

1 **Nuclear-cytoplasmic compartmentalization of the herpes simplex virus 1**
2 **infected cell transcriptome is co-ordinated by the viral endoribonuclease**
3 **vhs and cofactors to facilitate the translation of late proteins**

4

5 Kathleen Pheasant¹, Carla Moller-Levet¹, Juliet Jones¹, Daniel Depledge², Judith Breuer²
6 and Gillian Elliott^{1*}

7

8 ¹Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical
9 Sciences, University of Surrey, UK

10 ² Division of Infection and Immunity, UCL, London, UK
11

12 *Corresponding author

13 Email: g.elliott@surrey.ac.uk (GE)

14

15

16

17

18 **Short Title:** vhs-specific compartmentalization of the HSV1 infected cell transcriptome

19 **Abstract**

20 HSV1 encodes an endoribonuclease termed virion host shutoff (vhs) that is produced late
21 in infection and packaged into virions. Paradoxically, vhs is active against not only host but
22 also virus transcripts, and is involved in host shutoff and the temporal expression of the virus
23 transcriptome. Two other virus proteins - VP22 and VP16 – are proposed to regulate vhs to
24 prevent uncontrolled and lethal mRNA degradation but their mechanism of action is
25 unknown. We have performed dual transcriptomic analysis and single-cell mRNA FISH of
26 human fibroblasts, a cell type where in the absence of VP22, HSV1 infection results in
27 extreme translational shutoff. In Wt infection, host mRNAs exhibited a wide range of
28 susceptibility to vhs ranging from resistance to 1000-fold reduction, a variation that was
29 independent of their relative abundance or transcription rate. However, vhs
30 endoribonuclease activity was not found to be overactive against any of the cell
31 transcriptome in Δ 22-infected cells but rather was delayed, while its activity against the virus
32 transcriptome and in particular late mRNA was minimally enhanced. Intriguingly, immediate-
33 early and early transcripts exhibited vhs-dependent nuclear retention later in Wt infection
34 but late transcripts were cytoplasmic. However, in the absence of VP22, not only early but
35 also late transcripts were retained in the nucleus, a characteristic that extended to cellular
36 transcripts that were not efficiently degraded by vhs. Moreover, the ability of VP22 to bind
37 VP16 enhanced but was not fundamental to the rescue of vhs-induced nuclear retention of
38 late transcripts. Hence, translational shutoff in HSV1 infection is primarily a result of vhs-
39 induced nuclear retention and not degradation of infected cell mRNA. We have therefore
40 revealed a new mechanism whereby vhs and its co-factors including VP22 elicit a temporal
41 and spatial regulation of the infected cell transcriptome, thus co-ordinating efficient late
42 protein production.

43

44 Author Summary

45 Herpesviruses are large DNA viruses that replicate in the nucleus and express their genes
46 by exploiting host cell mRNA biogenesis mechanisms including transcription, nuclear export,
47 translation and turnover. As such, these viruses express multiple factors that enable the
48 appropriation of cellular pathways for optimal virus production, and work in concert to shut
49 off host gene expression and to overexpress virus genes in a well-described cascade that
50 occurs in a temporal pattern of immediate-early, early and late proteins. We have analysed
51 global and single cell changes in the host and virus transcriptome to uncover a novel
52 mechanism by which the viral endoribonuclease, termed vhs, turns off early virus gene
53 expression. This is achieved through the vhs-induced nuclear retention of the entire infected
54 cell transcriptome at the onset of late gene expression. To enable the switch from early to
55 late protein production the virus then requires a second factor called VP22 to specifically
56 inhibit the nuclear retention of late transcripts allowing their translation in the cytoplasm. In
57 this way, HSV1 elicits a temporal and spatial regulation of the infected cell transcriptome to
58 co-ordinate efficient late protein production, a process that may be relevant to herpesviruses
59 in general.

60

61 Introduction

62 Herpesviruses exhibit two major characteristics of gene expression during lytic infection: a
63 global shutoff of host gene expression, and a temporal pattern of virus gene expression
64 resulting in a cascade of immediate-early (IE), early (E) and late (L) protein synthesis, such
65 that L genes encoding the virus structural proteins are expressed optimally after DNA
66 replication [1]. These two features are interlinked through the complex activities of a number
67 of virus factors which regulate and usurp cellular post-transcriptional RNA biogenesis steps,
68 including splicing, nuclear export, stability and association with the translation machinery.
69 To date, the best-characterised protein shown to be involved in RNA biogenesis is the
70 herpes simplex virus 1 (HSV1) IE protein ICP27 (and homologues) which is involved in the
71 shutoff of host translation [2, 3] by inhibiting the export of spliced cellular mRNAs [4], and
72 the expression of virus proteins, being essential for the export of unspliced L viral transcripts
73 in to the cytoplasm for their translation [2, 5-7]. Several herpesviruses encode their own
74 endoribonucleases factors that also regulate host shutoff and the kinetics of virus gene
75 expression, such as the HSV1 vhs (virion host shutoff) [8-11] and the KSHV sox (shutoff
76 and exonuclease) [12] proteins. These factors degrade host mRNAs in a global fashion, an
77 activity that is believed to be important for counteracting host cell responses to virus infection
78 [13], with multiple mRNAs for antiviral proteins degraded during infection [14-19]. vhs
79 degrades mRNAs by binding to the cellular translation initiation machinery through the eIF4F
80 cap-binding complex and cleaving the bound transcripts [20-23] implying a potential lack of
81 discrimination between cellular and viral transcripts. Indeed, although non-essential in tissue
82 culture, the fact that IE mRNAs are present at higher levels in cells infected with a Δ vhs virus
83 than in Wt infected cells [13], suggests that vhs is involved in regulating the temporal
84 transition from IE to E gene expression by actively degrading IE mRNAs [24, 25]. Moreover,
85 because vhs is packaged into the tegument of the virion [9, 26], it has the capacity to act at

86 two stages of infection – very early in infection after incoming vhs has been delivered to the
87 cytoplasm [27, 28], and at later times when it is newly synthesized, a time when significant
88 global reduction in host cell mRNAs is readily detectable [29].

89 Given the apparent lack of selectivity for cellular mRNAs over viral mRNAs by vhs [30], it is
90 considered that the high levels of vhs protein produced at later times of infection would be
91 detrimental to virus infection leading to eventual total shutoff of virus protein synthesis. Two
92 other virus proteins – VP22 and VP16 – are expressed around the same time as vhs and
93 form a trimeric complex with it [31-33], leading to the proposal that they neutralise the RNase
94 activity of vhs. In the absence of either VP22 or VP16, vhs would therefore ultimately
95 degrade virus mRNA in an unrestrained fashion leading to complete shutoff of virus protein
96 synthesis. In agreement with this model, deletion of VP16 is lethal to the virus causing
97 complete translational shutoff at intermediate and late times of infection and a block to virus
98 replication [34, 35]. However, in the case of VP22, although it has been reported by some
99 that deletion of this gene is lethal to the virus in the presence of functional vhs [36], we and
100 others have generated replication-competent, vhs-positive, VP22 deletion viruses which
101 replicate with minimal defect in Vero cells [37-40]. Hence, the interplay of these proteins in
102 the regulation of gene expression remains unclear.

103 Although vhs-induced translational shutoff is generally considered to be through its
104 endoribonuclease cleavage of cytoplasmic mRNAs followed by Xrn1 exonuclease
105 degradation [41], we have recently published that transient expression of vhs results in the
106 nuclear retention of not only its own but co-expressed mRNAs, in a negative feedback loop
107 that results in shutdown of translation of these transcripts in the expressing cell [42]. This
108 newly-defined nuclear retention results in translational shutoff but is mechanistically different
109 to the model of simple degradation of mRNAs located on ribosomes. However, together with
110 the associated relocalisation of polyA binding protein (PABP) to the nucleus these results

111 are consistent with studies reported for transiently expressed KSHV sox protein [43].
112 Moreover, the observation that this vhs-induced nuclear retention was overcome during
113 transient transfection by co-expression of VP16 and VP22 pointed to a novel effect of these
114 proteins on the translational shutoff activity of vhs [42]. Given these results, we have now
115 conducted a comprehensive analysis of the role of VP22 in vhs activity during infection. We
116 have identified human fibroblast cells (HFFF) as a cell type in which - unlike Vero cells - our
117 Δ 22 virus exhibits extreme translational shutoff, and have used dual transcriptomics and
118 mRNA FISH to investigate global and single cell changes in the cell and virus transcriptome
119 in the presence and absence of VP22. Despite complete translational shutoff, vhs activity
120 against cell transcripts was not enhanced but rather was delayed when VP22 was not
121 present. Moreover, the total virus transcriptome was only modestly reduced in the absence
122 of VP22, but this reduction was specific to L transcripts. We have identified a novel role for
123 vhs in the nuclear retention of all virus transcripts in the nucleus, with IE and E transcripts
124 exhibiting nuclear retention at a time that correlates with the onset of vhs expression.
125 Intriguingly, VP22 was required to overcome the nuclear retention activity of vhs on L
126 transcripts, while a variant of VP16 which cannot interact with VP22 exhibited a phenotype
127 intermediate between Wt and Δ 22, suggesting that VP16 enhances the role of VP22 in
128 regulating the compartmentalisation of the infected cell transcriptome. Hence, the
129 characteristic translational shutoff seen in Δ 22 infected cells is the consequence of
130 dysregulated mRNA export rather than degradation. These results not only unveil a new
131 mechanism for regulating the nuclear export of mRNAs for L protein expression in HSV1
132 infection, but also identify specific roles for vhs and VP22 in co-ordinating the specificity of
133 this retention and export.

134

135

136 **Results**

137 **Translational shutoff in HSV1 infected cells**

138 To measure the contribution of the virus factors VP22 and vhs to translation in HSV1 infected
139 cells, we carried out metabolic labelling of a range of cells infected with Wt (strain 17), Δ 22
140 or Δ vhs viruses. We have previously shown that our Δ 22 virus replicates efficiently in Vero
141 cells [37, 38], so this cell type was used as a reference together with a range of human cell
142 types including HeLa, HaCaT or HFFF cells. The results indicated that after labelling for 1
143 hour at 15 hours after infection, the level of translation was broadly similar in Wt and Δ 22
144 infected Vero cells, but a degree of translational shutoff was apparent in the Δ 22 infections
145 of all the human cells tested (Fig 1A). Most notably, almost complete shutoff occurred in the
146 primary human fibroblast cell-type HFFF (Fig 1A). By contrast, Δ vhs infected cells exhibited
147 similar labelling levels to Wt infection in all cell-types although the profiles differed slightly
148 (Fig 1A). To determine the kinetics of translation shutoff during Δ 22 infection of HFFF,
149 metabolic labelling was carried out at different times after infection (Fig 1B). This revealed
150 that at 5 h, the labelling profile of all three viruses was similar and comparable to uninfected
151 cells, indicating that the virus had not yet taken over the translation machinery of the cell at
152 this time (Fig 1B, 5 hpi). By 10 h, the majority of proteins translated in both the Wt and Δ vhs
153 infections were viral proteins, although the Δ vhs infection contained a stronger background
154 of alternative presumably cellular proteins (Fig 1B, 10 hpi). By contrast, translation in the
155 Δ 22 infected cells had already begun to shut down at this time, and by 15h was almost
156 completely halted in comparison to either Wt or Δ vhs ((Fig 1B, 15 hpi). The relative ability of
157 these three viruses to form plaques on Vero or HFFF cells also reflected this degree of
158 translational shutoff, with Δ 22 unable to plaque on HFFF cells but showing only a ~40%
159 reduction in plaque size on Vero cells (Fig 1C) [38]. Moreover, infection with viruses lacking

160 the virion kinase UL13, or the neurovirulence factor ICP34.5 – virus proteins that have been
161 shown to have a role in translation in HSV1 infected cells [44-46]– resulted in neither a
162 global reduction in translation, nor an extreme decrease in plaque size in HFFF (S1 Fig).
163 This confirmed the direct importance of VP22 in the shutoff phenotype in HFFF.
164 The metabolic labelling profile and timing in HFFF also correlated with detection levels of
165 individual virus proteins by Western blotting where a number of virus proteins – in particular
166 the L proteins and specifically glycoproteins tested - were greatly reduced in HFFF cells
167 infected with the Δ 22 virus compared to either Wt or Δ vhs infected cells at 16h (Fig 1D). The
168 IE and E proteins that were examined (ICP27 and TK in Fig 1D) were however present at a
169 similar level in Δ 22 and Wt infection presumably reflecting their translation prior to the onset
170 of shutoff. Moreover, as shown by others [13, 25], the IE and E proteins were overexpressed
171 in Δ vhs infected HFFF cells (Fig 1D), indicative of failure of vhs to degrade these transcripts.
172 Of note, and as we have reported recently in HeLa cells, vhs was itself poorly translated in
173 Δ 22 infected HFFF cells [42, 47].
174 Unlike HFFF cells, Vero cells are unable to produce interferon but are fully responsive to it
175 [48]. To understand why the Δ 22 virus exhibited such extreme translational shutoff in HFFF,
176 we first determined if the Δ 22 virus might be more sensitive to the actions of interferon by
177 performing a plaque reduction assay, whereby the virus was titrated on Vero cells that had
178 been left untreated or pre-treated with recombinant interferon β . The effect of interferon on
179 the titre of the Δ 22 and Δ vhs viruses was compared to the Wt s17, which is known to be
180 generally resistant to its activity [49], and a s17 derived virus lacking ICP34.5 (Δ 34.5) which
181 is highly sensitive to interferon [50] (Fig 1E). In this case, both the Δ 22 and Δ vhs viruses
182 were judged to be relatively resistant to the actions of interferon β and their titres were
183 reduced by no more than 30-fold compared to 10-fold for Wt virus (Fig 1E). By contrast, the

184 Δ 34.5 virus showed over 2000-fold reduction (Fig 1E). In addition, we demonstrated that
185 there was no induction of IRF3 phosphorylation in Δ 22 infection that might indicate increased
186 sensing of virus infection in these cells (Fig 1F), whereas cells infected with the Δ vhs virus
187 contained enhanced phospho-IRF3 levels as expected for its known role in targeting antiviral
188 responses [13]. Finally, we also examined the Δ 22-infected cells for the presence of
189 hyperphosphorylated eIF2 α that could indicate host-induced shutoff of translation.
190 Uninfected HFFF already contained relatively high levels of phospho-eIF2 α , and as
191 expected from earlier studies [13, 51, 52], this was reduced in cells infected with Wt but not
192 Δ vhs HSV1 (Fig 1F). Nonetheless, in spite of the extreme translational shutoff in Δ 22
193 infected cells, phosphorylation of eIF2 α was not upregulated in the absence of VP22 (Fig
194 1F). Analysis of a time course of infection for all three viruses showed an immediate
195 reduction in eIF2 α phosphorylation in the first 2 hours of infection, but that in Δ vhs-infected
196 cells, phosphorylation recovered quickly to uninfected cell levels by 4 hours suggesting that
197 vhs is required to maintain the reduction in eIF2 α phosphorylation (Fig 1G). In all infections,
198 further reduction of eIF2 α phosphorylation correlated with the start of L protein synthesis
199 from 8h onwards (Fig 1G), a feature that would be consistent with the activity of ICP34.5
200 [53]. In short, these data indicate that the translational shutoff seen during Δ 22 infection
201 was not a consequence of cell-induced inhibition of the translation machinery. It is therefore
202 noteworthy that as we have seen before [54], the Δ 22 virus does not have the phenotype
203 of a Δ vhs virus, despite the low level of vhs expressed in the absence of VP22 (Fig 1D) [37,
204 42].

205

206

207 **Transcriptomic analysis reveals highly variable susceptibility to vhs activity in HSV1
208 infected cells**

209 An obvious reason for translational shutoff is the reduction of the pool of mRNA available
210 for translation. As such, the current model predicts that vhs endonuclease activity is
211 unregulated in HSV1 infected cells where VP22 is absent and hence cellular and viral
212 mRNAs would be predicted to be hyper-degraded [36]. To comprehensively measure the
213 extent of vhs activity in HSV1 infected HFFF cells and compare the relative activity of vhs in
214 the presence and absence of VP22 on both cellular and viral transcripts, dual transcriptomic
215 analysis of Wt (strain 17) and Δ 22 infected HFFF was carried out at 0, 4 and 12 hours after
216 infection. RNAseq was performed on 5 biological replicates for each condition, with
217 sequence reads being mapped to both the HSV1 genome and the human genome, and
218 normalisation and filtering carried out as described in Methods. Over 11,000 cellular
219 transcripts were detected in the HFFF libraries prepared from uninfected cells (as indicated
220 in Tables S1 to S6). Mapping the reads obtained for each library to the human and HSV-1
221 transcriptome indicated that the library composition comprised on average only 3% virus
222 reads at 4 h, but by 12 h this had risen to close to 75% (Fig 2A). This is quite different to the
223 situation previously shown for VZV where the virus has been shown to make up around 20%
224 of the transcriptome [55], and reflects the massive impact that HSV1 has on the total cell
225 transcriptome. Normalised and averaged library counts of each gene were used to
226 determine the differential expression of each detected transcript at 4 h and 12 h in Wt
227 infected cells in comparison to uninfected cells, expressed as Log_2 fold change (FC) to
228 uninfected (S1 & S2 Tables). Scatter plots showing average counts per million of transcripts
229 of uninfected versus 4 h or 12 h libraries revealed that there were only small differences in
230 abundance of most cellular transcripts at 4 h, but that by 12 h the vast majority of cell
231 transcripts were reduced in abundance in accordance with vhs activity (Fig 2B). Around 100

232 cellular transcripts were upregulated > Log₂ FC of 1 as early as 4 h, although the majority
233 of the obviously increased transcripts were viral in origin (Fig 2B, 4h, cell transcripts in black;
234 virus transcripts in green). Three quarters of the upregulated cellular transcripts were
235 identified as representing interferon stimulated genes (ISGs) by screening those transcripts
236 that were increased against the interferome database (<http://www.interferome.org>) eg IFITs
237 1 and 2 as identified in Fig 2B (see also S2 Fig and S1 Table). By 12 h, 98% of cellular
238 transcripts were reduced more than 2-fold in Wt infection compared to uninfected cells, a
239 result taken to reflect the activity of the vhs endoribonuclease in the cell (Fig 2B, 12h; S2
240 Table).

241 Mapping of the virus reads across the HSV1 genome at both time points indicated that at 4
242 h, as expected, the reads mapped predominantly to IE genes, such as UL54 (ICP27) and
243 US1 (ICP22), or E genes such as UL23 (TK), UL29 and UL39 (Fig 2C, 4h). However, by 12
244 h the predominant transcription units covered the L genes including UL19 (major capsid
245 protein), UL48 and UL49 (tegument proteins VP16 and VP22), UL27 and UL44
246 (glycoproteins gB and gC), and across the entire Us region of the genome (Fig 2C, 12h).
247 The relative transcription of representative IE (ICP27), E (TK) and L gene (gD) transcripts
248 was further confirmed at the single cell level using multiplex mRNA FISH which indicated
249 that all cells in the population contained similar levels of each virus transcript, with ICP27
250 and TK levels changing little from 4h to 12 h, but gD increasing significantly, in line with the
251 transcriptomic results (Fig 2D). Such single-cell studies of mRNA provide scope not only for
252 analysing relative levels but also relative localisation of individual transcripts.

253 Further analysis of the ~ 11,000 cellular transcripts revealed that there was a vast difference
254 in the relative differential expression of these transcripts at 12 h, with some transcripts
255 reduced by as much as Log₂ FC of -10, while others were hardly altered (Fig 2B, 12h; S2
256 Table). To confirm that this variability detected by RNAseq truly reflected the relative

257 abundance of transcripts in the RNA samples being analysed rather than mapping artefacts,
258 we carried out qRT-PCR analysis on two independent RNA samples that had been prepared
259 in the same way as the RNA for the RNAseq libraries. The relative levels of transcripts
260 representative of upregulated, unaltered, and those exhibiting a range of susceptibility
261 during infection broadly validated the RNAseq data (S3 Fig). To further confirm that the
262 change in these transcripts was specific to the activity of vhs, qRT-PCR was carried out on
263 RNA from HFFF cells infected with Wt or Δ vhs virus at a multiplicity of 2 and harvested 16
264 h after infection. The reduction of all transcripts tested – those exhibiting both high and low
265 susceptibility to degradation – was shown to be dependent on the presence of vhs during
266 infection (Fig. 3A). Furthermore, three representative ISGs (IFIT1, IFIT2 and Herc5) were
267 shown to be greatly induced at 16h in Δ vhs compared to Wt infected cells (Fig 3B),
268 confirming the role that vhs plays in degrading these induced antiviral transcripts [13].
269 A potential explanation for variation in transcript susceptibility to vhs could be cell-to-cell
270 variation in vhs activity or response. We monitored the transcripts for serpin E1 and GLUL -
271 shown by RNAseq to be reduced at 12 hours in Wt infected cells by \log_2 FC of -7.45 and -
272 0.9 respectively - by mRNA FISH of uninfected, Wt infected and Δ vhs infected HFFF at 16
273 hours. The serpin E1 transcript signal was clearly decreased in Wt compared to mock or
274 Δ vhs infected cells (Fig 3C, serpin E1). By contrast, the GLUL transcript signal was
275 maintained in infected cells compared to uninfected cells (Fig 3C, GLUL), providing further
276 evidence for differential susceptibility of cell mRNAs to vhs activity. We also investigated
277 IFIT1 mRNA levels by mRNA FISH confirming that the number of IFIT1 transcripts was
278 increased in Δ vhs infected cells compared to mock or 12-hour Wt infection (Fig 3C, IFIT1).
279 Taken together, these data indicate that our RNAseq data correlates with results obtained
280 by both qRT-PCR and mRNA-FISH.

