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Abstract 

The analysis of neural circuits can provide critical insights into the mechanisms of 

neurodegeneration and dementias, and  offer potential quantitative biological tools to assess 

novel therapeutics. Here we use behavioural variant frontotemporal dementia (bvFTD) as a 

model disease. We demonstrate that inversion of canonical microcircuit models to non-

invasive human magnetoecphalography can identify the regional- and laminar-specificity of 

bvFTD pathophysiology, and their parameters can accurately differentiate patients from 

matched healthy controls. Using such models, we show that changes in local coupling in 

frontotemporal dementia underlie the failure to adequately establish sensory predictions, 

leading to altered prediction error responses in a cortical information-processing hierarchy. 

Using machine learning, this model-based approach provided greater case-control 

classification accuracy than conventional evoked cortical responses. We suggest that this 

approach provides an in vivo platform for testing mechanistic hypotheses about disease 

progression and pharmacotherapeutics.  
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Introduction 

The impairment of brain circuit physiology occurs early in neurodegeneration. For example, 

the loss of synapses, synaptic plasticity, and effective information processing in microcircuits 

precede the onset of atrophy and behavioural change in animal models of neurodegeneration 

(Rowan et al. 2003; Hof and Morrison 2004). New quantitative tools to assay these early 

changes are a key goal for the development and monitoring of therapies to slow or prevent 

neurodegenerative disease.  

 

There is strong preclinical evidence of functional impairment in neural circuits before cell 

death or atrophy, including the downstream effects of oligomeric modified and misfolded 

proteins on axonal transport, synapse density and plasticity (Wilcock et al. 2009; Castillo-

Carranza et al. 2015). In humans however, the equivalent physiological observations have 

been limited by the low resolution and indirect nature of brain imaging, such as structural and 

functional magnetic resonance imaging  (MRI) (De Jong et al. 2008) and evoked responses in 

electroencephalography (EEG) or magnetoencephalography (MEG) (Stam 2005, 2010; Hughes 

and Rowe 2013). Nonetheless, there is growing evidence for the reorganisation of brain 

networks, and change in the efficiency of information processing, in patients with Alzheimer’s 

disease (Zhou et al. 2010; Sami et al. 2018), Parkinson’s disease (Crossley et al. 2014), 

progressive supranucelar palsy (Rittman et al. 2016; Cope et al. 2018) and frontotemporal 

dementia (Hughes et al. 2013, 2018).  

 

Recent advances in computational models of human neural circuits offer new tools for in vivo 

assays of cortical function, with increasingly detailed anatomical and pharmacological 

specificity (Moran, Jung, et al. 2011; Moran, Symmonds, et al. 2011; Bastos et al. 2012). 

Neurophysiologically informed modelling goes beyond descriptive biomarkers by providing a 

mechanistic link to realistic microscopic processes embedded within the model. For example, 

the canonical microcircuit model (CMC) of cortical columns comprises layer-specific and inter-

connected populations of pyramidal cells, stellate cells and inhibitory interneurons (Douglas 

and Martin 1991; Haeusler and Maass 2007), which link the dynamics of macroscopic brain 

activity to network parameters describing the interactions amongst subpopulations. In both 

human and animal brain imaging, it has been shown that the CMC model accurately 

recapitulates mechanisms known to be interrupted by distinct genetic (Gilbert et al. 2016) 
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and disease (Hughes and Rowe 2013; Cooray et al. 2015; Symmonds et al. 2018) loci. 

Moreover the model has been validated pharmacologically using modulators of AMPA, GABA 

and NMDA receptors to demonstrate veridical parameter recovery (Sc et al. 2010; Moran, 

Jung, et al. 2011; Moran et al. 2014; Muthukumaraswamy et al. 2015).  

 

The inversion of such CMC models, constrained by empirical brain imaging data, has 

significant advantages over historical approaches to evoked and induced studies applied 

typically in the context of EEG and MEG. Evoked responses and spectral densities are limited 

in the biological information that they yield and lack the biological detail required to test 

mechanistic questions about disease or treatment. However this difference in feature space 

suggests that mechanisms must differ at a neuronal level. The outlined modelling approach 

takes advantage of this and so in contrast to data feature reporting, biological models such as 

the CMC attempt to explain differences in evoked responses or spectra giving insight from 

neurophysiological data in terms of the parameterised and biologically plausible circuits that 

can generate the observed invasive (LFP), scalp (EEG) or sensor (MEG) data (e.g. 19). 

 

We applied this modelling approach to examine neurodegenerative disease, using the 

behavioural variant of frontotemporal dementia (bvFTD) as a demonstrator condition. We 

selected bvFTD as a human disease model because of its regional and laminar specificity 

within the cortex. Behavioural variant frontotemporal dementia (bvFTD) is a severe 

neurodegenerative disorder characterised by progressive deterioration of behaviour and 

personality (Bang et al. 2015), with heterogeneous molecular pathology involving misfolding 

and aggregation of either TAR DNA-binding protein 43 (TDP-43), microtubule associated 

protein Tau, or rarely fused-in-sarcoma protein (Neary et al. 2005). In addition, preclinical 

models demonstrate common downstream consequences including changes in synaptic 

morphology, signalling and density and cell death. Interestingly, in humans and transgenic 

models, cell death in frontal and temporal regions is most marked in superficial cortical layers 

(II-III) (Kersaitis et al. 2004), as well as in layer V in selective frontal regions (Kim et al. 2012; 

Santillo and Englund 2014), providing clear testable hypotheses for the inversion of CMC 

models.  
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To probe neural circuits in bvFTD, we studied patients during a passive auditory oddball 

paradigm. Auditory stimuli were either standard tones, or which deviated in one of five 

dimensions (frequency, loudness, laterality, duration, or a central silent period). Evoked 

responses to deviant tones, and large-scale cortical interactions (Hughes and Rowe 2013) 

during such auditory oddball paradigms are grossly abnormal in bvFTD and related disorders. 

There is an extensive literature on the effects of neurological and psychiatric (Umbricht and 

Krljesb 2005) disease and ageing (Naatanen et al. 2011) on the ‘mismatch negativity response 

(MMN)’, to deviant vs. standard tones. The neural generators of the MMN have been 

successfully modelled in humans (Garrido et al. 2009; Hughes et al. 2013; Phillips et al. 2015) 

and validated against invasive electro-corticography (ECog) (Phillips et al. 2016). These 

biophysically informed models consistently identify a bilateral network of generators 

including inferior frontal gyrus (IFG), superior temporal gyrus (STG) and primary auditory 

cortex (A1). In this architecture of the MMN network, the parameters of a biologically 

informed CMC model include the connection strengths, time constants and cell type 

contributions to the signal in specific regions and layers of cortex.  

