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Abstract 
Metastatic cancer is one of the major causes of death and is associated with poor 

treatment efficiency. A better understanding of the characteristics of late stage cancer is 
required to help tailor personalised treatment, reduce overtreatment and improve outcomes. 
Here we describe the largest pan-cancer study of metastatic solid tumor genomes, including 
2,520 whole genome-sequenced tumor-normal pairs, analyzed at a median depth of 106x and 
38x respectively, and surveying over 70 million somatic variants. Metastatic lesions were 
found to be very diverse, with mutation characteristics reflecting those of the primary tumor 
types, although with high rates of whole genome duplication events (56%). Metastatic lesions 
are relatively homogeneous with the vast majority (96%) of driver mutations being clonal and 
up to 80% of tumor suppressor genes bi-allelically inactivated through different mutational 
mechanisms. For 62% of all patients, genetic variants that may be associated with outcome of 
approved or experimental therapies were detected. These actionable events were distributed 
across various mutation types underlining the importance of comprehensive genomic tumor 
profiling for cancer precision medicine. 

 
Metastatic cancer is one of the leading causes of death globally and is a major burden for 

society despite the availability of an increasing number of (targeted) drugs. Health care costs 
associated with treatment of metastatic disease are increasing rapidly due to the high cost of novel 
targeted treatments and immunotherapy, while many patients do not benefit from these approaches 
with inevitable adverse effects for most patients. Metastatic cancer therefore poses a major challenge 
for society to balance between individual and societal treatment responsibilities. Since cancer 
genomes evolve over time, both in the highly heterogeneous primary tumor mass and as 
disseminated metastatic cells1,2, a better understanding of metastatic cancer genomes is crucial to 
further improve on tailoring treatment for late stage cancers. 

In recent years, several large-scale whole genome sequencing (WGS) analysis efforts such 
as TCGA and ICGC have yielded valuable insights in the diversity of the molecular processes driving 
different types of adult3,4 and pediatric5,6 cancer and have fueled the promises of genome-driven 
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oncology care7. However, most analyses were done on primary tumor material whereas metastatic 
cancers, which cause the bulk of the disease burden and 90% of all cancer deaths, have been less 
comprehensively studied at the whole genome level, with previous efforts focusing on tumor-specific 
cohorts8–10 or at a targeted gene panel11 or exome level12. 

Here we describe the first large-scale pan-cancer whole-genome landscape of metastatic 
cancers based on the Hartwig Medical Foundation (HMF) cohort of 2,520 paired tumor and normal 
genomes from 2,399 patients, collected prospectively in 41 hospitals in the Netherlands 
(Supplementary Table 1, Extended Data Fig. 1). All samples were paired with standardized clinical 
information (Supplementary Table 2). The sample distribution over age and primary tumor types 
broadly reflects solid cancer incidence in the Western world, including rare cancers (Fig. 1a-b). 

The cohort has been analyzed with paired-end whole genome sequencing with a median 
depth of 106x for tumor samples and 38x for the blood control (Extended Data Fig. 1). Sequencing 
data were analyzed for all types of somatic variants using an optimized bioinformatic pipeline based 
on open source tools (Methods, Supplementary Information). We identified a total of 59,472,629 
single nucleotide variants (SNVs), 839,126 multiple nucleotide variants (MNVs), 9,598,205 insertions 
and deletions (INDELs) and 653,452 structural variants (SVs) (Supplementary Table 2).  

Mutational landscape of metastatic cancer 
We analysed the tumor mutational burden (TMB) of each class of variants per cancer type 

based on tissue of origin (Fig. 1, Supplementary Table 2). In line with previous studies on primary 
cancers13,14, we found extensive variation in mutational load of up to 3 orders of magnitude both within 
and across cancer types. 

The median SNV counts per sample were highest in skin, predominantly consisting of 
melanoma (44k) and lung (36k) tumors with ten-fold higher SNV counts than sarcomas (4.1k), 
neuroendocrine tumors (NET) (3.5k) and mesotheliomas (3.4k). SNVs were mapped to COSMIC 
mutational signatures and were found to broadly match the patterns described in previous cancer 
cohorts per cancer type (Extended Data Figs. 2, 3)13. However, a number of broad spectrum 
signatures particularly S3, S8, S9, and S16 as well as some more specific signature (e.g. S17 in 
specific tumor types) appear to be overrepresented in our cohort. These observations may indicate 
enrichment of tumors deficient in specific DNA repair processes (S3) or increased hypermutation 
processes (S9) among advanced cancers or reflect mutagenic effects of previous treatments 
(Extended Data Fig. 3).  

The variation for MNVs was even greater with lung (median=821) and skin (median=764) 
tumors having five times the median MNV counts of any other tumor type. This can be explained by 
the well-known mutational impact of UV radiation (CC->TT MNV) and smoking (CC->AA MNV) 
mutational signatures, respectively (Extended Data Fig. 2). Although only di-nucleotide substitutions 
are typically reported as MNVs, 10.7% of the MNVs involve three nucleotides and 0.6% had four or 
more nucleotides affected. 

INDEL counts were typically ten-fold lower than SNVs, with a lower relative rate for skin and 
lung cancers (Fig. 1d, Extended Data Fig. 2). Genome-wide analysis of INDELs at microsatellite loci 
identified 60 samples with microsatellite instability (MSI) (Supplementary Table 2), representing 2.5% 
of all tumors. The highest rates of MSI were observed in central nervous system (CNS) (9.4%), uterus 
(9.1%) and prostate (6.1%) tumors. For metastatic colorectal cancer lesions we found an MSI 
frequency of only 4.0%, which is lower than reported for primary colorectal cancer, and in line with 
better prognosis for patients with localized MSI colorectal cancer, which less often metastasizes15. 
Remarkably, 67% of all INDELs in the entire cohort were found in the 60 MSI samples, and 85% of all 
INDELs in the cohort were found in microsatellites or short tandem repeats. Only 0.33% of INDELs 
(32k, ~1% of non-microsatellite INDELs) were found in coding sequences, of which the majority (88%) 
had a predicted high impact by affecting the open reading frame of the gene. 

The median rate of SVs across the cohort was 193 per tumor, with the highest median counts 
observed in ovary (412) and esophageal (372) tumors, and the lowest in kidney tumors (71) and NET 
(56) (Fig. 1d). Simple deletions were the most commonly observed SV subtype (33% of all SVs) and 
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were the most prevalent in every cancer type except stomach and esophageal tumors which were 
highly enriched in translocations (Extended Data Fig. 2). 

To gain insight into the overall genomic differences between primary and metastatic cancer, 
we compared the TMB of the HMF cohort against the PCAWG dataset14 which is the largest 
comparable whole genome sequenced tumor cohort available to date and which has 95% of biopsies 
taken from treatment-naive primary tumors. SNV mutational load does not, in general, appear to be 
indicative for disease progression as it is not significantly different in this study compared to PCAWG 
for the majority of cancer types (Fig. 1c). Prostate cancer and breast cancer are clear exceptions with 
structurally higher mutational loads (q<1e-10, Mann-Whitney Test) potentially reflecting relevant tumor 
biology and is, for prostate, consistent with other reports10,16. CNS tumors also have a higher 
mutational load but this may be explained by the different age distributions of the cohorts. 

