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Abstract— RNA-binding proteins (RBPs) play critical roles
in regulating gene expression by modulating splicing, RNA
stability, and protein translation. In response to various stimuli,
alterations in RBP function contribute to global changes in
gene expression, but identifying which specific RBPs are re-
sponsible for the observed changes in gene expression patterns
remains an unmet need. Here, we present Transite a multi-
pronged computational approach that systematically infers
RBPs influencing gene expression changes through alterations
in RNA stability and degradation. As a proof of principle, we
applied Transite to public RNA expression data from human
patients with non-small cell lung cancer whose tumors were
sampled at diagnosis, or after recurrence following treatment
with platinum-based chemotherapy. Transite implicated known
RBP regulators of the DNA damage response and identified
hnRNPC as a new modulator of chemotherapeutic resistance,
which we subsequently validated experimentally. Transite serves
as a generalizable framework for the identification of RBPs
responsible for gene expression changes that drive cell-state
transitions and adds additional value to the vast wealth of
publicly-available gene expression data.

I. INTRODUCTION

RNA-binding proteins (RBPs) are major modulators of
gene expression at the post-transcriptional level, where they
control RNA splicing, stability, localization, degradation, and
translation [1,2]. RBPs play critical roles in cell differenti-
ation and tissue development, and aberrant RBP function is
implicated in a wide range of diseases, including neurodegen-
erative disorders and neuropathies, myopathies, autoimmune
paraneoplastic syndromes, and cancer [3]. For mRNAs, the
role of RBPs in modulating global changes in gene expres-
sion at both the RNA and protein level becomes particularly
important under conditions where new gene transcription is
repressed, such as during inflammation, cell stress, and in
response to genomic damage [4—6]. Under these conditions,
changes in gene expression have been shown to result,
in part, from alterations in RBP activity [7]. Furthermore,
mutations affecting the expression or function of specific
RBPs have been implicated in a variety of diseases, including
cancer [3,6,8,9].

RBPs recognize short linear sequence motifs containing 6
- 8 nucleotides within their target RNAs [10]. The identity of
these motifs has been determined for a subset of all known
RBPs using various in vitro based oligonucleotide selection
methods such as SELEX [11], RNAcompete [12] and RNA
Bind-n-Seq [13], and directly confirmed for a smaller set
of RBPs through experimental analysis of RBP-RNA inter-
actions using CLIP-seq and various extensions thereof. The
RNA targets for most RBPs, as determined by CLIP-seq,
however, have not been identified due to a variety of technical
challenges, including cost, limited antibody specificity, and
high background binding. Furthermore, direct experimental
identification of RNA targets of RBPs likely depends on
the experimental situation under which the CLIP-seq was
performed. This lack of direct CLIP-seq data has limited our
ability to directly map specific RBPs onto global changes in
RNA levels, including those in patient-based gene expression
data sets, that have been observed following various stimuli
or clinical treatments.

RBPs appear to play a particularly important role in
orchestrating the DNA damage response (DDR) by reg-
ulating mRNA expression changes that control the onset
and duration of cell cycle checkpoints and drive DNA
repair [14-16]. Unbiased large-scale screening efforts have
converged on RBPs as one of the most enriched classes
of proteins modulating the DDR, even more so than an-
notated DNA damage repair proteins [17-21]. In addition,
emerging evidence from a number of labs has identified
RBPs as critical targets of DDR kinases, including both
upstream sensor kinases such as ATM, ATR and DNA-PK,
and downstream effector kinases such as Chkl and MK2
[17,18,22-24]. The discovery of RBPs as integration points
of the cellular response to genomic damage has important
clinical applications, since the efficacy of many commonly
used chemotherapeutic drugs is dependent on the integrity
(or lack thereof) of the DDR [25,26]. For example, we
found that a key target of the DNA damage-activated MK2
pathway was the RBP hnRNPAO, which was required for
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maintenance of the G1/S and G2/M checkpoints following
cisplatin treatment [27,28]. Furthermore, this finding has
clear clinical relevance to the response of non-small cell
lung cancers (NSCLCs) to chemotherapy in both mouse
models and human patients, where the expression levels
of two critical hnRNPAO target RNAs, Gadd45c and p27,
predicted the clinical response of mouse and human tumors
to platinum therapy. Despite these types of data, and the
recent surge of interest in the roles of RBPs in cancer
chemosensitivity and resistance [6,14,29], general methods
for the systematic identification and prioritization of RBPs
that influence various biological responses, including the
DDR in clinically relevant patient-based gene expression data
sets, are lacking.

To address this we developed a computational approach,
called Transite, that leverages pre-existing gene expression
data and known RBP binding preferences in order to infer
RBPs that may be responsible for alterations in RNA levels
under a given condition or perturbation. This approach is
analogous to our previous computational tool Scansite, which
predicts substrates of kinases and modular signaling domains
based on phosphorylation and peptide-binding motifs [30].
With Transite, we hope to expand the utility of RBP biology
to the wider scientific community.