281

282 **Translational shutoff in cells infected with HSV1 lacking the VP22 gene is not a
283 consequence of overactive vhs**

284 We next assessed the overactivity of vhs in Δ 22 infections, by comparing the equivalent
285 RNAseq libraries for Δ 22 infected HFFF to the Wt infected libraries (S3 to S6 Tables), with
286 differential expression plotted as scatter plots. Mapping the reads obtained for each library
287 to the human and HSV-1 transcriptome indicated that the library composition of Δ 22 infected
288 cells was similar at 4 h but comprised a smaller percentage of virus transcripts at 12 h (Fig
289 2A). Unexpectedly, we found that there was little difference in the relative transcriptomes of
290 Wt and Δ 22 at either early or late times, with scatter plots of the total infected cell
291 transcriptome showing limited difference in cellular (black circles) or virus (green circles)
292 transcript levels (Fig 4B; S5 & S6 Tables. See also Fig S4). With our transcriptomic study
293 selecting only two time points, we reasoned that we may have missed important differences
294 between Wt and Δ 22 infected cells, and hence a time-course of infection was carried out on
295 Wt, Δ 22 and Δ vhs infected HFFF cells to determine changes in representative transcript
296 levels over time. Relative changes of upregulated (IFITs 1 & 2), relatively insensitive (RPLP0
297 & GAPDH) and hypersensitive (MMP1 & MMP3) transcripts were then measured by qRT-
298 PCR, with the $\text{Log}_2 \text{FC}$ plotted over time. In all three infections, the IFIT transcripts rose in
299 abundance between 2 and 4 h, and in the absence of vhs, these antiviral transcripts were
300 maintained at a high level throughout infection (Fig 4C, Δ vhs). However, in Wt infection they
301 began to decline almost immediately, while in Δ 22 infection the levels kept rising and only
302 started to drop around 8 h (Fig 4C, upregulated transcripts). Likewise, for vhs sensitive
303 transcripts, degradation was also delayed in Δ 22 compared to Wt infection, with degradation
304 beginning at 8h and 4h respectively (Fig 4C). It was only the insensitive transcripts that
305 appeared to be affected similarly in Wt and Δ 22 infections (Fig 4C, low). The delayed activity
306 of vhs in Δ 22 infected cells was also confirmed by mRNA FISH of serpin E1 shown above

307 (Fig 3C) to be greatly reduced during Wt infection, revealing that it was still present at
308 uninfected cell levels 8h after infection with Δ 22, but had been degraded by 16h, whereas
309 the transcript was still abundant in Δ vhs infection after 16 h (Fig 4D). These results suggest
310 that up to 16h, vhs is not universally overactive against cellular transcripts in the absence of
311 VP22.

312 In the experiments thus far described we had measured overall transcript levels rather than
313 degradation rates alone. One possible explanation for the range of susceptibility to vhs could
314 be that the variable level of loss in the cells reflects the balance between transcription and
315 degradation of these transcripts. We therefore tested the relative loss of two vhs-insensitive
316 transcripts (RPLP0 and GAPDH) and two vhs-sensitive transcripts (MMP1 and MMP3) in
317 cells that had been incubated for 4 h with Actinomycin D to inhibit transcription from 6 h
318 onwards. In uninfected cells, none of the transcripts tested were significantly altered in the
319 presence of Act D, suggesting that they are all relatively stable over a 4h time period (Fig
320 4E, mock). The same experiment carried out in Wt infected cells indicated that even in the
321 absence of ongoing transcription the variable susceptibility of the tested transcripts to vhs
322 degradation held true, with the relative loss of highly susceptible transcripts being greater
323 than those that are relatively resistant (Fig 4E, Wt). By contrast, the high susceptibility
324 transcripts were not significantly degraded in Δ 22 infected cells at this time (Fig 4E), a result
325 that is consistent with the relative changes seen in the time course at this time of infection
326 (Fig 4C) and correlates with the low level of vhs protein present in Δ 22 infected cells (Fig
327 1D).

328 It is clear from the above data that the three groups of transcripts that we had identified –
329 upregulated, insensitive and hypersensitive – behaved differently in their response to vhs
330 activity in Wt infection. One potential explanation for such variation is that both incoming vhs
331 from the virion and newly synthesized vhs could be differentially contributing to mRNA

332 degradation over the first few hours of infection. To test the relative effect of incoming vhs,
333 HFFF cells were infected with Wt HSV1 following pre-treatment with cycloheximide (CHX)
334 to block protein translation, such that any mRNA degradation detected would be a
335 consequence of vhs delivered by the virion. Total RNA samples were harvested at times up
336 to 10 h and transcript levels for representative genes compared to those found in non-treated
337 cells. qRT-PCR for the IE ICP27 transcript and the L gC transcript showed that, as expected,
338 transcription of ICP27 occurred but was reduced while transcription of gC was blocked in
339 the presence of CHX and hence the absence of ongoing infection (Fig 4F, right-hand panel).
340 The hypersensitive MMP1 and MMP3 transcripts underwent slow degradation in CHX-
341 treated cells, but as early as 2 hours after infection this was enhanced during active infection
342 (Fig 4F, central panel). By contrast, the upregulated IFIT1 and IFIT2 transcripts which began
343 to rise only by 4 hours were refractory to the activity of incoming vhs and required active
344 infection to be degraded (Fig 4F, left-hand panel).

345 Bearing in mind that vhs can act against virus as well as cell transcripts, and that it is this
346 effect that is predicted to cause translational shutoff that is detrimental to the virus, it is
347 noteworthy that the relative levels of virus transcripts in the 12 h RNAseq data showed that
348 there were only small differences in the virus transcriptome between Wt and Δ 22 (Fig 4B,
349 green circles). Nonetheless, those transcripts that were less abundant in Δ 22 infection were
350 predominantly those that encode L structural proteins (S6 Table & S5 Fig). To get a clearer
351 picture of the effect of deleting VP22 on the levels of virus transcripts over time, we analysed
352 the same time-course described in Fig 4 by qRT-PCR for a number of virus transcripts
353 representing IE (ICP27 and ICP22); E (TK); and L (VP22, vhs and gC) genes. In this case,
354 the Δ CT values were plotted to compare the relative expression of the individual transcripts
355 in each virus at the denoted time points, and to determine how each mRNA changed over
356 time in the presence and absence of VP22 and vhs. For all transcripts, there was a modest

357 but consistent increase in the ΔCT value of all transcripts tested (ie a drop in transcript level)
358 in the $\Delta 22$ infected cells compared to Wt at each time point (Fig 5A, compare Wt and $\Delta 22$)
359 confirming the single point transcriptomic analysis. Between 8 and 16 h there was little
360 difference in the ΔCT values of the L transcripts tested in Wt and Δvhs infected cells, but
361 there was an increase for IE and E transcripts in Wt infection, with ICP27, ICP22 and
362 particularly TK maintained at a high level at later times in the absence of vhs (Fig 5A). This
363 agrees with studies from others [25] and likely reflects the fact that vhs degrades these
364 mRNAs in Wt infections. Indeed, the drop in these transcript numbers in Wt infected cells
365 correlated with the timing of vhs expression and activity from 6 h onwards. By contrast, in
366 $\Delta 22$ infected cells all transcripts tested were found to be around 2-fold lower than in Wt
367 infected cells throughout the course of the entire infection (Fig 5A, compare $\Delta 22$ and Wt),
368 with the exception of gC which was up to 10-fold lower by 16 hours. Western blotting of
369 relevant virus proteins through the same time course confirmed the expected expression
370 levels of representative proteins, including enhanced ICP27 levels in the Δvhs infection, and
371 extremely low levels of L proteins in $\Delta 22$ infection (Fig 5B).

372 The differences seen in virus transcript levels in the absence and presence of VP22 could
373 be a consequence of differential transcription and/or degradation. Hence, we next tested the
374 relative loss of a range of virus transcripts in cells that had been incubated for 4 h with Act
375 D to inhibit transcription. The IE (ICP27 and ICP22) and E (TK) transcripts that were tested
376 were all reduced around four-fold in these conditions, presumably reflecting their
377 degradation by vhs, but there was no significant difference between the relative loss in Wt
378 and $\Delta 22$ infected cells (Fig 5C). By contrast, while all L transcripts tested were equally
379 susceptible to vhs as the earlier classes of transcript in the absence of VP22, these L
380 transcripts were minimally reduced in Wt infection (Fig 5C). This indicates that VP22
381 differentially “protects” L transcripts from degradation by vhs.

382

383 **Translational shut-off in cells infected with HSV1 lacking the VP22 gene correlates**
384 **with vhs-induced nuclear retention of L virus transcripts**

385 Taken together with our results above demonstrating that vhs degradation activity is not
386 vastly overactive in Δ 22 infected cells, we reasoned that the extreme translational shutoff
387 seen in the absence of VP22 may be a consequence of mRNA localisation rather than
388 levels. To understand the behaviour of different classes of virus transcripts, we next
389 examined the localisation of representative virus transcripts up to 12h in Wt infected cells –
390 the IE ICP27 and ICP0 transcripts, the E TK transcript and the L vhs and gC transcripts.
391 ICP27 and ICP0 were readily detectable at 2h and increased in numbers up to 8h. While
392 ICP0 transcripts became obviously retained in the nucleus by 6h, an indication of the fact it
393 is a spliced transcript and, as shown by others its nuclear export would be inhibited by the
394 activity of ICP27 protein after DNA replication [4, 56], ICP27 transcripts were cytoplasmic
395 up to 12h when some level of nuclear retention became obvious (Fig 6, ICP27 & ICP0). In
396 the case of TK, a few transcripts were present in the nucleus at 2 hours indicative of
397 transcription just starting, but these became more obvious in the cytoplasm by 4 hours and
398 like ICP27 remained cytoplasmic until 12 h when a significant number of transcripts were
399 present in the nucleus. By contrast, the L gC transcript was only detectable at 4 hours and
400 remained entirely cytoplasmic up to 12 hours, despite the large number of transcripts
401 present (Fig 6, gC). Interestingly for vhs, despite being classed as a L gene, small numbers
402 of transcripts were detected in the nucleus as early as 2 hours and persisted until 8 hours
403 when its numbers increased. However, even by 12 hours the vhs mRNA was predominantly
404 nuclear (Fig 6, vhs).

405 In light of the above results, it is notable that we have recently reported that when expressed
406 in isolation, vhs causes the nuclear retention of its own transcript through a negative

407 feedback loop [42]. Moreover, we also demonstrated the nuclear retention of co-expressed
408 transcripts which correlated with nuclear localisation of the polyA binding protein (PABP) in
409 transfected cells, in agreement with other studies [42, 43, 57, 58]. Here we found that Wt
410 HSV1 infection of HFFF also altered the localisation of PABP from being exclusively
411 cytoplasmic to being predominantly nuclear (Fig 7A). In Δ vhs infected cells, PABP
412 localisation remained cytoplasmic, confirming the role of vhs in its re-localisation to the
413 nucleus (Fig 7A). Interestingly, the re-localisation of PABP to the nucleus was more
414 pronounced in Δ 22 infected cells where it was exclusively nuclear compared to Wt infection
415 (Fig 7A), suggesting that this activity of vhs is greatly enhanced in HFFF cells in the absence
416 of VP22. This led us to investigate the relative localisation of IE (ICP27), E (TK) and L (gC)
417 transcripts by mRNA FISH at 8 and 16 hours after infection – later than the previous
418 experiment but in line with our metabolic labelling studies - in Wt, Δ vhs and Δ 22 infected
419 cells. At 8h, all three mRNAs exhibited similar cytoplasmic localisation regardless of the
420 presence or absence of vhs or VP22 (Fig 7B, 8 hpi). By contrast, there was a striking
421 difference at 16 hpi, when in Wt infected cells, ICP27 and TK mRNAs were substantially
422 localised to the nucleus as implied by the data presented in Fig 6, while gC was
423 predominantly cytoplasmic. However, in Δ vhs infected cells, all 3 transcripts were entirely
424 cytoplasmic, suggesting that vhs activity is required for the differential localisation of virus
425 transcripts seen in Wt infected cells. This provides evidence that vhs activity not only
426 degrades IE and E transcripts but causes their nuclear retention, a mechanism that would
427 by definition efficiently block translation of these mRNAs at late times when they are not
428 required. Moreover, L transcripts appear to be spared this effect of vhs thereby allowing
429 them to be efficiently translated at late times. Intriguingly, not only were the IE and E
430 transcripts predominantly nuclear by 16h in Δ 22 infected cells, more so than in Wt infected
431 cells, but also the L gC transcript was almost entirely retained in the nucleus (Fig 7B, 16

432 hpi), a situation that also held true for the L VP16 transcript (Fig 7C). In addition, mRNA
433 FISH of the spliced IE transcript showed that it was retained in the nucleus of all three
434 infections including the Δ vhs infection, albeit more so in the absence of VP22 (Fig 7C). As
435 such, our results demonstrate that in HFFF cells, VP22 is required for the cytoplasmic
436 localisation and hence translation of L virus transcripts in the presence of active vhs.

437

438 **Cell transcripts insensitive to vhs degradation exhibit differential nuclear retention in**
439 **the presence or absence of VP22**

440 In the absence of VP22 we have shown that all virus transcripts tested thus far are retained
441 in the nucleus. Given that this retention correlates with a limited but consistent reduction in
442 transcript levels, we hypothesized that the relative level of reduction in cellular transcripts
443 may reflect the degree of nuclear retention exhibited by those transcripts. Using mRNA
444 FISH, we examined the localisation of two transcripts hypersensitive to vhs (MMP1 & PPIB)
445 and two relatively insensitive transcripts (POLR2A & GLUL) in Wt and Δ 22 infected cells at
446 12 h in comparison to uninfected cells. Importantly, the numbers of each transcript detected
447 in uninfected cells correlated well with the average CPM found in our uninfected RNAseq
448 data (Fig 8, mock, CPM number in top left-hand corner). Moreover, the level of depletion
449 detected in both Wt and Δ 22 infected cells also correlated with our RNAseq data (Fig 8, Wt
450 & Δ 22, Log₂ FC shown in top left-hand corner), with MMP1 and PPIB transcripts reduced
451 greatly in numbers, but little difference determined in POLR2A & GLUL. Strikingly, both
452 POLR2A and GLUL transcripts were retained in the nucleus of Wt infected cells, a feature
453 that was amplified in Δ 22 infected cells (Fig 8), suggesting that the vhs-dependent block to
454 nuclear export of virus transcripts also resulted in the nuclear retention of these cellular
455 transcripts. Such nuclear retention would by definition minimise the susceptibility of those
456 nuclear- entrapped transcripts to further degradation by vhs resulting in only a minimal loss

457 of transcript. By contrast, those transcripts that were highly degraded were not retained in
458 the nucleus, reflecting their degradation prior to nuclear retention activity.

459

460 **Export of the infected cell transcriptome from the nucleus is enhanced by VP22**
461 **binding to VP16**

462 Given that our results here suggest that the outcome of virus infection in the absence of
463 VP22 is the nuclear retention of L transcripts and translational shutoff of L proteins, we next
464 tested the requirement for the conserved domain of VP22 – the region that contains the
465 VP16 binding domain – in this phenotype using a panel of previously described recombinant
466 viruses expressing deletion mutants of VP22 fused to GFP [59, 60] (Fig 9A). Plaque assays
467 on HFFF cells revealed that insertion of GFP at the N-terminus of VP22 had little effect on
468 plaque formation, while the C-terminal half of the protein containing the conserved domain
469 of VP22 (160-301) was sufficient to maintain plaque formation. However, further deletion
470 into this region (212-301) or deletion of only 12 residues within this domain (Δ 212-226)
471 prohibited plaque formation in these cells (Fig 9B). Likewise, metabolic labelling indicated
472 that the same mutant viruses that failed to form plaques on HFFF resulted in translational
473 shutoff compared to GFP-22 expressing virus or virus expressing the C-terminal half of
474 VP22 (Fig 9C & D). Furthermore, mRNA FISH of cells infected with the Δ 212-226 virus and
475 fixed at 16 hours revealed that this small deletion in VP22 was sufficient to cause nuclear
476 retention of gC transcripts thereby producing a phenotype equivalent to deletion of the entire
477 VP22 protein (Fig 9E).

478 VP22 and vhs both bind to VP16 to form a trimeric complex [31, 32, 42] through which they
479 are jointly proposed to quench vhs activity [36, 61]. The C-terminal half of VP22 shown
480 above to be required to rescue vhs-induced nuclear retention of L transcripts has been
481 reported to be involved in many activities including its binding to VP16, and hence the only

482 role of this region may be to bring VP22 into the VP16-vhs complex. In an attempt to
483 discriminate between a requirement for this region in direct VP22 activity rather than simply
484 binding to VP16, we utilised a previously described virus that lacks the C-terminal 36
485 residues of VP16 that are required to bind to VP22 [42, 62] as outlined in Fig 9F. Comparison
486 of representative transcript levels by qRT-PCR between this mutant virus (3v) and its
487 revertant (3vR), indicated that similar to a Δ 22 infection, all transcripts tested were present
488 at around 2-fold lower levels in the absence of the VP16-VP22 complex (Fig 9G).
489 Nonetheless, metabolic labelling studies (Fig 9H), plaque assays on HFFF (Fig 9I) and
490 mRNA FISH of the gC transcript (Fig 9J) indicated that the phenotype of the 3v virus was
491 less extreme than the Δ 22 virus in all assays, suggesting that while the interaction of VP22
492 with VP16 enhances the role of VP22, it is not essential. In summary, our data suggests that
493 vhs, in combination with VP22 and VP16, co-ordinates the temporal expression of virus
494 genes by retaining IE, E and cell transcripts in the nucleus while allowing the export of L
495 transcripts, thereby ensuring that the translation of structural proteins is dominant for virus
496 assembly at this time.

497

498

499

500

501

502 **Discussion**

503 Many viruses encode endoribonucleases which promote the degradation of host mRNAs to
504 block host gene expression, resulting in translational shutoff during infection [63]. However,
505 the link between mRNA transcript degradation and translational shutoff has proved to be
506 more complex than originally believed, primarily because such endoribonucleases have the
507 potential to act on virus as well as cell transcripts. In this study we have used a combination
508 of transcriptomics and single cell mRNA analysis to not only characterise in detail the activity
509 of the HSV1 vhs endoribonuclease, but to determine the role of one of its cofactors, VP22,
510 in regulating vhs behaviour. RNAseq studies were performed at 4 and 12 hours after
511 infection of HFFF cells enabling us to determine the fate of some 11,000 cellular transcripts
512 and all virus transcripts at early and late times of infection. Two previously reported
513 microarray studies covered a similar time-frame of Wt and Δ vhs virus infection but both
514 focused only on transcripts that were upregulated during infection, and in particular those
515 that were activated as part of the host innate immune response [13, 29]. By contrast, two
516 more recent RNAseq based transcriptomic studies looked at the overall changes in \sim 11,000
517 cellular transcripts [64, 65], but only went as far as 8 hours after infection, and therefore
518 missed the greatest effect of vhs activity which as we have shown here occurs between 8
519 and 12 hours. Of note, because of the vast change in the relative content of the cell and
520 virus components of the total transcriptome by 12 hours, and hence changes in the absolute
521 amount of each component of the transcriptome, we were careful to normalise our data
522 using ERCC control transcripts to spike the RNA samples prior to library production [66, 67].
523 Subsequent validation of a range of transcripts by qRT-PCR provided confidence in the
524 RNAseq differential expression analyses of cellular and virus genes under different
525 conditions.

526 *In vivo*, the main role of vhs on cellular transcripts is believed to be the degradation of
527 interferon-induced transcripts that express antiviral proteins [13-17, 19]. Human fibroblasts
528 were chosen for the study here due to the extreme translational shutoff phenotype of our
529 Δ 22 virus in these cells compared to Vero cells, pointing to cell-type variation in the
530 requirement for VP22. Given that HFFF are primary human cells that can elicit a full antiviral
531 interferon response pathway, whereas Vero cells are unable to express interferon [48] we
532 reasoned initially that the differential phenotype in the absence of VP22 may be due to
533 antiviral responses expressed in HFFF but not Vero cells. However, our results indicated
534 that HFFF cells respond similarly to Δ 22 infection compared to Wt infection, while mounting
535 a strong innate immune response to Δ vhs infection as expected [13]. Our studies show that
536 the majority of the ~100 upregulated genes in infected HFFF cells at 4 hours were classified
537 as ISG transcripts, with at least two of these (IFIT1 and IFIT2) shown by our more detailed
538 studies to be activated between two and four hours after infection. During infection, these
539 induced transcripts declined over the course of roughly 12 hours in a vhs-dependent fashion,
540 while IRF3 phosphorylation was enhanced in the absence of vhs, reflecting the signalling
541 events that occur when vhs is not present. Intriguingly our studies with cycloheximide
542 indicated that while it was components of the incoming virus that activated the innate
543 immune response to upregulate ISG expression, only newly synthesized vhs protein and
544 not virion delivered vhs was able to degrade these activated ISG transcripts. In the absence
545 of VP22, this ISG degradation was delayed but nonetheless occurred, a situation that mirrors
546 vhs activity on other susceptible cellular transcripts, and may be a consequence of the low
547 level of vhs expressed in Δ 22 infected cells [37, 42]. Thus, our results do not concur with a
548 recently published study that suggests that VP22 itself inhibits cellular DNA sensing through
549 cGAS/STING, and that HSV1 infection in the absence of VP22 fails to inhibit interferon
550 production [68].

551 Two major features - that are likely to be linked - have emerged from our studies on vhs.

552 First, our RNAseq data revealed the differential degradation of cell transcripts ranging from

553 those that were reduced by \log_2 FC of 10 (over 1000-fold), to those that were hardly altered.

554 Such a diverse effect of vhs was not a consequence of transcript abundance or, at least for

555 the transcripts that we tested, transcription dynamics. Detailed work from the Roizman lab

556 has shown previously that vhs selectively spares a small number of cellular transcripts from

557 degradation, a feature they have suggested could be sequence-specific [69, 70]. However,

558 the broader picture as presented here encompasses the effect of vhs on 11,000 cellular

559 transcripts and suggests there is a continuum of susceptibility to vhs activity. A possible

560 explanation for differential effects of vhs on the cellular transcriptome could be that vhs

561 preferentially targets transcripts in particular cellular locations or subsets of ribosomes.

562 While the detail of the transcripts that are resistant or susceptible to vhs will not be

563 considered further here, it is interesting to note that the majority of those that were efficiently

564 depleted ($> \log_2$ FC of -5) encode membrane and secreted proteins, suggesting that vhs

565 may have enhanced activity for transcripts translated on the endoplasmic reticulum.