In contrast, INDEL, MNV, and SV mutational loads are significantly higher across nearly all 
cancer types analyzed (Fig. 1d). This is most notable for prostate cancer where we observe a more 
than four-fold increased rate of each of MNV, INDEL & SV. Whilst these observations may represent 
the advancement of disease and higher rate of certain mutational processes in metastatic cancers, 
they are also partially due to differences in sequencing depth and bioinformatic analysis pipelines 
(Extended Data Figs. 4, 5, Supplementary Information). 

Copy number alteration landscape 
Copy number alterations (CNAs) are important hallmarks of tumorigenesis17. Pan-cancer, the 

most highly amplified regions in our metastatic cancer cohort contain the established oncogenes such 
as EGFR, CCNE1, CCND1 and MDM2 (Fig. 2). Chromosomal arms 1q, 5p, 8q and 20q are also 
highly enriched in moderate amplification across the cohort each affecting >20% of all samples. For 
the amplifications of 5p and 8q this is likely related to the common amplification targets of TERT and 
MYC, respectively. However, the targets of the amplifications on 1q, predominantly found in breast 
cancers (>50% of samples) and amplifications on 20q, predominantly found in colorectal cancers 
(>65% of samples), are less clear. 

We identified some intriguing patterns of recurrent loss of heterozygosity (LOH) caused by 
CNAs. Overall an average of 23% of the autosomal DNA per tumor has LOH. Unsurprisingly, TP53 
has the highest LOH recurrence at 67% of samples. Many of the other LOH peaks are also explained 
by well-known tumor suppressor genes (TSG). However, several clear LOH peaks are observed 
which cannot easily be explained by known TSG selection, such as one on 8p (57% of samples). 8p 
LOH has previously been linked to lipid metabolism and drug response18, although involvement of 
individual genes has not been established.  

There are remarkable differences in LOH between cancer types (Fig. 2, Supplementary 
Image File 1). For instance, we observed LOH events on the 3p arm in 90% of kidney samples19 and 
LOH of the complete chromosome 10 in 72% of CNS tumors (predominantly glioblastoma 
multiforme20). Even in the case of the TP53 region on chromosome 17, different tumor types display 
clearly different patterns of LOH. Ovarian cancers exhibit LOH of the full chromosome 17 in 75% of 
samples whereas in prostate cancer, which also has 70% LOH for TP53, this is nearly always caused 
by highly focal deletions. 

Unlike LOH events, homozygous deletions are nearly always restricted to small chromosomal 
regions. Not a single example was found in which a complete autosomal arm was homozygously 
deleted. Homozygous deletions of genes are surprisingly rare as well: we found only a mean of 2.0 
instances per tumor where one or multiple consecutive genes are fully or partially homozygously 
deleted. In 46% of these events a putative TSG was deleted. The scarcity of passenger homozygous 
deletions underlines the fact that despite widespread copy number alterations in metastatic tumors, 
the vast majority of genes or gross chromosomal organization likely remain essential for tumor cell 
survival. Chromosome Y loss, which has been described anecdotally for various tumor types21,22, is a 
special case and is deleted in 36% of all male tumor genomes but varies strongly between tumor 
types from 5% to 68% for CNS and biliary tumors respectively (Extended Data Fig. 6).  
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An extreme form of copy number change can be caused by whole genome duplication 
(WGD). We found WGD events in 56% of all samples ranging between 15% in CNS to 80% in 
esophageal tumors (Fig. 2). This is much higher than reported previously for primary tumors (25%- 
37%)23,24 and also higher than estimated from panel-based sequencing analyses of advanced tumors 
(30%)25. Ploidy levels, in combination with accurate tumor purity information, are essential for correct 
interpretation of the measured raw SNV and INDEL frequencies, e.g. to discriminate bi-allelic 
inactivation of TSG from heterozygous events which are more likely to be passengers or to determine 
(sub)clonality. Hence determining the WGD status of a tumor is highly relevant for diagnostic 
applications. Furthermore, WGD has previously been found to correlate with a greater incidence of 
cancer recurrence for ovarian cancer24 and has been associated with poor prognosis across cancer 
types, independently of established clinical prognostic factors25. 

Significantly mutated genes 
To identify significantly mutated genes (SMGs) potentially specific for metastatic cancer, we 

used the dNdScv approach26 with strict cutoffs (q<0.01) for the pan-cancer and tumor-type specific 
datasets. In addition to reproducing previous results on cancer drivers, a few novel genes were 
identified (Extended Data Fig. 8, Supplementary Table 3). In the pan-cancer analyses we found only a 
single novel SMG, which was not either present in the curated COSMIC Cancer Gene Census or 
found by Martincorena et al26. This gene, MLK4 (q=2e-4), is a mixed lineage kinase that regulates the 
JNK,P38 and ERK signaling pathways and has been reported to inhibit tumorigenesis in colorectal 
cancer27. In addition, in our tumor type-specific analyses, which for several tumor types is limited by 
the number of samples, we identified a novel metastatic breast cancer-specific SMG - ZFPM1 (also 
known as Friend of GATA1 (FOG1), q=8e-5), a zinc-finger transcription factor protein without clear 
links with cancer. Nonetheless, we found six unique frameshift variants (all in a context of biallelic 
inactivation) and three nonsense variants, which suggests a driver role for this gene in metastatic 
breast cancer. 

Our cohort also lends support to some prior SMG findings. In particular, eight significantly 
mutated putative TSG in the HMF cohort were also found by Martincorena et al26 - GPS2 (pan-cancer, 
q=1e-5 & breast, q=2e-3), SOX9 (colorectal & pan-cancer, q=0), TGIF1 (pan-cancer, q=3e-3 & 
colorectal q=6e-3), ZFP36L1 (urinary tract q=3e-4, pan-cancer q=9e-4) and ZFP36L2 (colorectal & pan-
cancer, q=0), HLA-B (lymphoid, q=5e-5), MGA (pan-cancer, q=4e-3), KMT2B (skin, q=3e-3) and RARG 
(urinary tract 8e-4). None of these genes are currently included in the COSMIC Cancer Gene 
Census28. ZFP36L1 and ZFP36L2 are of particular interest as these genes are zinc-finger proteins 
that normally play a repressive regulatory role in cell proliferation, presumably through a cyclin D 
dependent and p53 independent pathway29. ZFP36L2 is also independently found as a significantly 
deleted gene in our cohort, most prominently in colorectal and prostate cancers. 

We also searched for genes that were significantly amplified or deleted (Supplementary Table 
4). CDKN2A and PTEN were the most significantly deleted genes overall, but many of the top genes 
involved common fragile sites (CFS) particularly FHIT and DMD, deleted in 5% and 4% of samples, 
respectively. The role of CFS in tumorigenesis is unclear and aberrations affecting these genes are 
frequently treated as passenger mutations reflecting localized genomic instability30. However, the 
uneven distribution of the deletions across cancer types may indicate that some of these could be 
genuine tumor-type specific cancer drivers. For example, we find deletions in DMD to be highly 
enriched in esophageal tumors (deleted in 38% of samples, whilst SV burden in this tumortype is only 
about 2-fold higher than average), GIST (Gastro-Intestinal Stromal Tumors; 24%) and pancreatic 
neuroendocrine tumors (panNET; 41%), which is consistent with a recent study that indicated DMD as 
a TSG in cancers with myogenic programs31. However, tissue type-specific gene expression and 
differences in origins of replication may also contribute to the observed patterns30. We also identified 
several significantly deleted genes not reported previously, including MLLT4 (n=13) and PARD3 
(n=9). 