II. RESULTS

The overall approach used by Transite to map RBPs
to sets of differentially expressed genes is illustrated in
Figure 1. Transite starts with a list of differentially expressed
genes between two conditions (i.e. treated versus untreated
samples), identifies short linear oligonucleotide motifs or k-
mers that are enriched or depleted within specific regions
of the transcripts they encode (i.e. 5-UTR, CDS, or 3’-
UTR), and then matches these motifs to likely RBPs that bind
them using a compendium of known RBP motifs (see IV-B).
Transite’s default setting is to analyze 3’-UTR sequences,
since motifs that regulate mRNA stability typically reside
within the 3’-UTR, but also allows the same analysis to
be performed on the CDS or the 5-UTR. Two different
approaches are used, depending on whether the set of dif-
ferentially expressed genes is first separated into distinct
foreground and background sets, or instead is analyzed as
a continuous list of genes ordered by change in expression
level. For the former approach in which foreground sets are
pre-determined by differentially expressed genes, we devel-
oped Transcript Set Motif Analysis (TSMA), which looks
for enriched or depleted oligonucleotide motifs based on
systematic differences between the foreground sets and the
total gene expression data (i.e. the background). For the latter
approach (i.e. a list of ranked genes) we developed Spectrum
Motif Analysis (SPMA), which analyzes motif enrichment
along that ordered list of transcripts, similar to the approach
taken by Gene Set Enrichment Analysis [31]. This approach
exploits information across the entire spectrum of changes
rather than limiting analysis to the up- and downregulated
extremes, and allows motif enrichment or depletion to be
visually displayed as a color spectrum. Both TSMA and

SPMA then use two distinct methods, a k-mer-based and
a matrix-based method, to score for and infer candidate
RBP in the differentially expressed genes. The k-mer-based
and matrix-based implementations of TSMA and SPMA are
explained in more detail below.

A. Transcript Set Motif Analysis identifies enriched and
depleted k-mers within assigned sets of upregulated and
downregulated genes and maps them onto RBPs

Transcript Set Motif Analysis identifies the overrepresen-
tation or underrepresentation of all possible hexamers or hep-
tamers, as well as binding motifs for 174 well-characterized
RNA-binding proteins in a set (or sets) of transcripts (i.e. a
foreground set), relative to the background of the entire pop-
ulation of transcripts measured in an experiment (Figure 2A).

Two different methods are used to assign transcript targets
to specific RBPs. One of the methods, k-mer-based TSMA,
also identifies statistically significantly overrepresented and
underrepresented hexamers or heptamers within the fore-
ground set, irrespective of whether they can be associated
with a known RBP motif. Matrix-based TSMA leverages
the full PWM representations (see IV-C for details) of
known RBP motifs to nominate RBPs whose motifs are
overrepresented or underrepresented in the foreground set.

In the k-mer-based approach, after foreground and back-
ground sets are defined (Figure 2A) and the preferred se-
quence region is selected (5’-UTR, CDS, or 3’-UTR), the
sequences of both sets are broken down into overlapping
hexamers or heptamers (i.e. k-mers of length 6 or 7, re-
spectively) (Figure 2B, left column, step 1), and for each
k-mer its frequencies in the foreground and background
set are determined. While Transite supports both hexamer-
and heptamer-matching, hexamers are recommended, since
computer run-time increases exponentially with k& and the
results for heptamers mirror those for hexamers in our
experience.

The enrichment value of a particular k-mer i, e;, is then
calculated as follows:

o fi/ne

) bi /nB )
where f; and b; are the absolute counts of k-mer ¢ in
foreground and background set and nrp and np are the
total counts of all k-mers in the foreground and background,
respectively.

The statistical significance of the enrichment for each k-
mer is then determined. First, a contingency table C; for
k-mer i is defined as

(np—f 1))

_ ([
Ci = (bi (nB —b;)

Then, the p-value p; for C; is approximated with Pearson’s
x? test. If p; < 5o, where « is the decision boundary, and
p; is replaced by the p-value obtained by Fisher’s exact test
for C;. This step-wise procedure reduces computation time
dramatically (approximately 50-fold), because the computa-
tionally expensive Fisher’s exact test is only used in cases
where the approximate p-value from the computationally
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Schematic figure of the Transite analysis pipeline. The initial steps of the Transite data analysis workflow include preprocessing and differential

expression analysis of gene expression profiles, which could be collected in-house or obtained from NCBI and EMBL-EBI repositories such as GEO, SRA,
and ENA. Differential expression analysis is used to either identify groups of upregulated and downregulated genes (for Transcript Set Motif Analysis)
or to establish a ranked list of genes from most upregulated to most downregulated (for Spectrum Motif Analysis). Transite then analyzes regions within
these genes to identify k-mers and RBPs whose motifs are enriched or depleted in the differentially expressed genes.

inexpensive 2 test is close to the decision boundary and
is avoided in cases where a precise p-value is unnecessary.
Furthermore, Fisher’s exact test is always used if at least
one of the expected counts is less than five, because this
constitutes a violation of the assumptions of the approximate
test. The p-values are subsequently adjusted for multiple
hypothesis testing. The available p-value adjustment methods
are described in section 5 of Supplementary Methods.

The list of all k-mers with their associated enrichment
values and statistical significance in the foreground sets
is then reported. This is particularly important because it
provides an unbiased way to identify overrepresented and
underrepresented sequences and novel motifs regardless of
whether they conform to known RBP binding motifs. The
results are visualized using volcano plots that show the
enrichment values on the x-coordinate (log transformed) and
the associated p-values on the y-coordinate (log transformed
and multiplied by -1) for all k-mers. An example is shown
in Figure 2B, where the black dots represent k-mers without
significant enrichment or depletion, while blue dots denote
significantly depleted k-mers and red dots significantly en-
riched k-mers. The k-mers corresponding to the motif of one
particular RBP are indicated by yellow circles.

Over- and under-represented k-mers are then mapped onto
specific RBPs. A set of k-mers associated of each RBP is
generated from the known RBP motif PWMs, as described
in IV-C. These RBP-specific k-mers are then assigned the
enrichment values calculated from the data, as shown by
the yellow dots in the volcano plot in Figure 2B. The
geometric mean of the enrichment values of all k-mers that
are associated with that particular RBP is then calculated,
and analyzed for its statistical significance using Monte Carlo
sampling (see section 2 in Supplementary Methods). A null
distribution of mean enrichment values associated with an
RBP’s k-mers is generated by repeated random selection of

foreground sets from the background. The null distribution is
used to obtain an estimate of the significance of the true mean
enrichment value of the RBP-associated k-mers observed in
the experimental data, which is shown as a red dashed line in
the histogram in Figure 2B, step 3. A ranked list of RBPs and
their associated p-values, corrected for multiple hypothesis
testing, is then provided.

