SS treatments, which alter post-transcriptional 

and translational gene expression to enable resistance. These include: 1. DNA damage ATM (47-49) 

and stress activated p38 MAPK signaling that in turn promotes MK2 (51;52) that post-transcriptionally 

upregulates ARE bearing mRNAs (43;45;46). The expressed mRNAs include ARE-bearing 

proinflammatory cytokine TNFα (57;58) that activates downstream anti-apoptosis signals (Fig. 4A-D, 

5A-C, S5A-B) (59-61), and ARE-bearing signaling regulator DUSP1(63;64)that blocks JNK-mediated 

apoptosis (Fig. 6), to promote resistance. 2. ATM-mediated suppression of mTOR activity (47;48) that 

inhibits canonical translation initiation via 4EBP dephosphorylation (Fig. 2A-C); this results in specific 

translation of pro-inflammatory cytokines(14) (Fig. 3A-C) and immune modulators (30) (HLA-G, CD47, 

Fig. 2F, S2I) (31-33) that regulate anti-tumor immune response and resistance (34;35). 3. UPR stress 

signaling, induced downstream of p38 MAPK (68) and DNA damage (69;70), also inhibits canonical 

translation via PERK phosphorylation of eIF2α and enables non-canonical specific mRNA translation 

(Fig. 2A-D, S2H)(69;70). Blocking the p38 MAPKα/β pathway with LY (52;53), in combination with the 
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anti-inflammatory PFD (52;55;56) that precludes downstream TNFα expression (55;56) (Fig. 5E)—prior 

to (and continued with) AraC chemotherapy—lead to effective loss of chemoresistance in multiple AML 

cell lines (Fig. 7B), in tumors in vivo in AML mouse models (Fig. 8C-G), and in patient samples (Fig. 

8A), validating their ability to reduce resistance and tumors in vitro and in vivo. LY destabilizes TNFα 

mRNA by TTP dephosphorylation (Fig. 4C) (43), while PFD suppresses TNFα selectively at the 

translation level (56) (Fig. S5F) and thus enables PLA combination therapy to more effectively curb 

resistance than the individual drugs (Fig. 7B, 8B). Apart from its effect on TNFα translation, PFD blocks 

inflammation regulator (71;72) p38 MAPKγ that can be increased upon p38MAPKα/β inhibition, 

preventing feedback reactivation of inflammation, and enabling PLA combination therapy to remain 

more efficacious than the individual drugs. Therefore, the combination of PFD and LY suppresses the 

inflammatory and stress response more effectively in vitro and in vivo (Fig. 7-8). Upon inhibition of p38 

MAPK, in addition to reduction of TNFα and its downstream anti-apoptotic signals, we find the ARE 

bearing DUSP1 is reduced, leading to activation(63;64)of the JNK pathway(73) to promote apoptosis 

(Fig. 6E-F). These data indicate that blocking pro-inflammatory effectors—that are induced by 

chemotherapy mediated DNA damage and stress signaling—leads to increased chemosensitivity and 

decreased resistant cell survival. 

 

Our findings revealed that these pro-inflammatory and signaling genes upregulated in G0, have AREs 

and other UTR sequences that regulate mRNA levels and translation (Fig. 3A-C, S3A). The ATM-p38 

MAPK-MK2 axis stabilizes these ARE bearing pro-inflammatory cytokine and signaling mRNAs by 

phosphorylating ARE binding mRNA decay factor, TTP to prevent its mRNA decay activity on pro-

inflammatory cytokine TNFα (Fig. 3D-H, 4C-D) and signaling regulator, DUSP1 (Fig. 6A-D). In support, 

overexpression of TTP-AA—that cannot be phosphorylated and is a dominant active form that restores 

ARE mRNA decay (43-45)—decreases TNFα and DUSP1 expression (Fig. 3F-G, 6A-D), and thereby 

reduces chemoresistance (Fig. 4H-I, 6E-F). This is consistent with previous studies on AREs in cancers 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/418715doi: bioRxiv preprint 

https://doi.org/10.1101/418715
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