Unlike homozygous deletions, amplification peaks tend to be broad and often encompass 
large number of genes, making identification of the amplification target challenging. However, SRY-

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 12, 2019. ; https://doi.org/10.1101/415133doi: bioRxiv preprint 

https://doi.org/10.1101/415133
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 5 of 32 

related high-mobility group box 4 gene (SOX4, 6p22.3) stands out as a significantly amplified single 
gene peak (26 amplifications) and is highly enriched in urinary tract cancers (19% of samples highly 
amplified). SOX4 is known to be over-expressed in prostate, hepatocellular, lung, bladder and 
medulloblastoma cancers with poor prognostic features and advanced disease status and is a 
modulator of the PI3K/Akt signaling32. 

Also notable was a broad amplification peak of 10 genes around ZMIZ1 at 10q22.3 (n=32) 
which has not previously been reported. ZMIZ1 is a member of the Protein Inhibitor of Activated STAT 
(PIAS)-like family of coregulators and is a direct and selective cofactor of Notch1 in T-cell 
development and leukemia33. CDX2, previously identified as an amplified lineage-survival oncogene 
in colorectal cancer34, is also highly amplified in our cohort with 20 out of 22 amplified samples found 
in colorectal cancer, representing 5.4% of all colorectal samples. 

Driver mutation catalog 
We created a comprehensive catalog of all cancer driver mutations across all samples in our 

cohort and all variant classes similar as described previously in primary tumors35 (N. Lopez, personal 
communication). To do this, we combined our SMG discovery efforts with those from Martincorena et 
al.26 and a panel of well known cancer genes (Cosmic Curated Genes)36, and added gene fusions, 
TERT promoter mutations and germline predisposition variants. Accounting for the proportion of SNV 
and INDELs estimated by dNdScv to be passengers, we found 13,384 somatic driver events among 
the 20,071 identified mutations in the combined gene panel (Supplementary Table 5) together with 
189 germline predisposition variants (Supplementary Table 6). The somatic drivers include 7,400 
coding mutation, 615 non-coding point mutation drivers, 2,700 homozygous deletions (25% of which 
are in common fragile sites), 2,392 focal amplifications and 276 fusion events.   

For the cohort as a whole, 55% of point mutations in the gene panel driver catalog were 
predicted to be genuine driver events. To facilitate analysis of variants of unknown significance (VUS) 
at a per patient level, we calculated a sample-specific likelihood for each point mutation to be a driver 
taking into account the TMB of the sample as well as the biallelic inactivation status of the gene for 
TSG and hotspot positions in oncogenes. Predictions of pathogenic variant overlap with known 
biology, e.g. clustering of benign missense variants in the 3’ half of the APC gene (Supplementary 
Image File 2) fits with the absence of FAP-causing germline variants in this part of the gene37. 

Overall, the catalog matches previous inventories of cancer drivers. TP53 (52% of samples), 
CDKN2A (21%), PIK3CA (16%), APC (15%), KRAS (15%), PTEN (13%) and TERT (12%) were the 
most common driver genes together making up 26% of all the driver mutations in the catalog (Fig. 3). 
However, all of the ten most prevalent driver genes in our cohort were reported at a higher rate than 
for primary cancers38, which may reflect the more advanced disease state. AR and ESR1 in particular  
are more prevalent, with driver mutations in 44% of prostate and 16% of breast cancers, respectively. 
Both genes are linked to resistance to hormonal therapy, a common treatment for these tumor types, 
and have been previously reported as enriched in advanced metastatic cancer11 but are identified at 
higher rates in this study.  

Looking at a per patient level, the mean number of total driver events per patient was 5.7, with 
the highest rate in urinary tract tumors (mean=8.0) and the lowest in NET (mean=2.8) (Fig. 4). 
Esophageal and stomach tumors also had elevated driver counts, largely due to a much higher rate of 
deletions in CFS genes (mean=1.6 for both stomach and esophageal) compared to other cancer 
types (pan-cancer mean=0.3). Fragile sites aside, the differential rates of drivers between cancer 
types in each variant class do correlate with the relative mutational load (Extended Data Fig. 6), with 
the exception of skin cancers, which have a lower than expected number of SNV drivers. 

In 98.6% of all samples at least one somatic driver mutation or germline predisposition variant 
was found. Of the 34 samples with no identified driver, 18 were NET of the small intestine 
(representing 49% of all patients of this subtype). This likely indicates that small intestine NETs have 
a distinct set of drivers that are not captured yet in any of the cancer gene resources used and are 
also not prevalent enough in our relatively small NET cohort to be detected as significant. 
Alternatively, NET tumors could be mainly driven by epigenetic mechanisms not detected by WGS39. 
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The number of amplified driver genes varied significantly between cancer types (Extended 
Data Fig. 7) with highly elevated rates per sample in breast cancer (mean = 2.1), esophageal 
(mean=1.8, urinary tract and stomach (both mean=1.7) cancers and nearly no amplification drivers in 
kidney cancer (mean=0.1) and none in the mesothelioma cohort. In tumor types with high rates of 
amplifications, these amplifications are generally found across a broad spectrum of oncogenes, 
suggesting there are mutagenic processes active in these tissues that favor amplifications, rather than 
tissue-specific selection of individual driver genes. AR and EGFR are notable exceptions, with highly 
selective amplifications in prostate, and in CNS and lung cancers, respectively, in line with previous 
reports20,40,41. Intriguingly, we also found two-fold more amplification drivers in samples with WGD 
despite amplifications being defined as relative to the average sample ploidy. 

The 189 germline variants identified in 29 cancer predisposition genes (present in 7.9% of the 
cohort) consisted of 8 deletions and 181 point mutations (Fig. 3c, Supplementary Table 6). The top 5 
affected genes were the well-known germline drivers CHEK2, BRCA2, MUTYH, BRCA1 and ATM, 
and together contain nearly 80% of the observed predisposition variants. The corresponding wild type 
alleles were found to be lost in the tumor sample in more than half of the cases, either by LOH or 
somatic point mutation, indicating a high penetrance for these variants, particularly in BRCA1 (89% of 
cases), APC (83%) and BRCA2 (79%). 

The 276 fusions consisted of 168 in-frame coding fusions, 90 cis-activating fusions involving 
repositioning of regulatory elements in 5’ genic regions, and 18 in-frame intragenic deletions where 
one or more exons were deleted (Supplementary Table 7). ERG (n=88), BRAF (n=17), ERBB4 
(n=16), ALK (n=12), NRG1 (9 samples) and ETV4 (n=7) were the most commonly observed 3’ 
partners together making up more than half of the fusions. 76 of the 89 ERG fusions were TMPRSS2-
ERG affecting 36% of all prostate cancer samples in the cohort. 146 fusion pairs were not previously 
recorded in CGI, OncoKb, COSMIC or CIViC36,42–44. A novel recurrent KMT2A-BCOR fusion was 
observed (in sarcoma and stomach cancer) and there were also 3 recurrent novel localized fusions 
resulting from adjacent gene pairs: YWHAE-CRK (n=2), FGFR2-ATE1 (n=2) and BCR-GNAZ (n=2). 

