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Abstract

HSV1 encodes an endoribonuclease termed virion host shutoff (vhs) that is produced late
in infection and packaged into virions. Paradoxically, vhs is active against not only host but
also virus transcripts, and is involved in host shutoff and the temporal expression of the virus
transcriptome. Two other virus proteins - VP22 and VP16 — are proposed to regulate vhs to
prevent uncontrolled and lethal mRNA degradation but their mechanism of action is
unknown. We have performed dual transcriptomic analysis and single-cell mRNA FISH of
human fibroblasts, a cell type where in the absence of VP22, HSV1 infection results in
extreme translational shutoff. In Wt infection, host mMRNAs exhibited a wide range of
susceptibility to vhs ranging from resistance to 1000-fold reduction, a variation that was
independent of their relative abundance or transcription rate. However, vhs
endoribonuclease activity was not found to be overactive against any of the cell
transcriptome in A22-infected cells but rather was delayed, while its activity against the virus
transcriptome and in particular late mMRNA was minimally enhanced. Intriguingly, immediate-
early and early transcripts exhibited vhs-dependent nuclear retention later in Wt infection
but late transcripts were cytoplasmic. However, in the absence of VP22, not only early but
also late transcripts were retained in the nucleus, a characteristic that extended to cellular
transcripts that were not efficiently degraded by vhs. Moreover, the ability of VP22 to bind
VP16 enhanced but was not fundamental to the rescue of vhs-induced nuclear retention of
late transcripts. Hence, translational shutoff in HSV1 infection is primarily a result of vhs-
induced nuclear retention and not degradation of infected cell MRNA. We have therefore
revealed a new mechanism whereby vhs and its co-factors including VP22 elicit a temporal
and spatial regulation of the infected cell transcriptome, thus co-ordinating efficient late

protein production.


https://doi.org/10.1101/415497
http://creativecommons.org/licenses/by/4.0/

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

bioRxiv preprint doi: https://doi.org/10.1101/415497; this version posted September 12, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Author Summary

Herpesviruses are large DNA viruses that replicate in the nucleus and express their genes
by exploiting host cell MRNA biogenesis mechanisms including transcription, nuclear export,
translation and turnover. As such, these viruses express multiple factors that enable the
appropriation of cellular pathways for optimal virus production, and work in concert to shut
off host gene expression and to overexpress virus genes in a well-described cascade that
occurs in a temporal pattern of immediate-early, early and late proteins. We have analysed
global and single cell changes in the host and virus transcriptome to uncover a novel
mechanism by which the viral endoribonuclease, termed vhs, turns off early virus gene
expression. This is achieved through the vhs-induced nuclear retention of the entire infected
cell transcriptome at the onset of late gene expression. To enable the switch from early to
late protein production the virus then requires a second factor called VP22 to specifically
inhibit the nuclear retention of late transcripts allowing their translation in the cytoplasm. In
this way, HSV1 elicits a temporal and spatial regulation of the infected cell transcriptome to
co-ordinate efficient late protein production, a process that may be relevant to herpesviruses

in general.
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Introduction

Herpesviruses exhibit two major characteristics of gene expression during lytic infection: a
global shutoff of host gene expression, and a temporal pattern of virus gene expression
resulting in a cascade of immediate-early (IE), early (E) and late (L) protein synthesis, such
that L genes encoding the virus structural proteins are expressed optimally after DNA
replication [1]. These two features are interlinked through the complex activities of a number
of virus factors which regulate and usurp cellular post-transcriptional RNA biogenesis steps,
including splicing, nuclear export, stability and association with the translation machinery.
To date, the best-characterised protein shown to be involved in RNA biogenesis is the
herpes simplex virus 1 (HSV1) IE protein ICP27 (and homologues) which is involved in the
shutoff of host translation [2, 3] by inhibiting the export of spliced cellular mRNAs [4], and
the expression of virus proteins, being essential for the export of unspliced L viral transcripts
in to the cytoplasm for their translation [2, 5-7]. Several herpesviruses encode their own
endoribonucleases factors that also regulate host shutoff and the kinetics of virus gene
expression, such as the HSV1 vhs (virion host shutoff) [8-11] and the KSHV sox (shutoff
and exonuclease) [12] proteins. These factors degrade host mMRNAs in a global fashion, an
activity that is believed to be important for counteracting host cell responses to virus infection
[13], with multiple mRNAs for antiviral proteins degraded during infection [14-19]. vhs
degrades mRNAs by binding to the cellular translation initiation machinery through the elF4F
cap-binding complex and cleaving the bound transcripts [20-23] implying a potential lack of
discrimination between cellular and viral transcripts. Indeed, although non-essential in tissue
culture, the fact that IE mRNAs are present at higher levels in cells infected with a Avhs virus
than in Wt infected cells [13], suggests that vhs is involved in regulating the temporal
transition from IE to E gene expression by actively degrading IE mRNAs [24, 25]. Moreover,

because vhs is packaged into the tegument of the virion [9, 26], it has the capacity to act at
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two stages of infection — very early in infection after incoming vhs has been delivered to the
cytoplasm [27, 28], and at later times when it is newly synthesized, a time when significant

global reduction in host cell MRNAs is readily detectable [29].

Given the apparent lack of selectivity for cellular MRNAs over viral mRNAs by vhs [30], it is
considered that the high levels of vhs protein produced at later times of infection would be
detrimental to virus infection leading to eventual total shutoff of virus protein synthesis. Two
other virus proteins — VP22 and VP16 — are expressed around the same time as vhs and
form a trimeric complex with it [31-33], leading to the proposal that they neutralise the RNase
activity of vhs. In the absence of either VP22 or VP16, vhs would therefore ultimately
degrade virus mRNA in an unrestrained fashion leading to complete shutoff of virus protein
synthesis. In agreement with this model, deletion of VP16 is lethal to the virus causing
complete translational shutoff at intermediate and late times of infection and a block to virus
replication [34, 35]. However, in the case of VP22, although it has been reported by some
that deletion of this gene is lethal to the virus in the presence of functional vhs [36], we and
others have generated replication-competent, vhs-positive, VP22 deletion viruses which
replicate with minimal defect in Vero cells [37-40]. Hence, the interplay of these proteins in

the regulation of gene expression remains unclear.

Although vhs-induced translational shutoff is generally considered to be through its
endoribonuclease cleavage of cytoplasmic mRNAs followed by Xrn1 exonuclease
degradation [41], we have recently published that transient expression of vhs results in the
nuclear retention of not only its own but co-expressed mRNAs, in a negative feedback loop
that results in shutdown of translation of these transcripts in the expressing cell [42]. This
newly-defined nuclear retention results in translational shutoff but is mechanistically different
to the model of simple degradation of mMRNAs located on ribosomes. However, together with

the associated relocalisation of polyA binding protein (PABP) to the nucleus these results
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are consistent with studies reported for transiently expressed KSHV sox protein [43].
Moreover, the observation that this vhs-induced nuclear retention was overcome during
transient transfection by co-expression of VP16 and VP22 pointed to a novel effect of these
proteins on the translational shutoff activity of vhs [42]. Given these results, we have now
conducted a comprehensive analysis of the role of VP22 in vhs activity during infection. We
have identified human fibroblast cells (HFFF) as a cell type in which - unlike Vero cells - our
A22 virus exhibits extreme translational shutoff, and have used dual transcriptomics and
mRNA FISH to investigate global and single cell changes in the cell and virus transcriptome
in the presence and absence of VP22. Despite complete translational shutoff, vhs activity
against cell transcripts was not enhanced but rather was delayed when VP22 was not
present. Moreover, the total virus transcriptome was only modestly reduced in the absence
of VP22, but this reduction was specific to L transcripts. We have identified a novel role for
vhs in the nuclear retention of all virus transcripts in the nucleus, with IE and E transcripts
exhibiting nuclear retention at a time that correlates with the onset of vhs expression.
Intriguingly, VP22 was required to overcome the nuclear retention activity of vhs on L
transcripts, while a variant of VP16 which cannot interact with VP22 exhibited a phenotype
intermediate between Wt and A22, suggesting that VP16 enhances the role of VP22 in
regulating the compartmentalisation of the infected cell transcriptome. Hence, the
characteristic translational shutoff seen in A22 infected cells is the consequence of
dysregulated mRNA export rather than degradation. These results not only unveil a new
mechanism for regulating the nuclear export of mMRNAs for L protein expression in HSV1
infection, but also identify specific roles for vhs and VP22 in co-ordinating the specificity of

this retention and export.
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Results