566 Nonetheless, we suggest that the differential effects of vhs are likely to be linked to the

567 second major feature of vhs activity, its effect on the relative nuclear-cytoplasmic ratio of the

568 infected cell transcriptome. We have shown for the first time that vhs expression from around

569 8 hours onwards of HSV1 infection causes the retention of multiple transcripts – cellular and

570 viral - in the nucleus of the infected cell, thereby producing an effective mechanism of

571 translational shutoff that does not require complete mRNA degradation. This single feature

572 reveals the mechanism by which the virus efficiently regulates the transition from IE/E to L

573 gene expression, as by selectively retaining IE/E but not L transcripts in the nucleus,

574 translation is effectively switched from early to late phases. These results complement our

575 previous study on vhs expressed by transient transfection [42], and add to a growing

576 consensus that the activity of viral endoribonucleases in the cytoplasm affects events in the
577 nucleus. In particular, work on the KSHV sox protein has shown that sox expression blocks
578 RNA polymerase II activity on the cellular genome [71] and causes mRNA transcripts to
579 become hyper-adenylated in the nucleus [43]. In KSHV and HSV1 infected cells, PABP – a
580 protein that has a steady-state cytoplasmic localisation but shuttles between the cytoplasm
581 and nucleus to bind polyadenylated mRNAs ready for export [72] – is released from mRNAs
582 that have been degraded and is imported in to and accumulates in the nucleus in an
583 endoribonuclease dependent fashion [42, 73, 74]. Here we found that in HFFF cells, PABP
584 relocalised to the nucleus between 8 and 12 hours after infection correlating with the major
585 expression of vhs. PABP was also more efficiently retained in the nucleus of Δ 22 compared
586 to Wt infected cells, which correlated with the fact that in the absence of VP22, every
587 transcript tested underwent more efficient nuclear retention at this time. Such a phenotype
588 suggests that the nuclear retention activity of vhs is non-selective and explains the profound
589 translational shutoff seen in Δ 22 infected cells even though the virus transcriptome was only
590 minimally altered compared to Wt. Moreover, it reveals the true role of VP22 in the regulation
591 of vhs activity, in that it rescues the cytoplasmic localisation of L transcripts in particular,
592 rather than their hyper-degradation.

593 Our data indicates three phases to vhs expression and activity. First, vhs brought in by the
594 virion begins to degrade highly susceptible cellular transcripts but does not act on stimulated
595 ISG transcripts. Second, a low number of vhs transcripts detectable as early as 2 hours (as
596 detected by mRNA FISH), and maintained at around 5 to 10 transcripts per cell up to 8 hours
597 was able to express enough vhs protein to continue the degradation of highly susceptible
598 transcripts and innate antiviral transcripts over and above the activity of incoming vhs
599 protein. Of note, unlike other virus transcripts, these vhs transcripts were retained in the
600 infected cell nuclei from the outset, in a manner similar to that detected in our studies of

601 cells transiently expressing vhs [42]. Third, the transcription (and translation) of vhs was
602 enhanced later in infection (~ 8 hours) after which it caused the rapid nuclear retention of
603 virus and insensitive cellular transcripts together with PABP, results that we had also
604 previously observed in HeLa cells overexpressing vhs by transient transfection [42]. It is this
605 third phase of vhs activity from which VP22 differentially protects L transcripts. These three
606 waves of activity may indicate that a threshold of vhs protein and/or activity needs to be
607 reached before nuclear retention occurs.

608 An obvious question is therefore how our results fit with the well-characterised role of ICP27
609 in late gene expression, where it has been shown that ICP27 is required for cytoplasmic
610 localisation of late transcripts by binding to them and facilitating their nuclear export [5-7].
611 Moreover, ICP27 has been implicated in the translation of L proteins [75-77] while vhs and
612 ICP27 have been reported to interact on translating viral mRNAs [78]. Of note, VP22 has
613 been characterised as an RNA-binding protein [79, 80] via its C-terminal domain shown here
614 to be important for its activity on L-transcripts, and small amounts of it can be detected in
615 the nucleus of infected cells [81], and it is therefore tempting to speculate that VP22 is
616 somehow involved in ICP27-directed export of L transcripts. The fact that VP22 and vhs
617 both interact with different regions of VP16 [31, 32] and the incomplete phenotype of a virus
618 expressing a variant of VP16 that was unable to interact with VP22 (while still binding vhs)
619 also suggest that VP22 may be brought into proximity with vhs via VP16, an event that could
620 occur as vhs is brought to the mRNA during translation initiation on the ribosome. We
621 therefore suggest that the biogenesis of RNA in HSV1 infected cells is co-ordinated by a
622 combination of multiple virus factors that vary in a temporal fashion, and which together
623 ensure that both viral and cellular mRNAs are in the right place at the right time to ensure
624 the productivity of the infected cell is dedicated to make new virus particles. In summary,
625 our results present a new outlook on the complex subject of herpesvirus gene expression,

626 providing scope to understand and tease apart the relative contributions made by each of
627 these proteins to RNA biogenesis, localisation and translation.

628 **Methods**

629 **Cells and Viruses**

630 HFFF, HeLa (both obtained from European Collection of Authenticated Cell Cultures -
631 ECACC) and HaCaT (obtained from Prof J. Breuer) cells were cultured in DMEM
632 supplemented with 10% foetal bovine serum (Invitrogen). Vero cells (obtained from ECACC)
633 were grown in DMEM supplemented with 10% newborn calf serum (Invitrogen). Viruses
634 were routinely propagated in Vero cells, with titrations carried out in DMEM supplemented
635 with 2% human serum. HSV1 strain 17 (s17) was used routinely. The s17 derived VP22
636 deletion mutant (Δ 22) and the vhs knockout virus (Δ vhs) have been described before [28,
637 38]. HSV1 strain Kos with a deletion of the C-terminal 36 residues of VP16 (RP3v) and its
638 revertant (RP3vR) have been described elsewhere [62] and were kindly provided by Steve
639 Triezenberg (Van Andel Institute). The s17 derived Δ UL13 and Δ ICP34.5 knockout viruses
640 have been described previously [82, 83]. The construction of viruses expressing GFP-
641 tagged VP22 (GFP1-301), and GFP-tagged VP22 subdomains (GFP192-301, GFP108-301,
642 GFP1-212, GFP1-165 and GFP Δ 213-226) has also been described before [59, 60, 84].

643 **Antibodies & reagents**

644 VP22 (AGV031) and UL47 (5283) antibodies have been described elsewhere [80, 85]. Other
645 antibodies used in this study were kindly provided by the following individuals: gD (LP14),
646 VP16 (LP1) and gB (R69), Tony Minson (University of Cambridge); vhs, Duncan Wilson
647 (Albert Einstein College of Medicine); gE (3114), David Johnson (Oregon Health and
648 Science University, Portland, OR USA); UL16 and UL21 John Wills (Penn State University);
649 TK, UL6 and UL32, Frazer Rixon, Centre for Virus Research, Glasgow. Other antibodies
650 were purchased commercially - α -tubulin (Sigma), VP5 (Virusys), gC, phospho-
651 eIF2 α , eIF2 α , IRF3, phospho-IRF3 (AbCam), PABP and ICP0 (Santa Cruz). Horseradish
652 peroxidase-conjugated secondary antibodies were from Bio-Rad Laboratories. Actinomycin

653 D (Sigma) was used at a concentration of 5 µg/ml. Cycloheximide (Sigma) was used at a
654 concentration of 100 µg/ml.

655 **Plaque reduction assay**

656 Vero cell monolayers were pre-treated with 1000 units/ml recombinant human IFN- β (R&D
657 Systems) for 24 hours prior to infection with serial dilutions of wild-type HSV-1 (s17) or
658 relevant mutants derived from this strain. The titres were determined by counting the number
659 of plaques after 96 hours in the presence of human serum and results were expressed as a
660 ratio of the titres observed in the presence or absence of interferon.

661 **Metabolic labelling of infected cells**

662 Cells grown in 3cm dishes were infected at a multiplicity of 2, and at indicated times were
663 washed and incubated for 30 mins in methionine-free DMEM before adding 50µCi of L-
664 [35S]-methionine (Perkin Elmer) for a further 30 min. Cells were then washed in PBS and
665 total lysates analysed by SDS-polyacrylamide gel electrophoresis. Following fixation in 50%
666 v/v ethanol and 10% v/v acetic acid, the gel was vacuum dried onto Whatman filter paper
667 and exposed to X-ray film overnight.

668 **SDS-PAGE and Western blotting**

669 Protein samples were analysed by SDS- polyacrylamide gel electrophoresis and transferred
670 to nitrocellulose membrane for Western blot analysis. Western blots were developed using
671 SuperSignal West Pico chemiluminescent substrate.

672 **RNA-Seq: Library preparation, sequencing and assembly**

673 Total RNA was extracted from 1 x 10⁶ cells using Qiagen RNeasy reagents, with seven
674 biological replicates prepared for each condition. The quality of the RNA preparations was
675 assessed using a bioanalyser and five biological replicates representing each condition
676 chosen for downstream library preparation. Illumina RNA-Seq sequence libraries were

677 constructed using the Strand-Specific RNA reagent kit (Agilent Technologies, G9691A),
678 according to manufacturer's instructions (Protocol Version E0, March 2017). Here 1 µg of
679 total RNA was used as input for each sample. Sequence libraries were subsequently QC'd,
680 multiplexed, and run on an Illumina NextSeq 550 (75 cycle, high output) resulting in paired-
681 end (2 x 36 bp) datasets. Following the analysis of this initial dataset which indicated vastly
682 different compositions of the uninfected and 12 hpi infected samples that made it difficult to
683 determine differential expression with confidence, a further set of RNA samples was
684 prepared from uninfected, 12 hpi Wt and 12 hpi Δ22 infected HFFF cells in biological
685 triplicate. Here 1 µg of total RNA was again used as input for each sample but this time was
686 spiked with 2 µL of a 1:100 dilution of the ERCC RNA Spike-In Mix 1 (ThermoFisher,
687 4456740). Sequence libraries were subsequently QC'd, multiplexed, and run on an Illumina
688 NextSeq 550 (75 cycle, high output) resulting in paired-end (2 x 36 bp) datasets.

689 **Bioinformatic analysis of RNAseq data**

690 **Preprocessing.** Quality checks were performed via FastQC (version 0.11.4) [86].
691 Trimmomatic tool (version 0.32) [87] was used for quality trimming and clipping of adapters
692 and repeated sequences. Sequencing reads were mapped to the human transcriptome
693 (iGenome file, Homo sapiens UCSC hg19) using Tophat [88] and to the human herpesvirus
694 1 strain 17 (JN555585.1) coding sequences using Bowtie2 [89]. The function featureCounts
695 from the R package Rsubread [90] was used to assign mapped sequencing reads to
696 genomic features. Genomic features of the host were defined by the tool's in-built NCBI
697 RefSeq annotations for the hg19 genome and the R package org.Hs.eg.db [91] was used
698 to annotate the genomic features. Filtering of lowly expressed genes was performed by
699 keeping genes with at least 5 counts per million (CPM) in at least 2 samples.

700 **Normalisation.** We sequenced three additional samples of each experimental condition, all
701 of which had been spiked with the external RNA control consortium (ERCC) spike-in control

702 mix [66, 67], to determine the relationship between RNA-seq read counts and known inputs.
703 We fit a linear regression on the abundance estimated from RNA-seq and the known ERCCs
704 input amounts to derive a scaling factor. We then used the average of the scaling factor,
705 across replicates, as the global normalisation factor per condition.

706 **Differential expression analyses.** Based on the R Bioconductor package EdgeR [92],
707 CPM values were fitted to a negative binomial generalised log-linear model (GLM) using
708 empirical Bayes tagwise dispersions to estimate the dispersion parameter for each gene.
709 Differential expression in selected contrasts was identified using GLM likelihood ratio tests.

710 **Scatter and volcano plots.** In all plots host genes are shown in black and virus genes are
711 shown in green. Scatter plots show the mean \log_2 (CPM+1), across replicates, in each axis,
712 with the red diagonal broken line indicating no change between experimental conditions. In
713 the volcano plots the x-axis corresponds to the \log_2 FC between experimental conditions
714 and the y-axis corresponds to BH corrected $-\log_{10}$ p-values, with the red horizontal broken
715 line indicating a BH corrected p-value of 0.05.

716 **Quantitative RT-PCR (qRT-PCR)**

717 Total RNA was extracted from cells using Qiagen RNeasy kit. Excess DNA was removed
718 by incubation with DNase I (Invitrogen) for 15 min at room temperature, followed by
719 inactivation for 10 min at 65°C in 25 nM of EDTA. Superscript III (Invitrogen) was used to
720 synthesise cDNA using random primers according to manufacturer's instructions. All qRT-
721 PCR assays were carried out in 96-well plates using MESA Blue qPCR MasterMix Plus for
722 SYBR Assay (Eurogentec). Primers for cellular and viral genes are shown in Table S7.
723 Cycling was carried out in a Lightcycler (Roche), and relative expression was determined
724 using the $\Delta\Delta CT$ method [93], using 18s RNA as reference. For validation experiments, total
725 RNA was spiked commercial luciferase RNA (Promega) and relative expression was

726 normalised to the level of luciferase RNA. Statistical analysis was carried out using an
727 unpaired, two-way student's t test.

728 **Fluorescent *in situ* hybridisation (FISH) of mRNA**

729 Cells were grown in 2-well slide chambers (Fisher Scientific) and infected with virus. At the
730 appropriate time, cells were fixed for 20 min in 4% PFA, then dehydrated by sequential 5
731 min incubations in 50%, 70% and 100% ethanol. FISH was then carried out using Applied
732 Cell Diagnostics (ACD) RNAscope reagents according to manufacturer's instructions.
733 Briefly, cells were rehydrated by sequential 2 min incubations in 70%, 50% ethanol and PBS,
734 and treated for 30 min at 37 °C with DNase, followed by 15 min at room temperature with
735 protease. Cells were then incubated for 2 h at 40 °C with the relevant RNAscope probe
736 (ICP27; ICP0; TK; gD; gC; VP16; vhs; serpin E1; MMP1; GLUL; POLR2A; PPIB; IFIT1 as
737 designed by Advanced Cell Dignostics, ACD), followed by washes and amplification stages
738 according to instructions. After incubation with the final fluorescent probe, the cells were
739 mounted in Mowiol containing DAPI to stain nuclei, and images acquired with a Nikon A2
740 inverted confocal microscope.

741 **Immunofluorescence**

742 Cells grown on coverslips were treated as described previously [94]. Images were acquired
743 on a Nikon A2 confocal microscope and processed using Adobe Photoshop software.

744

745 **Acknowledgments**

746 We thank the UCL Pathogen Genomic Unit for performing sequencing reads.
747 We also thank Steve Triezenberg, Tony Minson, John Wills, Frazer Rixon, Duncan Wilson
748 and David Johnson for generously providing reagents used in this study.

749

750

751 **References**

752 1. Honess RW, Roizman B. Regulation of herpesvirus macromolecular synthesis:
753 sequential transition of polypeptide synthesis requires functional viral polypeptides.
754 Proceedings of the National Academy of Sciences of the United States of America.
755 1975;72(4):1276-80.

756 2. Sacks WR, Greene CC, Aschman DP, Schaffer PA. Herpes simplex virus type 1
757 ICP27 is an essential regulatory protein. *J Virol.* 1985;55(3):796-805.

758 3. Hardwicke MA, Sandri-Goldin RM. The herpes simplex virus regulatory protein ICP27
759 contributes to the decrease in cellular mRNA levels during infection. *J Virol.*
760 1994;68(8):4797-810. Epub 1994/08/01. PubMed PMID: 8035480; PubMed Central PMCID:
761 PMCPMC236419.

762 4. Phelan A, Dunlop J, Clements JB. Herpes simplex virus type 1 protein IE63 affects
763 the nuclear export of virus intron-containing transcripts. *J Virol.* 1996;70(8):5255-65.

764 5. Pearson A, Knipe DM, Coen DM. ICP27 selectively regulates the cytoplasmic
765 localization of a subset of viral transcripts in herpes simplex virus type 1-infected cells. *J*
766 *Virol.* 2004;78(1):23-32.

767 6. Koffa MD, Clements JB, Izaurrealde E, Wadd S, Wilson SA, Mattaj IW, et al. Herpes
768 simplex virus ICP27 protein provides viral mRNAs with access to the cellular mRNA export
769 pathway. *Embo J.* 2001;20(20):5769-78. PubMed PMID: 11598019.

770 7. Soliman TM, Sandri-Goldin RM, Silverstein SJ. Shuttling of the herpes simplex virus
771 type 1 regulatory protein ICP27 between the nucleus and cytoplasm mediates the
772 expression of late proteins. *J Virol.* 1997;71(12):9188-97. PubMed PMID: 9371577.

773 8. Becker Y, Tavor E, Asher Y, Berkowitz C, Moyal M. Effect of herpes simplex virus
774 type-1 UL41 gene on the stability of mRNA from the cellular genes: beta-actin, fibronectin,

775 glucose transporter-1, and docking protein, and on virus intraperitoneal pathogenicity to
776 newborn mice. *Virus Genes*. 1993;7(2):133-43. Epub 1993/06/01. PubMed PMID: 8396282.

777 9. Smibert CA, Johnson DC, Smiley JR. Identification and characterization of the virion-
778 induced host shutoff product of herpes simplex virus gene UL41. *J Gen Virol*. 1992;73:467-
779 70. PubMed PMID: 1311370.

780 10. Elgadi MM, Hayes CE, Smiley JR. The herpes simplex virus vhs protein induces
781 endoribonucleolytic cleavage of target RNAs in cell extracts. *J Virol*. 1999;73(9):7153-64.
782 Epub 1999/08/10. PubMed PMID: 10438802; PubMed Central PMCID: PMC104239.

783 11. Everly DN, Jr., Feng P, Mian IS, Read GS. mRNA degradation by the virion host
784 shutoff (Vhs) protein of herpes simplex virus: genetic and biochemical evidence that Vhs is
785 a nuclease. *J Virol*. 2002;76(17):8560-71. Epub 2002/08/07. PubMed PMID: 12163576;
786 PubMed Central PMCID: PMC136990.

787 12. Glaunsinger B, Chavez L, Ganem D. The exonuclease and host shutoff functions of
788 the SOX protein of Kaposi's sarcoma-associated herpesvirus are genetically separable. *J*
789 *Virol*. 2005;79(12):7396-401. Epub 2005/05/28. doi: 10.1128/JVI.79.12.7396-7401.2005.
790 PubMed PMID: 15919895; PubMed Central PMCID: PMCPMC1143623.

791 13. Pasieka TJ, Lu B, Crosby SD, Wylie KM, Morrison LA, Alexander DE, et al. Herpes
792 simplex virus virion host shutoff attenuates establishment of the antiviral state. *J Virol*.
793 2008;82(11):5527-35. Epub 2008/03/28. doi: 10.1128/JVI.02047-07. PubMed PMID:
794 18367525; PubMed Central PMCID: PMC2395185.

795 14. Shen G, Wang K, Wang S, Cai M, Li ML, Zheng C. Herpes simplex virus 1
796 counteracts viperin via its virion host shutoff protein UL41. *J Virol*. 2014;88(20):12163-6.
797 Epub 2014/08/01. doi: 10.1128/JVI.01380-14. PubMed PMID: 25078699; PubMed Central
798 PMCID: PMC4178720.

799 15. Su C, Zhang J, Zheng C. Herpes simplex virus 1 UL41 protein abrogates the antiviral
800 activity of hZAP by degrading its mRNA. *Virology journal*. 2015;12:203. Epub 2015/12/03.
801 doi: 10.1186/s12985-015-0433-y. PubMed PMID: 26625984; PubMed Central PMCID:
802 PMC4666169.

803 16. Jiang Z, Su C, Zheng C. Herpes Simplex Virus 1 Tegument Protein UL41 Counteracts
804 IFIT3 Antiviral Innate Immunity. *J Virol*. 2016;90(24):11056-61. Epub 2016/09/30. doi:
805 10.1128/JVI.01672-16. PubMed PMID: 27681138; PubMed Central PMCID: PMC5126364.

806 17. Su C, Zheng C. Herpes Simplex Virus 1 Abrogates the cGAS/STING-Mediated
807 Cytosolic DNA-Sensing Pathway via Its Virion Host Shutoff Protein, UL41. *J Virol*.
808 2017;91(6). Epub 2017/01/13. doi: 10.1128/JVI.02414-16. PubMed PMID: 28077645;
809 PubMed Central PMCID: PMC5331819.

810 18. Zhang P, Su C, Jiang Z, Zheng C. Herpes Simplex Virus 1 UL41 Protein Suppresses
811 the IRE1/XBP1 Signal Pathway of the Unfolded Protein Response via Its RNase Activity. *J*
812 *Virol*. 2017;91(4). Epub 2016/12/09. doi: 10.1128/JVI.02056-16. PubMed PMID: 27928013;
813 PubMed Central PMCID: PMC5286897.

814 19. Zenner HL, Mauricio R, Banting G, Crump CM. Herpes simplex virus 1 counteracts
815 tetherin restriction via its virion host shutoff activity. *J Virol*. 2013;87(24):13115-23. Epub
816 2013/09/27. doi: 10.1128/JVI.02167-13. PubMed PMID: 24067977; PubMed Central
817 PMCID: PMC3838292.

818 20. Doepker RC, Hsu WL, Saffran HA, Smiley JR. Herpes simplex virus virion host
819 shutoff protein is stimulated by translation initiation factors eIF4B and eIF4H. *J Virol*.
820 2004;78(9):4684-99. Epub 2004/04/14. PubMed PMID: 15078951; PubMed Central PMCID:
821 PMC387725.

822 21. Feng P, Everly DN, Jr., Read GS. mRNA decay during herpes simplex virus (HSV)
823 infections: protein-protein interactions involving the HSV virion host shutoff protein and

824 translation factors eIF4H and eIF4A. *J Virol.* 2005;79(15):9651-64. Epub 2005/07/15. doi:
825 10.1128/JVI.79.15.9651-9664.2005. PubMed PMID: 16014927; PubMed Central PMCID:
826 PMC1181552.