Only promoter mutations in TERT were included in the study due to the current lack of robust 
evidence for other recurrent oncogenic non-coding mutations45. A total of 257 variants were found at 5 
known recurrent variant hotspots11 and included in the driver catalog. 

We found that 71% of somatic driver point mutations in oncogenes occur at or within 5 
nucleotides of already known pathogenic mutational hotspots. In the six most prevalent oncogenes 
(KRAS, PIK3CA, BRAF, NRAS, TERT & ESR1) the rate was 97% (Extended Data Fig. 9). 
Furthermore, in many of the key oncogenes, we document several likely activating but non-canonical 
variants near known mutational hotspots, particularly in-frame INDELs.   Despite in-frame INDELs 
being exceptionally rare overall (mean=1.7 per tumor), we found an excess in known oncogenes 
including PIK3CA (n=18), ERBB2 (n=10) and BRAF (n=8) frequently occurring at or near known 
hotspots46 (Extended Data Fig. 9). Notably, many of the in-frame INDELs are enriched in specific 
tumor types. For instance, all 18 KIT in-frame INDELs were found in sarcomas, 6 out of 8 MUC6 in-
frame INDELSs in esophageal tumors, and 6 of 10 ERBB2 in-frame INDELs in lung tumors. Finally, 
we identified 10 in-frame INDELs in FOXA1, which are highly enriched in prostate cancer (7 of 10 
cases) and clustered in two locations that were not previously associated with pathogenic mutations47. 
In CTNNB1 we identified an interesting novel recurrent in-frame deletion of the complete exon 3 in 12 
samples, 9 of which are colorectal cancers. Surprisingly, these deletions were homozygous but 
suspected to be activating as CTNNB1 normally acts as an oncogene in the WNT/beta-catenin 
pathway and none of these nine colorectal samples had any APC driver mutations. 

For tumor supressor genes (TSG), our results strongly support the Knudson two-hit 
hypothesis48 with 80% of all TSG drivers found to have biallelic inactivation by genetic alterations (Fig. 
3; i.e. either by homozygous deletion (32%), multiple somatic point mutations (7%), or a point 
mutation in combination with LOH (41%)). This rate is the highest observed in any large-scale cancer 
WGS study. For many key tumor suppressor genes the biallelic inactivation rate is almost 100% (e.g. 
TP53 (93%), CDKN2A (97%), RB1 (94%), PTEN (92%) and SMAD4 (96%)), suggesting that biallelic 
inactivation of these genes is a strong requirement for metastatic cancer.   Other prominent TSGs, 
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however, have lower biallelic rates, including ARID1A (55%), KMT2C (49%) and ATM (49%). It is 
unclear whether we systematically missed the second hit in these cases, as this could potentially be 
mediated through non-mutational epigenetic mechanisms49, or if these genes impact on 
tumorigenesis via a haploinsufficiency mechanism50. 

We examined the pairwise co-occurrence of driver gene mutations per cancer type and found 
ten combinations of genes that were significantly mutually exclusively mutated, and ten combinations 
of genes which were significantly co-occurrently mutated (excluding pairs of genes on the same 
chromosome which are frequently co-amplified or co-deleted) (Extended Data Fig. 10). The 20 
significant findings include previously reported co-occurrence of mutated DAX|MEN1 in pancreatic 
NET (q=7e-4), and CDH1|SPOP in prostate tumors (q=5e-4), as well as negative associations of 
mutated genes within the same signal transduction pathway such as KRAS|BRAF (q=4e-4) and 
KRAS|NRAS (q=0.008) in colorectal cancer, BRAF|NRAS in skin cancer (q=6e-12), CDKN2A|RB1 in 
lung cancer (q=8e-5) and APC|CTNNB1 in colorectal cancer (q=3e-6). APC is also strongly negatively 
correlated with both BRAF (q=9e-5) and RNF43 (q=4e-6) which together are characteristic of the 
serrated molecular subtype of colorectal cancers51. We also found that SMAD2|SMAD3 are highly 
positively correlated in colorectal cancer (q=0.02), mirroring a result reported previously in a large 
cohort of colorectal cancers52. 

In breast cancer, we found a number of significant novel relationships, including a positive 
relationship for GATA3|VMP1(q=6e-5) and FOXA1|PIK3CA (q=3e-3), and negative relationships for 
ESR1|TP53 (q=9e-4) and GATA3|TP53 (q=5e-5), which will need further validation and experimental 
follow-up to understand underlying biology. 

Clonality of variants 
To obtain insight into ongoing tumor evolution dynamics, we examined the clonality of all 

variants. Surprisingly, only 6.5% of all SNV, MNV & INDELs across the cohort and just 3.6% of the 
driver point mutations were found to be subclonal (Extended Data Fig. 11). The low proportion of 
samples with subclonal variants could be partially due to the detection limits of the sequencing 
approach (sequencing depth, bioinformatic analysis settings), particularly for low purity samples 
(Extended Data Fig. 11d). However, even for samples with purities higher than 80% the total 
proportion of subclonal variants only reaches 10.6%. Furthermore, sensitized detection of variants at 
hotspot positions in cancer genes showed that our analysis pipeline detected over 96% of variants 
with allele frequencies of > 3%. Although the cohort contains some samples with (very) high fractions 
of subclonal variants, overall the metastatic tumor samples are relatively homogeneous without the 
presence of multiple diverged major subclones. Low intratumor heterogeneity may be in part 
attributed to the fact that nearly all biopsies were obtained by a core needle biopsy, which results in 
highly localized sampling, but is nevertheless much lower compared to previous observations in 
primary cancers2. 

In the 117 patients with independently collected repeat biopsies from the same patient 
(Supplementary Table 8) we found 11% of all SNVs to be subclonal. Whilst 71% of clonal variants 
were shared between biopsies, only 29% of the subclonal variants were shared. Although we can not 
exclude the presence of larger amounts of lower frequency subclonal variants, our results suggest a 
model where individual metastatic lesions are dominated by a single clone at any one point in time 
and that more limited tumor evolution and subclonal selection takes places after distant metastatic 
seeding. This contrasts with observations in primary tumors, where larger degrees of subclonality and 
multiple major subclones are more frequently observed2,53, but supports other recent studies which 
demonstrate minimal driver gene heterogeneity in metastases8,54. 

Clinical actionability 
We analyzed opportunities for biomarker-based treatment for all patients by mapping driver 

events to three clinical annotation databases: CGI44, CIViC42 and OncoKB43. In 1,480 patients (62%) 
at least one ‘actionable’ event was identified (Supplementary Table 9). Whilst these numbers are in 
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line with results from primary tumors35, longitudinal studies will be required to conclude if genomic 
analyses for therapeutic guidance should be repeated when a patient experiences progressive 
disease. Half of the patients with an actionable event (31% of total) contained a biomarker with a 
predicted sensitivity to a drug at level A (approved anti-cancer drugs) and lacked any known 
resistance biomarkers for the same drug (Fig. 5a). In 18% of patients the suggested therapy was a 
registered indication, while in 13% of cases it was outside the labeled indication. In a further 31% of 
patients a level B (experimental therapy) biomarker was identified. The actionable biomarkers 
spanned all variant classes including 1,815 SNVs, 48 MNVs, 190 indels, 745 CNAs, 69 fusion genes 
and 60 patients with microsatellite instability (Fig. 5b). 