 

Previous studies have confirmed that pateints with bvFTD can undertake this paradigm 

(Hughes et al. 2013). We applied CMC models to MEG data, in a family of nested 

neuroanatomical models, using Dynamic Causal Modelling for evoked responses (Friston et 

al. 2003; Kiebel et al. 2008; Chen et al. 2012). We used the model-evidences, with Bayesian 

model selection, to identify the most likely model under conventional experimental 

conditions (standard and deviant tones).   

 

Given an optimised model architecture, we predicted that the model parameters would differ 

between groups, in accordance with the known laminar- and regional-specificity of bvFTD. 

Specifically, we tested the hypotheses that (i) the contributions of layers II and V to the evoked 

response, but not layer IV, are reduced by bvFTD, and (ii) the parameters of connectivity 

within the regional CMC’s, including the gain of superficial pyramidal cells, accurately 

distinguish patients from controls.  
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Methods 

Participants  

We recruited 44 patients with bvFTD meeting consensus diagnostic criteria (Rascovsky et al. 

2011) from the Cambridge Centre for Frontotemporal Dementia and Related Disorders. Forty-

four healthy controls were recruited from the Medical Research Council Cognition and Brain 

Sciences Unit volunteer panel. We then subsampled the best age- and sex-matched groups, 

of 40 per group. The study was approved by the local Research Ethics Committee and all 

participants gave written informed consent before participation according to the 1991 

Declaration of Helsinki. 

 

Cognitive Examination 

All bvFTD patients completed the Addenbrookes Cognitive Examination (Revised) (ACE-R) 

(Mioshi et al. 2006), which includes subscores for attention, memory, fluency, language and 

visuo-spatial ability; and the Mini Mental State Examination (MMSE). Patients were further 

characterised using the Cambridge Behavioural Inventory (CBI), a carer-based questionnaire 

developed for quantifying the symptom costellation and severity in FTD (Wear et al. 2008).  

 

MEG Paradigm 

Participants were tested on one session each, using a multiple deviant auditory mismatch 

negativity paradigm (Pakarinen et al. 2004; Hughes et al. 2013). Standard compound sinusoid 

tones lasted 75 ms duration, of 500, 1000 and 1500 Hz. Deviants differed in either frequency 

(550, 1100, 1650 Hz), intensity (+/- 6dB), duration (25 ms), laterality (missing left or right) or 

the middle 25ms was omitted (silent gap). Tone-onset-asynchrony was 500 ms. Three bocks 

of 5 minutes presented a total of 900 standard and 900 deviant trial types.  

 

MEG pre-processing  

All MEG data were collected using a 306-channel Vectorview system (Elekta NeuroMag, 

Helsinki, Finland) at the MRC Cognitiveion and Brain Sciences Unit with 102 magnetometers, 

each coupled with 2 planar gradiometers. Data were sampled at 1 KHz and downsampled 

offline to 500 Hz. Signal separation was achieved using the standardised MaxFilter 2 algorithm 

(version 2.0, Elekta-Neuromag) prior to conversion to SPM12. Three anatomical fiducial 

points (the naison and bilateral pre-auricular points) were used for manual coregistration to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2018. ; https://doi.org/10.1101/416388doi: bioRxiv preprint 

https://doi.org/10.1101/416388
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

a T1-weighted magnetic resonance image (individual where available, otherwise SPM 

template) for source localisation. Five head-position indicator coils and ~80 head points were 

generated using a 3D digitiser (Fastrak Polhemus Inc.). SPM was used for artifact rejection 

with thresholds of 2500 fT and 900 fT for magnetometers and gradiometers, respectively.  

 

Data were epoched -100 to 300 ms around tone onset. Using SPM12, data were band pass 

filtered 1-40 Hz and a subtracted baseline applied to each trial (-100 to 0 ms). Source 

localisation was achieved using Smooth priors, a minimum norm solution that uses a smooth 

source covariance matrix with correlated adjacent sources. From the resultant images, time 

series were extracted from the 6 locations of interest using previously reported MNI 

coordinates (Garrido et al. 2008; Phillips et al. 2015): bilateral auditory cortex (MNI 

coordinates: [-42, -22, 7], [46, -14, 8]), bilateral STG (MNI: [-61, -32, 8], [59, -25, 8]) and 

bilateral IFG (MNI: [-46, 20, 8], [46, 20, 8]). We used these coordinates in the following way: 

for each individual, given their own individual source estimates, the local peak of source 

activity was identified within a 2 mm trap radius around these coordinates in template space. 

From here the 6 resultant time series were extracted to a pseudo LFP format SPM data file 

for subsequent DCM analysis by applying the inverse leadfiled. For standard ERP-based 

analysis of the MMN, average deviant and standard trials were created for each individual 

and peak amplitude and latency measures for the difference wave (the mismatch response) 

were extracted between 80 and 200 ms. 

 

Neural model and connectivity analysis 

Dynamic Causal Modelling (DCM) for evoked responses (Kiebel et al. 2008) was employed 

(SPM12, DCM10) utilising canonical microcircuit models (CMCs) (Douglas and Martin 1991; 

Bastos et al. 2012) as generative models for each of the 6 regions. The DCM framework 

permits inversion of a model of data generation, coupling a generative model (f) and forward 

(or spatial, observation) model (g): 

 

!𝑦 = 𝑔(𝑥, 𝜑) + 𝜀
𝑥́ = 𝑓(𝑥, 𝑢, 𝜃)  
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The canonical microcircuit is a special case of convolution-based, mean-field neural mass 

model (Jansen and Rit 1995; David et al. 2005), comprising four neural populations (superficial 

layer pyramidal cells, SP; granular layer stellate cells, SS; deep layer pyramidal cells, DP; and 

inhibitory interneurons, II). Each of these populations is described in terms of it’s membrane 

voltage (xv) and current (xi), governed by sets of parameterised, multivariate first-order 

differential equations of the form: 

𝑥́0 = 𝑥1  

𝑥́1 = 𝐾𝑈 − 2𝐾𝑥1 − 𝐾6𝑥0 

𝑈 = (𝑆8 ∙ 𝑑) + 𝐻 + 𝐸 

 

where K is the rate-constant of the population, Se is the extrinsic projections(s) to this layer, 

d = presynaptic firing (calculated using sigmoid activation function with mean field 

assumption that average input is distribution of membrane depolarization over the 

ensemble), H = the sum of postsynaptic-currents targeting this population (i.e. coupling with 

other populations within this CMC) and E = any external / exogenous inputs. The local coupling 

(G) parameters are depicted in figure 1, while the layer-specific equations of motion are in 

SupMat1. 