827 22. Sarma N, Agarwal D, Shiflett LA, Read GS. Small interfering RNAs that deplete the
828 cellular translation factor eIF4H impede mRNA degradation by the virion host shutoff protein
829 of herpes simplex virus. *J Virol.* 2008;82(13):6600-9. Epub 2008/05/02. doi:
830 10.1128/JVI.00137-08. PubMed PMID: 18448541; PubMed Central PMCID: PMC2447072.

831 23. Page HG, Read GS. The virion host shutoff endonuclease (UL41) of herpes simplex
832 virus interacts with the cellular cap-binding complex eIF4F. *J Virol.* 2010;84(13):6886-90.
833 Epub 2010/04/30. doi: 10.1128/JVI.00166-10. PubMed PMID: 20427534; PubMed Central
834 PMCID: PMC2903273.

835 24. Oroskar AA, Read GS. Control of mRNA stability by the virion host shutoff function
836 of herpes simplex virus. *J Virol.* 1989;63(5):1897-906.

837 25. Oroskar AA, Read GS. A mutant of herpes simplex virus type 1 exhibits increased
838 stability of immediate-early (alpha) mRNAs. *J Virol.* 1987;61(2):604-6. Epub 1987/02/01.
839 PubMed PMID: 3027388; PubMed Central PMCID: PMCPMC253989.

840 26. Read GS, Patterson M. Packaging of the virion host shutoff (Vhs) protein of herpes
841 simplex virus: two forms of the Vhs polypeptide are associated with intranuclear B and C
842 capsids, but only one is associated with enveloped virions. *J Virol.* 2007;81(3):1148-61.
843 Epub 2006/11/10. doi: 10.1128/JVI.01812-06. PubMed PMID: 17093196; PubMed Central
844 PMCID: PMC1797492.

845 27. Strom T, Frenkel N. Effects of herpes simplex virus on mRNA stability. *J Virol.*
846 1987;61(7):2198-207.

847 28. Fenwick ML, Everett RD. Inactivation of the shutoff gene (UL41) of herpes simplex
848 virus types 1 and 2. *J Gen Virol.* 1990;71:2961-7. Epub 1990/12/01. doi: 10.1099/0022-
849 1317-71-12-2961. PubMed PMID: 2177088.

850 29. Taddeo B, Esclatine A, Roizman B. The patterns of accumulation of cellular RNAs in
851 cells infected with a wild-type and a mutant herpes simplex virus 1 lacking the virion host
852 shutoff gene. *Proceedings of the National Academy of Sciences of the United States of
853 America.* 2002;99(26):17031-6. Epub 2002/12/14. doi: 10.1073/pnas.252588599. PubMed
854 PMID: 12481033; PubMed Central PMCID: PMC139264.

855 30. Kwong AD, Frenkel N. Herpes simplex virus-infected cells contain a function(s) that
856 destabilizes both host and viral mRNAs. *Proceedings of the National Academy of Sciences
857 of the United States of America.* 1987;84(7):1926-30.

858 31. Smibert CA, Popova B, Xiao P, Capone JP, Smiley JR. Herpes simplex virus VP16
859 forms a complex with the virion host shutoff protein vhs. *J Virol.* 1994;68(4):2339-46.

860 32. Elliott G, Mouzakitis G, O'Hare P. VP16 interacts via its activation domain with VP22,
861 a tegument protein of herpes simplex virus, and is relocated to a novel macromolecular
862 assembly in coexpressing cells. *J Virol.* 1995;69:7932-41.

863 33. O'Regan KJ, Murphy MA, Bucks MA, Wills JW, Courtney RJ. Incorporation of the
864 herpes simplex virus type 1 tegument protein VP22 into the virus particle is independent of
865 interaction with VP16. *Virology.* 2007;369(2):263-80. PubMed PMID: 17888478.

866 34. Lam Q, Smibert CA, Koop KE, Lavery C, Capone JP, Weinheimer SP, et al. Herpes
867 simplex virus VP16 rescues viral mRNA from destruction by the virion host shutoff function.
868 *Embo J.* 1996;15(10):2575-81. abs.html.

869 35. Weinheimer SP, Boyd BA, Durham SK, Resnick JL, O'Boyle DR, 2nd. Deletion of the
870 VP16 open reading frame of herpes simplex virus type 1. *J Virol.* 1992;66(1):258-69.

871 36. Sciortino MT, Taddeo B, Giuffre-Cuculletto M, Medici MA, Mastino A, Roizman B.

872 Replication-competent herpes simplex virus 1 isolates selected from cells transfected with

873 a bacterial artificial chromosome DNA lacking only the UL49 gene vary with respect to the

874 defect in the UL41 gene encoding host shutoff RNase. *J Virol.* 2007;81(20):10924-32.

875 PubMed PMID: 17670820.

876 37. Ebert K, Depledge DP, Breuer J, Harman L, Elliott G. Mode of virus rescue

877 determines the acquisition of VHS mutations in VP22-negative herpes simplex virus 1. *J*

878 *Virol.* 2013;87(18):10389-93. Epub 2013/07/19. doi: 10.1128/JVI.01654-13. PubMed PMID:

879 23864617; PubMed Central PMCID: PMC3753997.

880 38. Elliott G, Hafezi W, Whiteley A, Bernard E. Deletion of the herpes simplex virus VP22-

881 encoding gene (UL49) alters the expression, localization, and virion incorporation of ICP0.

882 *J Virol.* 2005;79(15):9735-45. PubMed PMID: 16014935.

883 39. Duffy C, Mbong EF, Baines JD. VP22 of herpes simplex virus 1 promotes protein

884 synthesis at late times in infection and accumulation of a subset of viral mRNAs at early

885 times in infection. *J Virol.* 2009;83(2):1009-17. PubMed PMID: 18987147.

886 40. Tanaka M, Kato A, Satoh Y, Ide T, Sagou K, Kimura K, et al. Herpes simplex virus 1

887 VP22 regulates translocation of multiple viral and cellular proteins and promotes

888 neurovirulence. *J Virol.* 2012;86(9):5264-77. Epub 2012/02/24. doi: 10.1128/JVI.06913-11.

889 PubMed PMID: 22357273; PubMed Central PMCID: PMC3347367.

890 41. Gaglia MM, Covarrubias S, Wong W, Glaunsinger BA. A common strategy for host

891 RNA degradation by divergent viruses. *J Virol.* 2012;86(17):9527-30. Epub 2012/06/29. doi:

892 10.1128/JVI.01230-12. PubMed PMID: 22740404; PubMed Central PMCID:

893 PMCPMC3416159.

894 42. Elliott G, Pheasant K, Ebert-Keel K, Stylianou J, Franklyn A, Jones J. Multiple post-
895 transcriptional strategies to regulate the herpes simplex virus type 1 vhs endoribonuclease.
896 J Virol. 2018. Epub 2018/06/22. doi: 10.1128/JVI.00818-18. PubMed PMID: 29925667.

897 43. Kumar GR, Glaunsinger BA. Nuclear import of cytoplasmic poly(A) binding protein
898 restricts gene expression via hyperadenylation and nuclear retention of mRNA. Mol Cell
899 Biol. 2010;30(21):4996-5008. Epub 2010/09/09. doi: 10.1128/MCB.00600-10. PubMed
900 PMID: 20823266; PubMed Central PMCID: PMC2953054.

901 44. Overton H, McMillan D, Hope L, Wong-Kai-In P. Production of host shutoff-defective
902 mutants of herpes simplex virus type 1 by inactivation of the UL13 gene. Virology.
903 1994;202(1):97-106. PubMed PMID: 8009869.

904 45. Chou J, Roizman B. The gamma 1(34.5) gene of herpes simplex virus 1 precludes
905 neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of
906 programed cell death in neuronal cells. Proceedings of the National Academy of Sciences
907 of the United States of America. 1992;89(8):3266-70. Epub 1992/04/15. PubMed PMID:
908 1314384; PubMed Central PMCID: PMCPMC48847.

909 46. Mossman KL, Smiley JR. Herpes simplex virus ICP0 and ICP34.5 counteract distinct
910 interferon-induced barriers to virus replication. J Virol. 2002;76(4):1995-8. Epub 2002/01/19.
911 PubMed PMID: 11799195; PubMed Central PMCID: PMCPMC135894.

912 47. Ebert K, Depledge DP, Breuer J, Harman L, Elliott G. Mode of Virus Rescue
913 Determines the Acquisition of VHS Mutations in VP22 Negative Viruses of Herpes Simplex
914 Virus Type 1. J Virol. 2013. doi: 10.1128/JVI.01654-13. PubMed PMID: 23864617.

915 48. Desmyter J, Melnick JL, Rawls WE. Defectiveness of interferon production and of
916 rubella virus interference in a line of African green monkey kidney cells (Vero). J Virol.
917 1968;2(10):955-61. Epub 1968/10/01. PubMed PMID: 4302013; PubMed Central PMCID:
918 PMCPMC375423.

919 49. Mossman KL, Saffran HA, Smiley JR. Herpes simplex virus ICP0 mutants are
920 hypersensitive to interferon. *J Virol.* 2000;74(4):2052-6. PubMed PMID: 10644380.

921 50. Leib DA, Harrison TE, Laslo KM, Machalek MA, Moorman NJ, Virgin HW. Interferons
922 regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. *The Journal*
923 *of experimental medicine.* 1999;189(4):663-72. Epub 1999/02/17. PubMed PMID: 9989981;
924 PubMed Central PMCID: PMCPMC2192939.

925 51. Burgess HM, Mohr I. Defining the role of stress granules in innate immune
926 suppression by the HSV-1 endoribonuclease VHS. *J Virol.* 2018. Epub 2018/05/26. doi:
927 10.1128/JVI.00829-18. PubMed PMID: 29793959.

928 52. Dauber B, Pelletier J, Smiley JR. The herpes simplex virus 1 vhs protein enhances
929 translation of viral true late mRNAs and virus production in a cell type-dependent manner. *J*
930 *Virol.* 2011;85(11):5363-73. Epub 2011/03/25. doi: 10.1128/JVI.00115-11. PubMed PMID:
931 21430045; PubMed Central PMCID: PMC3094992.

932 53. He B, Gross M, Roizman B. The gamma(1)34.5 protein of herpes simplex virus 1
933 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the
934 eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by
935 double-stranded RNA-activated protein kinase. *Proceedings of the National Academy of*
936 *Sciences of the United States of America.* 1997;94(3):843-8. Epub 1997/02/04. PubMed
937 PMID: 9023344; PubMed Central PMCID: PMC19601.

938 54. Elliott G, Pheasant K, Ebert-Keel K, Franklyn A, Jones J. Multiple post-transcriptional
939 strategies to regulate the herpes simplex virus type 1 vhs endoribonuclease. *J Virol.* 2018;In
940 press.

941 55. Jones M, Dry IR, Frampton D, Singh M, Kanda RK, Yee MB, et al. RNA-seq analysis
942 of host and viral gene expression highlights interaction between varicella zoster virus and
943 keratinocyte differentiation. *PLoS Pathog.* 2014;10(1):e1003896. Epub 2014/02/06. doi:

944 10.1371/journal.ppat.1003896. PubMed PMID: 24497829; PubMed Central PMCID:
945 PMC3907375.

946 56. Ellison KS, Rice SA, Verity R, Smiley JR. Processing of alpha-globin and ICP0 mRNA
947 in cells infected with herpes simplex virus type 1 ICP27 mutants. *J Virol.* 2000;74(16):7307-
948 19. Epub 2000/07/25. PubMed PMID: 10906184; PubMed Central PMCID:
949 PMCPMC112251.

950 57. Dobrikova E, Shveygert M, Walters R, Gromeier M. Herpes simplex virus proteins
951 ICP27 and UL47 associate with polyadenylate-binding protein and control its subcellular
952 distribution. *J Virol.* 2010;84(1):270-9. Epub 2009/10/30. doi: 10.1128/JVI.01740-09.
953 PubMed PMID: 19864386; PubMed Central PMCID: PMC2798443.

954 58. Salaun C, MacDonald AI, Larralde O, Howard L, Lochtie K, Burgess HM, et al.
955 Poly(A)-binding protein 1 partially relocates to the nucleus during herpes simplex virus type
956 1 infection in an ICP27-independent manner and does not inhibit virus replication. *J Virol.*
957 2010;84(17):8539-48. Epub 2010/06/25. doi: 10.1128/JVI.00668-10. PubMed PMID:
958 20573819; PubMed Central PMCID: PMC2919032.

959 59. Hafezi W, Bernard E, Cook R, Elliott G. Herpes simplex virus tegument protein VP22
960 contains an internal VP16 interaction domain and a C-terminal domain that are both required
961 for VP22 assembly into the virus particle. *J Virol.* 2005;79(20):13082-93. PubMed PMID:
962 16189010.

963 60. Stylianou J, Maringer K, Cook R, Bernard E, Elliott G. Virion incorporation of the
964 herpes simplex virus type 1 tegument protein VP22 occurs via glycoprotein E-specific
965 recruitment to the late secretory pathway. *J Virol.* 2009;83(10):5204-18. PubMed PMID:
966 19279114.

967 61. Taddeo B, Sciortino MT, Zhang W, Roizman B. Interaction of herpes simplex virus
968 RNase with VP16 and VP22 is required for the accumulation of the protein but not for

969 accumulation of mRNA. *Proceedings of the National Academy of Sciences of the United*
970 *States of America*. 2007;104(29):12163-8. PubMed PMID: 17620619.

971 62. Tal-Singer R, Pichyangkura R, Chung E, Lasner TM, Randazzo BP, Trojanowski JQ,
972 et al. The transcriptional activation domain of VP16 is required for efficient infection and
973 establishment of latency by HSV-1 in the murine peripheral and central nervous systems.
974 *Virology*. 1999;259(1):20-33. Epub 1999/06/12. doi: 10.1006/viro.1999.9756. PubMed
975 PMID: 10364486.

976 63. Narayanan K, Makino S. Interplay between viruses and host mRNA degradation.
977 *Biochim Biophys Acta*. 2013;1829(6-7):732-41. Epub 2013/01/01. doi:
978 10.1016/j.bbagr.2012.12.003. PubMed PMID: 23274304; PubMed Central PMCID:
979 PMCPMC3632658.

980 64. Rutkowski AJ, Erhard F, L'Hernault A, Bonfert T, Schilhabel M, Crump C, et al.
981 Widespread disruption of host transcription termination in HSV-1 infection. *Nature*
982 *communications*. 2015;6:7126. Epub 2015/05/21. doi: 10.1038/ncomms8126. PubMed
983 PMID: 25989971; PubMed Central PMCID: PMCPMC4441252.

984 65. Hu B, Li X, Huo Y, Yu Y, Zhang Q, Chen G, et al. Cellular responses to HSV-1
985 infection are linked to specific types of alterations in the host transcriptome. *Scientific*
986 *reports*. 2016;6:28075. Epub 2016/06/30. doi: 10.1038/srep28075. PubMed PMID:
987 27354008; PubMed Central PMCID: PMCPMC4926211.

988 66. Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, Salit M, et al. Synthetic spike-in
989 standards for RNA-seq experiments. *Genome research*. 2011;21(9):1543-51. Epub
990 2011/08/06. doi: 10.1101/gr.121095.111. PubMed PMID: 21816910; PubMed Central
991 PMCID: PMCPMC3166838.

992 67. Chen K, Hu Z, Xia Z, Zhao D, Li W, Tyler JK. The Overlooked Fact: Fundamental
993 Need for Spike-In Control for Virtually All Genome-Wide Analyses. *Mol Cell Biol*.

994 2015;36(5):662-7. Epub 2015/12/30. doi: 10.1128/MCB.00970-14. PubMed PMID:
995 26711261; PubMed Central PMCID: PMCPMC4760223.

996 68. Huang J, You H, Su C, Li Y, Chen S, Zheng C. Herpes Simplex Virus 1 Tegument
997 Protein VP22 Abrogates cGAS/STING-Mediated Antiviral Innate Immunity. *J Virol.*
998 2018;92(15). Epub 2018/05/26. doi: 10.1128/JVI.00841-18. PubMed PMID: 29793952;
999 PubMed Central PMCID: PMCPMC6052299.

1000 69. Esclatine A, Taddeo B, Evans L, Roizman B. The herpes simplex virus 1 UL41 gene-
1001 dependent destabilization of cellular RNAs is selective and may be sequence-specific.
1002 *Proceedings of the National Academy of Sciences of the United States of America.*
1003 2004;101(10):3603-8. Epub 2004/03/03. doi: 10.1073/pnas.0400354101. PubMed PMID:
1004 14993598; PubMed Central PMCID: PMCPMC373509.

1005 70. Esclatine A, Taddeo B, Roizman B. The UL41 protein of herpes simplex virus
1006 mediates selective stabilization or degradation of cellular mRNAs. *Proceedings of the*
1007 *National Academy of Sciences of the United States of America.* 2004;101(52):18165-70.
1008 Epub 2004/12/15. doi: 10.1073/pnas.0408272102. PubMed PMID: 15596716; PubMed
1009 Central PMCID: PMCPMC539803.

1010 71. Abernathy E, Gilbertson S, Alla R, Glaunsinger B. Viral Nucleases Induce an mRNA
1011 Degradation-Transcription Feedback Loop in Mammalian Cells. *Cell host & microbe.*
1012 2015;18(2):243-53. Epub 2015/07/28. doi: 10.1016/j.chom.2015.06.019. PubMed PMID:
1013 26211836; PubMed Central PMCID: PMCPMC4538998.

1014 72. Afonina E, Stauber R, Pavlakis GN. The human poly(A)-binding protein 1 shuttles
1015 between the nucleus and the cytoplasm. *J Biol Chem.* 1998;273(21):13015-21. Epub
1016 1998/05/28. PubMed PMID: 9582337.

1017 73. Arias C, Walsh D, Harbell J, Wilson AC, Mohr I. Activation of host translational control
1018 pathways by a viral developmental switch. *PLoS Pathog.* 2009;5(3):e1000334. Epub

1019 2009/03/21. doi: 10.1371/journal.ppat.1000334. PubMed PMID: 19300492; PubMed Central
1020 PMCID: PMC2652079.

1021 74. Lee YJ, Glaunsinger BA. Aberrant herpesvirus-induced polyadenylation correlates
1022 with cellular messenger RNA destruction. PLoS biology. 2009;7(5):e1000107. Epub
1023 2009/05/27. doi: 10.1371/journal.pbio.1000107. PubMed PMID: 19468299; PubMed Central
1024 PMCID: PMC2680333.

1025 75. Fontaine-Rodriguez EC, Taylor TJ, Olesky M, Knipe DM. Proteomics of herpes
1026 simplex virus infected cell protein 27: association with translation initiation factors. Virology.
1027 2004;330(2):487-92. Epub 2004/11/30. doi: 10.1016/j.virol.2004.10.002. PubMed PMID:
1028 15567442.

1029 76. Fontaine-Rodriguez EC, Knipe DM. Herpes simplex virus ICP27 increases translation
1030 of a subset of viral late mRNAs. J Virol. 2008;82(7):3538-45. Epub 2008/01/25. doi:
1031 10.1128/JVI.02395-07. PubMed PMID: 18216091; PubMed Central PMCID:
1032 PMCPMC2268449.

1033 77. Ellison KS, Maranchuk RA, Mottet KL, Smiley JR. Control of VP16 translation by the
1034 herpes simplex virus type 1 immediate-early protein ICP27. J Virol. 2005;79(7):4120-31.
1035 Epub 2005/03/16. doi: 10.1128/JVI.79.7.4120-4131.2005. PubMed PMID: 15767413;
1036 PubMed Central PMCID: PMCPMC1061579.

1037 78. Taddeo B, Zhang W, Roizman B. Role of herpes simplex virus ICP27 in the
1038 degradation of mRNA by virion host shutoff RNase. J Virol. 2010;84(19):10182-90. Epub
1039 2010/07/16. doi: 10.1128/JVI.00975-10. PubMed PMID: 20631134; PubMed Central
1040 PMCID: PMCPMC2937800.

1041 79. Sciortino MT, Taddeo B, Poon AP, Mastino A, Roizman B. Of the three tegument
1042 proteins that package mRNA in herpes simplex virions, one (VP22) transports the mRNA to
1043 uninfected cells for expression prior to viral infection. Proceedings of the National Academy

1044 of Sciences of the United States of America. 2002;99(12):8318-23. PubMed PMID:
1045 12060774.

1046 80. Donnelly M, Verhagen J, Elliott G. RNA binding by the herpes simplex virus type 1
1047 nucleocytoplasmic shuttling protein UL47 is mediated by an N-terminal arginine-rich domain
1048 that also functions as its nuclear localization signal. *J Virol.* 2007;81(5):2283-96. PubMed
1049 PMID: 17166902.

1050 81. Hutchinson I, Whiteley A, Browne H, Elliott G. Sequential Localization of Two Herpes
1051 Simplex Virus Tegument Proteins to Punctate Nuclear Dots Adjacent to ICP0 Domains. *J*
1052 *Virol.* 2002;76(20):10365-73.

1053 82. Coulter LJ, Moss HW, Lang J, McGeoch DJ. A mutant of herpes simplex virus type 1
1054 in which the UL13 protein kinase gene is disrupted. *J Gen Virol.* 1993;74 (Pt 3):387-95.
1055 PubMed PMID: 8383174.

1056 83. Bolovan CA, Sawtell NM, Thompson RL. ICP34.5 mutants of herpes simplex virus
1057 type 1 strain 17syn+ are attenuated for neurovirulence in mice and for replication in confluent
1058 primary mouse embryo cell cultures. *J Virol.* 1994;68(1):48-55. Epub 1994/01/01. PubMed
1059 PMID: 8254758; PubMed Central PMCID: PMC236262.

1060 84. Elliott G, O'Hare P. Live-cell analysis of a green fluorescent protein-tagged herpes
1061 simplex virus infection. *J Virol.* 1999;73:4110-9.

1062 85. Elliott G, O'Hare P. Intercellular trafficking and protein delivery by a herpesvirus
1063 structural protein. *Cell.* 1997;88(2):223-33. PubMed PMID: 9008163.

1064 86. S. A. FastQC: a quality control tool for high throughput sequence data. 2010.