Translational shutoff in HSV1 infected cells

To measure the contribution of the virus factors VP22 and vhs to translation in HSV1 infected
cells, we carried out metabolic labelling of a range of cells infected with Wt (strain 17), A22
or Avhs viruses. We have previously shown that our A22 virus replicates efficiently in Vero
cells [37, 38], so this cell type was used as a reference together with a range of human cell
types including HelLa, HaCaT or HFFF cells. The results indicated that after labelling for 1
hour at 15 hours after infection, the level of translation was broadly similar in Wt and A22
infected Vero cells, but a degree of translational shutoff was apparent in the A22 infections
of all the human cells tested (Fig 1A). Most notably, almost complete shutoff occurred in the
primary human fibroblast cell-type HFFF (Fig 1A). By contrast, Avhs infected cells exhibited
similar labelling levels to Wt infection in all cell-types although the profiles differed slightly
(Fig 1A). To determine the kinetics of translation shutoff during A22 infection of HFFF,
metabolic labelling was carried out at different times after infection (Fig 1B). This revealed
that at 5 h, the labelling profile of all three viruses was similar and comparable to uninfected
cells, indicating that the virus had not yet taken over the translation machinery of the cell at
this time (Fig 1B, 5 hpi). By 10 h, the majority of proteins translated in both the Wt and Avhs
infections were viral proteins, although the Avhs infection contained a stronger background
of alternative presumably cellular proteins (Fig 1B, 10 hpi). By contrast, translation in the
A22 infected cells had already begun to shut down at this time, and by 15h was almost
completely halted in comparison to either Wt or Avhs ((Fig 1B, 15 hpi). The relative ability of
these three viruses to form plaques on Vero or HFFF cells also reflected this degree of
translational shutoff, with A22 unable to plaque on HFFF cells but showing only a ~40%

reduction in plaque size on Vero cells (Fig 1C) [38]. Moreover, infection with viruses lacking
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the virion kinase UL13, or the neurovirulence factor ICP34.5 — virus proteins that have been
shown to have a role in translation in HSV1 infected cells [44-46]- resulted in neither a
global reduction in translation, nor an extreme decrease in plaque size in HFFF (S1 Fig).

This confirmed the direct importance of VP22 in the shutoff phenotype in HFFF.

The metabolic labelling profile and timing in HFFF also correlated with detection levels of
individual virus proteins by Western blotting where a number of virus proteins — in particular
the L proteins and specifically glycoproteins tested - were greatly reduced in HFFF cells
infected with the A22 virus compared to either Wt or Avhs infected cells at 16h (Fig 1D). The
IE and E proteins that were examined (ICP27 and TK in Fig 1D) were however present at a
similar level in A22 and Wt infection presumably reflecting their translation prior to the onset
of shutoff. Moreover, as shown by others [13, 25], the IE and E proteins were overexpressed
in Avhs infected HFFF cells (Fig 1D), indicative of failure of vhs to degrade these transcripts.
Of note, and as we have reported recently in HelLa cells, vhs was itself poorly translated in

A22 infected HFFF cells [42, 47].

Unlike HFFF cells, Vero cells are unable to produce interferon but are fully responsive to it
[48]. To understand why the A22 virus exhibited such extreme translational shutoff in HFFF,
we first determined if the A22 virus might be more sensitive to the actions of interferon by
performing a plaque reduction assay, whereby the virus was titrated on Vero cells that had
been left untreated or pre-treated with recombinant interferon . The effect of interferon on
the titre of the A22 and Avhs viruses was compared to the Wt s17, which is known to be
generally resistant to its activity [49], and a s17 derived virus lacking ICP34.5 (A34.5) which
is highly sensitive to interferon [50] (Fig 1E). In this case, both the A22 and Avhs viruses
were judged to be relatively resistant to the actions of interferon 3 and their titres were

reduced by no more than 30-fold compared to 10-fold for Wt virus (Fig 1E). By contrast, the


https://doi.org/10.1101/415497
http://creativecommons.org/licenses/by/4.0/

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

bioRxiv preprint doi: https://doi.org/10.1101/415497; this version posted September 12, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A34.5 virus showed over 2000-fold reduction (Fig 1E). In addition, we demonstrated that
there was no induction of IRF3 phosphorylation in A22 infection that might indicate increased
sensing of virus infection in these cells (Fig 1F), whereas cells infected with the Avhs virus
contained enhanced phospho-IRF3 levels as expected for its known role in targeting antiviral
responses [13]. Finally, we also examined the A22-infected cells for the presence of
hyperphosphorylated elF2a that could indicate host-induced shutoff of translation.
Uninfected HFFF already contained relatively high levels of phospho-elF2a, and as
expected from earlier studies [13, 51, 52], this was reduced in cells infected with Wt but not
Avhs HSV1 (Fig 1F). Nonetheless, in spite of the extreme translational shutoff in A22
infected cells, phosphorylation of elF2a was not upregulated in the absence of VP22 (Fig
1F). Analysis of a time course of infection for all three viruses showed an immediate
reduction in elF2a phosphorylation in the first 2 hours of infection, but that in Avhs-infected
cells, phosphorylation recovered quickly to uninfected cell levels by 4 hours suggesting that
vhs is required to maintain the reduction in elF2a phosphorylation (Fig 1G). In all infections,
further reduction of elF2a phosphorylation correlated with the start of L protein synthesis
from 8h onwards (Fig 1G), a feature that would be consistent with the activity of ICP34.5
[53]. In short, these data indicate that the translational shutoff seen during A22 infection
was not a consequence of cell-induced inhibition of the translation machinery. It is therefore
noteworthy that as we have seen before [54], the A22 virus does not have the phenotype
of a Avhs virus, despite the low level of vhs expressed in the absence of VP22 (Fig 1D) [37,

42].
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Transcriptomic analysis reveals highly variable susceptibility to vhs activity in HSV1
infected cells

An obvious reason for translational shutoff is the reduction of the pool of mMRNA available
for translation. As such, the current model predicts that vhs endonuclease activity is
unregulated in HSV1 infected cells where VP22 is absent and hence cellular and viral
mRNAs would be predicted to be hyper-degraded [36]. To comprehensively measure the
extent of vhs activity in HSV1 infected HFFF cells and compare the relative activity of vhs in
the presence and absence of VP22 on both cellular and viral transcripts, dual transcriptomic
analysis of Wt (strain 17) and A22 infected HFFF was carried out at 0, 4 and 12 hours after
infection. RNAseq was performed on 5 biological replicates for each condition, with
sequence reads being mapped to both the HSV1 genome and the human genome, and
normalisation and filtering carried out as described in Methods. Over 11,000 cellular
transcripts were detected in the HFFF libraries prepared from uninfected cells (as indicated
in Tables S1 to S6). Mapping the reads obtained for each library to the human and HSV-1
transcriptome indicated that the library composition comprised on average only 3% virus
reads at 4 h, but by 12 h this had risen to close to 75% (Fig 2A). This is quite different to the
situation previously shown for VZV where the virus has been shown to make up around 20%
of the transcriptome [55], and reflects the massive impact that HSV1 has on the total cell
transcriptome. Normalised and averaged library counts of each gene were used to
determine the differential expression of each detected transcript at 4 h and 12 h in Wt
infected cells in comparison to uninfected cells, expressed as Log, fold change (FC) to
uninfected (S1 & S2 Tables). Scatter plots showing average counts per million of transcripts
of uninfected versus 4 h or 12 h libraries revealed that there were only small differences in
abundance of most cellular transcripts at 4 h, but that by 12 h the vast majority of cell

transcripts were reduced in abundance in accordance with vhs activity (Fig 2B). Around 100
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cellular transcripts were upregulated > Log, FC of 1 as early as 4 h, although the majority
of the obviously increased transcripts were viral in origin (Fig 2B, 4h, cell transcripts in black;
virus transcripts in green). Three quarters of the upregulated cellular transcripts were
identified as representing interferon stimulated genes (ISGs) by screening those transcripts
that were increased against the interferome database (http://www.interferome.org) eg IFITs
1 and 2 as identified in Fig 2B (see also S2 Fig and S1 Table). By 12 h, 98% of cellular
transcripts were reduced more than 2-fold in Wt infection compared to uninfected cells, a
result taken to reflect the activity of the vhs endoribonuclease in the cell (Fig 2B, 12h; S2

Table).

Mapping of the virus reads across the HSV1 genome at both time points indicated that at 4
h, as expected, the reads mapped predominantly to IE genes, such as UL54 (ICP27) and
US1 (ICP22), or E genes such as UL23 (TK), UL29 and UL39 (Fig 2C, 4h). However, by 12
h the predominant transcription units covered the L genes including UL19 (major capsid
protein), UL48 and UL49 (tegument proteins VP16 and VP22), UL27 and UL44
(glycoproteins gB and gC), and across the entire Us region of the genome (Fig 2C, 12h).
The relative transcription of representative IE (ICP27), E (TK) and L gene (gD) transcripts
was further confirmed at the single cell level using multiplex mRNA FISH which indicated
that all cells in the population contained similar levels of each virus transcript, with ICP27
and TK levels changing little from 4h to 12 h, but gD increasing significantly, in line with the
transcriptomic results (Fig 2D). Such single-cell studies of mMRNA provide scope not only for

analysing relative levels but also relative localisation of individual transcripts.