Tumor mutation burden is an important emerging biomarker for response to immune 
checkpoint inhibitor therapy55 as it is a proxy for the amount of neo-antigens in the tumor cells. For 
NSCLC it has been shown in at least 2 subgroup analyses of large phase III trials that both PFS and 
OS are significantly improved with first line immunotherapy as compared to chemotherapy for patients 
whose tumors have a TMB >10 mutations per Mb56,57. Although various clinical studies based on this 
parameter are currently emerging, TMB was not yet included in the above actionability analysis. 
However, when applying the same cut-off to all samples in our cohort, an overall 18% of patients 
would qualify, varying from 0% for liver, mesothelioma and ovarian cancer patients to more than 50% 
for lung and skin cancer patients (Extended Data Fig. 6). 

Discussion 
Genomic testing of tumors faces numerous challenges in meeting clinical needs, including the 

interpretation of variants of unknown significance (VUS), the steadily expanding universe of actionable 
genes, often with an increasingly small fraction of patients affected, and the development of advanced 
genome-derived biomarkers such as tumor mutational load, DNA repair status and mutational 
signatures. Our results demonstrate in several ways that WGS analyses of metastatic cancer can 
provide novel and relevant insights and be instrumental in addressing some of these key challenges 
in cancer precision medicine. 

First, our systematic and large-scale pan-cancer analyses on metastatic cancer tissue 
allowed for the identification of several novel (cancer type-specific) cancer drivers and mutation 
hotspots. Second, the driver catalog analyses can be used to mitigate the problem of VUS 
interpretation35 both by leveraging previously identified pathogenic mutations (accounting for more 
than 2/3rds of oncogenic point-mutation drivers) and by careful analysis of the biallelic inactivation of 
putative TSG which accounts for over 80% of TSG drivers in metastatic cancer. Third, we 
demonstrate the importance of accounting for all types of variants, including large scale genomic 
rearrangements (via fusions and copy number alteration events), which account for more than half of 
all drivers, but also activating MNV and INDELs which we have shown are commonly found in many 
key oncogenes. Fourth, we have shown that using WGS, even with very strict variant calling criteria, 
we could find driver variants in more than 98% of all metastatic tumors, including putatively actionable 
events in a clinical and experimental setting for up to 62% of patients. 

Although we did not find metastatic tumor genomes to be fundamentally different to primary 
tumors in terms of the mutational landscape or genes driving advanced tumorigenesis, we described 
characteristics that could contribute to therapy responsiveness or resistance in individual patients. In 
particular we showed that WGD is a more pervasive element of tumorigenesis than previously 
understood affecting over half of all metastatic cancers. We also found metastatic lesions to be less 
heterogeneous than reported for primary tumors, although the limited sequencing depth of ~100x  
does not allow for drawing conclusions regarding low-frequency subclonal variants. 

It should be noted that differences between WGS cohorts should be interpreted with some 
caution as inevitable differences between experimental and computational approaches may impact on 
observations and can only be addressed in longitudinal studies including the different stages of 
disease. Furthermore, the HMF cohort includes a mix of treatment-naive metastatic patients and 
patients who have undergone (extensive) prior systemic treatments. While this may impact on specific 
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tumor characteristics, it also provides opportunities for studying treatment response and resistance as 
this data is recorded in the studies. 

Finally, the resource described here is a valuable complementary resource to comparable 
whole genome sequencing-based resources of primary tumors in advancing fundamental and 
translational cancer research. All non-privacy sensitive data can be browsed through a local interface 
(database.hartwigmedicalfoundation.nl) developed by ICGC58 and all other data is made freely 
available for scientific research by a controlled access mechanism (see 
www.hartwigmedicalfoundation.nl/en for details). 
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Online methods 
A detailed description of methods and validations is available as Supplementary Information. 

Sample collection 

Patients with advanced cancer not curable by local treatment options and being candidates for any 
type of systemic treatment and any line of treatment were included as part of the CPCT-02 
(NCT01855477) and DRUP (NCT02925234) clinical studies, which were approved by the medical 
ethical committees (METC) of the University Medical Center Utrecht and the Netherlands Cancer 
Institute, respectively. A total of 41 academic, teaching and general hospitals across the Netherlands 
participated in these studies and collected material and clinical data by standardized protocols59. 
Patients have given explicit consent for whole genome sequencing and data sharing for cancer 
research purposes. Core needle biopsies were sampled from the metastatic lesion, or when 
considered not feasible or not safe, from the primary tumor site and frozen in liquid nitrogen. A single 
6 micron section was collected for hematoxylin-eosin (HE) staining and estimation of tumor cellularity 
by an experienced pathologist and 25 sections of 20 micron were collected in a tube for DNA 
isolation. In parallel, a tube of blood was collected. Left-over material (biopsy, DNA) was stored in 
biobanks associated with the studies at the University Medical Center Utrecht and the Netherlands 
Cancer Institute. 

Whole genome sequencing and variant calling 
DNA was isolated from biopsies (>30% tumor cellularity) and blood according to supplier's protocols 
(Qiagen) using the DSP DNA Midi kit for blood and QIAsymphony DSP DNA Mini kit for tissue. A total 
of 50-200 ng of DNA (sheared to average fragment length of 450nt) was used as input for TruSeq 
Nano LT library preparation (Illumina). Barcoded libraries were sequenced as pools on HiSeqX 
generating 2 x 150 read pairs using standard settings (Illumina). BCL output was converted using 
bcl2fastq tool (Illumina, versions 2.17 to 2.20) using default parameters. Reads were mapped to the 
reference genome GRCH37 using BWA-mem v0.7.5a60, duplicates were marked for filtering and 
INDELs were realigned using GATK v3.4.46 IndelRealigner61. GATK HaplotypeCaller v3.4.4662 was 
run to call germline variants in the reference sample. For somatic SNV and INDEL variant calling, 
GATK BQSR63 was applied to recalibrate base qualities. SNV & INDEL somatic variants were called 
using Strelka v1.0.1464 with optimized settings and post-calling filtering. Structural Variants were 
called using Manta(v1.0.3)65 with default parameters followed by additional filtering to improve 
precision using an internally built tool (Breakpoint-Inspector v1.5). To assess the impact of 
sequencing depth on variant calling sensitivity, we downsampled the BAMS of 10 samples at random 
by 50% and sequenced two samples twice to double the normal sequencing depth and reran the 
identical somatic variant calling pipeline.  

Purity, ploidy and copy number calling 

Copy number calling and sample purity determination was performed using PURPLE (PURity & 
PLoidy Estimator), which combines B-allele frequency (BAF), read depth and structural variants to 
estimate the purity of a tumor sample and determine the copy number and minor allele ploidy for 
every base in the genome. The purity and ploidy estimates and copy number profile obtained from 
PURPLE were validated on in silico simulated tumor purities, by DNA fluorescence in situ 
hybridisation (FISH) and by comparison with an alternative tool (ASCAT66). ASCAT was run on GC 
corrected data using default parameters except for gamma which was set to 1 which is recommended 
for massively parallel sequencing data. We implement a simple heuristic that determines if Whole 
Genome Duplication has occurred: Major allele Ploidy >1.5 on at least 50% of at least 11 autosomes 
as the number of duplicated autosomes per sample (ie. the number of autosomes which satisfy the 
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above rule) follows a bimodal distribution with 95% of samples have either <= 6 or > =15 autosomes 
duplicated.  