An alternative to k-mer-based TSMA is a matrix-based
approach, where the sequence motifs of 174 RBPs are main-
tained as PWMs. All sequence positions in the transcripts
within the foreground and background gene sets are then
scored, as shown in step 1 of the right column of Figure 2B.
The PWM slides along the sequence, assigns a score to each
position, and scores above a certain threshold are considered
putative binding sites (hits), (see section 1 in Supplementary
Methods). These hits are tallied in both the foreground and
the background set, and enrichment values and associated p-
values calculated analogously to the k-mer-based approach.
Again, all p-values are multiple testing corrected.

One disadvantage of the matrix-based TSMA method
relative to the k-mer-based approach is that a PWM assumes
independence among positions, making it impossible to
construct a PWM that assigns high scores to AAAAAA and
CCCCCC, but a low score to ACACAC. An advantage of our
matrix-based approach, however, is it retains positional hit
information within the sequence and therefore facilitates the
detection of closely spaced clusters of putative binding sites.
Homotypic clusters of binding sites on DNA, for example,
have been shown to be important for transcription factor
binding [32], and have been postulated to be involved in RNA
regulation [33,34], but a clear experimental demonstration of
their general importance for RBP binding to RNA has not
been unambiguously shown.
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Fig. 2. Transcript Set Motif Analysis. (A) Foreground sets in TSMA are defined by differential gene expression analysis of RNA-seq or microarray
data sets, usually by selecting statistically significantly upregulated and downregulated genes. The background set is all genes in the microarray platform
or all measured genes in RNA-seq. In the heatmap of the gene expression profile in panel A, the two rows (Condition 1, Condition 2) are the mean gene
expression values of the replicates of the respective groups (e.g., Condition 1 could be treated with drug A and Condition 2 untreated). The columns of
the heatmap correspond to the genes, and the superimposed gray curve is the log fold change between Condition 1 and Condition 2. (B) TSMA estimates
the statistical significance of putative RBP binding site enrichment between each foreground set and the background set. There are two ways to describe
putative binding sites of RNA-binding proteins (i.e. the motif). The column on the left depicts k-mer-based TSMA, which uses a list of k-mers to describe
putative binding sites. The column on the right is matrix-based TSMA, which instead uses Position Weight Matrices (PWMs). See text for details.
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B. Spectrum Motif Analysis identifies RBPs with non-random
arrangement of putative binding sites in a ranked list of
transcripts

A limitation of the TSMA method described above is
that it will only capture those RBPs for which putative
binding sites are statistically significantly enriched among a
pre-defined foreground set of differentially expressed genes
relevant to a background set. As an alternative method, we
developed Spectrum Motif Analysis (SPMA), an approach
that more broadly and generally identifies non-random distri-
butions of RBP target sites in an ordered list of genes without
having to pre-define a specific foreground set (compare
Figures 2A and 3A).

Instead of using an arbitrary threshold (e.g., p-value less
than or equal to 0.05) to assign transcripts to a single
foreground set, SPMA subdivides the entire list of rank-
ordered transcripts into a number of bins of equal width.
Each bin is considered its own foreground set and enrichment
scores for k-mers or PWM motifs are then calculated as
described above. The enrichment scores for each RBP across
the bins are then visualized as one-dimensional heatmaps,
where red-blue coloring encodes the putative binding site
enrichment values, as shown in Figure 3B, to generate
spectrum plots. RBPs that are involved in regulating dif-
ferential gene expression should show non-random red-blue
color patterns in the spectrum plot, indicating progressive
RBP binding motif enrichment in the upregulated genes, the
downregulated genes, or both. As shown in the upper left plot
of Figure 3C, genes that are upregulated in condition 1 show
a progressive overrepresentation of putative binding sites for
a particular RBP, consistent with that RBP enhancing mRNA
stability. In contrast, as shown in the upper right plot of
the same panel, genes that are downregulated in condition
1 show a progressive overrepresentation of binding sites for
a different RBP, consistent with this RBP destabilizing its
mRNA targets.

SPMA generates one spectrum plot for each RBP motif
in the motif database. With 174 motifs currently available,
it is imperative to provide an analytical means to aid in the
identification of biologically meaningful spectrum plots that
exhibit non-random patterns. Each spectrum plot is therefore
examined for whether the distribution of enrichment values
among the bins is non-random or random, based on three
criteria: (1) the adjusted R? of a polynomial model fit, (2)
the local consistency score, and (3) the number of bins with
a significant enrichment or depletion of putative binding
sites. The significance of the enrichment values is calculated
in an identical fashion to the significance calculation in
TSMA. For (1), polynomial regression models of degrees
ranging from O through 5 are fitted to the spectrum of
enrichment values, and the model that best reflects the true
nature of the data is selected by means of the F-test (see
section 6.2 of Supplementary Methods for details on the
polynomial model approach). Examining the coefficient of
the linear term in the polynomial depicts the general increase
or decrease in RBP enrichment along the bins as illustrated in

the first two examples of Figure 3C, respectively. If there is a
strong evidence for a non-linear relationship, this can also be
captured by the model, as seen in the third example shown
in Figure 3C. With approach (2), a local consistency score
quantifies the local noise of the spectrum by calculating the
deviance between the linear interpolation of the scores of two
bins separated by exactly one other, and the observed score
of the middle bin, for each position in the spectrum. The
lower the score, the more consistent the trend in the spectrum
plot (see section 6.1 of Supplementary Methods for a formal
definition of the local consistency score and section 2 for
details on the Monte Carlo sampling procedure of the null
distribution of the score). Spectrum plots are classified as
non-random if (1) the adjusted R? of the polynomial fit is
greater than or equal to 0.4, and (2) the p-value associated
with the local consistency score is less than or equal to
5% 1079, and (3) at least 10% of the bins have significant
(aw = 0.05) enrichment or depletion of putative binding sites.