 

 

 
Figure 1. Left: The canonical microcircuit with excitatory (green) and inhibitory (red) cell populations including pyramidal (triangle) and 

smooth / stellate (round) cell types. Blue and red arrows depict intrinsic excitatory and inhibitory connections, respectively. Middle left: 

histologic depiction of prefrontal cortex cytoarchtecture. Middle Right: Two microcircuits showing extrinsic, layer-specific forward (green) 

and backward (orange) connections. Right: Template MRI image with red dots marking MNI coordinates for [right] IFG (top), A1 and STG 

(bottom).  
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The local-field potential (LFP) forward model was used. This model comprises two 

parameters: an electrode-gain (L) for each CMC (‘node’) in the model and a vector of 

contribution weights (J) for each element of the model state vector, x, such that the full model 

prediction, y, is given by: 

𝑦 = 𝐽𝑓
→
𝐿 ∙ 

Priors on the contribution weights (J) were taken from the literature where only 3 weights 

were non-zero (and therefore contribute to the signal): SPV=0.8, SSV=0.2 and DPV=0.2. The 

mapping function,𝑓
→

 , denotes that, in the present model, the Kronecker matrix J⨂L is mapped 

to a matrix the size of x before multiplication. This occurs because we enforce similarity across 

regions in terms of the contributing states (e.g. L2/3 of left and right IFG share the same 

contribution [J] value as A1 (right and left) and STG right and left) and thus the matrix sizes 

are mismatched. Otherwise the model is as described in Shaw et al. (Shaw et al. 2017). 

 

Following Phillips et al. (Phillips et al. 2015), 21 plausible model architectures were compared 

(figure 2). These models comprise forward, backward and lateral connections between each 

of the 6 CMCs. Forward projections originate from SP and target both DP and SS of the target 

regions whereas backward projections originate in DP and target both SP and II (Bastos et al. 

2012; Shipp et al. 2013) (summarised figure 1b).  

 

The posterior model parameters were estimated by inverting a parameterised full model 

(generative + forward model). This inversion method is referred to as variational bayes 

(Friston et al. 2003, 2007), which modulates the log-scaling parameters around static priors 

(Supplementary table 1). 

 

SVM pipeline 

Support vector machines (LIBSVM implemented in Python (Chang and Lin 2013)) were trained 

and tested using a permutation-based leave-one-out with replacement cross validation 

approach. The case excluded for each iteration was selected using the Matlab random integer 

generator. The SVM was trained and tested on 3 sets of data: 1) the generative model 

parameters in the form of effective connectivity strengths between nodes (c.f. generative 

embedding, see (Brodersen et al. 2011)). 2) The forward model parameters in the form of 
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layer-by-node specific population contributions and 3) the amplitudes of the MMN at each 

region. 

 

 
Figure 2. Adjacency matrices showing the 21 model architectures tested, as per Phillips et al. 2015. Green, orange and blue blocks represent 

the presence of forward, backward and lateral (or self) connections modulating the mismatch effect, respectively. L/R-IFG = Left/Right-

Inferior frontal gyrus. Inputs are exogenous for sensory regions or endogenous for non-sensory regions. All driving inputs arrive in layer 4 of 

target regions. Model 14 (depicted right) was the overall winning model, in line with the results of Phillips et al (2015). 

 

 
Results 

Groups were matched by age (control mean 61.7 range: 45-75; bvFTD mean 60.7 range: 42-

78; n.s.) and sex (controls M:F 20:20; bvFTD M:F 21;19; n.s.). Patients were cognitively 

impaired with average MMSE=23.5/30 (SE 1.0) and ACER-total=69.5/100 (SE 2.9), with typical 

deficits including severe non-fluency (mean 4.6/14), and milder deficits in attention (mean 

14.6/18), memory (mean 15.2/26), language (mean 21.1/24) and visuospatial function 

(13.3/16) (Figure 3). Contemporay CBI scores were available for 29 patients, with a mean of 

85 (+/- 50). These scores are qualitatively similar to those of the bvFTD cohort reported by 

Wear et al (Wear et al. 2008), and are higher than typical CBI scores in Parkinson’s disease, 

Huntington’s disease and Alzheimer’s disease. Two subjects were excluded retrospectively 

due to a change of diagnosis while 5 were excluded due to medication changes close to the 

time of scanning. This resulted in 33 patient datasets and 40 healthy control datasets taken 

forward for the principal analyses.  

 

Since scanning, at least 15 individuals from the patient cohort have died. Five of these 

underwent confirmatory post-mortem pathological testing, revealing four cases with TDP43 
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pathology and one FTLD-tau pathology. In addition, three underwent genetic testing, 

confirming two with likely TDP43 pathology (C9orf72 hexanucleatide expansions) and one 

with likely Tau pathology (MAPT mutation).  

 

 
Figure 3. Violin plots of the clinical features from the subsections of ACE-R cognitive examination for the FTD group. Maximum scores are 

attention, 18, fluency, 14, language, 26, Memory, 26, visuospatial, 16. 

 

We confirmed the effect of bvFTD on the MMN event related field, first by averaging over 

the 6 sources’ timecourse (bilateral IFG, STG and A1) between 80 and 300 ms. A group by 

condition (2 x 2) analysis of variance (ANOVA) revealed a significant interaction effect for 

amplitude (F = 9.47, p = 0.002) but not latency (figure 4). Post hoc tests demonstrated that 

the bvFTD group did not establish an amplitude difference between standard and deviant 

stimuli (i.e. the mismatch) (p=>.05) whereas the control group did (t=-6.2, p<.001). 
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Figure 4.: Group changes in amplitude (left) and latency (right) for each condition, averaged over IFG, STG and A1 bilaterally.  

 

Following inversion of the 21 models in figure 2, group data were pooled for Bayesian 

Model Selection (BMS). BMS was run both with fixed effects and random effects, using a 

hierarchical family-wise approach. The 21 models were split at three levels (figure 5a), with 

comparisons performed at each level (RFX and FFX), comprising:  

1.) Step 1. Models with or without LIFG connectivity (models 7, 8, 10:13, 15, 16, 18:21 

vs. 1:6, 9, 14, 17). The family of models without LIFG won in both RFX and FFX 

analysis (exceedance probability [EP] = 0.89). 

2.) Step 2. Within the model set without LIFG connectivity, we compared models with or 

without interhemispheric connections (9,17 vs. 1:6, 14). The family without 

interhemispheric connections won in both RFX and FFX analysis (EP = 0.68). 