Sample selection for downstream analyses 
Following copy number calling, samples were filtered out based on absence of somatic variants, purity 
<20%, and GC biases, yielding a high-quality data set of 2,520 samples. Where multiple biopsies 
exist for a single patient, the highest purity sample was used for downstream analyses (resulting in 
2,399 samples).  
 
Mutational Signature analysis 
Mutational signatures were determined by fitting SNV counts per 96 tri-nucleotide context to the 30 
COSMIC signatures28 using the mutationalPatterns package67. Residuals were calculated as the sum 
of the absolute difference between observed and fitted across the 96 buckets.  Signatures with <5% 
overall contribution to a sample or absolute fitted mutational load <300 variants were excluded from 
the summary plot (Extended Data Fig. 4a). 

Germline predisposition variant calling 
We searched for pathogenic germline variants (SNVs, INDELs and CNAs) in a broad list of 152 
germline predisposition genes curated by Huang et al68, using GATK HaplotypeCaller62 output from 
each sample. For each variant identified we assessed the genotype in the germline (HET or HOM), 
whether there was a 2nd somatic hit in the tumor, and whether the wild type or the variant itself was 
lost by a CNA. We observed that for the variants in many of the 152 predisposition genes that a loss 
of wild type in the tumor via LOH was lower than the average rate of LOH across the cohort and that 
fewer than 5% of observed variants had a 2nd somatic hit in the same gene. Moreover, in many of 
these genes the ALT variant was lost via LOH as frequently as the wild type, suggesting that a 
significant portion of the 566 variants may be passengers. For our downstream analysis and driver 
catalog, we therefore restricted our analysis to a more conservative ‘High Confidence’ list including 
only the 25 cancer related genes in the ACMG secondary findings reporting guidelines (v2.0)69, 
together with 4 curated genes (CDKN2A, CHEK2, BAP1 & ATM), selected because these are the only 
additional genes from the larger list of 152 genes with a significantly elevated proportion of called 
germline variants with loss of wild type in the tumor sample.  

Clonality and biallelic status of point mutations 
The ploidy of each variant is calculated by adjusting the observed VAF by the purity and then 
multiplying by the local copy number to work out the absolute number of chromatids that contain the 
variant. We mark a mutation as biallelic (i.e. no wild type remaining) if Variant Ploidy > Local Copy 
Number - 0.5. For each variant we also determine a probability that it is subclonal. This is achieved 
via a two-step process involving fitting the somatic ploidies for each sample into a set of clonal and 
subclonal peaks and calculating the probability that each individual variant belongs to each peak. 
Subclonal counts are calculated as the total density of the subclonal peaks for each sample. 
Subclonal driver counts are calculated as the sum across the driver catalog of subclonal probability * 
driver likelihood. 

MSI status determination 
To determine the MSI status we used the method described by the MSISeq tool70 and counted the 
number of INDELS per million bases occuring in homopolymers of 5 or more bases or dinucleotide, 
trinucleotide and tetranucleotide sequences of repeat count 4 or more. MSIseq score of >4 were 
considered microsatellite instable (MSI).  
 
Significantly mutated driver genes 
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We used Ensembl71 v89.37 as a basis for gene definitions and have taken the union of Entrez 
identifiable genes and protein coding genes as our base panel (25,963 genes of which 20,083 genes 
are protein coding). Pan cancer and at an individual cancer level we tested the normalised dNdS rates 
using dNdScv26 against a null hypothesis that dNdS=1 for each variant subtype. To identify SMGs in 
our cohort we used a strict significance cutoff of q<0.01. 
To search for significantly amplified and deleted genes we first calculated the minimum exonic copy 
number per gene. For amplifications, we searched for all the genes with high level amplifications only 
(defined as minimum Exonic Copy number > 3 * sample ploidy). For deletions, we searched for all the 
genes in each sample with either full or partial gene homozygous deletions (defined as minimum 
exonic copy number < 0.5) excluding the Y chromosome. We then searched separately for 
amplifications and deletions, on a per chromosome basis, for the most significant focal peaks, using 
an iterative GISTIC-like peel off method72. Most of the deletion peaks resolve clearly to a single target 
gene reflecting the fact that homozygous deletions are highly focal, but for amplifications this is not 
the case and the majority of our peaks have 10 or more candidates. We therefore annotated the 
peaks, to choose a single putative target gene using an objective set of automated curation rules. 
Finally, filtering was applied to yield highly significant deletions and amplifications.  
Homozygous deletions were also annotated as common fragile site (CFS) based on their genomic 
characteristics, including a strong enrichment in long genes (>500,000 bases) and a high rate (>30%) 
of deletions between 20 kb and 1 mb30. 

Somatic driver catalog construction 
We created a catalog of driver variants in our cohort across all variant types on a per patient basis. 
This was done in a similar incremental manner to Sabarinathan et al35 (N. Lopez, personal 
communication) whereby we first calculated the number of drivers in a broad panel of known and 
significantly mutated genes across the full cohort, and then assigned the drivers for each gene to 
individual patients by ranking and prioritising each of the observed variants. Key points of difference in 
this study were both the prioritisation mechanism used and our choice to ascribe each mutation a 
probability of being a driver rather than a binary cutoff based on absolute ranking.  
The four steps to create the catalog are: 1) Create a panel of driver genes for point mutations using 
significantly mutated genes and known drivers using the union of Martincorena significantly mutated 
genes26 (filtered to significance of q<0.01), HMF significantly mutated genes (q<0.01) at global level or 
at cancer type level and Cosmic Curated Genes28 (v83). 2) Determine TSG or Oncogene status of 
each significantly mutated gene using a logistic regression classification model (trained using Cosmic 
annotation). 3) Add mutations from all variant classes to the catalog when meeting any of the 
following criteria i) all missense and in-frame indels for panel oncogenes, ii) all non synonymous and 
essential splice point mutations for tumor suppressor genes, iii) all high level amplifications for 
significantly amplified target genes and panel oncogenes, iv) all homozygous deletions for significantly 
deleted target genes and panel TSG, v) all known or promiscuous inframe gene fusions, and vi) 
recurrent TERT promoter mutations. 4) Calculate a per sample driver likelihood (between 0 and 1) for 
each mutation in the catalog to ensure that only likely pathogenic and excess mutations (based on 
dNdS) are used for determining the number of drivers. All driver mutation counts reported at a per 
cancer type or sample level refer to the sum of driver likelihoods for that cancer type or sample. 
To examine the co-occurence of drivers, the driver-gene catalog was filtered to exclude fusions and 
any driver with a driver likelihood of < 0.5. Separately for each cancer type, every pair of driver genes 
was tested to see whether they co-occur more or less frequently than expected if they were 
independent using Fisher’s Exact Test. The results were adjusted to a FDR using the number of 
gene-pair comparison being tested in each cancer type cohort. Gene pairs with a positive correlation 
which were on the same chromosome were excluded from the analysis as they are frequently co-
amplified or deleted by chance. 