C. Website and R package for Transite available for cus-
tomizable use

To make RBP analysis of gene expression data sets widely
available to the scientific community, the Transite analysis
platform is hosted at https://transite.mit.edu.
Both the TSMA and SPMA methods are web-accessible and
familiarity with the R programming language is not required
(Figure 4). The full functionality of Transite is also provided
as an R/Bioconductor package (https://doi.org/10.
18129/B9.bioc.transite) to facilitate a seamless in-
tegration of these algorithms into existing bioinformatics
workflows. The source code of the Transite package is
hosted on GitHub (https://github.com/kkrismer/
transite). Both website and the R package also allow mo-
tif enrichment analysis with user-defined motifs, in addition
to the 174 motifs provided by the Transite motif database,
enabling users to search for enrichment of any RBP motif in
a discrete set of genes or a rank-ordered list.

D. Transite correctly maps observed changes in RNA abun-
dance following ZFP36 overexpression or ELAVLI knock-
down onto their respective RBPs

To test the ability of the Transite algorithms to correctly
map changes in RNA expression onto specific RBPs, we
used a publicly available data set in which RNA expression
levels were measured following overexpression of the RBP
ZFP36 (also known as TTP). ZFP36 is known to destabilize
its target RNA transcripts by binding to sequence elements in
the 3’-UTR [35]. Mukherjee et al. (2014) reported microarray
measurements of differential RNA expression in HEK293
cells following inducible overexpression of an EGFP-ZFP36
fusion protein (GEO series accession GSE53185). The RNA
expression fold change and associated p-values per gene
between the induced and un-induced groups, as reported by
the authors, were used as input for Transite. Genes that were
statistically significantly downregulated and upregulated fol-
lowing ZFP36 overexpression (i.e. p < 0.05 after multiple
testing correction) were chosen as foreground sets for TSMA.
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Fig. 3. Spectrum Motif Analysis. (A) Transcripts are sorted by some measure of differential expression (e.g., fold change or signal-to-noise ratio) and
the entire spectrum of transcripts is then subdivided into a number of equally-sized foreground “’bins”. (B) The motif enrichment step is identical to TSMA.
SPMA results are visualized as spectrum plots, which are one-dimensional heatmaps of motif enrichment values, where the columns correspond to the
bins and the color encodes the enrichment value (strong depletion in dark blue to strong enrichment in dark red) of a particular k-mer or PWM. (C) The
distribution of putative binding sites (as visualized by spectrum plots) is deemed random or non-random (i.e. putative binding sites are distributed in a way
that suggest biological relevance), based on multiple criteria described in the text. Shown beneath each strip in the heat map are the log enrichment values

for the RBP motif being analyzed (black dots), and the best first, second, or zero order polynomial fit (blue line) along with 95% confidence intervals
(shaded gray).
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Transite web interface. Data sets are analyzed using TSMA or SPMA in four simple steps, some of which are illustrated in panels A - D.

These involve the selection of k-mer or matrix-based analysis (A), the specification of foreground and background sets for TSMA, the number of bins for
SPMA (B), the region of the RNA to be analyzed and the threshold for statistical significance (C), and the source of RNA binding motifs to be used for

the analysis (D).

Volcano plots showing k-mer enrichment and depletion in
these gene sets are shown in Figure 5A, and the top 10
empirically identified k-mers are listed in Supplementary
Tables S1 and S2. The left panel in Figure SA shows that
k-mers corresponding to the ZFP36 binding motif, shown
in yellow, are among the most highly enriched k-mers in
transcripts that were found to be downregulated, while the
right panel shows conversely that ZFP36 associated k-mers
were highly depleted in the genes that were upregulated after
ZFP36 overexpression. This was even more apparent in the
spectrum plot following SPMA of this data set (Figure 5B),
which revealed a highly consistent nearly monotonic increase
in ZFP36 binding sites when the genes were ranked from
those most upregulated to those most downregulated after
ZFP36 overexpression. On this basis, ZFP36 emerged as
the single best RBP out of all 174 RBPs in the database
whose motif could rationalize the observed gene expression
changes.

To further validate the utility of Transite to infer RBPs
that modulate gene expression changes, we used a second
publicly available data set (GEO series accession GSE29778)
in which gene expression changes were measured following
siRNA knockdown of ELAVLI1 (also known as HuR) to
20% of its endogenous levels [34]. ELAVLI stabilizes its