(14;38;43;74-77). These data suggest that phospho-TTP level or TTP activity is an important regulator 

of inflammatory response mediated chemoresistance, which can be harnessed as a marker and target 

against AML resistance. Consistently, published in vivo leukemia resistance models show increased 

expression of TTP and ARE bearing genes (15;78), similar to our studies (Fig. 3A-E). Our studies on 

TTP and ARE regulated immune and signaling modulators that promote chemoresistance, are 

consistent with recent findings of TTP regulation of PDL1 to mediate immunoresistance in solid 

tumors(79). Importantly, inhibition of these pathways curtails chemoresistance and tumor survival in 

vivo in primary AML patients and tumor models (Fig. 8). Together, these pathways that are up-

regulated in resistant cells (Fig. 4A, 5A) via chemotherapy and stress induced signaling—decrease 

canonical translation and permits non-canonical post-transcriptional regulation of specific genes (Fig. 

S6)—to promote chemosurvival of G0 cancer cells. 

 

Conclusions 

Our studies reveal that G0 leukemic cells are chemoresistant, indicating their clinical importance in 

cancer persistence. We find a specific proteomic and translation profile that is induced commonly 

between G0 cells and chemosurviving leukemic cells. We uncovered critical genes that are specifically 

upregulated post-transcriptionally and translationally for cell survival in these conditions by key survival 

signaling pathways. These studies reveal the significance of post-transcriptional and translational 

regulation of immune and signaling modulators in chemoresistance. Our data enabled the development 

of a new combination therapy to effectively reduce resistance in cancer cell lines, in tumors in vivo, and 

in patient tumor samples, without affecting normal cells. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/418715doi: bioRxiv preprint 

https://doi.org/10.1101/418715
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

Methods  

Overview, aim, design, and setting Therapeutic targeting of minimal residual disease or 

chemoresistant, leukemic stem cells in leukemias, particularly acute myeloid leukemia, has been 

ineffective thus far and refractory leukemia is fatal. The mechanisms of translation and post-

transcriptional control, and the critical translation profile that control the ultimate, specific protein profile, 

and thereby—survival of such clinically resistant cells—are largely undiscovered. Therefore, we globally 

analyzed gene expression at every level—RNA levels, translatome and proteome—in chemotherapy-

surviving G0 cancer cells in acute monocytic leukemia and other cancers, the specialized post-

transcriptional and translational mechanistic changes, their key signaling regulatory pathways, as well 

as developed a new, resistance-gene expression targeting therapy to understand and reduce 

chemoresistance.  

Detailed description of characteristics, materials used, and methods including cell culture, patient 

samples, tumor models, profiling, plasmids, cell viability assays, flow cytometry, protein analysis, drugs, 

and motif analysis are described in detail in Supplemental Information. 

Statistical analyses are described in Supplemental Information. 
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Figure 1. G0 leukemic cells induced by AraC or serum-starvation are chemoresistant and 

recapitulate gene expression programs of in vivo chemoresistant and G0 models. A. 

Transcriptome, translatome and proteome analyses in proliferating and G0 leukemic cells. G0 cells 

(AraCS, SS cells) were induced by treatment of proliferating cells (S+) with AraC or serum starvation. 

Total RNAs, polysome-associated mRNAs and protein were analyzed by comparative microarray and 

quantitative proteomics. B. Polysome profiles of S+, SS and AraCS are shown. Polysome-associated 

mRNAs were isolated and analyzed by microarray. C. Ki67 translatome level and flow cytometric 

quantification of G0/G1, S and G2/M phases, using BrdU and PI staining. D. Cell counting with trypan 

blue staining. Proliferating THP1 cells were serum-starved or treated with AraC for days specified. Then, 

serum was added to SS cells while AraCS cells were resuspended in fresh media. E. S+, SS and 

AraCS cells were treated with various concentration of AraC for 3 days. Viable THP1 leukemic cells 

were measured by cell counting using trypan blue staining and IC50 values of AraC are shown. F. 