Actionability analysis 
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To determine clinical actionability of the variants observed in each sample, we compared all variants 
with three external clinical annotation databases (OncoKB43, CGI44 and CIViC42) that were mapped to 
a common data model as defined by https://civicdb.org/help/evidence/evidence-levels. Here, we 
considered only A and B level variants. This classification of actionable events roughly corresponds to 
the recently proposed ESMO Scale for Clinical Actionability of molecular Targets (ESCAT)73 as 
follows: ESCAT I-A+B (for A on-label) and I-C (for A off-label) and ESCAT II-A+B (for B on-label) and 
III-A (for B off-label). For each actionable mutation, it was also determined to be either on-label (ie. 
evidence supports treatment in that specific cancer type) or off-label (evidence exists in another 
cancer type). To do this, we annotated both the patient cancer types and the database cancer types 
with relevant DOIDs, using the disease ontology database74. For each actionable mutation in each 
sample, we aggregated all the mapped evidence that was available supporting both on-label and off-
label treatments at A or B evidence level. Treatments that also had evidence supporting resistance 
based on other biomarkers in the sample at the same or higher evidence level were excluded as non-
actionable. Samples classified as MSI in our driver catalog were also mapped as actionable at level A 
evidence based on clinical annotation in the OncoKb database. For each sample we reported the 
highest level of actionability, ranked first by evidence level and then by on-label vs off-label. 

Data availability 
All data described in this study is freely available from the Hartwig Medical Foundation for academic 
research within the constraints of the consent given by the patients. Standardized procedures and 
request forms can be found at https://www.hartwigmedicalfoundation.nl/en. All bioinformatic analysis 
tools and scripts used are available at https://github.com/hartwigmedical/. 
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Figures 

 
Figure 1: Mutational load of metastatic cancer per tumor type. a) 
The number of samples of each tumor type cohort with more than 10 
samples. Tumor types are ranked from lowest to highest overall 
mutation burden (TMB). b) Violin plot showing age distribution of each 
tumor type with 25th, 50th and 75th percentiles marked. c)-d) 

cumulative distribution function plot (individual samples were ranked 
independently for each variant type) of mutational load for each tumor 
type for SNV and MNV (c) and INDEL and SV (d). The median for each 
cohort is indicated with a vertical line. Dotted lines indicate the 
mutational loads in primary cancers from the PCAWG cohort14.
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Figure 2: Copy number landscape of metastatic cancer 
Proportion of samples with amplification and deletion events by 
genomic position per cohort - pan-cancer (a), central nervous 
system (CNS) (b) and kidney (c). The inner ring shows the % of 
tumors with homozygous deletion (orange), LOH and significant 
loss (copy number < 0.6x sample ploidy - dark blue) and near copy 
neutral LOH (light blue). Outer ring shows % of tumors with high 
level amplification (>3x sample ploidy - orange), moderate 
amplification (>2x sample ploidy - dark green) and low level 

amplification (>1.4x amplification - light green). The scale on both 
rings is 0-100% and inverted for the inner ring. The most frequently 
observed high-level gene amplifications (black text) and 
homozygous deletions (red text) are shown for pan-cancer.  d) 
Proportion of tumors with a whole genome duplication (WGD) 
event (dark blue) grouped by tumor type. e) Sample ploidy 
distribution over the complete cohort for samples with and without 
WGD.
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Figure 3: Most prevalent driver genes in metastatic cancer 
Most prevalent somatically mutated TSG (a), oncogenes (b), and 
germline predisposition variants (c) . From left to right, the heatmap 
shows the % of samples in each cancer type which are found to have 
each gene mutated; absolute bar chart shows the pan-cancer % of 
samples with the given gene mutated; relative bar chart shows the 
breakdown by type of alteration. For TSG, the % of samples with a 
driver in which the gene is found biallelically inactivated, and for 
germline predisposition variants the % of samples with loss of wild type 
in the tumor are also shown. 
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Figure 4: Number of drivers and type of mutation per sample by 
tumor type. a) Violin plot showing the distribution of the number of 
drivers per sample grouped by tumor type. Black dots indicate the 
mean values for each tumor type. b) Relative bar chart showing the 
breakdown per cancer type of the type of alteration. 

 
 
 
 

  
 
 