Further analysis of the ~ 11,000 cellular transcripts revealed that there was a vast difference
in the relative differential expression of these transcripts at 12 h, with some transcripts
reduced by as much as Log, FC of -10, while others were hardly altered (Fig 2B, 12h; S2

Table). To confirm that this variability detected by RNAseq truly reflected the relative
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abundance of transcripts in the RNA samples being analysed rather than mapping artefacts,
we carried out gRT-PCR analysis on two independent RNA samples that had been prepared
in the same way as the RNA for the RNAseq libraries. The relative levels of transcripts
representative of upregulated, unaltered, and those exhibiting a range of susceptibility
during infection broadly validated the RNAseq data (S3 Fig). To further confirm that the
change in these transcripts was specific to the activity of vhs, qRT-PCR was carried out on
RNA from HFFF cells infected with Wt or Avhs virus at a multiplicity of 2 and harvested 16
h after infection. The reduction of all transcripts tested — those exhibiting both high and low
susceptibility to degradation — was shown to be dependent on the presence of vhs during
infection (Fig. 3A). Furthermore, three representative ISGs (IFIT1, IFIT2 and Herc5) were
shown to be greatly induced at 16h in Avhs compared to Wt infected cells (Fig 3B),

confirming the role that vhs plays in degrading these induced antiviral transcripts [13].

A potential explanation for variation in transcript susceptibility to vhs could be cell-to-cell
variation in vhs activity or response. We monitored the transcripts for serpin E1 and GLUL -
shown by RNAseq to be reduced at 12 hours in Wt infected cells by log, FC of -7.45 and -
0.9 respectively - by mRNA FISH of uninfected, Wt infected and Avhs infected HFFF at 16
hours. The serpin E1 transcript signal was clearly decreased in Wt compared to mock or
Avhs infected cells (Fig 3C, serpin E1). By contrast, the GLUL transcript signal was
maintained in infected cells compared to uninfected cells (Fig 3C, GLUL), providing further
evidence for differential susceptibility of cell mMRNAs to vhs activity. We also investigated
IFIT1 mRNA levels by mRNA FISH confirming that the number of IFIT1 transcripts was
increased in Avhs infected cells compared to mock or 12-hour Wt infection (Fig 3C, IFIT1).
Taken together, these data indicate that our RNAseq data correlates with results obtained

by both gRT-PCR and mRNA-FISH.
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Translational shutoff in cells infected with HSV1 lacking the VP22 gene is not a
consequence of overactive vhs

We next assessed the overactivity of vhs in A22 infections, by comparing the equivalent
RNAseq libraries for A22 infected HFFF to the Wt infected libraries (S3 to S6 Tables), with
differential expression plotted as scatter plots. Mapping the reads obtained for each library
to the human and HSV-1 transcriptome indicated that the library composition of A22 infected
cells was similar at 4 h but comprised a smaller percentage of virus transcripts at 12 h (Fig
2A). Unexpectedly, we found that there was little difference in the relative transcriptomes of
Wt and A22 at either early or late times, with scatter plots of the total infected cell
transcriptome showing limited difference in cellular (black circles) or virus (green circles)
transcript levels (Fig 4B; S5 & S6 Tables. See also Fig S4). With our transcriptomic study
selecting only two time points, we reasoned that we may have missed important differences
between Wt and A22 infected cells, and hence a time-course of infection was carried out on
Wt, A22 and Avhs infected HFFF cells to determine changes in representative transcript
levels over time. Relative changes of upregulated (IFITs 1 & 2), relatively insensitive (RPLPO
& GAPDH) and hypersensitive (MMP1 & MMP3) transcripts were then measured by qRT-
PCR, with the Log, FC plotted over time. In all three infections, the IFIT transcripts rose in
abundance between 2 and 4 h, and in the absence of vhs, these antiviral transcripts were
maintained at a high level throughout infection (Fig 4C, Avhs). However, in Wt infection they
began to decline almost immediately, while in A22 infection the levels kept rising and only
started to drop around 8 h (Fig 4C, upregulated transcripts). Likewise, for vhs sensitive
transcripts, degradation was also delayed in A22 compared to Wt infection, with degradation
beginning at 8h and 4h respectively (Fig 4C). It was only the insensitive transcripts that
appeared to be affected similarly in Wt and A22 infections (Fig 4C, low). The delayed activity

of vhs in A22 infected cells was also confirmed by mRNA FISH of serpin E1 shown above


https://doi.org/10.1101/415497
http://creativecommons.org/licenses/by/4.0/

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

bioRxiv preprint doi: https://doi.org/10.1101/415497; this version posted September 12, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

(Fig 3C) to be greatly reduced during Wt infection, revealing that it was still present at
uninfected cell levels 8h after infection with A22, but had been degraded by 16h, whereas
the transcript was still abundant in Avhs infection after 16 h (Fig 4D). These results suggest

that up to 16h, vhs is not universally overactive against cellular transcripts in the absence of

VP22.

In the experiments thus far described we had measured overall transcript levels rather than
degradation rates alone. One possible explanation for the range of susceptibility to vhs could
be that the variable level of loss in the cells reflects the balance between transcription and
degradation of these transcripts. We therefore tested the relative loss of two vhs-insensitive
transcripts (RPLPO and GAPDH) and two vhs-sensitive transcripts (MMP1 and MMP3) in
cells that had been incubated for 4 h with Actinomycin D to inhibit transcription from 6 h
onwards. In uninfected cells, none of the transcripts tested were significantly altered in the
presence of Act D, suggesting that they are all relatively stable over a 4h time period (Fig
4E, mock). The same experiment carried out in Wt infected cells indicated that even in the
absence of ongoing transcription the variable susceptibility of the tested transcripts to vhs
degradation held true, with the relative loss of highly susceptible transcripts being greater
than those that are relatively resistant (Fig 4E, Wt). By contrast, the high susceptibility
transcripts were not significantly degraded in A22 infected cells at this time (Fig 4E), a result
that is consistent with the relative changes seen in the time course at this time of infection
(Fig 4C) and correlates with the low level of vhs protein present in A22 infected cells (Fig

1D).

It is clear from the above data that the three groups of transcripts that we had identified —
upregulated, insensitive and hypersensitive — behaved differently in their response to vhs
activity in Wt infection. One potential explanation for such variation is that both incoming vhs

from the virion and newly synthesized vhs could be differentially contributing to mRNA
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degradation over the first few hours of infection. To test the relative effect of incoming vhs,
HFFF cells were infected with Wt HSV1 following pre-treatment with cycloheximide (CHX)
to block protein translation, such that any mRNA degradation detected would be a
consequence of vhs delivered by the virion. Total RNA samples were harvested at times up
to 10 h and transcript levels for representative genes compared to those found in non-treated
cells. qRT-PCR for the IE ICP27 transcript and the L gC transcript showed that, as expected,
transcription of ICP27 occurred but was reduced while transcription of gC was blocked in
the presence of CHX and hence the absence of ongoing infection (Fig 4F, right-hand panel).
The hypersensitive MMP1 and MMP3 transcripts underwent slow degradation in CHX-
treated cells, but as early as 2 hours after infection this was enhanced during active infection
(Fig 4F, central panel). By contrast, the upregulated IFIT1 and IFIT2 transcripts which began
to rise only by 4 hours were refractory to the activity of incoming vhs and required active

infection to be degraded (Fig 4F, left-hand panel).

Bearing in mind that vhs can act against virus as well as cell transcripts, and that it is this
effect that is predicted to cause translational shutoff that is detrimental to the virus, it is
noteworthy that the relative levels of virus transcripts in the 12 h RNAseq data showed that
there were only small differences in the virus transcriptome between Wt and A22 (Fig 4B,
green circles). Nonetheless, those transcripts that were less abundant in A22 infection were
predominantly those that encode L structural proteins (S6 Table & S5 Fig). To get a clearer
picture of the effect of deleting VP22 on the levels of virus transcripts over time, we analysed
the same time-course described in Fig 4 by gqRT-PCR for a number of virus transcripts
representing IE (ICP27 and ICP22); E (TK); and L (VP22, vhs and gC) genes. In this case,
the ACT values were plotted to compare the relative expression of the individual transcripts
in each virus at the denoted time points, and to determine how each mRNA changed over

time in the presence and absence of VP22 and vhs. For all transcripts, there was a modest
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but consistent increase in the ACT value of all transcripts tested (ie a drop in transcript level)
in the A22 infected cells compared to Wt at each time point (Fig 5A, compare Wt and A22)
confirming the single point transcriptomic analysis. Between 8 and 16 h there was little
difference in the ACT values of the L transcripts tested in Wt and Avhs infected cells, but
there was an increase for IE and E transcripts in Wt infection, with ICP27, ICP22 and
particularly TK maintained at a high level at later times in the absence of vhs (Fig 5A). This
agrees with studies from others [25] and likely reflects the fact that vhs degrades these
mRNAs in Wt infections. Indeed, the drop in these transcript numbers in Wt infected cells
correlated with the timing of vhs expression and activity from 6 h onwards. By contrast, in
A22 infected cells all transcripts tested were found to be around 2-fold lower than in Wt
infected cells throughout the course of the entire infection (Fig 5A, compare A22 and Wht),
with the exception of gC which was up to10-fold lower by 16 hours. Western blotting of
relevant virus proteins through the same time course confirmed the expected expression
levels of representative proteins, including enhanced ICP27 levels in the Avhs infection, and

extremely low levels of L proteins in A22 infection (Fig 5B).