3.) Step 3. Within the remaining model set, we compared models with or without a top-

down (latent) input to rIFG (14 vs. 1:6). The family (model 14 only) with rIFG inputs 

won in both RFX and FFX analysis (EP = 0.81).  

Bayesian model selection was repeated for all subjects (pooled control and FTD groups) over 

the 21 models (i.e. not family wise). This also converged on model 14, but to test the 

robustness of this lead model, we undertook 1000 permutations of Bayesian model 

selection using leave-one-out with replacement cross validation. Model 14 was the lead 

model 88% of the time followed by model 6, which is nested within model 14 (figure 5b). 

Model 14 was therefore taken forward for parameter analysis.  
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Figure 5a. Hierarchical families tested using BMS. Step 1: Models without left IFG perform better than those with (both fixed and random 

FX). Step 2: Of these models, those without lateral connections perform better than those with (both fixed and random FX). Step 3: Of the 

remaining 7 models, the model with top-down input performed better than those without (both fixed and random FX). 

 

 

 
Figure 5b. Bayesian model selection for all subjects (pooled groups) over the 21 models (i.e. not family wise) also converges on model 14. 

One thousand permutations with leave-one-out with replacement were computed with model 14 winning 88% of the time (883 times) 

followed by model 6, 12% of the time (117 times). 

 

Having identified model 14 as the most likely model architecture, 2 further questions were 

addressed using the parameters from this model. First, we address the ability of the 

parameters controlling cortical layer-specific contributions to the MEG signal (‘J’) to 

differentiate between groups, given the known degenerative pathology in bvFTD (analysis 
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A), based on the evidence of laminar specificity of cell loss in bvFTD. Second, having 

optimised these ‘contribution’ parameters for each subject, we reinvert the model to 

estimate local, ‘intrinsic’ coupling strengths between cell populations (analysis B).  

 

Analysis A: Layer-by-node contributions 

Layer-by-node contributions were analysed by ANOVA, which demonstrated a trend 

towards a group-by-layer interaction (F = 2.6, p = 0.071). Post-hoc independent t-tests 

revealed a significant reduction of L5/6 STG contribution to the LFP (t=2.8, p=0.005). The 

parameters did not correlate with ERF amplitudes for either group. No differences were 

found in the effective connectivity strengths between nodes between groups.   

 

Figure 6. Right: Bar chart with error bars demonstrating the layer contributions per node (with enforced symmetry). Blue and red bars 

depict controls and bvFTD groups, respectively. Left: Scatter demonstrating layer 5/6 STG reduction in bvFTD compared with controls (red) 

and the trend in layer 2/3 IFG (blue).  

 

Although the ANOVA of individual layer-by-node contributions did not indicate a strong 

group difference, these values when taken as a set for classificaiton did separate the groups. 

Overall classification accuracy (true positive + true negative, table 1) was 99.6% using the 

layer-by-node population outputs (figure 7). In contrast, generative embedding, using 

effective connectivity strength between nodes, achieved only 60.7% accuracy, while 

classification by MMN amplitude was 59.8% accurate (versus 50% by chance).  
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Parameters Description Correct 
(%) 

TP 
(%) 
 

TN 
(%) 

FP 
(%) 

FN 
(%) 

PPV 
(%) 

NPV 
(%) 

Sens 
(%) 

Spec(%) 

 Max 100% Max 50%   Max 100% 

V 
Connectivity 
strengths between 
nodes 

60.7 40 20 29 10 58 66 80 41 

J 
Layer- and node- 
specific population 
contributions 

99.6 49 48.2 0 0.37 100 99.2 99.2 100 

ERF Amp 
Amplitudes of 
deviant & standard 
tones 

59.8 34 26 24 16 61 61 68 52 

 Mean over permutations 
 

Table 1. Accuracies (%) and predictive values for the SVM performance across the 3 data. 

 

 
Figure 7. MMN-amplitude and model based classification. Histograms showing overall accuracy over 5000 permutations with leave-one-out. 

Note that for J the mean accuracy is 99.6%.  

 

Analysis B: Effective connectivity changes 

Analysis of the posterior parameter estimates for intrinsic connectivity confirmed an increase 

in superficial layer (L2/3) pyramidal cell ‘inhibitory self gain’ (decay function) in the bvFTD 

group in the STG (p=.0257) along with a reduction in deep layer (L5/6) pyramidal cell self 

modulation in A1 (p=.0381) (Figure 8). Thus in effect superficial temporal regions exhibited 
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hypoactive stimulus related activity while deep sensory regions exhibited a hyperactive 

sensory response. 

 

 

 
Figure 8. Local (intrinsic) parameter differences between bvFTD and controls. bvFTD show increases in L2/3 SP self-modulation in temporal 

areas (STG) and reductions in L5/6 SP self-modulation in sensory areas (A1). 

 

 

Discussion 

This neurophysiological study of behavioural variant frontotemporal dementia has three 

principal results that contribute to an understanding of the disease. First, we replicate the 

observation that bvFTD reduces the amplitude of the mismatch negativity (Hughes and Rowe 

2013), with patients failing to either adapt to predictable events and react to the unexpected 

events, compared with healthy adults. Second, we confirmed the neurophysiological 

prediction arising from the hypothesis of laminar selectivity of frontotemporal lobar 

degeneration (Kersaitis et al. 2004; Kim et al. 2012; Santillo and Englund 2014), in that bvFTD 

significantly reduces the contribution to the local electromagnetic signal from deep pyramidal 

cells (figure 6) and demonstrates a clear trend towards reduction in superficial layers, but not 

layer IV cells. Third, bvFTD causes faster decay of superficial layer pyramidal cells’ activity in 

superficial temporal areas and slower decay of deep-layer pyramidal cells in auditory cortex. 

We interpret these changes in terms of the way that sensory information is predicted in 

hierarchical frontotemporal networks: that the gain function of superficial pyramidal cells 
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feeding prediction errors forward is reduced, with converse changes in the conditional 

expectations represented in lower level deep pyramidal populations.   

 

The initial analysis of the event-related MMN replicates previous work in a smaller cohort 

(n=11)(Hughes and Rowe 2013). Such a global deficit in MMN generation is not unique to 

bvFTD, but has been reported in several neurological and psychiatric disorders (Mondragón-

Maya et al. 2011; Naatanen et al. 2011). However, patients with bvFTD are unusual in the 

reduction of MMN to all deviant types tested, at the group level. However, the typical 

parameters used to describe the evoked MMN response (magnitude and latency) proved 

insufficient to enable accurate classification.  