 
Figure 5: Actionability. a) Percentage of samples in each cancer type 
with an actionable mutation based on data in CGI, CIViC and OncoKB 
knowledgebases. Level ‘A’ represents presence of biomarkers with 
either an approved therapy or guidelines and level B represents 
biomarkers having strong biological evidence or clinical trials indicating 
they are actionable. On label indicates treatment registered by federal 
authorities for that tumor type, while off-label indicates a registration for 
other tumor types.  b) Break down of the actionable variants by variant 
type. 
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Extended Data Figure 1: Hartwig sample workflow, biopsy locations and sequence coverage 
a) Sample workflow from patient to high-quality WGS data. A total of 4,018 patients were enrolled in the study between April 2016 and April 2018. 
For 9% of patients no blood and/or biopsy material was obtained, mostly because conditions of patients prohibited further study participation. Up 
to 4 fresh-frozen biopsies per patient were received, which were sequentially analyzed to identify a biopsy with more than 30% tumor cellularity as 
determined by routine histology assessment. For 859 patients no suitable biopsy was obtained and 2,796 patients were further processed for 
WGS. 44 and 29 samples failed in either DNA isolation or library preparation and raw WGS data quality QC, respectively. For an additional 385 
samples the WGS data was of good quality, but the tumor purity determination based on WGS data (PURPLE) was less than 20% making reliable 
and comprehensive somatic variant calling and were therefore excluded. Eventually, 2,338 tumor-normal sample pairs with high-quality WGS 
data were obtained, which were supplemented with 182 pairs from pre-April 2016, adding up to 2,520 tumor normal pairs that were included in 
this study. b) Breakdown of cohort by biopsy location. Tumor biopsies were taken from a broad range of locations. Primary tumor type is shown 
on the left and the biopsy location on the right. c) Distribution of sample sequencing depth for tumor and blood reference. 
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Extended Data Figure 2: Mutational context distribution per tumor type 
Variant subtype, mutational context or signature per individual sample for each of Single Nucleotide Variant (SNV) (a), SNV by COSMIC 
Signature (b), Multi Nucleotide Variant (MNV) (c), INsertion/DELetion (INDEL) (d), Structural Variant (SV) (e). Each column chart is ranked within 
tumor type by mutational load from low to high in that variant class. MNVs are classified by the dinucleotide substitution with NN referring to any 
dinucleotide combination. SVs are classified by type: INV = inversion, DEL = deletion, DUP = tandem duplication, TRL = translocation, INS = 
insertion. Highly characteristic known patterns can be discerned, for example the high rates of C>T SNVs, CC>TT MNVs and Cosmic S18 for skin 
tumors, high rates of C>A SNVs and Cosmic S4 for lung tumors. 
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Extended Data Figure 3: SNV Mutational Signatures  a) Prevalence and median mutational load of fitted cosmic SNV mutational signature per 
cancer type. The observed distribution largely reflects the patterns as observed from primary cancers13.  b) Box-and-whisker plot of relative 
residuals in fits per cancer type (sum of absolute difference between fitted and actual divided by total mutational load) c) Proportion of variants by 
96 trinucleotide mutational context for 2 selected samples with high residuals and high mutational load. Upper panel and lower panel represent 
the highest outlier for Breast (HMF002896) and Esophagus (HMF001562), respectively from panel b. Both of these samples were previously 
treated with an experimental drug, SYD985 a Duocarmycin-Based HER2-Targeting Antibody-Drug conjugate75.   
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Extended Data Figure 4: Impact of sequencing depth on variant calling 
Comparison of variant calling of 10 randomly selected samples at normal depth and 50% downsampled (~50x, similar as the mean coverage for 
the PCAWG study14) for purity (a), SNV counts (b), SV counts (c), Ploidy (d), MNV counts (e) and INDEL counts (f). Decreasing coverage results 
to an average decrease in sensitivity of 10% for SNV, 2% for INDEL, 15% for MNV and 19% for SVs.  
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Extended Data Figure 5: Impact of bioinformatic analysis pipeline on variant calling 
Comparison of observed mutational count per sample for SNV (a), MNV (b), indel (c), and SV (d) on 24 patient samples analyzed by PCAWG 
pipeline and HMF pipeline. The PCAWG pipeline was found to have a 43% lower sensitivity for INDELs (which is based on a consensus calling), 
18% lower for SVs (based on a different algorithm) and 6% lower for MNVs (only includes MNVs involving 2 nt), with nearly the same sensitivity 
for SNVs. Cumulative distribution function plot for each tumor type of coverage and pipeline-adjusted mutational load for SNV and MNV (e) and 
INDEL and SV (f). Mutational loads as shown in Figure 1 of the main manuscript were adjusted for the sensitivity effects caused by differences in 
sequencing depth coverage (Extended Data Fig. 4) and analysis pipeline differences (this figure, panels a-d). After this correction, the TMB 
between primary and metastatic cohorts across all variant types are much more comparable (e, f), indicating that technical differences do 
contribute to the reported mutational load differences between primary and metastatic tumors. Prostate cancer is the most notable exception with 
approximately 2x the TMB in all variant classes, although more subtle differences, potentially driven by biology, can be observed for other tumor 
and mutation types as well. For cancer types which are comparable to the PCAWG cohort, the equivalent PCAWG numbers are shown by dotted 
lines. The median for each cohort is displayed by a horizontal line. 
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Extended Data Figure 6: Mutational load, genome wide analyses and drivers 
a) Proportion of samples by cancer type classified as microsatellite instable (MSISeq score > 4) 
b) Proportion of samples with a high mutational burden (TMB > 10 SNV / Mb) 
c)-e) Scatter plot of mutational load per sample for INDEL vs SNV (c), INDEL vs SV (d), and SV vs SNV (e). MSI (MSISeq score > 4) and ‘high 
TMB’ (>10 SNV/ MB) thresholds are indicated. 
f)-h) Mean mutational load vs driver rate for SNV (f), INDEL (g) and SV (h) grouped by cancer type. MSI samples were excluded. 
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Extended Data Figure 7: Somatic Y chromosome loss and driver amplifications 
a) Proportion of Male tumors with somatic loss of  >50% of Y chromosome (dark blue) grouped by tumor type. b) Mean rate of amplification 
drivers per cancer type. c) Breakdown of the number of amplification drivers per gene by cancer type. d) Mean rate of drivers per variant type for 
samples with and without WGD. 
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Extended Data Figure 8: Significantly mutated genes 
Tile chart showing genes found to be significantly mutated per cancer type cohort and pan-cancer using dNdScv. Gene names marked in orange 
are also significant in Martincorena et al26, but not found in COSMIC curated or census. Gene names marked in red are novel in this study. 
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Extended Data Figure 9: Oncogenic Hotspots 
Count of driver point mutations by variant type. Known pathogenic mutations curated from external databases are categorized as hotspot 
mutations. Mutations within 5 bases of a known pathogenic mutation are shown as near hotspot and all other mutations are shown as non-
hotspot. 
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Extended Data Figure 10: Driver co-occurrence 
a) Mutated driver gene pairs which are significantly positively (on the right) or negatively (on the left) correlated in individual tumor types sorted by 
q-value. The color indicates the tumor type as depicted below the chart. 
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Extended Data Fig 11: Subclonality of somatic variants 
a) Count of samples per tumor purity bucket. b) Violin plot showing the percentage of point mutations which are subclonal in each purity bucket 
per sample. Black dots indicate the mean for each bucket. c) Percentage of driver point mutations that are subclonal in each purity bucket.  d) 
Approximate somatic ploidy detection cutoff of the HMF pipeline at median 106x depth coverage for each purity bucket and for sample ploidy 2 
and 4. Subclonal variants with cellular fraction less than this cutoff are unlikely to be detected by our pipeline analyses. 
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Supplementary Image File 1: Copy Number profile per cancer types 
Circos plots showing the proportion of samples with amplification and deletion events by genomic position per cancer type. The inner ring shows 
the % of tumors with homozygous deletion (red), LOH and significant loss (copy number < 0.6x sample ploidy - dark blue) and near copy neutral 
LOH (light blue). The outer ring shows the % of tumors with high level amplification (>3x sample ploidy - orange), moderate amplification (>2x 
sample ploidy - dark green) and low level amplification (>1.4x amplification - light green). Scales on both rings are 0-100% and inverted for the 
inner ring. The most frequently observed high level gene amplifications (black text) and homozygous deletions (red text) are labelled. 
 
Supplementary Image File 2: Coding mutation profiles by tumor suppressor driver gene  
Location and driver classification of all coding mutations (SNVs and indels) in tumor suppressor genes (TSG) in the driver catalog. The lollipops 
on the chart show the location (coding sequence coordinates) and count of mutations for all candidate drivers. The height  of lollipop represents 
the total count of each individual variant in the cohort (log scale). The height of the solid line represents the sum of driver likelihoods for that 
variant, ie. the proportion that are expected to be drivers. (Partially) dotted lines hence indicate variants for which driver role is uncertain. Variants 
are unshaded if all instances of that variant are monoallelic single hits with no LOH. The right column chart shows the estimated number of drivers 
(calculated as the sum of driver likelihoods) and passenger variants in each gene by cancer type.  
 
Supplementary Image File 3: Coding mutation profiles by oncogene driver gene  
Location and driver classification of all coding mutations (SNVs and indels) in oncogenes (a) and tumor suppressor genes (TSG) (b) in the driver 
catalog. The lollipops on the chart show the location (coding sequence coordinates) and count of mutations for all candidate drivers. The height  
of lollipop represents the total count of each individual variant in the cohort (log scale). The height of the solid line represents the sum of driver 
likelihoods for that variant, ie. the proportion that are expected to be drivers. (Partially) dotted lines hence indicate variants for which driver role is 
uncertain. The right column chart shows the estimated number of drivers (calculated as the sum of driver likelihoods) and passenger variants in 
each gene by cancer type.  
 
Supplementary Information: Detailed description of methods, parameters and validation results 
 
Supplementary Table 1: Overview of contributing organizations and local principal investigators. 
  
Supplementary Table 2: Overview of cohort and sample characteristics 
  
Supplementary Table 3: Pan-cancer and cancer type-specific dNdScv results 
  
Supplementary Table 4: Recurring amplifications (a) and deletions (b) and associated target genes 
  
Supplementary Table 5: Somatic driver catalog 
  
Supplementary Table 6: Germline driver catalog 
  
Supplementary Table 7: Gene Fusions 
  
Supplementary Table 8: Overview of patients with multiple biopsies 
  
Supplementary Table 9: Actionable mutations 
  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 12, 2019. ; https://doi.org/10.1101/415133doi: bioRxiv preprint 

https://doi.org/10.1101/415133
http://creativecommons.org/licenses/by-nc-nd/4.0/