The differences seen in virus transcript levels in the absence and presence of VP22 could
be a consequence of differential transcription and/or degradation. Hence, we next tested the
relative loss of a range of virus transcripts in cells that had been incubated for 4 h with Act
D to inhibit transcription. The IE (ICP27 and ICP22) and E (TK) transcripts that were tested
were all reduced around four-fold in these conditions, presumably reflecting their
degradation by vhs, but there was no significant difference between the relative loss in Wt
and A22 infected cells (Fig 5C). By contrast, while all L transcripts tested were equally
susceptible to vhs as the earlier classes of transcript in the absence of VP22, these L
transcripts were minimally reduced in Wt infection (Fig 5C). This indicates that VP22

differentially “protects” L transcripts from degradation by vhs.
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Translational shut-off in cells infected with HSV1 lacking the VP22 gene correlates
with vhs-induced nuclear retention of L virus transcripts

Taken together with our results above demonstrating that vhs degradation activity is not
vastly overactive in A22 infected cells, we reasoned that the extreme translational shutoff
seen in the absence of VP22 may be a consequence of mRNA localisation rather than
levels. To understand the behaviour of different classes of virus transcripts, we next
examined the localisation of representative virus transcripts up to 12h in Wt infected cells —
the IE ICP27 and ICPO transcripts, the E TK transcript and the L vhs and gC transcripts.
ICP27 and ICPO were readily detectable at 2h and increased in numbers up to 8h. While
ICPO transcripts became obviously retained in the nucleus by 6h, an indication of the fact it
is a spliced transcript and, as shown by others its nuclear export would be inhibited by the
activity of ICP27 protein after DNA replication [4, 56], ICP27 transcripts were cytoplasmic
up to 12h when some level of nuclear retention became obvious (Fig 6, ICP27 & ICPO). In
the case of TK, a few transcripts were present in the nucleus at 2 hours indicative of
transcription just starting, but these became more obvious in the cytoplasm by 4 hours and
like ICP27 remained cytoplasmic until 12 h when a significant number of transcripts were
present in the nucleus. By contrast, the L gC transcript was only detectable at 4 hours and
remained entirely cytoplasmic up to 12 hours, despite the large number of transcripts
present (Fig 6, gC). Interestingly for vhs, despite being classed as a L gene, small numbers
of transcripts were detected in the nucleus as early as 2 hours and persisted until 8 hours
when its numbers increased. However, even by 12 hours the vhs mRNA was predominantly

nuclear (Fig 6, vhs).

In light of the above results, it is notable that we have recently reported that when expressed

in isolation, vhs causes the nuclear retention of its own transcript through a negative
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feedback loop [42]. Moreover, we also demonstrated the nuclear retention of co-expressed
transcripts which correlated with nuclear localisation of the polyA binding protein (PABP) in
transfected cells, in agreement with other studies [42, 43, 57, 58]. Here we found that Wt
HSV1 infection of HFFF also altered the localisation of PABP from being exclusively
cytoplasmic to being predominantly nuclear (Fig 7A). In Avhs infected cells, PABP
localisation remained cytoplasmic, confirming the role of vhs in its re-localisation to the
nucleus (Fig 7A). Interestingly, the re-localisation of PABP to the nucleus was more
pronounced in A22 infected cells where it was exclusively nuclear compared to Wt infection
(Fig 7A), suggesting that this activity of vhs is greatly enhanced in HFFF cells in the absence
of VP22. This led us to investigate the relative localisation of IE (ICP27), E (TK) and L (gC)
transcripts by mRNA FISH at 8 and 16 hours after infection — later than the previous
experiment but in line with our metabolic labelling studies - in Wt, Avhs and A22 infected
cells. At 8h, all three mRNAs exhibited similar cytoplasmic localisation regardless of the
presence or absence of vhs or VP22 (Fig 7B, 8 hpi). By contrast, there was a striking
difference at 16 hpi, when in Wt infected cells, ICP27 and TK mRNAs were substantially
localised to the nucleus as implied by the data presented in Fig 6, while gC was
predominantly cytoplasmic. However, in Avhs infected cells, all 3 transcripts were entirely
cytoplasmic, suggesting that vhs activity is required for the differential localisation of virus
transcripts seen in Wt infected cells. This provides evidence that vhs activity not only
degrades IE and E transcripts but causes their nuclear retention, a mechanism that would
by definition efficiently block translation of these mRNAs at late times when they are not
required. Moreover, L transcripts appear to be spared this effect of vhs thereby allowing
them to be efficiently translated at late times. Intriguingly, not only were the IE and E
transcripts predominantly nuclear by 16h in A22 infected cells, more so than in Wt infected

cells, but also the L gC transcript was almost entirely retained in the nucleus (Fig 7B, 16
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hpi), a situation that also held true for the L VP16 transcript (Fig 7C). In addition, mRNA
FISH of the spliced IE transcript showed that it was retained in the nucleus of all three
infections including the Avhs infection, albeit more so in the absence of VP22 (Fig 7C). As
such, our results demonstrate that in HFFF cells, VP22 is required for the cytoplasmic

localisation and hence translation of L virus transcripts in the presence of active vhs.

Cell transcripts insensitive to vhs degradation exhibit differential nuclear retention in
the presence or absence of VP22

In the absence of VP22 we have shown that all virus transcripts tested thus far are retained
in the nucleus. Given that this retention correlates with a limited but consistent reduction in
transcript levels, we hypothesized that the relative level of reduction in cellular transcripts
may reflect the degree of nuclear retention exhibited by those transcripts. Using mRNA
FISH, we examined the localisation of two transcripts hypersensitive to vhs (MMP1 & PPIB)
and two relatively insensitive transcripts (POLR2A & GLUL) in Wt and A22 infected cells at
12 h in comparison to uninfected cells. Importantly, the numbers of each transcript detected
in uninfected cells correlated well with the average CPM found in our uninfected RNAseq
data (Fig 8, mock, CPM number in top left-hand corner). Moreover, the level of depletion
detected in both Wt and A22 infected cells also correlated with our RNAseq data (Fig 8, Wt
& A22, Log, FC shown in top left-hand corner), with MMP1 and PPIB transcripts reduced
greatly in numbers, but little difference determined in POLR2A & GLUL. Strikingly, both
POLR2A and GLUL transcripts were retained in the nucleus of Wt infected cells, a feature
that was amplified in A22 infected cells (Fig 8), suggesting that the vhs-dependent block to
nuclear export of virus transcripts also resulted in the nuclear retention of these cellular
transcripts. Such nuclear retention would by definition minimise the susceptibility of those

nuclear- entrapped transcripts to further degradation by vhs resulting in only a minimal loss
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of transcript. By contrast, those transcripts that were highly degraded were not retained in

the nucleus, reflecting their degradation prior to nuclear retention activity.

Export of the infected cell transcriptome from the nucleus is enhanced by VP22
binding to VP16

Given that our results here suggest that the outcome of virus infection in the absence of
VP22 is the nuclear retention of L transcripts and translational shutoff of L proteins, we next
tested the requirement for the conserved domain of VP22 — ther region that contains the
VP16 binding domain - in this phenotype using a panel of previously described recombinant
viruses expressing deletion mutants of VP22 fused to GFP [59, 60] (Fig 9A). Plagque assays
on HFFF cells revealed that insertion of GFP at the N-terminus of VP22 had little effect on
plaque formation, while the C-terminal half of the protein containing the conserved domain
of VP22 (160-301) was sufficient to maintain plaque formation. However, further deletion
into this region (212-301) or deletion of only 12 residues within this domain (A212-226)
prohibited plaque formation in these cells (Fig 9B). Likewise, metabolic labelling indicated
that the same mutant viruses that failed to form plaques on HFFF resulted in translational
shutoff compared to GFP-22 expressing virus or virus expressing the C-terminal half of
VP22 (Fig 9C & D). Furthermore, mRNA FISH of cells infected with the A212-226 virus and
fixed at 16 hours revealed that this small deletion in VP22 was sufficient to cause nuclear
retention of gC transcripts thereby producing a phenotype equivalent to deletion of the entire

VP22 protein (Fig 9E).