 

The model based approach taken using Dynamic Causal Modelling allows a richer 

parameterisation of the neurophysiologic response to standard and deviant tones, through 

generative networks in frontotemporal cortex. These parameters were optimised by inverting 

to the whole timeseries of the initial MMN (300ms), not merely the peak amplitude and 

latency. We built a moderately complex model that does not claim to include all regions in 

which a MMN is generated, but which includes six principal generators that have been most 

extensively studied by MEG, EEG and direct electrocorticography (Garrido et al. 2008, 2009). 

Critically, analysis of human MEG and electrocorticography confirms similar hierarchical 

network features. In this study however, we adopted the more complex and biologically 

informed canonical microcircuit model to examine the mechanism by which bvFTD alters the 

MMN.  

 

With six principal regions in frontotemporal cortex, and possible modulation of feedforward 

and/or feedback connectivity by deviant versus standard stimuli, there are many possible 

models. We searched for the most likely model, from a principled set of 21 models, based on 

Phillips et al. (Phillips et al. 2015), which includes the model sub-set studied by Boly et al. 

(Yong Chen, Yuting Yang, Megan van Overbeek, Jill R. Donigian, Paul Baciu, Titia de Lange and 

Mammalian 2012) and Garrdio et al. (Garrido et al. 2008). We used hierarchical Bayesian 

model selection, with both Fixed- and Random-effects models. FFX and RFX models differ in 

the interpretation of their posterior probabilities, sensitivity to outlying subjects, and whether 

they accommodate heterogeneity in generative models among a cohort. In this study, FFX 
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and RFX were in accord, revealing model 14 as the most likely. Garrido and colleagues 

(Garrido et al. 2008) previously demonstrated a closely related modelas best fit in a ‘roving’ 

mismatch paradigm in healthy subjects, but they did not test an identical model. As in the 

winning model here (model 14), Phillips et al. (Phillips et al. 2015), included models with top-

down inputs to IFG, conveying high-level predictions or expectation of an event occurring, as 

opposed to low level predictions of stimulus features.  

 

BMS was not performed separately for each group in this study, because potential group 

differences in the generative models are accommodated by the RFX approach. A whole-study 

BMS was performed in order to compare parameters of the generative and spatial models 

between groups, which requires that the groups have the same parameter set (and because 

model averaging leads to parameters with less biological interpretation). To use BMS to 

investigate differences in model architectures between groups would introduce the confound 

and ambiguity arising from group-by-model parameter differences. In the next sections, we 

discuss the insights arising from the group differences in the most likely network model.  

 

Our primary hypothesis was that superficial and deep layers of the frontal cortex and 

temporal association cortex would show the largest reduction in their contribution to the 

regional electromagnetic signal. This prediction rests on the well-characterised pathology of 

bvFTD, in which layers 2 and 3 contain early pathogenic protein aggregates and cell loss in 

human and animal models (Kersaitis et al. 2004). Moreover, selective loss from layer 5 of Von 

Economo, fork- and surrounding pyramidal neurons occurs in bvFTD (Kim et al. 2012), with an 

estimated 70% reduction in cell number post mortem (Seeley 2008). This L5 atrophy is a 

hallmark of bvFTD pathology.  

 

Our finding demonstrates this reduction in vivo in bvFTD patients, with two critical 

interpretations. First, in the context of bvFTD, neurophysiological evidence of L5 cell loss 

atrophy may be a biomarker specific to bvFTD, and preservation of layer 5 could be a priority 

for disease modifying treatments of bvFTD. Second, that the weighted forward-model linked 

to generative models of cortical networks can capture the characteristics of disease specific 

neurodegeneration, and this that might be upheld in other human dementias and 
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neurodegenerative disorders, for which in vivo neurophysiological assays are necessarily 

indirect.  

 

The generative canonical microcircuit model, in contrast to a spatial weighted forward-model, 

provides insights into the effect of bvFTD on intrinsic coupling connectivity within cortical 

regions. Two complementary changes were observed in bvFTD, compared with controls: (i) 

increased inhibitory auto-modulation of superficial layer pyramidal cells in STG, indicating a 

more rapid decay of activity in the absence of extrinsic driving inputs to the pyramidal cell 

population; and (ii) decreased auto-modulation of deep layer pyramidal cells in auditory 

cortex, indicating more stable firing rates of pyramidal cells here. These findings are 

particularly relevant because of the critical roles that these parameters have for predictive 

coding of events. 

 

To understand the clinical consequences of these observations we interpret our findings 

within the predictive coding hypothesis (Rao and Ballard 1999; Friston 2005; Bastos et al. 

2012), in which information about expectations (beliefs) and observed states (sensory inputs) 

are represented in a cortical hierarchy. Although the information content becomes more 

abstract and temporally extended in higher levels, the asymmetry between feedforward and 

feedback of information is analogous between hierarchical levels. Specifically, stellate cells in 

layer 4 receive feedforward connections that encode the prediction errors on the hidden 

causes of the level below. Superficial pyramidal cells encode and feed forward these 

prediction errors on hidden causes, whereas deep pyramidal cells encode the conditional 

expectations or belief, so as to elaborate feedback predictions to lower levels. Within our 

hierarchical model of bvFTD, the superficial temporal cortex are proposed to process changes 

in the physical properties of the tones in terms of the five variable dimensions of frequency, 

duration, amplitude, laterality, and temporal profile. In contrast, auditory cortex combines 

the predictions passed down from STG with the ‘raw’ sensory stream entering auditory layer 

4.  

 

The two parameter differences we see in the bvFTD group may therefore reflect one – single 

- integrated deficit; namely, a lack of precision in the encoding of prediction errors. This 

discrepancy in prediction subsequently propagates, leading to errors in the encoding of 
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‘conditional expectation’ in lower portions of the hierarchy (L5/6 encoding reduction in A1), 

which are observed macroscopically as a failure to generate a mismatch response.    

 

We also tested whether the parameters of the generative model, in terms of intrinsic coupling 

within regions, or extrinsic coupling between regions, would provide a better biomarker of 

disease than the more typical summary features of the evoked mismatch response (amplitude 

and/or latency). This heuristic approach could be useful in determining whether model 

parameters offer robust biomarkers for stratification or outcome measures in future 

experimental medicine studies, using cohorts of a size and mixed pathology (Tau vs. TDP43) 

that is realistic for early phase trials.  

 

The data clearly show that simple machine learning using a support vector machine provides 

highly accurate classification with model parameters of intrinsic coupling. This contrasts with 

the lower accuracy using MMN amplitude or intrinsic coupling parameters between regions. 