target RNA transcripts and likely facilitates their pre-mRNA
processing, hence its knockdown should result in reduced
expression of its target RNAs. As shown in Figure 5C,
analysis of this data set using SPMA resulted in spectrum
plots in which the enrichment values for the ELAVL1 motifs
closely varied in direct proportion to the extent of RNA
downregulation that was observed (Figure 5C and Supple-
mentary Figure S1). Figure 5D shows the top 5 RBP motifs
that were enriched in the upregulated and downregulated
genes, revealing that genes downregulated after ELAVLI
knockdown were enriched in U-rich RBP motifs, including
those that correspond to the ELAVL1 motifs in the Transite
motif database. In contrast, genes that were upregulated
after ELAVL1 knockdown were enriched in alternative RBP
motifs that lacked U-rich regions, and corresponded to the
binding motifs of other RBPs. Furthermore, the single most
highly enriched k-mer in the set of downregulated genes,
AUUUAA, that was empirically identified by k-mer-based
TSMA (Figure 5E and Supplementary Tables S3 and S4),
perfectly matches the motif of ELAVLI1 that was experi-
mentally determined using PAR-CLIP and RIP-chip [34].
Taken together, these data indicate that Transite can capture
the specific RBPs responsible for gene expression changes
caused by manipulation of RBP levels, thus validating our
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Fig. 5. Unbiased identification of drivers of differential expression after overexpression of ZFP36 or knockdown of ELAVLI1. (A) TSMA volcano
plot showing enriched and depleted k-mers in downregulated transcripts after ZFP36 overexpression (right panel). k-mers associated with ZFP36 (shown in
yellow) are highly enriched. TSMA volcano plot of k-mer enrichment values in upregulated transcripts after ZFP36 overexpression shows strong depletion
of ZFP36 associated k-mers (right panel). (B) SPMA spectrum plot depicts relationship between ZFP36 overexpression and downregulation of ZFP36
targets. (C) SPMA spectrum plot of one ELAVL1 motif depicting global downregulation of ELAVLI target transcripts after ELAVL1 siRNA knockdown.
(D) Sequence logos of motifs highly enriched in transcripts upregulated (left column) and downregulated (right column) after ELAVL1 knockdown. U-rich
ELAVLI motifs are highly enriched in the 3’-UTRs of downregulated transcripts (GSE29778). (E) Four most highly enriched hexamers in transcripts
upregulated (left column) and downregulated (right column) afer ELAVL1 knockdown, as identified by k-mer-based TSMA.

approach and providing confidence that predictions derived  E. RBPs involved in the DNA damage response are identified
from more complex perturbations are more likely to reflect by Transite using cancer patient RNA expression data

real changes in RBP binding or activity. As an application of Transite-based RBP scoring, we next

analyzed a gene expression data set from patients with non-
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Fig. 6. SPMA identifies ELAVL1 and TIA1 motifs as highly enriched in recurrent NSCLC patients. (A) Differential gene expression analysis was
performed on samples from patients with untreated NSCLC tumors and patients with recurrent tumors. (B) Transite was used to identify RBPs whose
targets were overrepresented among upregulated genes in samples of recurrent tumors. Shown are two tables of k-mer-based TSMA and SPMA showing
RBPs with highly enriched motifs for TSMA and highly non-random motif enrichment pattern for SPMA. Among the top hits are ELAVLI, TIA1, and
hnRNPC. (C) Spectrum plot from SPMA depicting the distribution of putative ELAVL1 binding sites across all transcripts. The transcripts are sorted by
ascending signal-to-noise ratio. Transcripts downregulated in resistant samples relative to untreated samples are on the left, and those upregulated are on
the right of the spectrum. Putative binding sites of ELAVLI are highly enriched in transcripts upregulated in resistant cells (shown in red) and highly
depleted in transcripts downregulated in resistant cells (shown in blue). (D) Spectrum plot of putative TIA1 binding sites using same transcript order as in
panel C. (E) Enrichment of ELAVLI targets in resistant NSCLC cells is recapitulated in an independent HITS-CLIP experiment (publicly available data).
The distribution of fold changes of transcripts that have ELAVLI1 binding sites is shifted in the positive direction, even more so when the binding sites
are in the 3’-UTR. The p-values were calculated with the one-sided Kolmogorov-Smirnov test. (F) As in panel E, transcripts with TIA1 binding sites are
upregulated in resistant cells according to an iCLIP experimenmt, confirming results from SPMA.
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small cell lung cancer (NSCLC), who were either treatment-
naive, or had recurred after platinum-based chemotherapy
treatment (GEO series accession GSE7880). Differences in
RNA transcript abundance were ranked between the set of
tumors that were sampled pre-treatment and the separate
set of tumors that were sampled after recurrence following
treatment, and the ranked transcripts then analyzed by Tran-
site in order to identify potential RBPs that might influence
the response to platinum treatment. Changes in transcript
abundance were ranked based on signal-to-noise ratio where
transcripts upregulated in recurrent patients had positive
values and those upregulated in treatment-naive patients had
negative values (see Figure 6A for schematic). k-mer-based
TSMA, focusing on the 3’-UTRs of the differentially regu-
lated genes, revealed a set of enriched k-mers in the patients
whose tumors failed platinum treatment that were largely U-
rich (Supplementary Table S5). These k-mers mapped to the
motifs of ELAVL1 and TIA1 as the top 2 hits (Figure 6B,
top). SPMA revealed these same top two RBPs, as shown in
the bottom part of Figure 6B. Individual spectrum plots
for ELAVL1 (Figure 6C) and TIA1 (Figure 6D) demon-
strated consistent behavior of these motifs across the gene
expression continuum, being enriched in 3’-UTRs of genes
that were upregulated in patients with recurrent tumors after
platinum treatment, and depleted in 3’-UTRs of genes that
were upregulated in naive patients. Importantly, upregulation
of ELAVLI1 and TIAl-target mRNAs was further validated
by analyzing the distribution of previously known CLIP-Seq
identified targets [36,37] for these two RBPs (Figure 6E and
6F), suggesting that our motif-based approach can identify
bona fide target genes of a given RBP for which CLIP-Seq
data is available. Moreover, both ELAVL1 and TIA1 are
known to be involved in the DNA damage response [38—41].
The fact that two well-known players in the DNA damage
response were among the top hits of the motif analysis
provides confidence that Transite’s predictions are likely to
reflect regulators of the DNA damage response and drivers
of chemoresistance.