VP22 and vhs both bind to VP16 to form a trimeric complex [31, 32, 42] through which they
are jointly proposed to quench vhs activity [36, 61]. The C-terminal half of VP22 shown
above to be required to rescue vhs-induced nuclear retention of L transcripts has been

reported to be involved in many activities including its binding to VP16, and hence the only
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role of this region may be to bring VP22 into the VP16-vhs complex. In an attempt to
discriminate between a requirement for this region in direct VP22 activity rather than simply
binding to VP16, we utilised a previously described virus that lacks the C-terminal 36
residues of VP16 that are required to bind to VP22 [42, 62] as outlined in Fig 9F. Comparison
of representative transcript levels by qRT-PCR between this mutant virus (3v) and its
revertant (3vR), indicated that similar to a A22 infection, all transcripts tested were present
at around 2-fold lower levels in the absence of the VP16-VP22 complex (Fig 9G).
Nonetheless, metabolic labelling studies (Fig 9H), plague assays on HFFF (Fig 9l) and
mMRNA FISH of the gC transcript (Fig 9J) indicated that the phenotype of the 3v virus was
less extreme than the A22 virus in all assays, suggesting that while the interaction of VP22
with VP16 enhances the role of VP22, it is not essential. In summary, our data suggests that
vhs, in combination with VP22 and VP16, co-ordinates the temporal expression of virus
genes by retaining IE, E and cell transcripts in the nucleus while allowing the export of L
transcripts, thereby ensuring that the translation of structural proteins is dominant for virus

assembly at this time.
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Discussion

Many viruses encode endoribonucleases which promote the degradation of host mMRNAs to
block host gene expression, resulting in translational shutoff during infection [63]. However,
the link between mRNA transcript degradation and translational shutoff has proved to be
more complex than originally believed, primarily because such endoribonucleases have the
potential to act on virus as well as cell transcripts. In this study we have used a combination
of transcriptomics and single cell MRNA analysis to not only characterise in detail the activity
of the HSV1 vhs endoribonuclease, but to determine the role of one of its cofactors, VP22,
in regulating vhs behaviour. RNAseq studies were performed at 4 and 12 hours after
infection of HFFF cells enabling us to determine the fate of some 11,000 cellular transcripts
and all virus transcripts at early and late times of infection. Two previously reported
microarray studies covered a similar time-frame of Wt and Avhs virus infection but both
focused only on transcripts that were upregulated during infection, and in particular those
that were activated as part of the host innate immune response [13, 29]. By contrast, two
more recent RNAseq based transcriptomic studies looked at the overall changes in ~11,000
cellular transcripts [64, 65], but only went as far as 8 hours after infection, and therefore
missed the greatest effect of vhs activity which as we have shown here occurs between 8
and 12 hours. Of note, because of the vast change in the relative content of the cell and
virus components of the total transcriptome by 12 hours, and hence changes in the absolute
amount of each component of the transcriptome, we were careful to normalise our data
using ERCC control transcripts to spike the RNA samples prior to library production [66, 67].
Subsequent validation of a range of transcripts by qRT-PCR provided confidence in the
RNAseq differential expression analyses of cellular and virus genes under different

conditions.
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In vivo, the main role of vhs on cellular transcripts is believed to be the degradation of
interferon-induced transcripts that express antiviral proteins [13-17, 19]. Human fibroblasts
were chosen for the study here due to the extreme translational shutoff phenotype of our
A22 virus in these cells compared to Vero cells, pointing to cell-type variation in the
requirement for VP22. Given that HFFF are primary human cells that can elicit a full antiviral
interferon response pathway, whereas Vero cells are unable to express interferon [48] we
reasoned initially that the differential phenotype in the absence of VP22 may be due to
antiviral responses expressed in HFFF but not Vero cells. However, our results indicated
that HFFF cells respond similarly to A22 infection compared to Wt infection, while mounting
a strong innate immune response to Avhs infection as expected [13]. Our studies show that
the majority of the ~100 upregulated genes in infected HFFF cells at 4 hours were classified
as ISG transcripts, with at least two of these (IFIT1 and IFIT2) shown by our more detailed
studies to be activated between two and four hours after infection. During infection, these
induced transcripts declined over the course of roughly 12 hours in a vhs-dependent fashion,
while IRF3 phosphorylation was enhanced in the absence of vhs, reflecting the signalling
events that occur when vhs is not present. Intriguingly our studies with cycloheximide
indicated that while it was components of the incoming virus that activated the innate
immune response to upregulate ISG expression, only newly synthesized vhs protein and
not virion delivered vhs was able to degrade thse activated ISG transcripts. In the absence
of VP22, this ISG degradation was delayed but nonetheless occurred, a situation that mirrors
vhs activity on other susceptible cellular transcripts, and may be a consequence of the low
level of vhs expressed in A22 infected cells [37, 42]. Thus, our results do not concur with a
recently published study that suggests that VP22 itself inhibits cellular DNA sensing through
cGAS/STING, and that HSV1 infection in the absence of VP22 fails to inhibit interferon

production [68].
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Two major features - that are likely to be linked - have emerged from our studies on vhs.
First, our RNAseq data revealed the differential degradation of cell transcripts ranging from
those that were reduced by log, FC of 10 (over 1000-fold), to those that were hardly altered.
Such a diverse effect of vhs was not a consequence of transcript abundance or, at least for
the transcripts that we tested, transcription dynamics. Detailed work from the Roizman lab
has shown previously that vhs selectively spares a small number of cellular transcripts from
degradation, a feature they have suggested could be sequence-specific [69, 70]. However,
the broader picture as presented here encompasses the effect of vhs on 11,000 cellular
transcripts and suggests there is a continuum of susceptibility to vhs activity. A possible
explanation for differential effects of vhs on the cellular transcriptome could be that vhs
preferentially targets transcripts in particular cellular locations or subsets of ribosomes.
While the detail of the transcripts that are resistant or susceptible to vhs will not be
considered further here, it is interesting to note that the majority of those that were efficiently
depleted (> Log, FC of -5) encode membrane and secreted proteins, suggesting that vhs

may have enhanced activity for transcripts translated on the endoplasmic reticulum.

Nonetheless, we suggest that the differential effects of vhs are likely to be linked to the
second major feature of vhs activity, its effect on the relative nuclear-cytoplasmic ratio of the
infected cell transcriptome. We have shown for the first time that vhs expression from around
8 hours onwards of HSV1 infection causes the retention of multiple transcripts — cellular and
viral - in the nucleus of the infected cell, thereby producing an effective mechanism of
translational shutoff that does not require complete mMRNA degradation. This single feature
reveals the mechanism by which the virus efficiently regulates the transition from IE/E to L
gene expression, as by selectively retaining IE/E but not L transcripts in the nucleus,
translation is effectively switched from early to late phases. These results complement our

previous study on vhs expressed by transient transfection [42], and add to a growing
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consensus that the activity of viral endoribonucleases in the cytoplasm affects events in the
nucleus. In particular, work on the KSHV sox protein has shown that sox expression blocks
RNA polymerase Il activity on the cellular genome [71] and causes mRNA transcripts to
become hyper-adenylated in the nucleus [43]. In KSHV and HSV1 infected cells, PABP — a
protein that has a steady-state cytoplasmic localisation but shuttles between the cytoplasm
and nucleus to bind polyadenylated mRNAs ready for export [72] — is released from mRNAs
that have been degraded and is imported in to and accumulates in the nucleus in an
endoribonuclease dependent fashion [42, 73, 74]. Here we found that in HFFF cells, PABP
relocalised to the nucleus between 8 and 12 hours after infection correlating with the major
expression of vhs. PABP was also more efficiently retained in the nucleus of A22 compared
to Wt infected cells, which correlated with the fact that in the absence of VP22, every
transcript tested underwent more efficient nuclear retention at this time. Such a phenotype
suggests that the nuclear retention activity of vhs is non-selective and explains the profound
translational shutoff seen in A22 infected cells even though the virus transcriptome was only
minimally altered compared to Wt. Moreover, it reveals the true role of VP22 in the regulation
of vhs activity, in that it rescues the cytoplasmic localisation of L transcripts in particular,

rather than their hyper-degradation.