1065 87. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
1066 data. *Bioinformatics.* 2014;30(15):2114-20. Epub 2014/04/04. doi:
1067 10.1093/bioinformatics/btu170. PubMed PMID: 24695404; PubMed Central PMCID:
1068 PMCPMC4103590.

1069 88. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene
1070 and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. *Nat
1071 Protoc.* 2012;7(3):562-78. Epub 2012/03/03. doi: 10.1038/nprot.2012.016. PubMed PMID:
1072 22383036; PubMed Central PMCID: PMCPMC3334321.

1073 89. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods.*
1074 2012;9(4):357-9. Epub 2012/03/06. doi: 10.1038/nmeth.1923. PubMed PMID: 22388286;
1075 PubMed Central PMCID: PMCPMC3322381.

1076 90. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for
1077 assigning sequence reads to genomic features. *Bioinformatics.* 2014;30(7):923-30. Epub
1078 2013/11/15. doi: 10.1093/bioinformatics/btt656. PubMed PMID: 24227677.

1079 91. Carlson M. Genome wide annotation for Mouse. R package version 3.4.0. 2016.

1080 92. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for
1081 differential expression analysis of digital gene expression data. *Bioinformatics.*
1082 2010;26(1):139-40. Epub 2009/11/17. doi: 10.1093/bioinformatics/btp616. PubMed PMID:
1083 19910308; PubMed Central PMCID: PMCPMC2796818.

1084 93. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time
1085 quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods.* 2001;25(4):402-8. Epub
1086 2002/02/16. doi: 10.1006/meth.2001.1262. PubMed PMID: 11846609.

1087 94. Maringer K, Stylianou J, Elliott G. A network of protein interactions around the herpes
1088 simplex virus tegument protein VP22. *J Virol.* 2012;86(23):12971-82. Epub 2012/09/21. doi:
1089 10.1128/JVI.01913-12. PubMed PMID: 22993164; PubMed Central PMCID: PMC3497626.

1090

1091

1092 **Figures**

1093 **Fig 1. Translational shutoff during HSV1 infection in the absence of VP22 expression.**

1094 (A) The indicated cell types were infected with Wt (s17), Δ 22 or Δ vhs viruses at a multiplicity
1095 of 2, and 16 hours later were incubated in the presence of [35S]-methionine for a further 60
1096 mins. The cells were then lysed and analysed by SDS-PAGE followed by autoradiography.
1097 (B) HFFF cells were treated as in A, and metabolic labelling with [35S]-methionine was
1098 carried out at the indicated times after infection. (C) Confluent monolayers of HFFF were
1099 infected with \sim 30 plaque forming units of each virus and plaques allowed to develop for 5
1100 days before fixing and staining with crystal violet. (D) HFFF cells infected as in A were
1101 harvested at 16 hours and analysed by SDS-PAGE and Western blotting with antibodies as
1102 indicated. (E) Vero cells were left untreated, or treated for 20 hours with 1000 units/ml of
1103 interferon β , prior to the titration of the indicated viruses. The mean and \pm standard error of
1104 the data is given from three independent experiments. Statistical analysis was carried out
1105 using an unpaired, two-way student's t test. ns, $p > 0.05$. *** $p < 0.001$. (F) The samples
1106 from D were analysed by SDS-PAGE and Western blotting with the indicated antibodies.
1107 (G) HFFF cells infected with Wt, Δ 22 or Δ vhs viruses at a multiplicity of 2 were harvested at
1108 the indicated times after infection (in hours) and analysed by Western blotting for VP16,
1109 α tubulin and phospho-eIF2 α .

1110

1111 **Fig 2. Dual transcriptomic analysis of human fibroblast cells infected with HSV1.**

1112 HFFF cells were left uninfected, or infected with HSV1 (s17) at a multiplicity of 2. At 4 or 12
1113 h.p.i., total RNA was purified and used for library preparation followed by sequencing. A total
1114 of 5 biological replicates were sequenced for each condition. (A) The proportion of reads
1115 mapped in each condition to either the human (blue) or HSV1 (red) transcriptome. (B)
1116 Differential expression analysis of cell and virus transcripts was conducted using EdgeR as

1117 described in Methods. Differences in the number of reads mapped to cell (black circles) and
1118 virus (green circles) transcripts were plotted as scatter plots comparing results at 4 and 12
1119 hours to uninfected cells. The 12 h results are also represented in a volcano plot indicating
1120 the high level of significance for the detected changes (right hand panel). (C) The reads
1121 obtained for the virus transcriptome were mapped to the virus genome for 4 (red) and 12
1122 (green) hours. Numbers in parentheses represent maximum read counts per million
1123 obtained in each condition. The location of the TK, ICP27 and gD genes are indicated by
1124 arrows. (D) HFFF cells grown in slide chambers were infected with HSV1 (s17) at a
1125 multiplicity of 2 fixed at 4 or 12 h, and subjected to multiplex mRNA FISH with probes to
1126 genes representing IE (ICP27 in cyan), E (TK in red) and late (gD in green) transcripts.
1127 Nuclei were counterstained with DAPI (blue). Scale bar = 20 μ m.

1128

1129 **Fig. 3. qRT-PCR of vhs-induced reduction in cellular transcript levels correlates with**
1130 **single cell mRNA FISH.** (A) & (B) HFFF cells were left uninfected or infected with HSV1 Wt
1131 or Δ vhs viruses at a multiplicity of 2. Total RNA was purified at 16 hours and subjected to
1132 qRT-PCR for transcripts identified as being susceptible to vhs activity (A) or for ISG
1133 transcripts (B). The mean and \pm standard error of the data is given from one representative
1134 experiment (n=3). Statistical analysis was carried out using an unpaired, two-way student's
1135 t test. **, p < 0.01. ***, p < 0.001. ****, p < 0.0001. (C) HFFF cells grown in chamber slides
1136 were left uninfected (mock) or infected with Wt or Δ vhs viruses at a multiplicity of 2 and fixed
1137 at 16 hours. mRNA FISH was carried out for serpin E1, GLUL1 or IFIT1 (green). Nuclei were
1138 counterstained with DAPI (blue). Scale bar = 20 μ m.

1139

1140 **Fig 4. Vhs activity against cellular transcripts is delayed in Δ 22 infected HFFF cells.**
1141 (A) & (B) Dual transcriptomic analysis of HFFF cells infected with the Δ 22 virus at a

1142 multiplicity of 2 was carried out alongside the analyses presented in Fig 2. (A) Proportion
1143 of reads mapped in each condition to either the human (blue) or HSV1 (red) transcriptome.
1144 (B) Differential expression analysis of cell and virus transcripts comparing Wt (y-axis) to $\Delta 22$
1145 (x-axis) at 4 and 12 h after infection. Differences in the number of reads mapped to cell
1146 (black circles) and virus (green circles) transcripts were plotted as scatter plots. (C) HFFF
1147 cells were infected with Wt, $\Delta 22$ or Δvhs viruses at a multiplicity of 2, and total RNA was
1148 harvested at the indicated times (in hours). qRT-PCR was carried out for the indicated cell
1149 transcripts. Transcript levels are expressed as the \log_2 FC to mock ($\Delta\Delta CT$) over time. The
1150 mean and \pm standard error of the data is given from one representative experiment (n=3).
1151 (D) HFFF cells were infected with Wt, $\Delta 22$ or Δvhs viruses at a multiplicity of 2 were fixed at
1152 8 or 16 hours after infection and processed for mRNA FISH with a probe specific for the
1153 cellular transcript for serpin E1. Nuclei were counterstained with DAPI. Scale bar = 20 μ m.
1154 HFFF cells were infected with Wt HSV1 at a multiplicity of 2. (E) At 6 hours, the cells were
1155 either harvested for total RNA, or actinomycin D (5 μ g/ml) was added and the infection left
1156 for a further 4 hours before harvesting total RNA. qRT-PCR was carried out on all samples
1157 for the indicated cell transcripts, with results expressed as the \log_2 FC to the sample
1158 harvested at 6 hours ($\Delta\Delta CT$). The mean and \pm standard error of the data is given from one
1159 representative experiment (n=3). Statistical analysis was carried out using an unpaired, two-
1160 way student's t test. ns, $p > 0.05$. ***, $p < 0.001$. (F) HFFF cells were pre-treated in the
1161 absence or presence of cycloheximide (100 μ g/ml) for 1 hour prior to infection with Wt HSV1
1162 at a multiplicity of 2. Total RNA samples were purified at the indicate times and subjected to
1163 qRT-PCR for upregulated transcripts (IFIT1 and IFIT2), hypersensitive transcripts (MMP1
1164 and MMP2) and virus transcripts (ICP27 and gC). For cell genes, the transcript levels are
1165 expressed as the \log_2 FC to mock, and for virus genes the are expressed as \log_2 FC to 2
1166 hours. The mean and \pm standard error of the data is given from one representative

1167 experiment (n=3). Statistical analysis was carried out using an unpaired, two-way student's
1168 t test. ns, p > 0.05. *** p < 0.001.

1169

1170 **Fig. 5. vhs exhibits differential activity against late virus transcripts in the absence of**
1171 **VP22.** (A) The time course described in Fig 4C was analysed by qRT-PCR for representative
1172 IE (ICP27 and ICP22), E (TK) and late (VP22, vhs and gC) transcripts, with results
1173 represented as mean ΔCT values at each time point. (B) Total lysates harvested at the same
1174 time as the RNA samples in Fig 4C were analysed by SDS-PAGE and Western blotting with
1175 antibodies for the indicated proteins. (C) HFFF cells were infected with Wt HSV1 at a
1176 multiplicity of 2. At 6 hours, the cells were either harvested for total RNA, or actinomycin D
1177 (5 μ g/ml) was added and the infection left for a further 4 hours before harvesting total RNA.
1178 qRT-PCR was carried out on all samples for the indicated virus transcripts, with results
1179 expressed as the \log_2 FC to the samples harvested at 6 hours ($\Delta\Delta CT$). The mean and \pm
1180 standard error of the data is given from one representative experiment (n=3). Statistical
1181 analysis was carried out using an unpaired, two-way student's t test. ns, p > 0.05. * p < 0.05.
1182 ** p < 0.01. *** p < 0.001.

1183

1184 **Fig. 6. HSV1 transcripts exhibit differential subcellular localisation.** HFFF cells grown
1185 in slide chambers were infected with Wt virus at a multiplicity of 2, fixed at 2, 4, 6, 8 or 12
1186 hours after infection, and processed for mRNA FISH with probes to the IE transcripts, ICP27
1187 and ICP0, the E transcript TK and the late transcripts vhs and gC (all in red). Nuclei were
1188 counterstained with DAPI (blue). Scale bar = 20 μ m.

1189

1190 **Fig. 7. Nuclear retention of late virus transcripts in the absence of VP22.** (A) HFFF
1191 cells infected with Wt, Δ vhs or Δ 22 viruses at a multiplicity of 2 were fixed 12 hours after

1192 infection and processed for immunofluorescence with an antibody to PABP (green). Nuclei
1193 were counterstained with DAPI (blue). (B) HFFF cells infected with Wt, Δ vhs or Δ 22 viruses
1194 at a multiplicity of 2 were fixed at 8 or 16 hours after infection and processed for mRNA FISH
1195 with probes specific to an IE (ICP27), E (TK) or late transcript (gC) (all in red). Nuclei were
1196 counterstained with DAPI (blue). (C) As for B, but cells fixed at 16 hours were processed
1197 for mRNA FISH with a probe specific to the late transcript VP16, or the spliced IE transcript
1198 ICP0 (both in red). Nuclei were counterstained with DAPI (blue). Scale bar = 20 μ m.

1199

1200 **Fig. 8. Cell transcripts insensitive to vhs activity are retained in the nucleus of**
1201 **infected cells.** HFFF cells infected with Wt or Δ 22 viruses at a multiplicity of 2 were fixed at
1202 12 hours after infection and processed for mRNA FISH with probes specific to two vhs
1203 hypersensitive cell transcripts, MMP1 and PPIB, and two vhs-insensitive cell transcripts,
1204 POLR2A and GLUL (all in green). Nuclei were counterstained with DAPI (blue). Scale bar
1205 = 20 μ m. CPM = average read counts per million in uninfected RNAseq libraries. Log₂ FC =
1206 log₂ fold change in Wt and Δ 22 infected RNAseq libraries at 12 hours as determined by
1207 bioinformatic analysis.

1208

1209 **Fig. 9. Cytoplasmic localisation of late transcripts is enhanced by VP22 binding to**
1210 **VP16.** (A) Line drawing of VP22 variants expressed as GFP fusion proteins in virus infection.
1211 Black box indicated the conserved domain of VP22, grey box indicates the region required
1212 for VP16 binding. (B) Plaque formation of viruses shown in A on HFFF cells. (C) & (D) HFFF
1213 cells were infected with Wt (s17), Δ 22 or the viruses shown in A at a multiplicity of 2, were
1214 metabolically labelled with [³⁵S]-methionine 15 hours after infection. Cells were lysed and
1215 analysed by SDS-PAGE and autoradiography. (E) HFFF cells infected with Wt (s17) or
1216 Δ 212-226 at a multiplicity of 2 were fixed at 16 hours and subjected to mRNA FISH with

1217 probes specific for the IE transcript ICP27 or the late transcript gC (both in red). Nuclei were
1218 counterstained with DAPI (blue). Scale bar = 20 μ m. (F) Line drawing of the variant of VP16
1219 (Δ 454-490) expressed in the 3v virus based on the KOS strain, together with its rescue virus
1220 3vR. The grey box indicates the C-terminal activation domain (AD) of VP16, the black line
1221 indicates the region of VP16 required to bind VP22. (G) HFFF cells infected with the viruses
1222 shown in F at a multiplicity of 2 were harvested for total RNA at 16 hours and analysed by
1223 qRT-PCR for the indicated transcripts. Results are represented as Δ CT values. (H) HFFF
1224 cells infected with Wt (s17), Δ 22, Δ vhs or the viruses shown in F at a multiplicity of 2, were
1225 metabolically labelled with [³⁵S]-methionine 15 hours after infection. Cells were lysed and
1226 analysed by SDS-PAGE and autoradiography. (I) The 3v and 3vR viruses were titrated onto
1227 HFFF cells and plaques fixed and stained with crystal violet 5 days later. (J) HFFF cells
1228 infected with 3v or 3vR viruses at a multiplicity of 2 were fixed at 16 hours and subjected to
1229 multiplex mRNA FISH with probes specific for the IE transcript ICP27 (green) and the late
1230 transcript gC (red). Nuclei were counterstained with DAPI (blue). Scale bar = 20 μ m.

1231

1232

1233 **Supporting information**

1234 **S1 Table. RNAseq data for total Wt infected HFFF cell transcriptome at 4 hours**
1235 **compared to uninfected HFFF cell transcriptome.** Raw counts and counts per million for
1236 all cell and virus genes in each biological replicate are listed, with genes expressed at a low
1237 level filtered out by keeping genes with at least 5 counts per million (CPM) in at least 2
1238 samples. Genes are ordered according to highest to the lowest Log₂ FC.

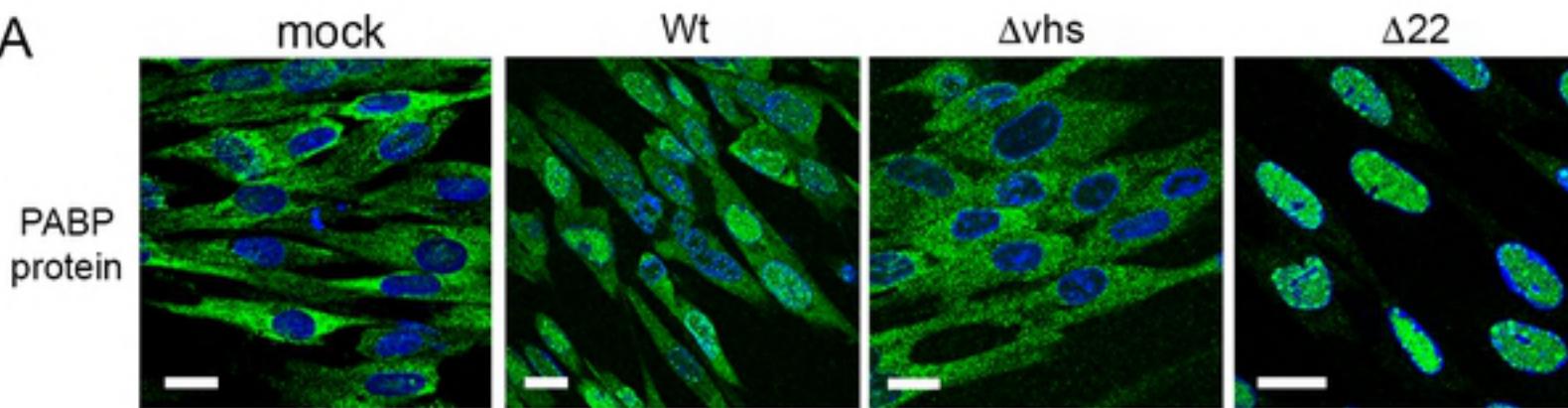
1239

1240 **S2 Table. RNAseq data for total Wt infected HFFF cell transcriptome at 12 hours**
1241 **compared to uninfected HFFF cell transcriptome.** Raw counts and counts per million for
1242 all cell and virus genes in each biological replicate are listed, with genes expressed at a low
1243 level filtered out by keeping genes with at least 5 counts per million (CPM) in at least 2
1244 samples. Genes are ordered according to highest to the lowest Log₂ FC.

1245

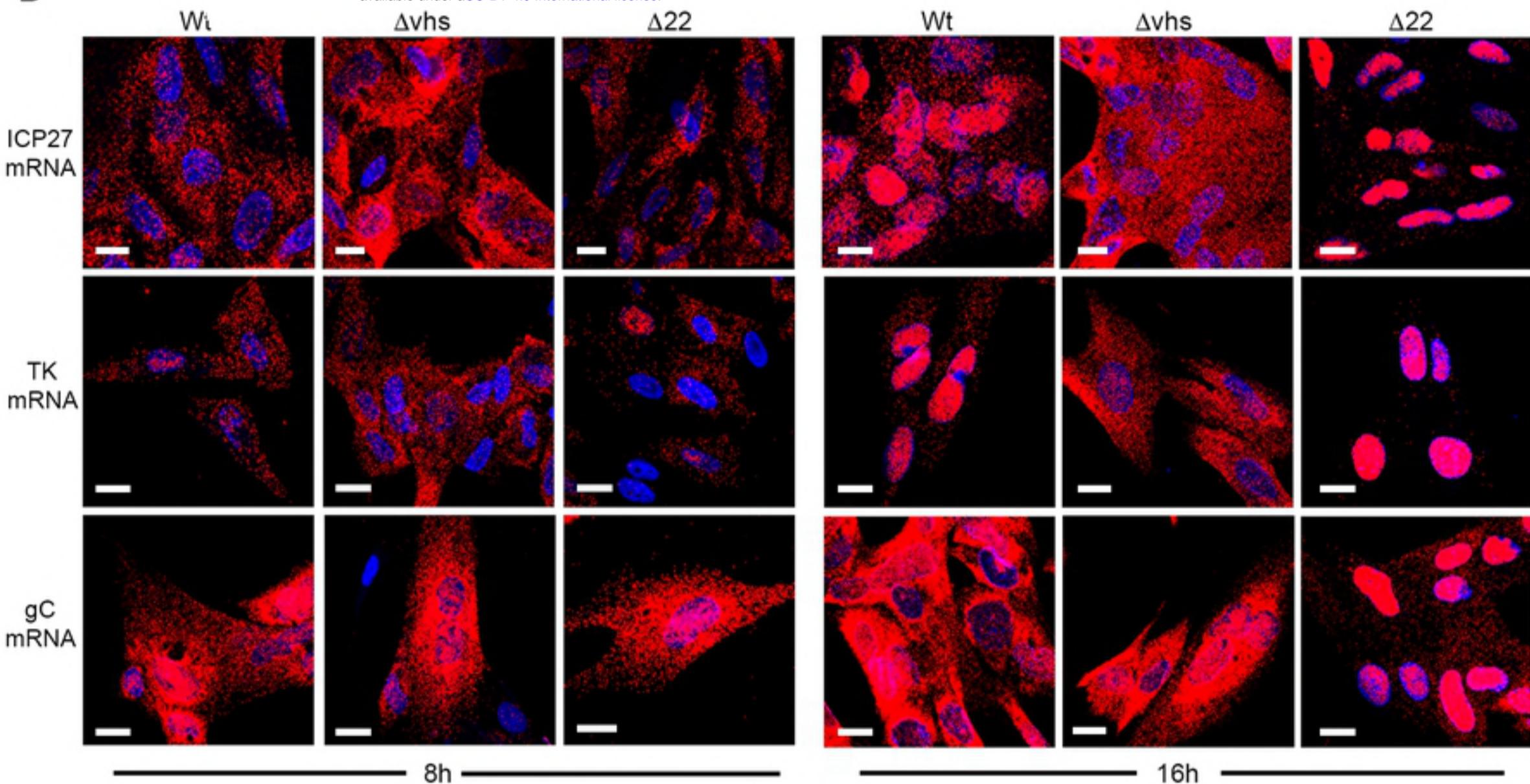
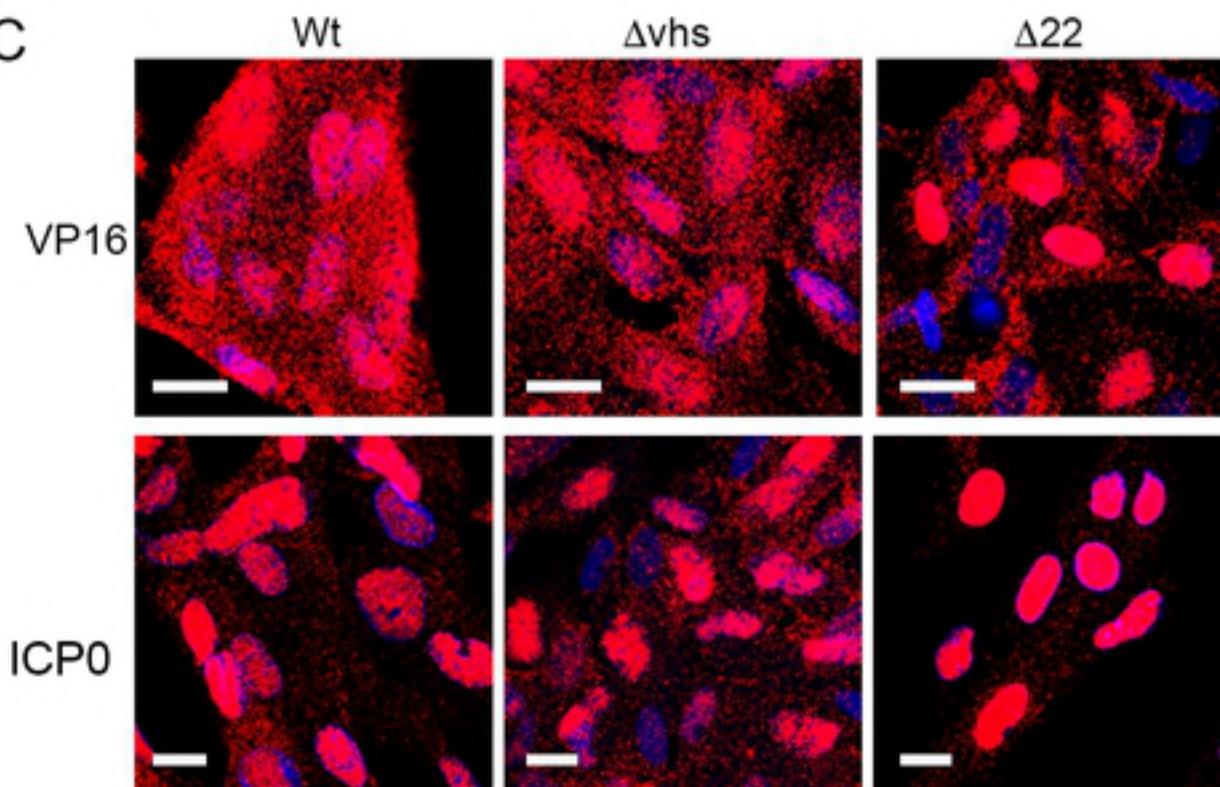
1246 **S3 Table. RNAseq data for total Δ22 infected HFFF cell transcriptome at 4 hours**
1247 **compared to uninfected HFFF cell transcriptome.** Raw counts and counts per million for
1248 all cell and virus genes in each biological replicate are listed, with genes expressed at a low
1249 level filtered out by keeping genes with at least 5 counts per million (CPM) in at least 2
1250 samples. Genes are ordered according to highest to the lowest Log₂ FC.