F. Motif analysis of recurrent non-small cell lung cancers
after cisplatin treatment identifies hnRNPC as a potential
modulator of drug resistance

We were particularly interested in using Transite as a tool
to identify new RBPs potentially involved in chemosensi-
tivity or resistance to DNA-damaging chemotherapy agents
using data from human clinical trials. We therefore chose
to focus on hnRNPC, one of the highest-scoring RBPs
that emerged from both TSMA and SPMA analysis of
chemoresistant NSCLC patients, and one that has not, to
our knowledge, been strongly implicated in the response
to chemotherapy-induced DNA damage [42]. As shown in
Figure 7A, the spectrum plot of the distribution of putative
hnRNPC binding sites shows a strong enrichment of mRNAs
with hnRNPC motifs in their 3’-UTRs in patients whose
tumors recurred after platinum therapy. This Transite pre-
diction was independently confirmed by analysis of iCLIP-
defined target mRNAs for hnRNPC [43], which also showed

an overrepresentation of hnRNPC targets in upregulated
transcripts in recurrent patients (Figure 7B), with those with
binding in the 3’-UTR showing the strongest enrichment.

To experimentally test these Transite predictions, we ex-
amined the effect of knockdown or overexpression of hn-
RNPC in T6a murine lung carcinoma cells on their sensitivity
and resistance to cisplatin treatment. As shown in Figure 7C,
colony formation assays in T6a cells demonstrated that
hnRNPC overexpression promoted resistance to cisplatin
as evidenced by a 1.6 fold increase in the number of
surviving colonies (Figure 7C, red bar). Conversely, siRNA-
downregulation of hnRNPC significantly enhanced T6a cell
sensitivity to cisplatin as evidenced by a 5-fold decrease in
the number of colonies formed by cells treated with hnRNPC
siRNA compared to those of control siRNA-treated cells after
cisplatin treatment (Figure 7C, blue bar). These data indicate
that hnRNPC mediates resistance of NSCLC cells to cisplatin
chemotherapy, consistent with what was seen in the patient
data, and demonstrate that our computational approach can
identify new RBPs influencing the DDR.

To independently validate the importance of hnRNPC
in mediating chemotherapy response in patients, we took
advantage of data from a unique adjuvant chemotherapy
trial, JBR.10 (Figure 7D) [44]. In this trial, early stage
NSCLC patients had their tumors surgically resected and
subjected to gene expression profiling (GEO series accession
GSE14814). Patients were then randomized to receive cis-
platin/vinorelbine combination chemotherapy or observation
and palliative care, allowing us to specifically query the role
of hnRNPC in the response to chemotherapy. We focused our
analysis on stage 2 patients, since the benefit from adjuvant
chemotherapy is most pronounced in this population. Separa-
tion of patients based on hnRNPC expression level revealed
that patients whose tumors displayed low expression of
hnRNPC benefited significantly from chemotherapy in terms
of survival (Figure 7D, right panel, p = 0.019), while patients
whose tumors had high levels of hnRNPC expression did not
show significant benefit (Figure 7D, left panel, p = 0.68).
Taken together, the data in Figure 7 identify hnRNPC as a
new RBP involved in the response to platinum drug treatment
in NSCLC, and suggest that Transite is an effective tool for
identifying novel RBPs that contribute to chemoresistance in
human cancer patient RNA expression data sets.

III. DIScuUSSION

Despite their crucial role in post-transcriptional regulation
of gene expression, the majority of RNA-binding proteins
(RBPs) have unknown functions. To help understand the
influence of RBPs on their target transcripts, we developed
Transite, a computational method for the analysis of the
regulatory role of RBPs in various cellular processes for
which differential gene expression data, or other relevant
gene sets are available. Our analysis is based on the fact
that most RBPs recognize short linear oligonucleotide se-
quences whose overrepresentation can be computed from
gene expression data, and that a large collection of pre-
existing motif data for RBPs has been compiled in publicly


https://doi.org/10.1101/416743
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/416743; this version posted November 14, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

x
) . . . %[ %[ = non-targets
A hnRNPC putative binding site log(enrichment) -0.2 0 E‘ B 3[ z[ hnRNPC CLIP-targets (entire mature mRNA)
‘- : *L = hnRNPC CLIP-targets (only 3' UTR)
1.00
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 20 30 31 32 33 34 35 36 37 38 39 40 5‘
= f=
T 04 - . g 07"
2 &
£ 02 e
[3) L=l
2 @ 0.50
S 00 - 2
~ ©
5 &
o =]
=-02 €025
=
o
highly upregulated in highly upregulated in 0.001 -
untreated tumors recurrent tumors 10 205 0.0 05 10
C D .
T6a cells hnRNPC high hnRNPC low
> >
- = 1.00 == observation = 1.00 == observation
] 2 ]
€ 60 s == chemotherapy s == chemotherapy
[ [} o
> = =
- 8 0.75 8075
£ E E
c = =
£ 40 g g
S @ 0.50 7 050
2 o 3]
o = =
z g g —
5 20 2025 2025
s 8 3
2 ® ® *
(] [
% o -_ £ 000 p=068HR=082(0.32-2.13) £ 000 P=0.019HR =029 (0.87-1.04)
R ' ' 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
¢ & T
& @a" \,;g' Oé\ number at risk number at risk
Q O
@“'&"q}g E=|1 16 13 10 8 8 6 2 1 0 E=—l9 6 4 1 1 1 1 1 10
© ' & g [
° N B — -
éqo 17 14 12 12 12 10 8 6 3 1 16 13 12 12 10 9 8 4 1 1
‘\«9' 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
time in years time in years