Comparison of transcriptomic, translatomic and proteomic changes in response to SS and 5 µM AraC 

treatments. G. Comparison of AraCS and SS with leukemic stem cells (LSC) (16) in AML, dormant 

leukemic cells (LRC) (15), minimal residual disease (MRD) (15) in ALL, and G0 fibroblasts (1). GSEA 

analysis was performed to determine whether previously published transcriptome signatures of LSC, 

LRC, MRD and G0 HFF are up-regulated in AraCS and SS cells, compared to S+ cells. 'N' marks the 

limited resolution of the proteome in the GSEA. *P�≤�0.05. Data are represented as average ± SEM. 

See also Fig. S1 & Table S1. 

 

Figure 2. Inflammatory response mRNAs are selectively translated in G0 leukemic cells, where 

canonical translation is inhibited. A. Repression of canonical translation. B. Polysome to monosome 

ratios in S+, SS and AraCS. C. Western analysis of translation initiation factor, eIF2α and its regulators 

eIF4EBP, PERK and PKR. D. Boxplot of the transcriptome and translatome changes in known TOP 

mRNAs in response to SS or AraC treatment. E. Number of differentially expressed genes. F. Venn 
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diagram shows 162 genes up-regulated at both the transcriptome and translatome levels and 180 

genes translationally up-regulated, where ribosome occupancy, RO increases by at least 1.5-fold. 

Heatmap shows gene expression changes in RNA, translatome levels and RO. G. Gene ontology (GO) 

analyses of differentially expressed genes shown in Fig. 2E. Statistical significance of enriched GO 

categories is shown as a heatmap. H. Expression of signature genes of G0 leukemic cells in published 

transcriptomes of in vivo resistant leukemic and G0 models in other G0 cells. I. Translatome analysis of 

G0 cells from five different cell types. Heatmap of normalized enrichment score (NES) is shown. 

*P�≤�0.05. Data are represented as average ± SEM. See also Fig. S2 & Table S1. 

 

Figure 3. Phosphorylation of TTP stabilizes ARE-bearing TNFα in G0 leukemic cells.  A. Boxplot 

of ARE scores (SI methods) in the 3′UTRs of genes which are up- or down-regulated at the translatome 

or RNA levels in G0 compared to S+ cells. B. Venn diagram shows genes that are up-regulated at the 

translatome level and contain AREs (left). List of such genes (right, Table S2). C. Expression of ARE 

genes at the RNA and translatome levels. D. Scatter plot showing the expression of RNA binding 

protein genes from RBPDB database (SI methods). TTP is indicated with a green dot. E. Western 

analysis of TTP in lysates from multiple leukemic cell lines in the absence or presence of alkaline 

phosphatase (AP). Phospho-TTP is indicated with an arrow. F. Bar graph shows TNFα mRNA 

expression normalized to GAPDH mRNA upon over-expression of vector or c-myc tagged non-

phosphorylatable mutant TTP (TTP-AA) in AraC-treated THP1 or K562 cells. Western analysis of TTP-

AA with c-myc antibody (right). G. Half-life of TNFα mRNA. TTP-deficient BMDM cells were transduced 

with doxycycline inducible plasmids that express GFP vector, TTP wild-type or TTP-AA mutant. Cells 

were induced with 1 μg/ml doxycycline prior to 1 μM AraC treatment. Western analysis of induction of 

TTP protein. TNFα mRNA level was measured at indicated time points by qPCR after transcriptional 

arrest with 5 μg/ml actinomycin D treatment. H. Association of TTP-AA with TNFα mRNA in AraCS cells. 

TTP-AA was immunoprecipitated with GFP antibody from AraC-treated BMDM cells expressing GFP-
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tagged TTP-AA. (Western blot), followed by qPCR analysis of TNFα mRNA (graph). *P�≤�0.05. Data 

are represented as average ± SEM. See also Fig. S3 & Table S2. 

 

Figure 4. Phosphorylation of TTP by p38 MAPK-MK2 promotes chemoresistance 

A. The p38 MAPK (p38)-MK2 pathway enables stabilization and translation of ARE-bearing mRNAs via 

TTP phosphorylation in chemoresistant G0 cells. LY2228820 (LY) and BIRB396 (BB) are p38 inhibitors. 