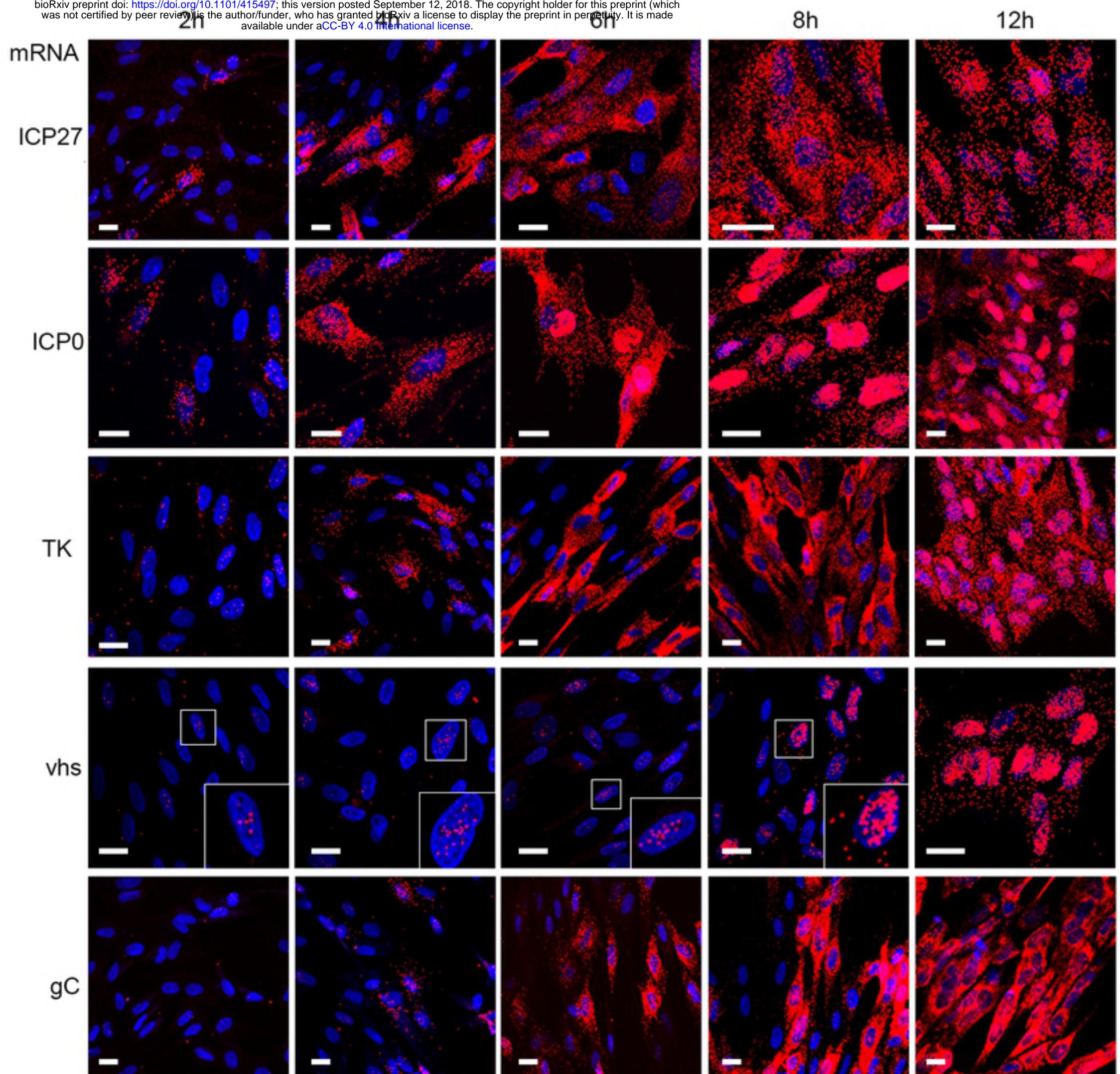
1251

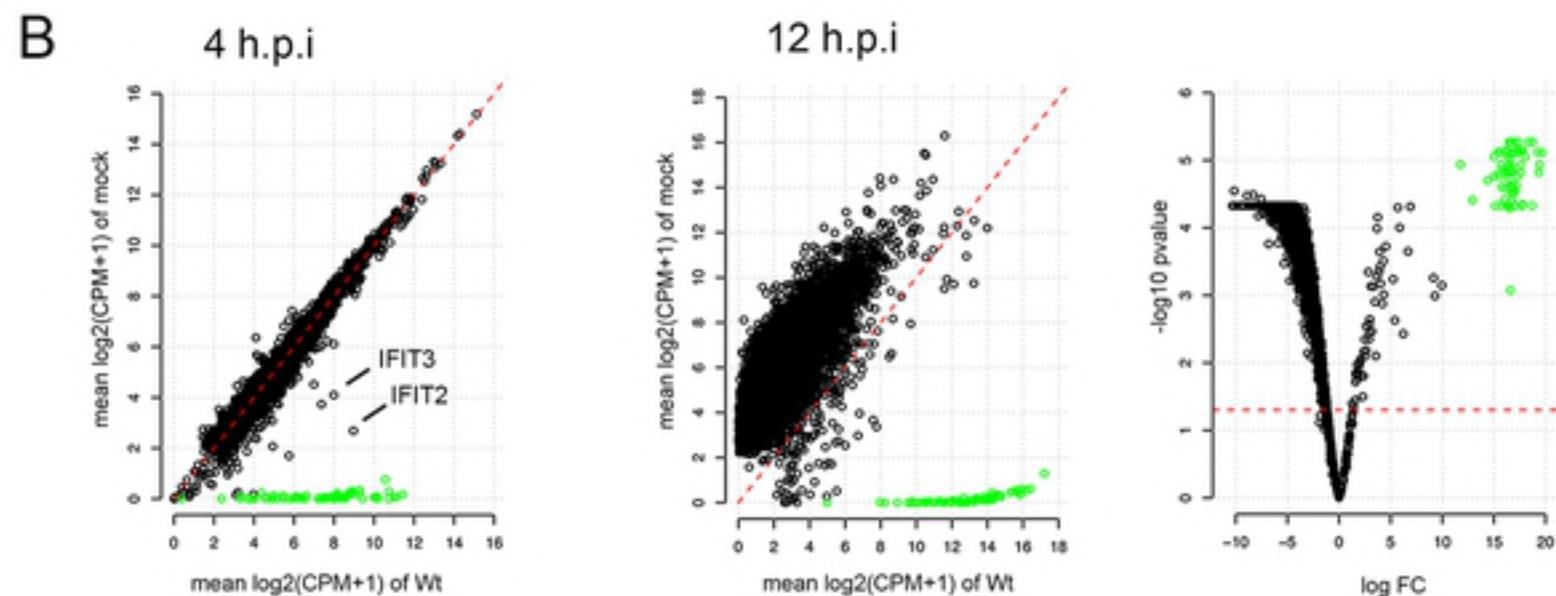
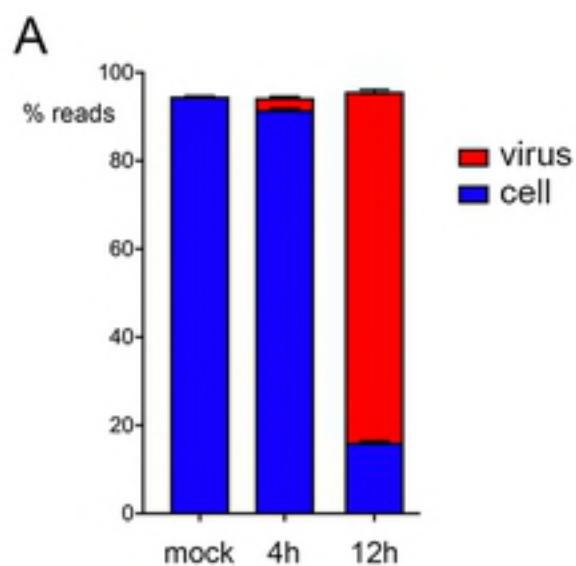

1252 **S4 Table. RNAseq data for total Δ22 infected HFFF cell transcriptome at 12 hours**
1253 **compared to uninfected HFFF cell transcriptome.** Raw counts and counts per million for
1254 all cell and virus genes in each biological replicate are listed, with genes expressed at a low
1255 level filtered out by keeping genes with at least 5 counts per million (CPM) in at least 2
1256 samples. Genes are ordered according to highest to the lowest Log₂ FC.

1257 **S5 Table. RNAseq data for total Δ 22 infected HFFF cell transcriptome at 4 hours**
1258 **compared to Wt infected HFFF cell transcriptome at 4 hours.** Raw counts and counts
1259 per million for all cell and virus genes in each biological replicate are listed, with genes
1260 expressed at a low level filtered out by keeping genes with at least 5 counts per million
1261 (CPM) in at least 2 samples. Genes are ordered according to highest to the lowest $\text{Log}_2 \text{FC}$.
1262
1263 **S6 Table. RNAseq data for total Δ 22 infected HFFF cell transcriptome at 4 hours**
1264 **compared to Wt infected HFFF cell transcriptome at 4 hours.** Raw counts and counts
1265 per million for all cell and virus genes in each biological replicate are listed, with genes
1266 expressed at a low level filtered out by keeping genes with at least 5 counts per million
1267 (CPM) in at least 2 samples. Genes are ordered according to highest to the lowest $\text{Log}_2 \text{FC}$.
1268
1269 **S7 Table. Primer pair sequences used for qRT-PCR.**
1270
1271 **S1 Fig. Translational shutoff and plaque size phenotype of HSV1 lacking either the**
1272 **UL13 or ICP34.5 gene on HFFF cells.**
1273
1274 **S2 Fig. Expression heatmap of interferon-stimulated genes in HSV1 infected cells at**
1275 **4 and 12 hours after infection.**
1276
1277 **S3 Fig. Validation of RNAseq data by qRT-PCR.** Two replicate RNA samples were
1278 subjected to qRT-PCR using primers for the indicated transcripts, and the $\text{Log}_2 \text{FC}$
1279 compared to that determined in the RNAseq experiment detailed in S2 Table.
1280

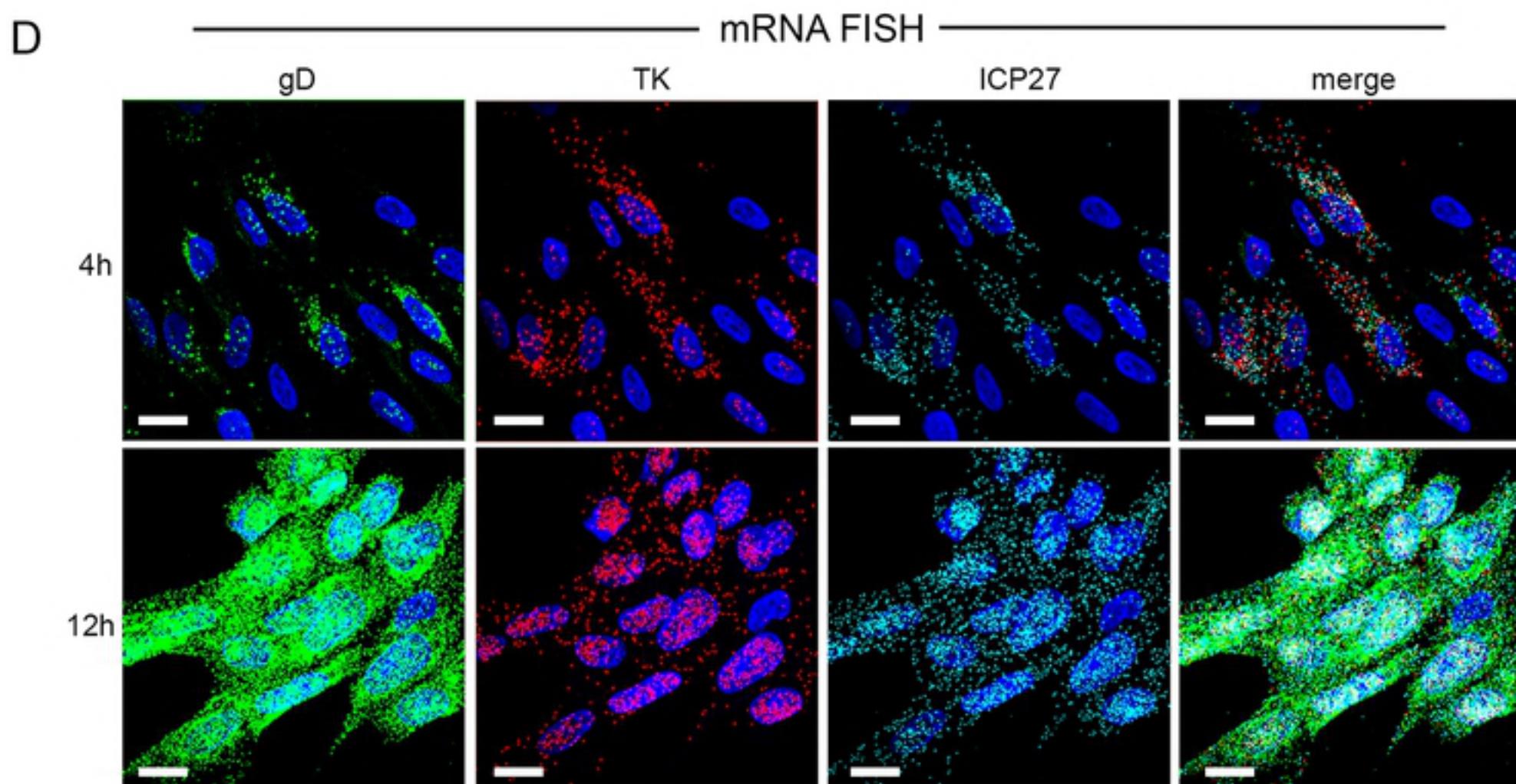
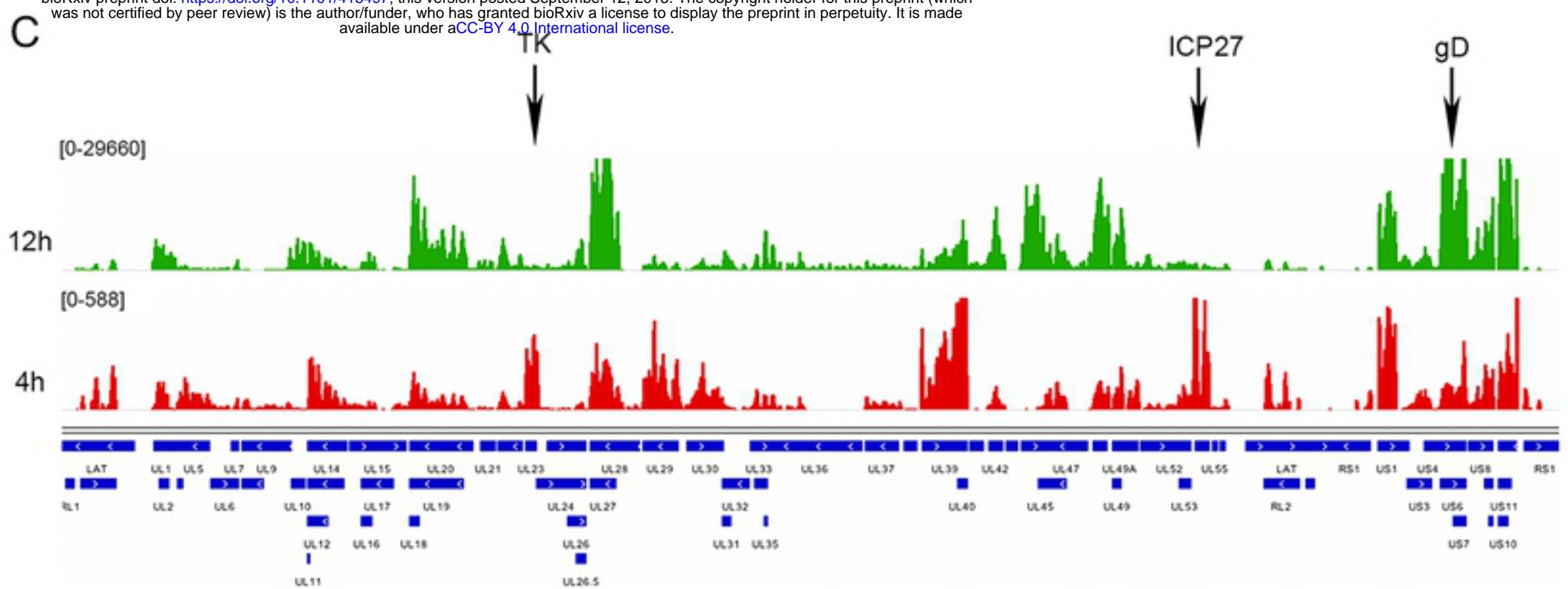
1281 **S4 Fig. Dual transcriptomic analysis of HFFF cells infected with Δ22 HSV1.** Differential
1282 expression analysis of cell and virus transcripts was conducted using EdgeR as described
1283 in Methods. Differences in the number of reads mapped to cell (black circles) and virus
1284 (green circles) transcripts were plotted as scatter plots (left hand panel) and volcano plots
1285 (right hand panel) comparing results at 4 and 12 hours to uninfected cells.