These latter methods supported above-chance classification, but the actual accuracy level 

(~60%) would not be useful in a trials context, and suggests that these parameters are not 

sufficiently sensitive either as a diagnostic or prognostic biomarkerof bvFTD. The sensitivity 

and specificity of the Layer-by-node parameters in classification were 99.2 and 100%, 

respectively, making this a strong candidate marker. This finding has an added advantage over 

many imaging biomarkers in that the physical basis of the parameter is not merely an indirect 

correlate of the disease process, but rather reflects a component of the disease process itself 

– namely the reduction in the laminar output due to cell dysfunction and death. 

 

The weaker classification accuracy using the between-region connectivity strengths (effective 

connectivity) was surprising in light of the findings of Brodersen et al. (Brodersen et al. 2011), 

who used a similar ‘generative embedding’ approach to distinguish between healthy and 

aphasic patients. However, they used a conceptually analogous but mechanistically distinct 

version of Dynamic Causal Modelling, for functional magnetic resonance imaging data. It is 

also possible that classification would have been higher if model selection was performed on 

each group separately, and subsequent models used for classification. However, such an 

approach is arguably biased towards a group difference in parameters, and we selected the 

model which best captured the pooled population rather than individual groups.  
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Future studies could extend our approach to include more biologically detailed generative 

models in experimental medicine studies and early phase trials. For example, a NMDA-

receptor furnished conductance based model has been successfully used to model 

channelopathies in individual cases (Gilbert et al. 2016), and the effects of dopamine on 

working memory systems in the frontal cortex (Moran, Symmonds, et al. 2011). This would 

be especially relevant to the use assessment of target engagement of candidate therapies 

(Moran et al. 2013). 

 

Dynamic Causal Models can in principle also incorporate pathological and structural 

anatomical information. For example, post mortem or selective PET-ligand data may separate 

cases with Tau pathology from TDP43 pathology, which are expected to be in roughly equal 

numbers in a bvFTD cohort. However, the current PET ligands lack demonstration of 

selectivity between Tau and TDP43 pathology, despite being sensitive to the burden and 

distribution of Tau pathology in FTD, progressive supranuclear palsy and Alzheimer’s disease 

(Bevan-Jones et al. 2017; Passamonti et al. 2017). The post mortem approach also requires 

time, to classify patients post hoc. From our cohort of 40 patients, 15 have died, and 5 

underwent post mortem examination and three others have had genetic testing to indicate 

the molecular pathology.   

 

Such models can also assess the generators of magneto- and electroencephalography signals 

at rest and in more complex task (Moran, Symmonds, et al. 2011), optimised by inverting to 

evoked responses as we did in this study, or the spectral density (Moran et al. 2009; Moran, 

Stephan, et al. 2011).  However, the cognitive processes underlying variation at ‘rest’ are 

obscure, which confounds the interpretation of group differences in resting state data. 

Conversely, more complex tasks of social, economic, linguistic, mnemonic, affective or motor 

systems are of immediate relevance to the phenomenology of frontotemporal dementia 

(Hughes et al. 2011), but would require additional training and are subject to performance 

confounds. The MMN paradigm achieves a good compromise, of minimal set up and no 

training, while preserving a clear neurocognitive interpretation.  
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In conclusion, the inversion of generative models of cortical microcircuits, including laminar 

weighting of the spatial forward model to magnetoencephalography sensors, provides not 

only evidence of abnormal MMN responses in bvFTD, but also reveals two mechanisms by 

which the observed physiological response differs. Increasing the sophistication of human 

neurophysiological insights from MEG and EEG can provide heuristic biomarkers, but also 

facilitates cross-species comparisons between the physiology of transgenic models of 

frontotemporal lobar degeneration and their human disorders. We suggest that early phase 

clinical trials and experimental medicines studies consider integrating model based analysis 

of MEG and/or EEG, to understand the efficacy and mechanism of emerging candidate 

therapies.  

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2018. ; https://doi.org/10.1101/416388doi: bioRxiv preprint 

https://doi.org/10.1101/416388
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

References 

Bang J, Spina S, Miller BL. 2015. Non-Alzheimer ’ s dementia 1 Frontotemporal dementia. 

Lancet. 386:1672–1682. 

Bastos AM, Briggs F, Alitto HJ, Mangun GR, Usrey WM. 2014. Simultaneous Recordings from 

the Primary Visual Cortex and Lateral Geniculate Nucleus Reveal Rhythmic Interactions 

and a Cortical Source for Gamma-Band Oscillations. J Neurosci. 34:7639–7644. 

Bastos AM, Usrey WM, Adams R a., Mangun GR, Fries P, Friston KJ. 2012. Canonical 

Microcircuits for Predictive Coding. Neuron. 76:695–711. 

Bevan-Jones WR, Cope TE, Jones PS, Passamonti L, Hong YT, Fryer TD, Arnold R, Allinson KSJ, 

Coles JP, Aigbirhio FI, Patterson K, O’Brien JT, Rowe JB. 2017. [ 18 F]AV-1451 binding in 

vivo mirrors the expected distribution of TDP-43 pathology in the semantic variant of 

primary progressive aphasia. J Neurol Neurosurg Psychiatry. jnnp-2017-316402. 

Brodersen KH, Schofield TM, Leff AP, Ong CS, Ekaterina I, Buhmann JM, Stephan KE. 2011. 

Generative Embedding for Model-Based Classification of fMRI Data. 7:14–16. 

Castillo-Carranza DL, Guerrero-Munoz MJ, Sengupta U, Hernandez C, Barrett ADT, Dineley K, 

Kayed R. 2015. Tau Immunotherapy Modulates Both Pathological Tau and Upstream 

Amyloid Pathology in an Alzheimer’s Disease Mouse Model. J Neurosci. 35:4857–4868. 

Chang C, Lin C. 2013. LIBSVM : A Library for Support Vector Machines. 1–39. 

Chen C-C, Chen C-C, Kiebel SJ, Kiebel SJ, Kilner JM, Kilner JM, Ward NS, Ward NS, Stephan 

KE, Stephan KE, Wang W-J, Wang W-J, Friston KJ, Friston KJ. 2012. A dynamic causal 

model for evoked and induced responses. Neuroimage. 59:340–348. 

Cooray GK, Sengupta B, Douglas P, Englund M, Wickstrom R, Friston K. 2015. Characterising 

seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling. 

Neuroimage. 

Cope TE, Rittman T, Borchert RJ, Jones PS, Vatansever D, Allinson K, Passamonti L, Vazquez 

Rodriguez P, Bevan-Jones WR, O’Brien JT, Rowe JB. 2018. Tau burden and the 

functional connectome in Alzheimer’s disease and progressive supranuclear palsy. 

Brain. 141:550–567. 

Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, Mcguire P, Bullmore ET. 2014. The hubs 

of the human connectome are generally implicated in the anatomy of brain disorders. 

Brain. 137:2382–2395. 