Our data indicates three phases to vhs expression and activity. First, vhs brought in by the
virion begins to degrade highly susceptible cellular transcripts but does not act on stimulated
ISG transcripts. Second, a low number of vhs transcripts detectable as early as 2 hours (as
detected by mRNA FISH), and maintained at around 5 to 10 transcripts per cell up to 8 hours
was able to express enough vhs protein to continue the degradation of highly susceptible
transcripts and innate antiviral transcripts over and above the activity of incoming vhs
protein. Of note, unlike other virus transcripts, these vhs transcripts were retained in the

infected cell nuclei from the outset, in a manner similar to that detected in our studies of
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cells transiently expressing vhs [42]. Third, the transcription (and translation) of vhs was
enhanced later in infection (~ 8 hours) after which it caused the rapid nuclear retention of
virus and insensitive cellular transcripts together with PABP, results that we had also
previously observed in HelLa cells overexpressing vhs by transient transfection [42]. It is this
third phase of vhs activity from which VP22 differentially protects L transcripts. These three
waves of activity may indicate that a threshold of vhs protein and/or activity needs to be

reached before nuclear retention occurs.

An obvious question is therefore how our results fit with the well-characterised role of ICP27
in late gene expression, where it has been shown that ICP27 is required for cytoplasmic
localisation of late transcripts by binding to them and facilitating their nuclear export [5-7].
Moreover, ICP27 has been implicated in the translation of L proteins [75-77] while vhs and
ICP27 have been reported to interact on translating viral mRNAs [78]. Of note, VP22 has
been characterised as an RNA-binding protein [79, 80] via its C-terminal domain shown here
to be important for its activity on L-transcripts, and small amounts of it can be detected in
the nucleus of infected cells [81], and it is therefore tempting to speculate that VP22 is
somehow involved in ICP27-directed export of L transcripts. The fact that VP22 and vhs
both interact with different regions of VP16 [31, 32] and the incomplete phenotype of a virus
expressing a variant of VP16 that was unable to interact with VP22 (while still binding vhs)
also suggest that VP22 may be brought into proximity with vhs via VP16, an event that could
occur as vhs is brought to the mRNA during translation initiation on the ribosome. We
therefore suggest that the biogenesis of RNA in HSV1 infected cells is co-ordinated by a
combination of multiple virus factors that vary in a temporal fashion, and which together
ensure that both viral and cellular mRNAs are in the right place at the right time to ensure
the productivity of the infected cell is dedicated to make new virus particles. In summary,

our results present a new outlook on the complex subject of herpesvirus gene expression,
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providing scope to understand and tease apart the relative contributions made by each of

these proteins to RNA biogenesis, localisation and translation.
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Methods

Cells and Viruses

HFFF, HeLa (both obtained from European Collection of Authenticated Cell Cultures -
ECACC) and HaCaT (obtained from Prof J. Breuer) cells were cultured in DMEM
supplemented with 10% foetal bovine serum (Invitrogen). Vero cells (obtained from ECACC)
were grown in DMEM supplemented with 10% newborn calf serum (Invitrogen). Viruses
were routinely propagated in Vero cells, with titrations carried out in DMEM supplemented
with 2% human serum. HSV1 strain 17 (s17) was used routinely. The s17 derived VP22
deletion mutant (A22) and the vhs knockout virus (Avhs) have been described before [28,
38]. HSV1 strain Kos with a deletion of the C-terminal 36 residues of VP16 (RP3v) and its
revertant (RP3vR) have been described elsewhere [62] and were kindly provided by Steve
Triezenberg (Van Andel Institute). The s17 derived AUL13 and AICP34.5 knockout viruses
have been described previously [82, 83]. The construction of viruses expressing GFP-
tagged VP22 (GFP1-301), and GFP-tagged VP22 subdomains (GFP192-301, GFP108-301,
GFP1-212, GFP1-165 and GFPA213-226) has also been described before [59, 60, 84].
Antibodies & reagents

VP22 (AGV031) and UL47 (5283) antibodies have been described elsewhere [80, 85]. Other
antibodies used in this study were kindly provided by the following individuals: gD (LP14),
VP16 (LP1) and gB (R69), Tony Minson (University of Cambridge); vhs, Duncan Wilson
(Albert Einstein College of Medicine); gE (3114), David Johnson (Oregon Health and
Science University, Portland, OR USA); UL16 and UL21 John Wills (Penn State University);
TK, UL6 and UL32, Frazer Rixon, Centre for Virus Research, Glasgow. Other antibodies
were purchased commercially - o-tubulin (Sigma), VP5 (Virusys), gC, phospho-
elF2a, elF2a, IRF3, phospho-IRF3 (AbCam), PABP and ICPO (Santa Cruz). Horseradish

peroxidase-conjugated secondary antibodies were from Bio-Rad Laboratories. Actinomycin
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D (Sigma) was used at a concentration of 5 ug/ml. Cycloheximide (Sigma) was used at a

concentration of 100 pug/ml.

Plaque reduction assay

Vero cell monolayers were pre-treated with 1000 units/ml recombinant human IFN-R (R&D
Systems) for 24 hours prior to infection with serial dilutions of wild-type HSV-1 (s17) or
relevant mutants derived from this strain. The titres were determined by counting the number
of plaques after 96 hours in the presence of human serum and results were expressed as a

ratio of the titres observed in the presence or absence of interferon.

Metabolic labelling of infected cells

Cells grown in 3cm dishes were infected at a multiplicity of 2, and at indicated times were
washed and incubated for 30 mins in methionine-free DMEM before adding 50uCi of L-
[35S]-methionine (Perkin Elmer) for a further 30 min. Cells were then washed in PBS and
total lysates analysed by SDS-polyacrylamide gel electrophoresis. Following fixation in 50%
v/v ethanol and 10% v/v acetic acid, the gel was vacuum dried onto Whatman filter paper

and exposed to X-ray film overnight.

SDS-PAGE and Western blotting
Protein samples were analysed by SDS- polyacrylamide gel electrophoresis and transferred
to nitrocellulose membrane for Western blot analysis. Western blots were developed using

SuperSignal West Pico chemiluminescent substrate.

RNA-Seq: Library preparation, sequencing and assembly

Total RNA was extracted from 1 x 108 cells using Qiagen RNeasy reagents, with seven
biological replicates prepared for each condition. The quality of the RNA preparations was
assessed using a bioanalyser and five biological replicates representing each condition

chosen for downstream library preparation. lllumina RNA-Seq sequence libraries were
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constructed using the Strand-Specific RNA reagent kit (Agilent Technologies, G9691A),
according to manufacturer’s instructions (Protocol Version EO, March 2017). Here 1 ug of
total RNA was used as input for each sample. Sequence libraries were subsequently QC’d,
multiplexed, and run on an lllumina NextSeq 550 (75 cycle, high output) resulting in paired-
end (2 x 36 bp) datasets. Following the analysis of this initial dataset which indicated vastly
different compositions of the uninfected and 12 hpi infected samples that made it difficult to
determine differential expression with confidence, a further set of RNA samples was
prepared from uninfected, 12 hpi Wt and 12 hpi A22 infected HFFF cells in biological
triplicate. Here 1 ug of total RNA was again used as input for each sample but this time was
spiked with 2 yL of a 1:100 dilution of the ERCC RNA Spike-In Mix 1 (ThermoFisher,
4456740). Sequence libraries were subsequently QC’d, multiplexed, and run on an lllumina

NextSeq 550 (75 cycle, high output) resulting in paired-end (2 x 36 bp) datasets.

Bioinformatic analysis of RNAseq data

Preprocessing. Quality checks were performed via FastQC (version 0.11.4) [86].
Trimmomatic tool (version 0.32) [87] was used for quality trimming and clipping of adapters
and repeated sequences. Sequencing reads were mapped to the human transcriptome
(iGenome file, Homo sapiens UCSC hg19) using Tophat [88] and to the human herpesvirus
1 strain 17 (JN555585.1) coding sequences using Bowtie2 [89]. The function featureCounts
from the R package Rsubread [90] was used to assign mapped sequencing reads to
genomic features. Genomic features of the host were defined by the tool’s in-built NCBI
RefSeq annotations for the hg19 genome and the R package org.Hs.eg.db [91] was used
to annotate the genomic features. Filtering of lowly expressed genes was performed by

keeping genes with at least 5 counts per million (CPM) in at least 2 samples.

Normalisation. We sequenced three additional samples of each experimental condition, all

of which had been spiked with the external RNA control consortium (ERCC) spike-in control
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mix [66, 67], to determine the relationship between RNA-seq read counts and known inputs.
We fit a linear regression on the abundance estimated from RNA-seq and the known ERCCs
input amounts to derive a scaling factor. We then used the average of the scaling factor,

across replicates, as the global normalisation factor per condition.

Differential expression analyses. Based on the R Bioconductor package EdgeR [92],
CPM values were fitted to a negative binomial generalised log-linear model (GLM) using
empirical Bayes tagwise dispersions to estimate the dispersion parameter for each gene.

Differential expression in selected contrasts was identified using GLM likelihood ratio tests.