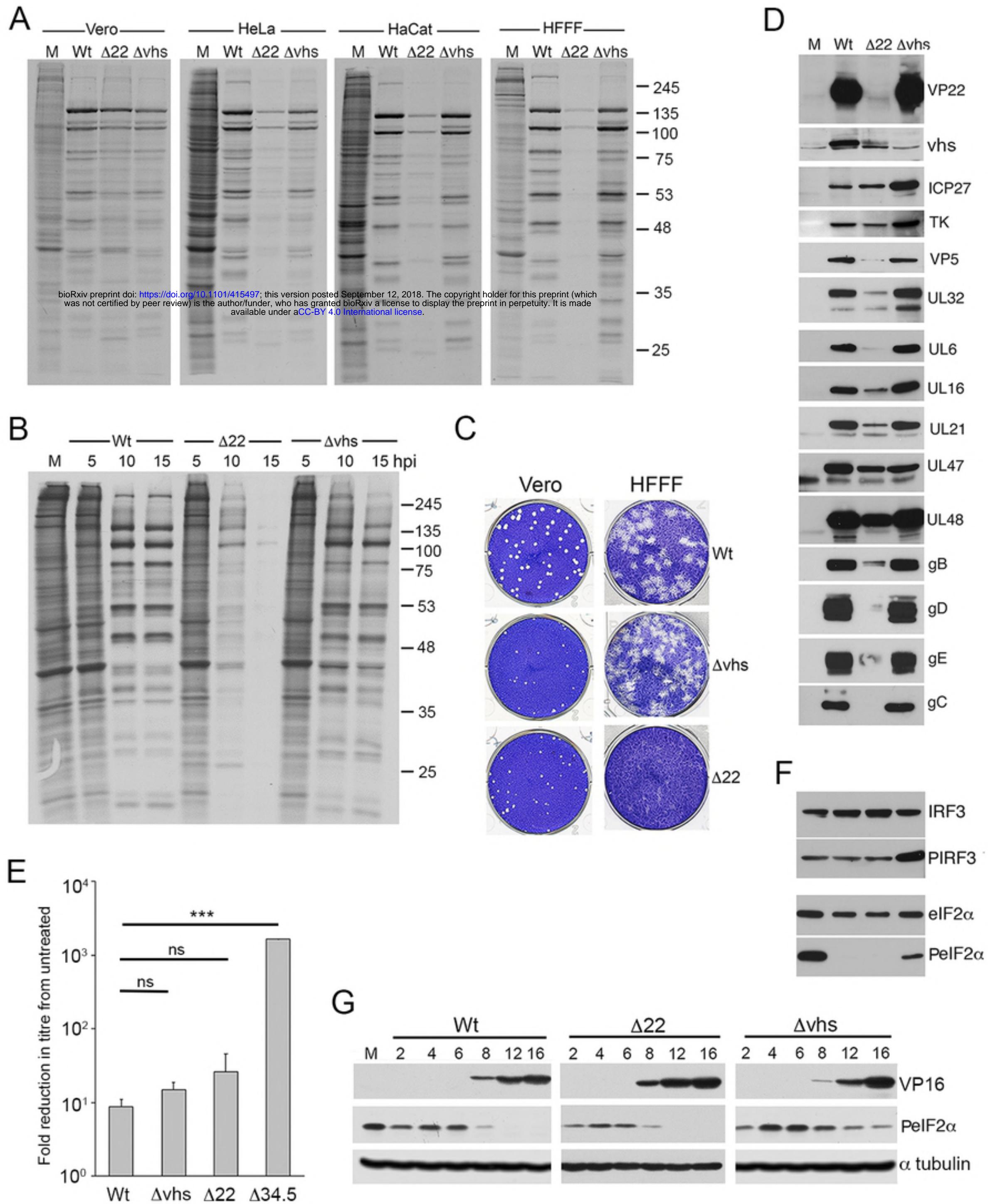


1286

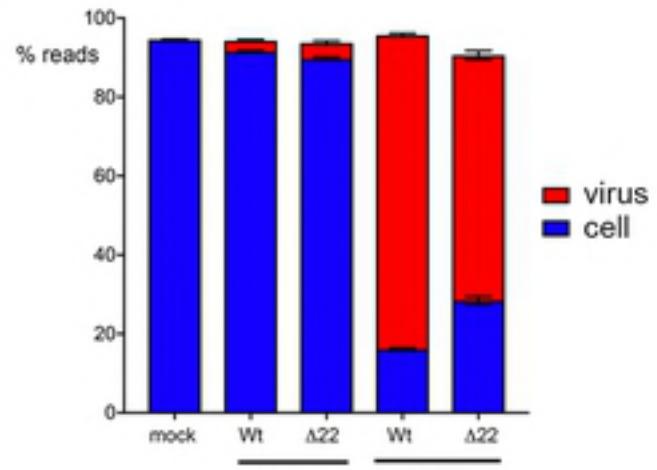
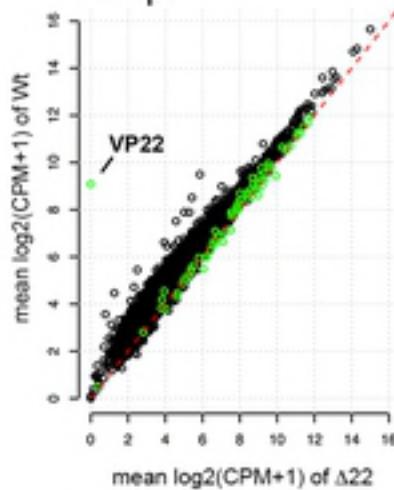
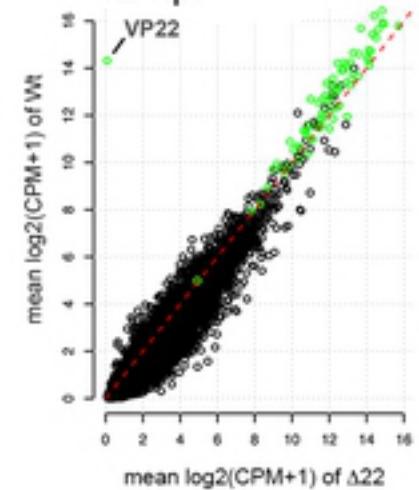

1287 **S5 Fig. Relative expression of virus transcriptome in Wt and Δ22 infected HFFF cells.**

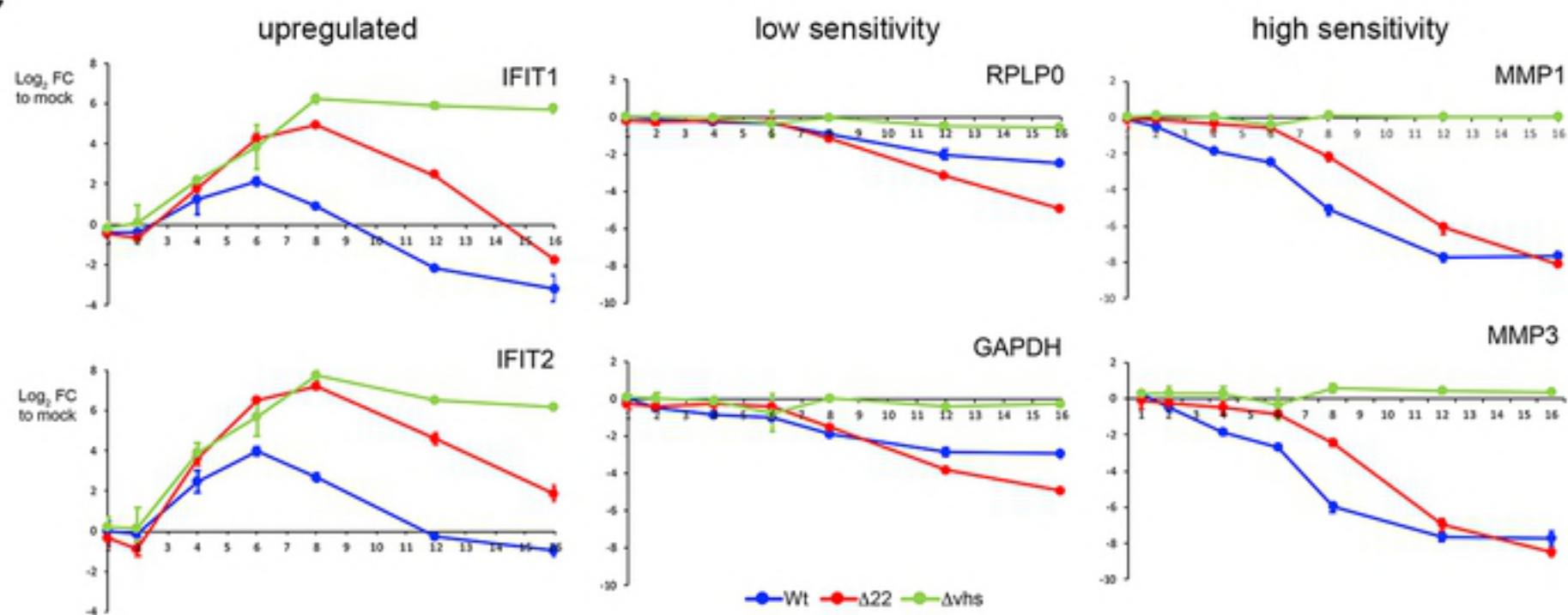
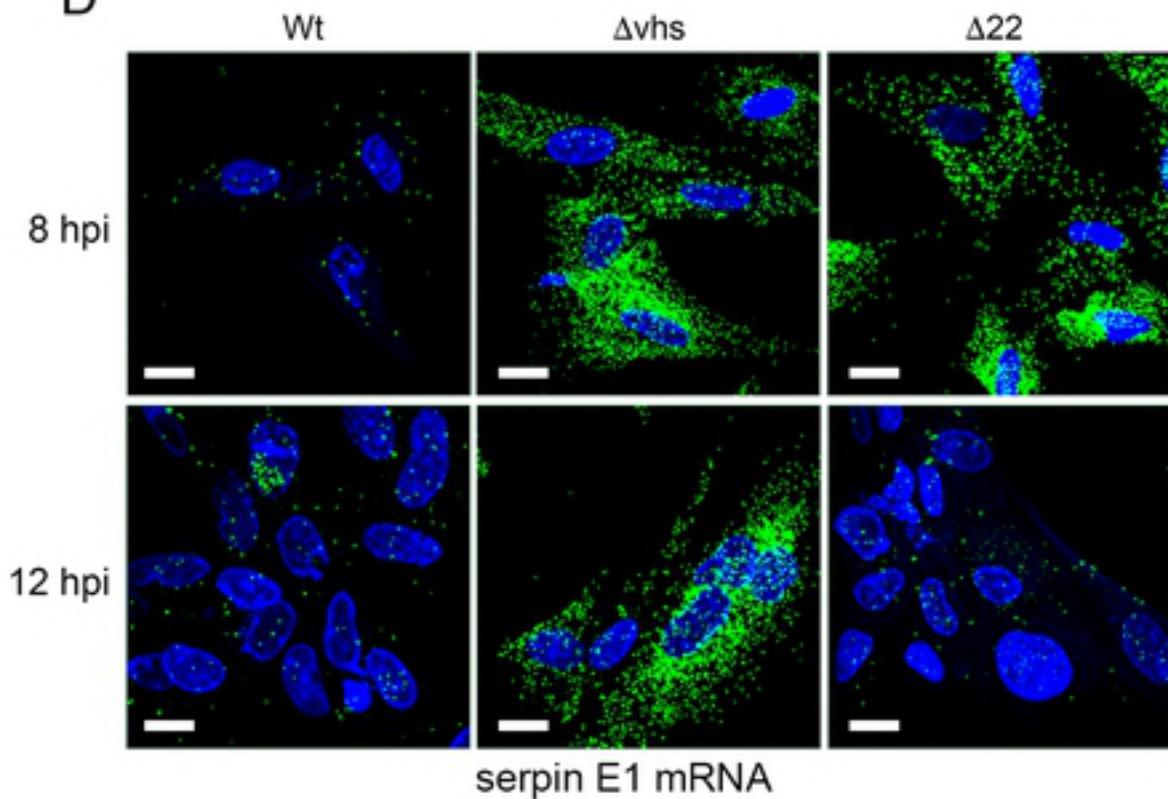


A

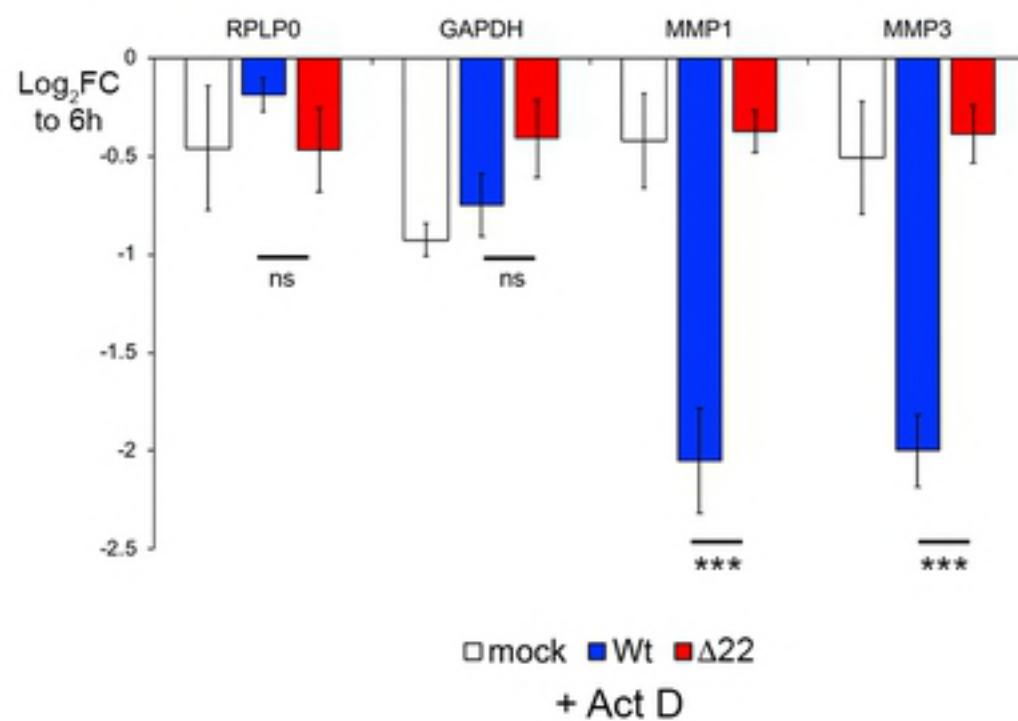
12h



bioRxiv preprint doi: <https://doi.org/10.1101/415497>; this version posted September 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

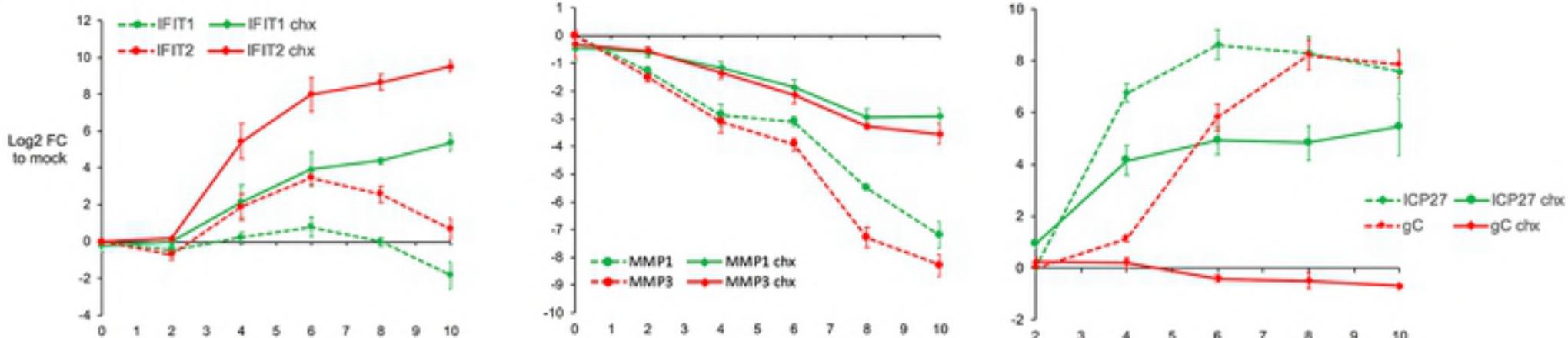

B**C**

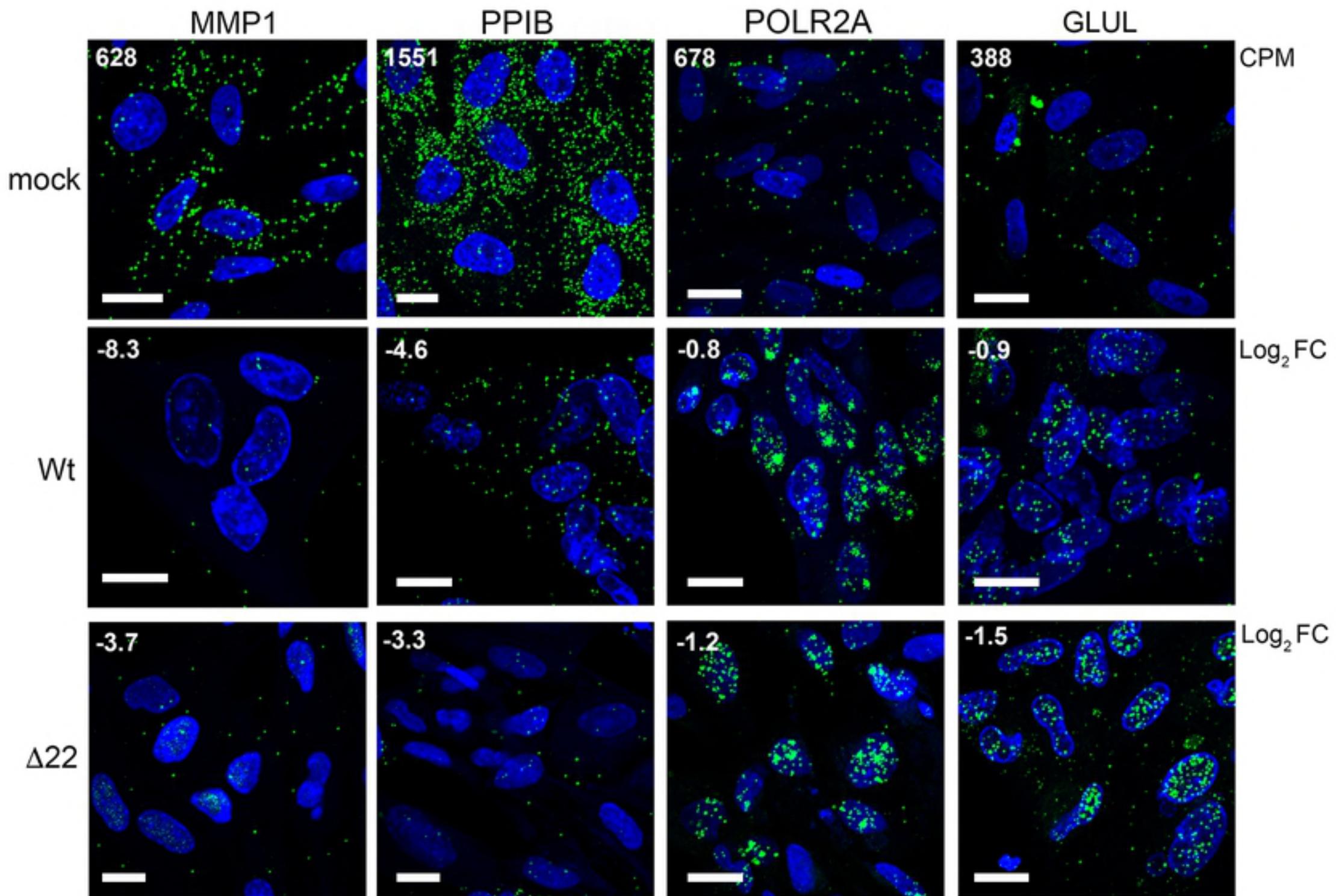






bioRxiv preprint doi: <https://doi.org/10.1101/415497>; this version posted September 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

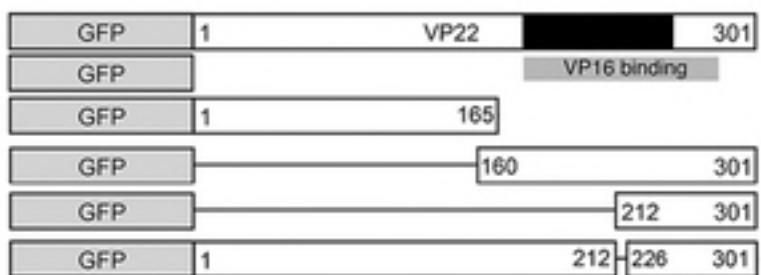


A**B****12 hpi**

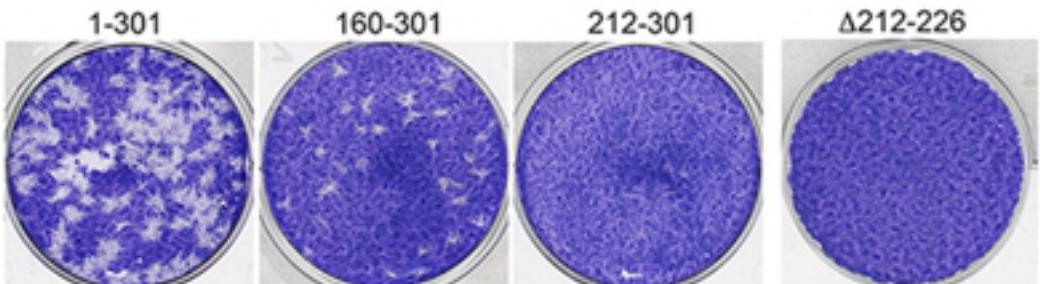

bioRxiv preprint doi: <https://doi.org/10.1101/415497>; this version posted September 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