David O, David O, Harrison L, Harrison L, Friston KJ, Friston KJ. 2005. Modelling event-related 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2018. ; https://doi.org/10.1101/416388doi: bioRxiv preprint 

https://doi.org/10.1101/416388
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

responses in the brain. Neuroimage. 25:756–770. 

De Jong LW, Van Der Hiele K, Veer IM, Houwing JJ, Westendorp RGJ, Bollen ELEM, De Bruin 

PW, Middelkoop HAM, Van Buchem MA, Van Der Grond J. 2008. Strongly reduced 

volumes of putamen and thalamus in Alzheimer’s disease: An MRI study. Brain. 

131:3277–3285. 

Douglas RJ, Martin KA. 1991. A Fucntional Microcircuit for Cat Visual Cortex. J Physiol. 

440:753–769. 

Friston K. 2005. A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci. 360:815–

836. 

Friston K, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W. 2007. Variational free energy 

and the Laplace approximation. Neuroimage. 34:220–234. 

Friston KJ, Harrison L, Penny W. 2003. Dynamic causal modelling. Neuroimage. 

Garrido MI, Friston KJ, Kiebel SJ, Stephan KE, Baldeweg T, Kilner JM. 2008. The functional 

anatomy of the MMN: A DCM study of the roving paradigm. Neuroimage. 42:936–944. 

Garrido MI, Kilner JM, Stephan KE, Friston KJ. 2009. The mismatch negativity: A review of 

underlying mechanisms. Clin Neurophysiol. 120:453–463. 

Gilbert JR, Symmonds M, Hanna MG, Dolan RJ, Friston KJ, Moran RJ. 2016. Profiling neuronal 

ion channelopathies with non-invasive brain imaging and dynamic causal models: Case 

studies of single gene mutations. Neuroimage. 124:43–53. 

Haeusler SS, Maass WW. 2007. A statistical analysis of information-processing properties of 

lamina-specific cortical microcircuit models. Cereb Cortex. 17:149–162. 

Hof PR, Morrison JH. 2004. The aging brain: Morphomolecular senescence of cortical 

circuits. Trends Neurosci. 27:607–613. 

Hughes LE, Ghosh BCP, Rowe JB. 2013. Reorganisation of brain networks in frontotemporal 

dementia and progressive supranuclear palsy. NeuroImage Clin. 2:459–468. 

Hughes LE, Nestor PJ, Hodges JR, Rowe JB. 2011. Magnetoencephalography of 

frontotemporal dementia: Spatiotemporally localized changes during semantic 

decisions. Brain. 134:2513–2522. 

Hughes LE, Rittman T, Robbins TW, Rowe JB. 2018. Reorganization of cortical oscillatory 

dynamics underlying disinhibition in frontotemporal dementia. Brain. 2486–2499. 

Hughes LE, Rowe JB. 2013. The impact of neurodegeneration on network connectivity: a 

study of change detection in frontotemporal dementia. J Cogn Neurosci. 25:802–813. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2018. ; https://doi.org/10.1101/416388doi: bioRxiv preprint 

https://doi.org/10.1101/416388
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Jansen BH, Rit VG. 1995. Biological Cybernetics in a mathematical model of coupled cortical 

columns. Biol Cybern. 366:357–366. 

Kersaitis C, Halliday GM, Kril JJ. 2004. Regional and cellular pathology in frontotemporal 

dementia: Relationship to stage of disease in cases with and without Pick bodies. Acta 

Neuropathol. 108:515–523. 

Kiebel SJ, Garrido MI, Moran RJ, Friston KJ. 2008. Dynamic causal modelling for EEG and 

MEG. Cogn Neurodyn. 2:121–136. 

Kim EJ, Sidhu M, Gaus SE, Huang EJ, Hof PR, Miller BL, DeArmond SJ, Seeley WW. 2012. 

Selective frontoinsular von economo neuron and fork cell loss in early behavioral 

variant frontotemporal dementia. Cereb Cortex. 22:251–259. 

Mioshi E, Dawson K, Mitchell J, Arnold R, Hodges JR. 2006. The Addenbrooke’s Cognitive 

Examination revised (ACE-R): A brief cognitive test battery for dementia screening. Int J 

Geriatr Psychiatry. 21:1078–1085. 

Mondragón-Maya A, Bernal-Hernández J, Yáñez-Téllez G, Rodríguez-Agudelo Y. 2011. 

Mismatch Negativity (MMN) and schizophrenia: a revision. Psychophysiology. 39:363–

373. 

Moran RJ, Campo P, Symmonds M, Stephan KE, Dolan RJ, Friston KJ. 2013. Free energy, 

precision and learning: the role of cholinergic neuromodulation. J Neurosci. 33:8227–

8236. 

Moran RJ, Jones MW, Blockeel AJ, Adams R a, Stephan KE, Friston KJ. 2014. Losing Control 

Under Ketamine: Suppressed Cortico-Hippocampal Drive Following Acute Ketamine in 

Rats. Neuropsychopharmacology. 40:1–35. 

Moran RJ, Jung F, Kumagai T, Endepols H, Graf R, Dolan RJ, Friston KJ, Stephan KE, 

Tittgemeyer M. 2011. Dynamic causal models and physiological inference: a validation 

study using isoflurane anaesthesia in rodents. PLoS One. 6:e22790. 

Moran RJ, Stephan KE, Dolan RJ, Friston KJ. 2011. Consistent spectral predictors for dynamic 

causal models of steady-state responses. Neuroimage. 55:1694–1708. 

Moran RJ, Stephan KE, Seidenbecher T, Pape H-C, Dolan RJ, Friston KJ. 2009. Dynamic causal 

models of steady-state responses. Neuroimage. 44:796–811. 

Moran RJ, Symmonds M, Stephan KE, Friston KJ, Dolan RJ. 2011. An in vivo assay of synaptic 

function mediating human cognition. Curr Biol. 21:1320–1325. 

Muthukumaraswamy SD, Shaw AD, Jackson LE, Hall J, Moran R, Saxena N. 2015. Evidence 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2018. ; https://doi.org/10.1101/416388doi: bioRxiv preprint 

https://doi.org/10.1101/416388
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

that Subanesthetic Doses of Ketamine Cause Sustained Disruptions of NMDA and 

AMPA-Mediated Frontoparietal Connectivity in Humans. J Neurosci. 35:11694–11706. 

Naatanen R, Kujala T, Kreegipuu K, Carlson S, Escera C, Baldeweg T, Ponton C. 2011. The 

mismatch negativity: An index of cognitive decline in neuropsychiatric and neurological 

diseases and in ageing. Brain. 134:3432–3450. 