Scatter and volcano plots. In all plots host genes are shown in black and virus genes are
shown in green. Scatter plots show the mean log2 (CPM+1), across replicates, in each axis,
with the red diagonal broken line indicating no change between experimental conditions. In
the volcano plots the x-axis corresponds to the log2 FC between experimental conditions
and the y-axis corresponds to BH corrected —log10 p-values, with the red horizontal broken

line indicating a BH corrected p-value of 0.05.

Quantitative RT-PCR (qRT-PCR)

Total RNA was extracted from cells using Qiagen RNeasy kit. Excess DNA was removed
by incubation with DNase | (Invitrogen) for 15 min at room temperature, followed by
inactivation for 10 min at 65°C in 25 nM of EDTA. Superscript Il (Invitrogen) was used to
synthesise cDNA using random primers according to manufacturer’s instructions. All qRT-
PCR assays were carried out in 96-well plates using MESA Blue qPCR MasterMix Plus for
SYBR Assay (Eurogentec). Primers for cellular and viral genes are shown in Table S7.
Cycling was carried out in a Lightcycler (Roche), and relative expression was determined
using the AACT method [93], using 18s RNA as reference. For validation experiments, total

RNA was spiked commercial luciferase RNA (Promega) and relative expression was


https://doi.org/10.1101/415497
http://creativecommons.org/licenses/by/4.0/

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

bioRxiv preprint doi: https://doi.org/10.1101/415497; this version posted September 12, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

normalised to the level of luciferase RNA. Statistical analysis was carried out using an

unpaired, two-way student’s t test.

Fluorescent in situ hybridisation (FISH) of mRNA

Cells were grown in 2-well slide chambers (Fisher Scientific) and infected with virus. At the
appropriate time, cells were fixed for 20 min in 4% PFA, then dehydrated by sequential 5
min incubations in 50%, 70% and 100% ethanol. FISH was then carried out using Applied
Cell Diagnostics (ACD) RNAscope reagents according to manufacturer’s instructions.
Briefly, cells were rehydrated by sequential 2 min incubations in 70%, 50% ethanol and PBS,
and treated for 30 min at 37 °C with DNase, followed by 15 min at room temperature with
protease. Cells were then incubated for 2 h at 40 °C with the relevant RNAscope probe
(ICP27; ICPO; TK; gD; gC; VP16; vhs; serpin E1; MMP1; GLUL; POLR2A; PPIB; IFIT1 as
designed by Advanced Cell Dignostics, ACD), followed by washes and amplification stages
according to instructions. After incubation with the final fluorescent probe, the cells were
mounted in Mowiol containing DAPI to stain nuclei, and images acquired with a Nikon A2

inverted confocal microscope.

Immunofluorescence
Cells grown on coverslips were treated as described previously [94]. Images were acquired

on a Nikon A2 confocal microscope and processed using Adobe Photoshop software.
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Figures

Fig 1. Translational shutoff during HSV1 infection in the absence of VP22 expression.
(A) The indicated cell types were infected with Wt (s17), A22 or Avhs viruses at a multiplicity
of 2, and 16 hours later were incubated in the presence of [35S]-methionine for a further 60
mins. The cells were then lysed and analysed by SDS-PAGE followed by autoradiography.
(B) HFFF cells were treated as in A, and metabolic labelling with [35S]-methionine was
carried out at the indicated times after infection. (C) Confluent monolayers of HFFF were
infected with ~ 30 plaque forming units of each virus and plaques allowed to develop for 5
days before fixing and staining with crystal violet. (D) HFFF cells infected as in A were
harvested at 16 hours and analysed by SDS-PAGE and Western blotting with antibodies as
indicated. (E) Vero cells were left untreated, or treated for 20 hours with 1000 units/ml of
interferon B, prior to the titration of the indicated viruses. The mean and * standard error of
the data is given from three independent experiments. Statistical analysis was carried out
using an unpaired, two-way student’s t test. ns, p > 0.05. *** p <0.001. (F) The samples
from D were analysed by SDS-PAGE and Western blotting with the indicated antibodies.
(G) HFFF cells infected with Wt, A22 or Avhs viruses at a multiplicity of 2 were harvested at
the indicated times after infection (in hours) and analysed by Western blotting for VP16,

o tubulin and phospho-elF2a.

Fig 2. Dual transcriptomic analysis of human fibroblast cells infected with HSV1.
HFFF cells were left uninfected, or infected with HSV1 (s17) at a multiplicity of 2. At 4 or 12
h.p.i., total RNA was purified and used for library preparation followed by sequencing. A total
of 5 biological replicates were sequenced for each condition. (A) The proportion of reads
mapped in each condition to either the human (blue) or HSV1 (red) transcriptome. (B)

Differential expression analysis of cell and virus transcripts was conducted using EdgeR as
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described in Methods. Differences in the number of reads mapped to cell (black circles) and
virus (green circles) transcripts were plotted as scatter plots comparing results at 4 and 12
hours to uninfected cells. The 12 h results are also represented in a volcano plot indicating
the high level of significance for the detected changes (right hand panel). (C) The reads
obtained for the virus transcriptome were mapped to the virus genome for 4 (red) and 12
(green) hours. Numbers in parentheses represent maximum read counts per million
obtained in each condition. The location of the TK, ICP27 and gD genes are indicated by
arrows. (D) HFFF cells grown in slide chambers were infected with HSV1 (s17) at a
multiplicity of 2 fixed at 4 or 12 h, and subjected to multiplex mRNA FISH with probes to
genes representing IE (ICP27 in cyan), E (TK in red) and late (gD in green) transcripts.

Nuclei were counterstained with DAPI (blue). Scale bar = 20 um.

Fig. 3. qRT-PCR of vhs-induced reduction in cellular transcript levels correlates with
single cell mMRNA FISH. (A) & (B) HFFF cells were left uninfected or infected with HSV1 Wt
or Avhs viruses at a multiplicity of 2. Total RNA was purified at 16 hours and subjected to
gRT-PCR for transcripts identified as being susceptible to vhs activity (A) or for ISG
transcripts (B). The mean and * standard error of the data is given from one representative
experiment (n=3). Statistical analysis was carried out using an unpaired, two-way student’s
ttest. **, p < 0.01. ***, p < 0.001. **** p < 0.0001. (C) HFFF cells grown in chamber slides
were left uninfected (mock) or infected with Wt or Avhs viruses at a multiplicity of 2 and fixed
at 16 hours. mRNA FISH was carried out for serpin E1, GLUL1 or IFIT1 (green). Nuclei were

counterstained with DAPI (blue). Scale bar = 20 um.

Fig 4. Vhs activity against cellular transcripts is delayed in A22 infected HFFF cells.

(A) & (B) Dual transcriptomic analysis of HFFF cells infected with the A22 virus at a
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multiplicity of 2 was carried out alongside the analyses presented in Fig 2. (A) Proportion
of reads mapped in each condition to either the human (blue) or HSV1 (red) transcriptome.
(B) Differential expression analysis of cell and virus transcripts comparing Wt (y-axis) to A22
(x-axis) at 4 and 12 h after infection. Differences in the number of reads mapped to cell
(black circles) and virus (green circles) transcripts were plotted as scatter plots. (C) HFFF
cells were infected with Wt, A22 or Avhs viruses at a multiplicity of 2, and total RNA was
harvested at the indicated times (in hours). qRT-PCR was carried out for the indicated cell
transcripts. Transcript levels are expressed as the log, FC to mock (AACT) over time. The
mean and = standard error of the data is given from one representative experiment (n=3).
(D) HFFF cells were infected with Wt, A22 or Avhs viruses at a multiplicity of 2 were fixed at
8 or 16 hours after infection and processed for mRNA FISH with a probe specific for the
cellular transcript for serpin E1. Nuclei were counterstained with DAPI. Scale bar = 20 um.
HFFF cells were infected with Wt HSV1 at a multiplicity of 2. (E) At 6 hours, the cells were
either harvested for total RNA, or actinomycin D (5 ug/ml) was added and the infection left
for a further 4 hours before harvesting total RNA. gqRT-PCR was carried out on all samples
for the indicated cell transcripts, with results expressed as the log, FC to the sample
harvested at 6 hours (AACT). The mean and * standard error of the data is given from one
representative experiment (n=3). Statistical analysis was carried out using an unpaired, two-
way student’s t test. ns, p > 0.05. ***, p <0.001. (F) HFFF cells were pre-treated in the
absence or presence of cycloheximide (100 ug/ml) for 1 hour prior to infection with Wt HSV1
at a multiplicity of 2. Total RNA samples were purified at the indicate times and subjected to
gRT-PCR for upregulated transcripts (IFIT1 and IFIT2), hypersensitive transcripts (MMP1
and MMP2) and virus transcripts (ICP27 and gC). For cell genes, the transcript levels are
expressed as the log, FC to mock, and for virus genes the are expressed as log, FC to 2

hours. The mean and % standard error of the data is given from one representative
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experiment (n=3). Statistical analysis was carried out using an unpaired, two-way student’s

ttest. ns, p > 0.05. *** p < 0.001.