B. Western analysis of in lysates from THP1 cells at indicated time points after AraC treatment. C. 

Western analysis in S+ and AraCS cells treated with vehicle, 5 µM LY or 5 µM BB. D. Firefly luciferase 

activity of a reporter bearing TNFα ARE in its 3′UTR normalized to activity of co-transfected Renilla 

luciferase in S+ and AraCS cells treated with vehicle, 5 µM LY. E. Sequential treatment with p38 

inhibitors and AraC in leukemic cells. F-G. Effect of p38 inhibitions on survival of AraC-resistant cells. 

THP1 cells were treated with 5 µM BB, 5 µM LY, and vehicle in the absence (S+, top panels) or 

presence (AraC, bottom panels) of 5 µM AraC treatment for three days. Bar graphs show relative cell 

viability and death assessed by cell counting, MTS and caspase 3/7 assays. In the presence of AraC, 

THP1 cells were treated with p38 inhibitors prior to AraC treatment (BB → AraC, LY → AraC), at the 

same time with AraC (AraC + BB) and 1 day after AraC (AraC → BB, AraC → LY). 4H and 1D indicate 

4 hours and 1 days, respectively. H-I. Effect of TTP-AA mutant on survival of AraC resistant cells. TTP-

AA mutant expression prior to 5 µM AraC treatment, decreased TNFα in THP1 or K562 cells (Fig. 3F). 

Cell viability was assessed by cell count (H).  TTP-AA, TTP wild-type and vector were expressed in 

TTP-deficient BMDM cells prior to 1 μM AraC treatment. Bar graphs show relative cell viability and 

death (I). J. Effect of p38 inhibition on resistant cells from five AML cell lines (M5 FAB subtype). Cells 

were treated with 5 µM LY or vehicle 4 hours prior to AraC treatment (top panel, AraC) or in the 

absence of AraC (bottom panel, S+). Human CD34+ cells from healthy donors were tested as a control. 

K. Effect of p38 inhibition on survival of chemoresistant cells induced with various concentrations of 
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AraC. MV4:11 leukemic cells were treated with 5 µM LY or vehicle prior to 0 µM, 0.2 µM, 0.5 µM or 1 

µM AraC for 3 days. *P�≤�0.05. Data are represented as average ± SEM. See also Fig. S4. 

 

Figure 5. TNFα induced by phosphorylation of TTP promotes chemoresistance  

A. Phosphorylation of TTP by the p38-MK2 pathway stabilizes ARE-bearing TNFα mRNA, resulting in 

activation of NF-kB signaling in resistant G0 leukemic cells. TNFα expression is inhibited by TTP-AA 

mutant, pirfenidone (PFD) or shRNAs, and NF-kB signaling by NF-kB inhibitor, Bay11-7082. B. 

Expression of TNFα and NF-kB target genes at the translatome level at indicated time points after SS 

or AraC treatment. C. TNFα protein level in S+, SS and AraCS cells. D. Effect of TNFα on 

chemoresistance. THP1 cells were transduced with doxycycline inducible shRNA against TNFα or 

control shRNA. ShRNA against TNFα was induced prior to AraC (shTNFα → AraC) or after AraC (AraC 

→ shTNFα) and recombinant TNFα protein was added 1 day prior to AraC (ReTNFα → AraC). Cell 

viability and western analysis of TNFα, are shown. E. Effect of PFD on TNFα expression at the 

translatome (middle) and protein levels (right) in AraCS cells. F. Effect of pharmacological inhibition of 

TNFα by PFD on AraC resistance. THP1 cells were treated with 300 µg/ml PFD or vehicle in the 

absence of AraC (S+, top panels), in the presence of AraC (AraC, middle panels), or on serum 

starvation (SS, bottom panels). Bar graphs show cell viability and death assessed by cell counting, 

MTS and caspase 3/7 assays. In middle or bottom panels, THP1 cells were treated with PFD 1 day 

prior to AraC or SS (PFD → AraC, PFD → SS), at the same time with AraC or SS (AraC + PFD, SS + 