Neary D, Snowden J, Mann D. 2005. Frontotemporal dementia. Lancet Neurol. 4:771–780. 

Pakarinen S, Rinne T, Takegata R, Na R. 2004. The mismatch negativity ( MMN ): towards the 

optimal paradigm. 115:140–144. 

Passamonti L, Vázquez Rodríguez P, Hong YT, Allinson KSJ, Williamson D, Borchert RJ, Sami S, 

Cope TE, Bevan-Jones WR, Jones PS, Arnold R, Surendranathan A, Mak E, Su L, Fryer TD, 

Aigbirhio FI, O’Brien JT, Rowe JB. 2017. 18 F-AV-1451 positron emission tomography in 

Alzheimer’s disease and progressive supranuclear palsy. Brain. aww340. 

Phillips HN, Blenkmann A, Hughes LE, Bekinschtein TA, Rowe JB. 2015. Hierarchical 

Organization of Frontotemporal Networks for the Prediction of Stimuli across Multiple 

Dimensions. J Neurosci. 35:9255–9264. 

Phillips HN, Blenkmann A, Hughes LE, Kochen S, Bekinschtein TA, Rowe JB. 2016. 

ScienceDirect Convergent evidence for hierarchical prediction networks from human 

electrocorticography and magnetoencephalography. CORTEX. 82:192–205. 

Rao RP, Ballard DH. 1999. Predictive coding in the visual cortex: a functional interpretation 

of some extra-classical receptive-field effects. Nat Neurosci. 2:79–87. 

Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, Swieten JC Van, 

Seelaar H, Dopper EGP, Onyike CU, Hillis AE, Josephs KA, Boeve BF, Kertesz A, Seeley 

WW, Rankin KP, Johnson JK, Rosen H, Prioleau-latham CE, Lee A, Kipps CM, Lillo P, 

Piguet O, Rohrer JD, Rossor MN, Warren JD, Fox NC, Galasko D, Salmon DP, Black SE, 

Mesulam M, Deramecourt V, Lebert F, Pijnenburg Y, Chow TW, Manes F, Grafman J, 

Cappa SF, Freedman M. 2011. behavioural variant of frontotemporal dementia. 2456–

2477. 

Rittman T, Rubinov M, Vértes PE, Patel AX, Ginestet CE, Ghosh BCP, Barker RA, Spillantini 

MG, Bullmore ET, Rowe JB. 2016. Regional expression of the MAPT gene is associated 

with loss of hubs in brain networks and cognitive impairment in Parkinson disease and 

progressive supranuclear palsy. Neurobiol Aging. 48:153–160. 

Rowan MJ, Klyubin I, Cullen WK, Anwyl R. 2003. Synaptic plasticity in animal models of early 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2018. ; https://doi.org/10.1101/416388doi: bioRxiv preprint 

https://doi.org/10.1101/416388
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Alzheimer’s disease. Philos Trans R Soc B Biol Sci. 358:821–828. 

Sami S, Williams N, Hughes LE, Cope TE, Rittman T, Coyle-Gilchrist ITS, Henson RN, Rowe JB. 

2018. Neurophysiological signatures of Alzheimer’s disease and frontotemporal lobar 

degeneration: pathology versus phenotype. Brain. 141:2500–2510. 

Santillo AF, Englund E. 2014. Greater loss of von Economo neurons than loss of layer II and 

III neurons in behavioral variant frontotemporal dementia. Am J Neurodegener Dis. 

3:64–71. 

Sc B, Phillips C, Ph D. 2010. during Propofol-induced Loss of Consciousness. 

Seeley WW. 2008. Selective functional, regional, and neuronal vulnerability in 

frontotemporal dementia. Curr Opin Neurol. 21:701–707. 

Shaw AD, Moran RJ, Muthukumaraswamy SD, Brealy J, Linden DE, Friston KJ, Singh KD. 

2017. Neurophysiologically-informed markers of individual variability and 

pharmacological manipulation of human cortical gamma. Neuroimage. 161:19–31. 

Shipp S, Adams RA, Friston KJ. 2013. Reflections on agranular architecture: predictive coding 

in the motor cortex. Trends Neurosci. 36:706–716. 

Stam CJ. 2005. Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. 

Clin Neurophysiol. 116:2266–2301. 

Stam CJ. 2010. Use of magnetoencephalography (MEG) to study functional brain networks 

in neurodegenerative disorders. J Neurol Sci. 289:128–134. 

Symmonds M, Moran CH, Leite MI, Buckley C, Irani SR, Stephan KE, Friston KJ, Moran RJ. 

2018. Ion channels in EEG: isolating channel dysfunction in NMDA receptor antibody 

encephalitis. Brain. 141:1691–1702. 

Umbricht D, Krljesb S. 2005. Mismatch negativity in schizophrenia: A meta-analysis. 

Schizophr Res. 76:1–23. 

Wear HJ, Wedderburn CJ, Mioshi E, Williams-Gray CH, Mason SL, Barker RA, Hodges JR. 

2008. The Cambridge Behavioural Inventory revised. Dement Neuropsychol. 2:102–

107. 

Wilcock DM, Gharkholonarehe N, Van Nostrand WE, Davis J, Vitek MP, Colton CA. 2009. 

Amyloid Reduction by Amyloid-  Vaccination Also Reduces Mouse Tau Pathology and 

Protects from Neuron Loss in Two Mouse Models of Alzheimer’s Disease. J Neurosci. 

29:7957–7965. 

Yong Chen, 1 Yuting Yang, 1 Megan van Overbeek, 2* Jill R. Donigian, 2* Paul Baciu, 1 Titia 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2018. ; https://doi.org/10.1101/416388doi: bioRxiv preprint 

https://doi.org/10.1101/416388
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

de Lange 2 Ming Lei1†, Mammalian. 2012. References and Notes 1. 338:619–621. 

Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD, Kramer JH, Weiner 

M, Miller BL, Seeley WW. 2010. Divergent network connectivity changes in behavioural 

variant frontotemporal dementia and Alzheimer’s disease. Brain. 133:1352–1367. 

 

Acknowledgements.  

This work was funded by the Wellcome Trust, the Medical Research Council (MC-A060-
5PQ30), and the NIHR Cambridge Biomedical Research Centre. AS is supported by a 
Wellcome Trust Strategic Award (104943/Z/14/Z) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2018. ; https://doi.org/10.1101/416388doi: bioRxiv preprint 

https://doi.org/10.1101/416388
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2018. ; https://doi.org/10.1101/416388doi: bioRxiv preprint 

https://doi.org/10.1101/416388
http://creativecommons.org/licenses/by-nc-nd/4.0/