Fig. 5. vhs exhibits differential activity against late virus transcripts in the absence of
VP22. (A) The time course described in Fig 4C was analysed by qRT-PCR for representative
IE (ICP27 and ICP22), E (TK) and late (VP22, vhs and gC) transcripts, with results
represented as mean ACT values at each time point. (B) Total lysates harvested at the same
time as the RNA samples in Fig 4C were analysed by SDS-PAGE and Western blotting with
antibodies for the indicated proteins. (C) HFFF cells were infected with Wt HSV1 at a
multiplicity of 2. At 6 hours, the cells were either harvested for total RNA, or actinomycin D
(5 ng/ml) was added and the infection left for a further 4 hours before harvesting total RNA.
gRT-PCR was carried out on all samples for the indicated virus transcripts, with results
expressed as the log, FC to the samples harvested at 6 hours (AACT). The mean and %
standard error of the data is given from one representative experiment (n=3). Statistical
analysis was carried out using an unpaired, two-way student’s t test. ns, p > 0.05. * p < 0.05.

** < 0.01. **p < 0.001.

Fig. 6. HSV1 transcripts exhibit differential subcellular localisation. HFFF cells grown
in slide chambers were infected with Wt virus at a multiplicity of 2, fixed at 2, 4, 6, 8 or 12
hours after infection, and processed for mMRNA FISH with probes to the IE transcripts, ICP27
and ICPO, the E transcript TK and the late transcripts vhs and gC (all in red). Nuclei were

counterstained with DAPI (blue). Scale bar = 20 um.

Fig. 7. Nuclear retention of late virus transcripts in the absence of VP22. (A) HFFF

cells infected with Wt, Avhs or A22 viruses at a multiplicity of 2 were fixed 12 hours after
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infection and processed for immunofluorescence with an antibody to PABP (green). Nuclei
were counterstained with DAPI (blue). (B) HFFF cells infected with Wt, Avhs or A22 viruses
at a multiplicity of 2 were fixed at 8 or 16 hours after infection and processed for mMRNA FISH
with probes specific to an IE (ICP27), E (TK) or late transcript (gC) (all in red). Nuclei were
counterstained with DAPI (blue). (C) As for B, but cells fixed at 16 hours were processed
for mMRNA FISH with a probe specific to the late transcript VP16, or the spliced IE transcript

ICPO (both in red). Nuclei were counterstained with DAPI (blue). Scale bar =20 um.

Fig. 8. Cell transcripts insensitive to vhs activity are retained in the nucleus of
infected cells. HFFF cells infected with Wt or A22 viruses at a multiplicity of 2 were fixed at
12 hours after infection and processed for mRNA FISH with probes specific to two vhs
hypersensitive cell transcripts, MMP1 and PPIB, and two vhs-insensitive cell transcripts,
POLR2A and GLUL (all in green). Nuclei were counterstained with DAPI (blue). Scale bar
=20 um. CPM = average read counts per million in uninfected RNAseq libraries. Log, FC =
log, fold change in Wt and A22 infected RNAseq libraries at 12 hours as determined by

bioinformatic analysis.

Fig. 9. Cytoplasmic localisation of late transcripts is enhanced by VP22 binding to
VP16. (A) Line drawing of VP22 variants expressed as GFP fusion proteins in virus infection.
Black box indicated the conserved domain of VP22, grey box indicates the region required
for VP16 binding. (B) Plaque formation of viruses shown in A on HFFF cells. (C) & (D) HFFF
cells were infected with Wt (s17), A22 or the viruses shown in A at a multiplicity of 2, were
metabolically labelled with [35S]-methionine 15 hours after infection. Cells were lysed and
analysed by SDS-PAGE and autoradiography. (E) HFFF cells infected with Wt (s17) or

A212-226 at a multiplicity of 2 were fixed at 16 hours and subjected to mMRNA FISH with
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probes specific for the IE transcript ICP27 or the late transcript gC (both in red). Nuclei were
counterstained with DAPI (blue). Scale bar = 20 um. (F) Line drawing of the variant of VP16
(A454-490) expressed in the 3v virus based on the KOS strain, together with its rescue virus
3vR. The grey box indicates the C-terminal activation domain (AD) of VP16, the black line
indicates the region of VP16 required to bind VP22. (G) HFFF cells infected with the viruses
shown in F at a multiplicity of 2 were harvested for total RNA at 16 hours and analysed by
gRT-PCR for the indicated transcripts. Results are represented as ACT values. (H) HFFF
cells infected with Wt (s17), A22, Avhs or the viruses shown in F at a multiplicity of 2, were
metabolically labelled with [35S]-methionine 15 hours after infection. Cells were lysed and
analysed by SDS-PAGE and autoradiography. (1) The 3v and 3vR viruses were titrated onto
HFFF cells and plaques fixed and stained with crystal violet 5 days later. (J) HFFF cells
infected with 3v or 3vR viruses at a multiplicity of 2 were fixed at 16 hours and subjected to
multiplex mMRNA FISH with probes specific for the IE transcript ICP27 (green) and the late

transcript gC (red). Nuclei were counterstained with DAPI (blue). Scale bar = 20 um.


https://doi.org/10.1101/415497
http://creativecommons.org/licenses/by/4.0/

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

bioRxiv preprint doi: https://doi.org/10.1101/415497; this version posted September 12, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supporting information

S1 Table. RNAseq data for total Wt infected HFFF cell transcriptome at 4 hours
compared to uninfected HFFF cell transcriptome. Raw counts and counts per million for
all cell and virus genes in each biological replicate are listed, with genes expressed at a low
level filtered out by keeping genes with at least 5 counts per million (CPM) in at least 2

samples. Genes are ordered according to highest to the lowest Log, FC.

S2 Table. RNAseq data for total Wt infected HFFF cell transcriptome at 12 hours
compared to uninfected HFFF cell transcriptome. Raw counts and counts per million for
all cell and virus genes in each biological replicate are listed, with genes expressed at a low
level filtered out by keeping genes with at least 5 counts per million (CPM) in at least 2

samples. Genes are ordered according to highest to the lowest Log, FC.

S3 Table. RNAseq data for total A22 infected HFFF cell transcriptome at 4 hours
compared to uninfected HFFF cell transcriptome. Raw counts and counts per million for
all cell and virus genes in each biological replicate are listed, with genes expressed at a low
level filtered out by keeping genes with at least 5 counts per million (CPM) in at least 2

samples. Genes are ordered according to highest to the lowest Log, FC.

S4 Table. RNAseq data for total A22 infected HFFF cell transcriptome at 12 hours
compared to uninfected HFFF cell transcriptome. Raw counts and counts per million for
all cell and virus genes in each biological replicate are listed, with genes expressed at a low
level filtered out by keeping genes with at least 5 counts per million (CPM) in at least 2

samples. Genes are ordered according to highest to the lowest Log, FC.
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S5 Table. RNAseq data for total A22 infected HFFF cell transcriptome at 4 hours
compared to Wt infected HFFF cell transcriptome at 4 hours. Raw counts and counts
per million for all cell and virus genes in each biological replicate are listed, with genes
expressed at a low level filtered out by keeping genes with at least 5 counts per million

(CPM) in at least 2 samples. Genes are ordered according to highest to the lowest Log, FC.

S6 Table. RNAseq data for total A22 infected HFFF cell transcriptome at 4 hours
compared to Wt infected HFFF cell transcriptome at 4 hours. Raw counts and counts
per million for all cell and virus genes in each biological replicate are listed, with genes
expressed at a low level filtered out by keeping genes with at least 5 counts per million

(CPM) in at least 2 samples. Genes are ordered according to highest to the lowest Log, FC.

S7 Table. Primer pair sequences used for qRT-PCR.

S$1 Fig. Translational shutoff and plaque size phenotype of HSV1 lacking either the

UL13 or ICP34.5 gene on HFFF cells.

S2 Fig. Expression heatmap of interferon-stimulated genes in HSV1 infected cells at

4 and 12 hours after infection.

S3 Fig. Validation of RNAseq data by qRT-PCR. Two replicate RNA samples were
subjected to qRT-PCR using primers for the indicated transcripts, and the Log, FC

compared to that determined in the RNAseq experiment detailed in S2 Table.
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1281 S4 Fig. Dual transcriptomic analysis of HFFF cells infected with A22 HSV1. Differential
1282  expression analysis of cell and virus transcripts was conducted using EdgeR as described
1283 in Methods. Differences in the number of reads mapped to cell (black circles) and virus
1284  (green circles) transcripts were plotted as scatter plots (left hand panel) and volcano plots
1285 (right hand panel) comparing results at 4 and 12 hours to uninfected cells.

1286

1287 S5 Fig. Relative expression of virus transcriptome in Wt and A22 infected HFFF cells.
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