PFD), and 1 day after AraC or SS (AraC → PFD, SS → PFD). G. Effect of TNFα inhibition on AraC 

resistance from six different leukemic cell lines. Cells were treated with PFD or vehicle 1 day prior to 

AraC (AraC, top panels) or in the absence of AraC (bottom panels, S+). H. Effect of NF-kB inhibition on 

AraC resistance. THP1 cells were treated with 10 µM Bay11-7082 or vehicle in the absence of AraC 

(S+, top panels), in the presence of AraC (AraC, middle panels) or under serum starvation (SS, bottom 

panels). In middle or bottom panels, THP1 cells were treated with Bay11-7082 1 day prior to AraC or 
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SS (Bay → AraC, Bay → SS), at the same time with AraC or SS (AraC + Bay, SS + Bay), and 1 day 

after AraC or SS (AraC → Bay, SS → Bay). *P�≤�0.05. Data are represented as average ± SEM. See 

also Fig. S5. 

 

Figure 6. TTP regulates a pro-apoptotic JNK pathway via targeting DUSP1  

A. Phosphorylation of TTP allows expression of the ARE-bearing mRNA of DUSP1 that inhibits JNK, 

and hence blocks JNK-mediated apoptosis. JNK pathway is blocked by the inhibitor JNK-IN-8. B-D. 

Effect of TTP-AA mutant on DUSP1 and phosphorylation of JNK. BMDM TTP deficient cells were 

treated with doxycycline to express TTP-AA and TTP wild-type prior to AraC treatment. DUSP1 mRNA 

level was measured by qPCR and is shown relative to GAPDH mRNA (B). Western analysis of TTP, 

DUSP1 and phospho-JNK is shown (C). TTP-AA was immunoprecipitated with GFP antibody, followed 

by qPCR analysis for DUSP1 mRNA (D). E. Western analyses in THP1 and MOLM13 cells treated 

with indicated drug combinations. Phospho-TTP is indicated with an arrow and quantitation of TNFα 

protein is shown below. F. JNK pathway mediates apoptosis. MOLM13 cells treated with indicated 

drug combinations. JNK pathway was inhibited with 1 µM JNK-IN-8. Western analyses of phospho-

JNK, phospho-c-Jun and c-Jun shown on the left; associated cell viability and death graphed on the 

right. Data are represented as average ± SEM. 

 

Figure 7. PLA therapy decreases AraC-resistant cells in AML cell lines  

A.  PLA therapy, involves pre-treatment of leukemic cells with PFD and LY followed by AraC 

treatment, using half of the concentrations used for individual drugs in Fig. 4 and 5. B. Three different 

AML cell lines were sequentially treated with indicated drugs, followed by assessment of cell viability 

and death. C-D. Viability of MOLM13 cells treated with indicated drug combinations. Flow cytometric 

profiles of cells stained with annexin V and propidium iodide are shown (C).  Cells were plated on 

methylcellulose media to test colony formation in the presence of drug combinations. Representative 
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colony images and quantification of colonies are shown (D). *P�≤�0.05. Data are represented as 

average ± SEM. See also Fig. S5. 

 

Figure 8. PLA therapy significantly reduces AraC resistance in primary AML cells ex vivo and in 

vivo. A. Viability of primary cells from AML patients and normal CD34+ cells from healthy donors 

after indicated treatments. B. Viability and death of primary cells from AML mouse models driven by 

HoxA9-Meis1 and MLL-AF9 after indicated treatments. C-G. Bioluminescence images and 

quantification of tumor growth in NSG mice engrafted with MOLM13 cells and treated with PLA 

therapy or AraC (C-D) and in C57BL/6 mice engrafted with primary HoxA9-Meis1/luciferase cells and 

treated with PLA therapy or AraC (E-F) or treated with PFD plus LY or vehicle as a control (G). H. 

Kaplan-Meier survival curves of MLL-AF9 engrafted C57BL/6 mice, treated with PLA therapy or AraC. 

*P�≤�0.05. Data are represented as average ± SEM. See also Fig. S5-S6. 
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