Fig. 7. hnRNPC modulates sensitivity to cisplatin. (A) Spectrum plot from k-mer-based SPMA depicting the distribution of putative hnRNPC binding
sites across all transcripts in samples from patients with untreated NSCLC tumors and patients with recurrent tumors as in Figure 6. The transcripts are
sorted by ascending signal-to-noise ratio from lowest to highest abundance in resistant relative to untreated samples. Putative hnRNPC binding sites are
highly enriched in the upregulated fraction of transcripts (GSE7880). (B) Enrichment of hnRNPC binding sites in upregulated transcripts is independently
confirmed by CLIP experiments. The p-values were calculated with the one-sided Kolmogorov-Smirnov test. (C) siRNA-mediated reduction in hnRNPC
levels significantly impairs long-term survival of T6a cells in response to cisplatin (blue bar). Overexpression of hnRNPC (red bar) protects against cisplatin-
induced cell death in T6a cells in colony formation assays. Bar graphs represent percent number of colonies formed, normalized to untreated control cells.
White bars represent control cells transfected with control vehicles (control siRNA or empty pcDNA). Error bars represent standard deviation among 3
replicates. (D) High expression of hnRNPC are associated with decreased efficacy of platinum-based chemotherapy in patients with stage 2 disease from
the JBR.10 lung cancer adjuvant chemotherapy trial (GSE14814). The p-value was calculated with the log-rank test (HR is Hazard Ratio). hnRNPC low
group = patients with hnRNPC expression Z-scores of less than or equal to —0.2, and hnRNPC high group = patients with hnRNPC expression Z-scores
greater than or equal to 0.2.

available databases [45,46]. approaches for predicting specific RBP RNA targets [7,47].
It is important to note that Transite, in its current form, has ~ In contrast to those approaches, Transite does not attempt to
significant limitations. First, not all RBPs have strong motif ~ predict specific mRNAs bound by a particular RBP. Instead,
preferences that are amenable to this type of motif-based Transite simply looks at the statistical distribution of RBP
analysis. Furthermore, there may be considerable redundancy ~ motif representation in sets of expressed genes to infer
in motif recognition by different RBPs, making prediction  putative roles for specific RBPs in some biological process,
of a single RBP challenging. Moreover, the in vitro-derived ~ Which can then be directly tested experimentally.
motifs for RBPs may not always reflect in vivo binding By using two approaches to identify non-random distri-
preferences. These caveats have raised questions about the  butions of RBP-binding motifs, followed by back-mapping
ability of consensus motifs and PWMs to uniquely predict of those motifs onto those of 174 known RBPs, Transite
individual RBP mRNA targets a priori on a genome-wide identified 3 RBPs involved in the human DDR which we
scale, and have led to the development of more sophisticated  could further validate based on independent CLIP-Seq data
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of their known mRNA targets in cells, rather than using
motifs derived from in vitro sequence libraries. These find-
ings suggest that, although there are limitations to utilizing
in vitro-derived motifs, Transite serves as a discovery tool
for new biology. Moreover, since users can define their own
motifs in addition to those from the database, users are able
to upload motifs from CLIP-Seq data of their favorite RBP
and use that as a means to analyze enrichment in preexisting
data sets. As more RBP motifs become available, they will
be incorporated in future versions of the Transite analysis
platform.

To further demonstrate the utility of Transite, we per-
formed an analysis of human NSCLC patient data and were
able to recover previously-known RBP biology and also
identify novel sources of RBP-mediated chemoresistance.
Well-known players in the DNA damage response such as
ELAVLI and TIA1 were among the top hits in the tumor re-
sistance gene expression data set, showing that our approach
is consistent with previous DNA damage response literature.
Transite was also able to identify hnRNPC as a new po-
tential modulator of cisplatin sensitivity in NSCLC patients.
Experimental validation of the in silico prediction further
provides independent support for a critical role for hnRNPC
in mediating resistance of NSCLC cells to chemotherapy,
which was independently correlated with clinical response
in an additional NSCLC patient data set.

Transite is a versatile tool that can be used with any type
of gene expression data, the only requirements being a list
of gene identifiers and some means to separate foreground
and background sets or rank the gene list. Examples of the
other types of data that are compatible with a Transite style
of analysis include: (1) searching for RBP motif enrichment
in 5 or 3’-UTRs of genes whose translational efficiency
changes in response to some stimulus as measured by
ribosome or polysome profiling; (2) searching for enrichment
of RBP motifs in mRNAs that are localized to specific sub-
cellular compartments; (3) de novo motif analysis in the
entire mRNA of gene expression changes upon knockdown
of a nuclease of unknown function. The Transite website
(https://transite.mit.edu) makes this tool acces-
sible to a broad group of scientists, provides a means
by which the large body of pre-existing gene expression
data from microarray and RNA sequencing experiments,
for example, can be further leveraged to identify changes
in mRNA expression associated with specific RBPs, and
reveals potential insights into how RBPs may contribute to
the concerted regulation and function of specific cellular
processes.

IV. MATERIALS AND METHODS
A. Differential gene expression analysis

Differential gene expression analysis for data sets used
in this manuscript was performed with the R/Bioconductor
package limma [48]. A linear model was fit to each row
of the log,-transformed expression value matrices, where
rows correspond to transcripts and columns correspond to
samples. An empirical Bayes method was used to obtain the

magnitude and significance of the log fold change between
sample groups for each transcript [49]. Raw p-values were
adjusted using the Benjamini-Hochberg procedure [50].

B. Motif databases

Transite incorporates sequence motifs of RBP binding
sites from two databases: CISBP-RNA, a catalog of in-
ferred sequence preferences of RNA binding proteins [45],
and RBPDB, a database of RNA-binding specificities [46].
Together these contribute 174 sequence motifs of varying
lengths (between 6 and 18 nucleotides). All motifs were
obtained using in vitro techniques for determining RNA
targets. The majority of motifs were determined by either
systematic evolution of ligands by exponential enrichment
(SELEX) [11] or RNAcompete [12]. The RNA binding speci-
ficities of two further RBPs were obtained by electrophoretic
mobility shift assays (EMSA) [51].