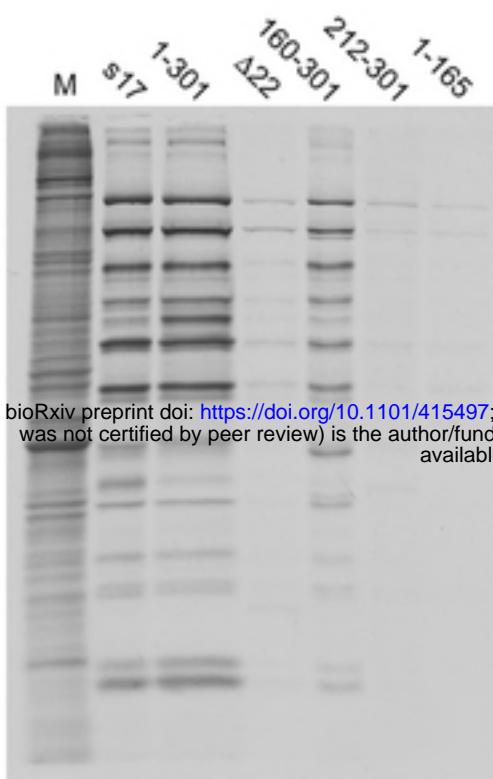

C**D**

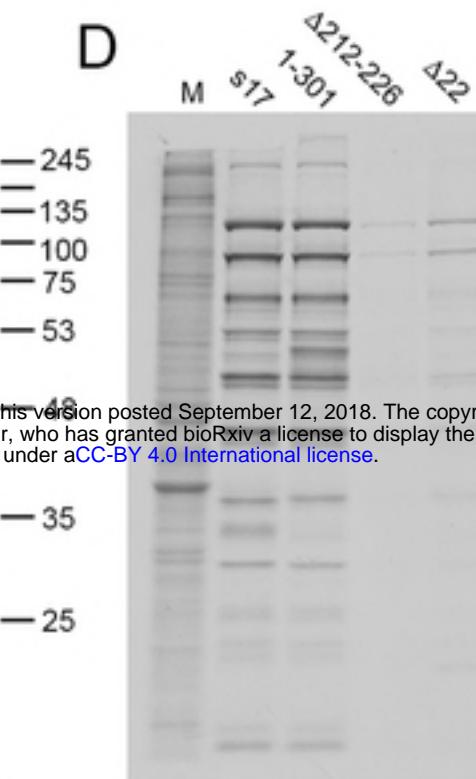
serpin E1 mRNA

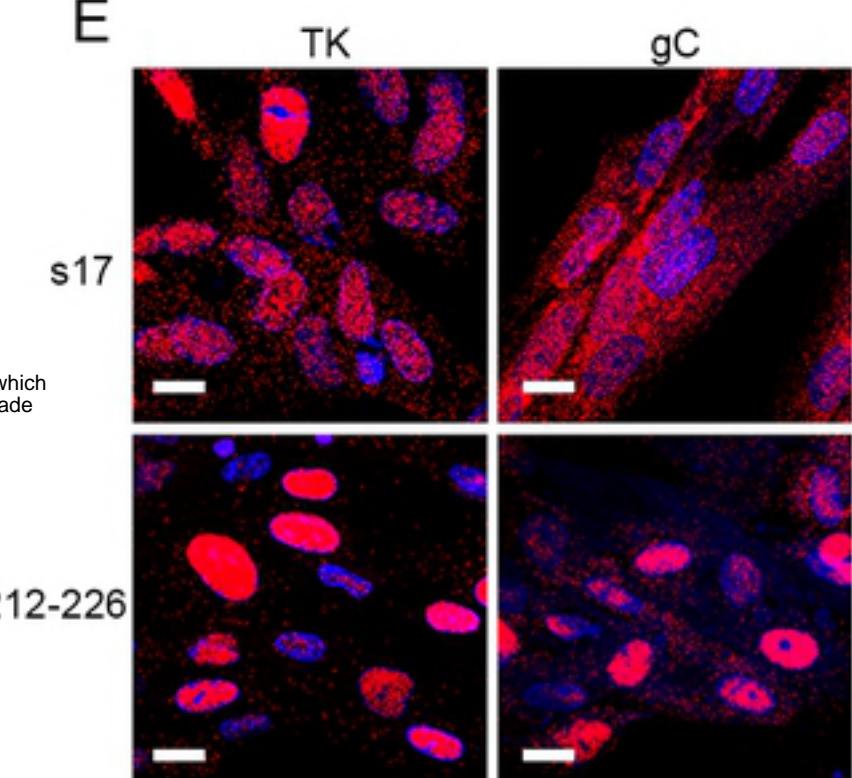

E

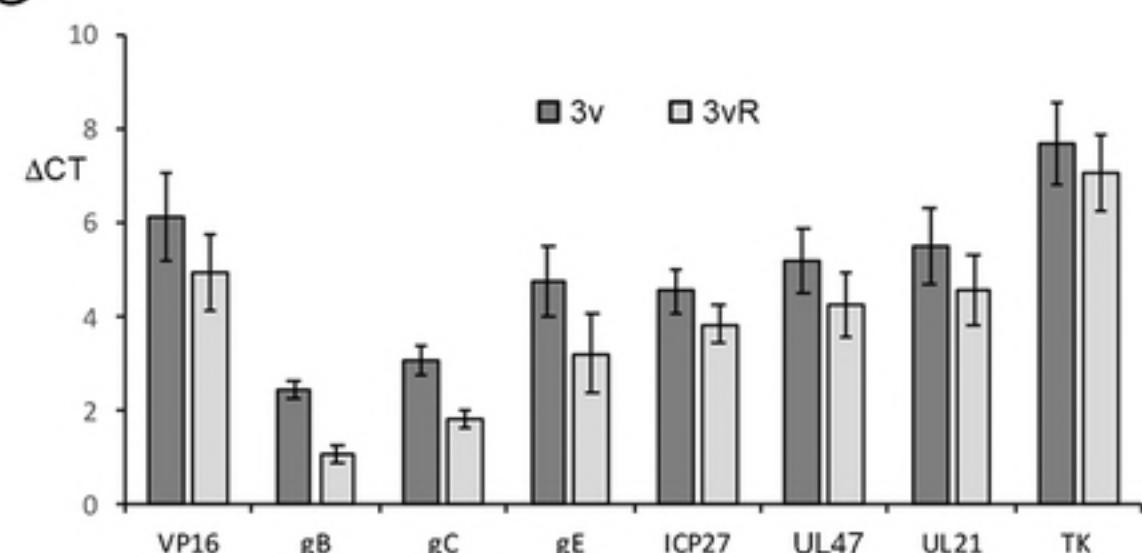
□ mock ■ Wt ■ Δ 22
+ Act D

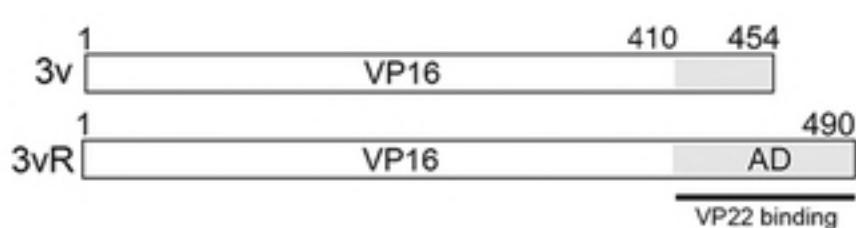

F

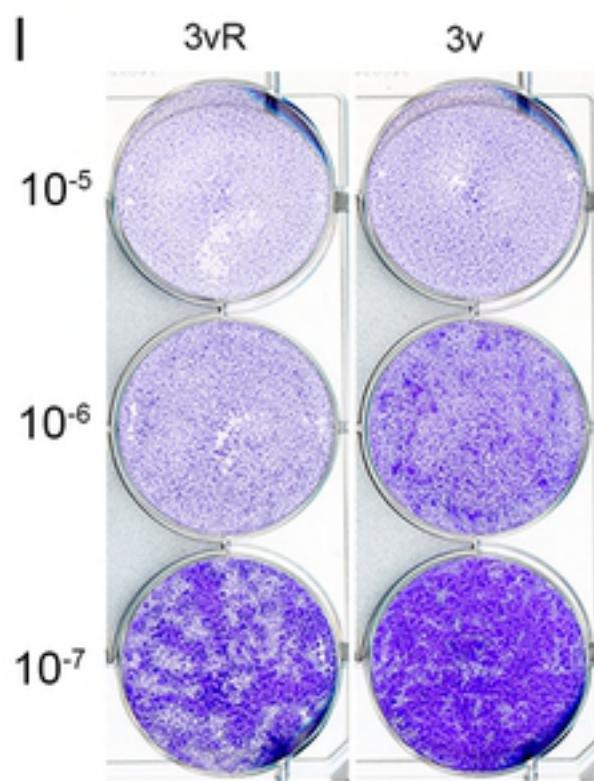
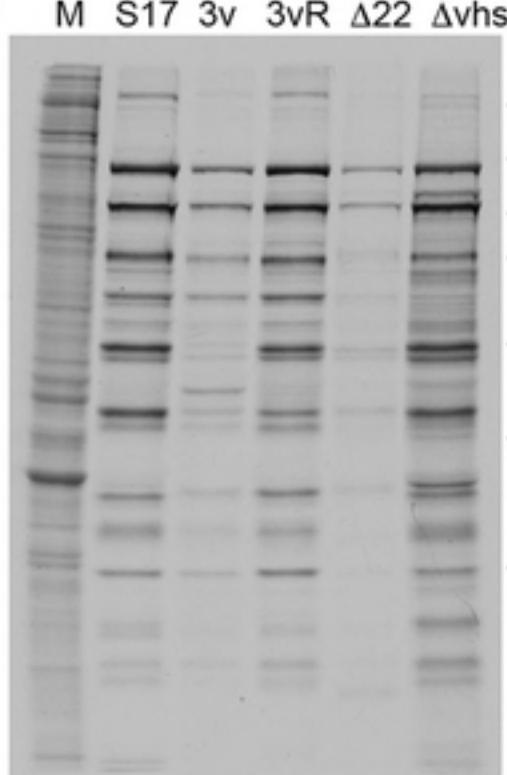

A


B

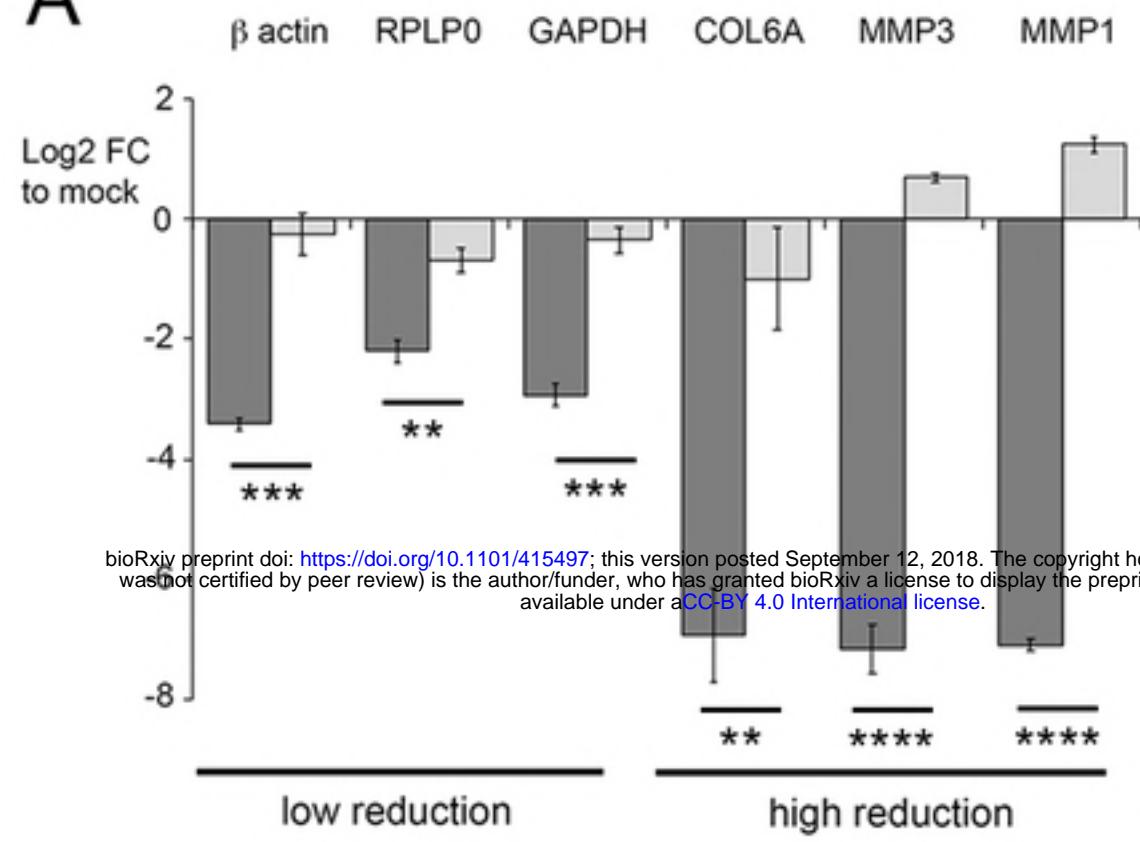
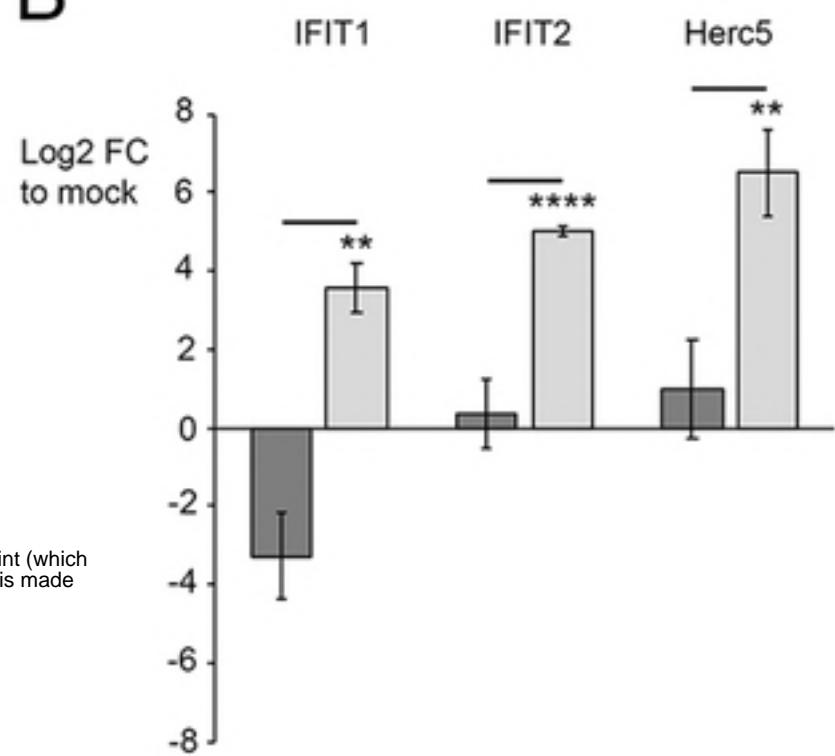

C

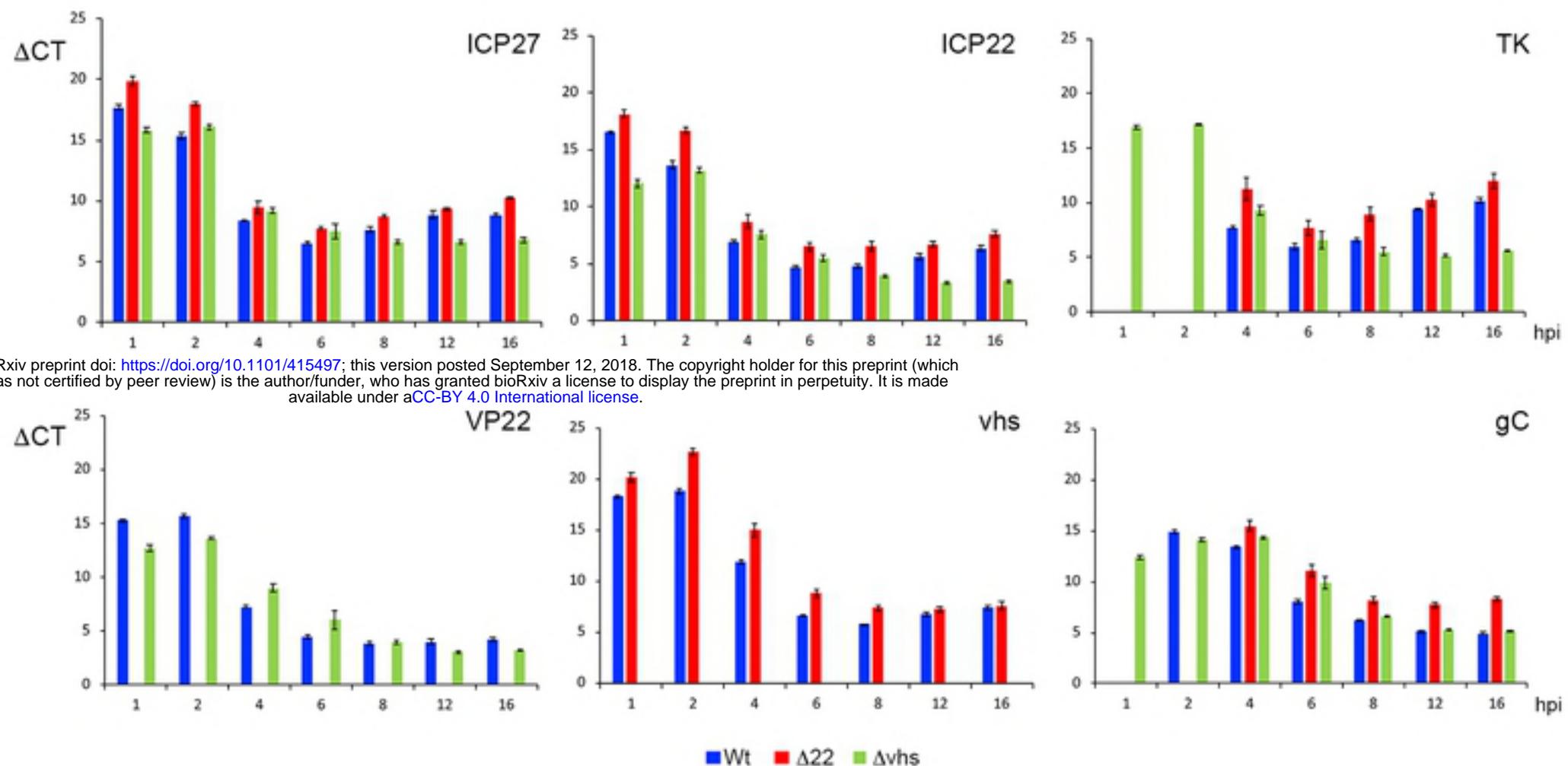
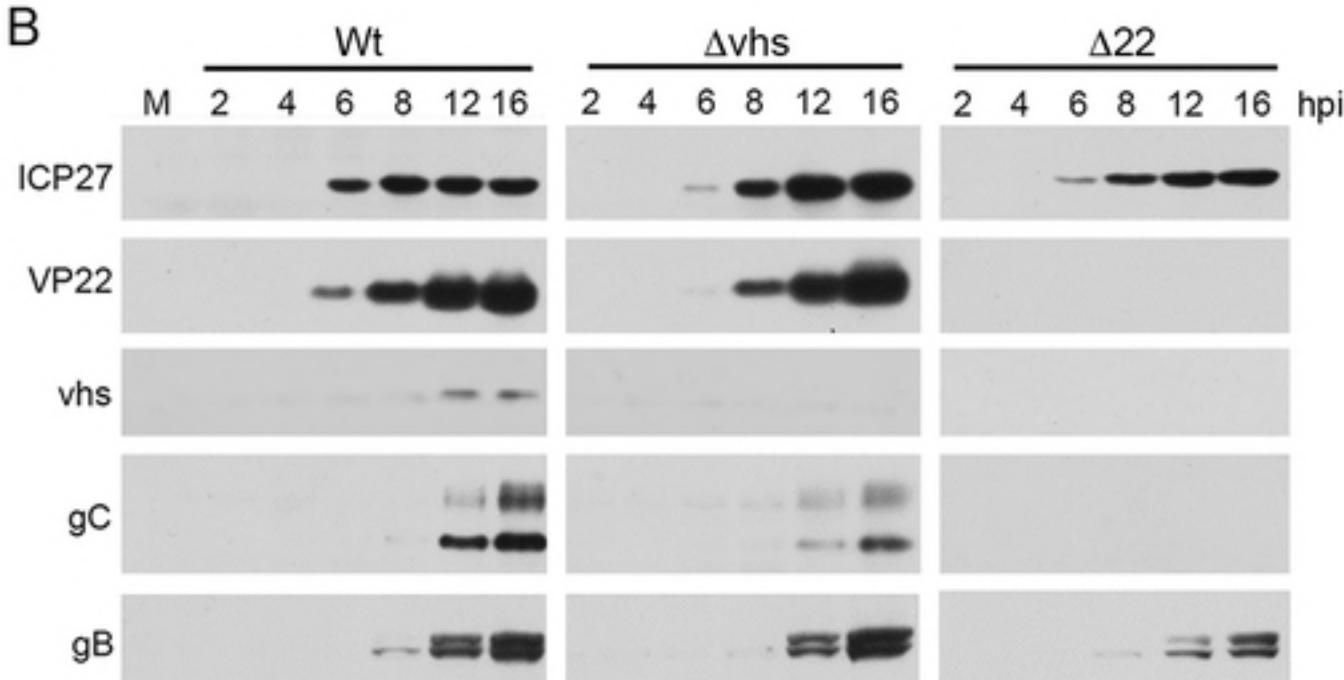
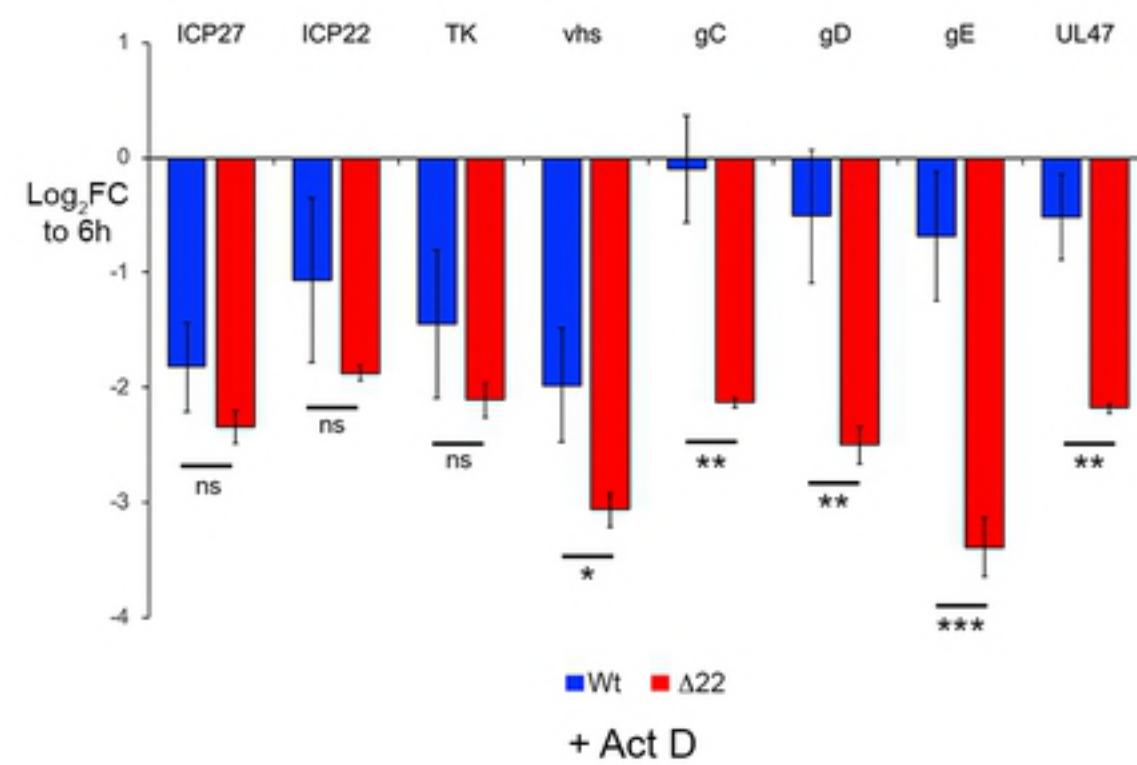

bioRxiv preprint doi: <https://doi.org/10.1101/415497>; this version posted September 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


E



G

F





H

J

A**B****C**

A**B****C**