C. Motif representations

Motif descriptions provided from the databases described
above were converted from count matrices to position weight
matrices (PWMs), obtained by normalizing each nucleotide’s
probability at each position by the mean probability of each
nucleotide, 25%.

For k-mer-based analyses, PWMs were converted to hex-
amers and heptamers by generating all k-mers for which each
position has a probability higher than a certain threshold (see
Supplementary Methods). In the work presented here, we
used a threshold probability of 0.215, which is a stringency
level that works well empirically with the motifs from the
motif databases.

Laplace smoothing (also known as additive smoothing) is
applied to avoid zeros in count matrices before conversion
to PWMs. Zeros might occur if the number of sequences
on which the position-specific scoring matrix (PSSM) is
based, is too small to contain at least one occurrence of
each nucleotide per position. In this case, pseudocounts are
introduced [52].

D. CLIP-seq data analysis

The BED files (output from Piranha analysis) for all CLIP-
Seq data sets were retrieved from CLIPdb [53]. Read counts
were mapped to RefSeq identifiers using a UCSC table with
either just 3’-UTR sequences or the entire mature mRNA of
all human mRNAs in Hgl9 coordinates. RefSeq identifiers
were then summarized to gene symbols. For gene symbols
with multiple RefSeq identifiers, the one with the maximum
counts was taken, as it was assumed this indicated the
most highly expressed transcript. This analysis created two
gene lists, one where there was binding in the 3’-UTR (3’-
UTR targets) or where there was binding in any region of
the mRNA (entire mature mRNA targets). These gene lists
were then merged with fold change lists from GEO gene
expression data set GSE7880. To generate the non-targets
list, the entire mature mRNA list was subtracted from the
GSE7880 list.
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E. Package and web development

R package development and documentation was stream-
lined with devtools and roxygen2, respectively. Core algo-
rithms were implemented in C++. ggplot2 [54] was used for
data visualization.

The website was developed in R with the reactive web
application framework shiny from RStudio. The components
of the graphical user interface were provided by shiny and
shinyBS, which serve as an R wrapper for the components
of the Bootstrap front-end web development framework.

FE. Cell culture and colony formation assays

LG1233/T6a cells (mouse lung adenocarcinoma, in the
following referred to as T6a) [55] were grown in RPMI-
1640 medium supplemented with 10 % fetal bovine serum
at 37°C in a humidified incubator supplied with 5 %
CO,. Colony formation assays were performed as previously
described [27]. Briefly, 48 hours after transfection with
siRNAs or pcDNA vectors, cells were treated with either
4 or 8 uM cisplatin or vehicle for 4 hours. Cells were
then re-plated in 6-well plates using 1000 mock-treated or
10,000 cisplatin-treated cells per well. In overexpression
assays, 500 pg/ml G418 was added to the media to select
for cells transfected with pcDNA vectors. After 10 to 14
days, cells were fixed with 4 % formaldehyde and stained
with either SYTO 60 (Thermo Fisher Scientific) or modified
Wright-stain (Sigma-Aldrich). Colonies were scanned and
counted using Odyssey® CLx Imaging System (LI-COR
Biosciences).

G. siRNA transfection

Silencer Select siRNA (Ambion) transfection was per-
formed using Lipofectamine RNAiMAX following manufac-
turer instructions (Thermo Fisher) with a final concentration
of 5 nM. Cells were then treated as described in the previous
section.

H. Overexpression of hnRNPC

pcDNA3.1 vectors expressing FLAG-tagged mouse
hnRNPC were generated as follows. First, total RNA
was prepared from KP7B (mouse lung carcinoma) cells
using RNeasy purification kit (Qiagen) and was used to
synthesize cDNAs using SuperScript cDNA Synthesis
System (Thermo Fisher). cDNAs were used as templates
in PCR reactions using PfuUltra I HF DNA polymerase
(Agilent) and the following primers: 5'-GCCCATAAGCT-
TATGGACTACAAAGACGATGACGACAAGGCTAGC-
AATGTTACCAACAAGACAGATCCTCGG-3" (forward)
and 5-GCCCATTCTAGATTATTAAGAGTCATCCTCC-
CCATTGGCGCTGTCTCTG-3' (reverse). Restriction sites
for HindIII (in forward primer) and Xbal (in reverse primer)
are in bold. Sequences encoding FLAG are underlined. The
PCR products were cleaved with the indicated restriction
enzymes (New England BioLabs Inc), purified (QIAquick
PCR Purification Kit, Qiagen) and cloned into pcDNA3.1
vectors. The integrity of the plasmids were confirmed by
sequencing (Eton Bioscience, Inc.).

1. Immunoblotting

Cells were harvested 24 (siRNA-transfected) or 48
(pcDNA vectors-transfected) hours after cisplatin treatment
and re-plating. Cells were then lysed in RIPA buffer and
subjected to standard SDS/PAGE electrophoresis and trans-
ferred to nitrocellulose membranes. The membranes were
immunoblotted with antibodies against hnRNPC (ab10294,
Abcam Inc., Cambridge, UK) and y-tubulin (Sigma-Aldrich)
following manufacturers instructions.

AVAILABILITY

The Transite website is available at https://
transite.mit.edu. For workflow integration and ad-
vanced analysis, the Transite functionality is also offered as
an R/Bioconductor package at https://doi.org/10.
18129/B9.bioc.transite. The Transite source code is
hosted on GitHub (https://github.com/kkrismer/
transite).
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