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Abstract

Bioinformatics workflows for analyzing genomic data obtained from
xenografted tumor (e.g., human tumors engrafted in a mouse host) must
address several challenges, including separating mouse and human
sequence reads and accurate identification of somatic mutations and copy
number aberrations when paired normal DNA from the patient is not
available. We report here data analysis workflows that address these
challenges and result in reliable identification of somatic mutations, copy
number alterations, and transcriptomic profiles of tumors from patient
derived xenograft models. We validated our analytical approaches using
simulated data and by assessing concordance of the genomic properties of
xenograft tumors with data from primary human tumors in The Cancer
Genome Atlas (TCGA). The commands and parameters for the workflows are
available at https://github.com/TheJacksonLaboratory/PDX-Analysis-
Workflows.
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Introduction

Patient-Derived Xenograft (PDX) models are in vivo preclinical models of human
cancer for translational cancer research and personalized therapeutic selection
[1-7]. Previous studies have demonstrated engrafted human tumors retain key
genomic aberrations found in the original patient tumor [3, 8, 9] and that
treatment responses of tumor-bearing mice typically reflect the responses
observed in patients [6, 10]. PDXs have been used successfully as a platform for
pre-clinical drug screens [6, 7, 10], to facilitate the development of potential
biomarkers of drug response and resistance [6, 7, 11], and to select appropriate

therapeutic regimens for individual patients [8].

The Jackson Laboratory (JAX) PDX Resource has over 400 PDX models from more
than 20 different types of cancer. A schematic summarizing the processes used for
model generation, quality control, and characterization process for the resource
is shown in Figure 1. Genome characterization of PDX tumors includes the
identification of somatic mutations, copy number alterations, and transcriptional
profiles. Over 100 of the models have been assessed to date for responses to
various therapeutic agents. The integration of results from dosing studies with
genomic data for the models has been successfully applied to the identification of

novel genomic biomarkers associated with treatment responses [12].

To generate accurate calls for mutations and copy number variants for human
tumors engrafted in a mouse host, several challenges had to be addressed. First,
because human stroma is replaced by mouse cells and tissues during tumor
engraftment, sequence data generated for PDX tumors includes both mouse and
human sequences. As the protein-coding regions of the mouse and human
genomes are 85% identical on average, there is a high risk of introducing false
positive variants in functional regions and erroneous gene expression [13-15].
Second, because the tumor material used to create models in the JAX PDX
Resource consisted of material that remained following clinical pathology
assessment (i.e. material was not collected specifically for xenograft model
creation), paired normal samples were not available for the majority of tumor

samples used to generate the PDXs. The absence of normal tissue complicates the
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ability to distinguish germline variants from somatic alterations (point mutations,
indels and copy number aberrations) in the tumor [16-19]. Third, false positive
(FP) variants due to errors in sequencing and mapping require additional filtering
steps in the computational workflow [20-22]. Finally, it has been reported
previously that the immunodeficient host mice are susceptible to forming B-cell
human lymphomas during engraftment due to Epstein-Barr virus (EBV)-
associated lymphomagenesis [23-27]. Systematic screening of PDX tumor
samples for EBV transformation is an important step in quality assurance for the

integrity of PDX repositories.

Here, we describe bioinformatics analysis workflows and guidelines
(https://github.com/The]JacksonLaboratory/PDX-Analysis-Workflows) that we
developed for the for the analysis of genomic data generated from PDX tumors
(http://www.tumor.informatics.jax.org/mtbwi/pdxSearch.do). These workflows
incorporated established tools and public databases and were tailored to address
the specific challenges mentioned above by tuning parameters and addition of
filters. We demonstrate how our methods, using simulated and experimental data,
improve the accuracy in the detection of somatic alterations in PDX models. We
also developed a classifier based on expression data to systematically identify and
filter out EBV transformed samples. Finally, to verify the effectiveness of our
workflows, we show the overall concordance of the genomic and transcriptomic
profiles of the PDX models in the JAX PDX resource with relevant tumor types from

The Cancer Genome Atlas (TCGA).

Results
Workflow for calling somatic point mutations and indels in PDX tumors
A schematic of the variant calling workflow we implemented for human tumors

engrafted in mice is shown in Figure 2A and 2B (see Methods).

Preprocessing and removal of mouse reads. Human and mouse DNA reads were
classified by Xenome [13], which had shown reliable performance in separate
studies [28], and only human reads were used for subsequent variant calling. The

percentage of mouse reads within the PDX samples in the JAX resource has a
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median value of 5.30% (range: 0.00163% - 65.1%) (Figure 3A). Using simulated
CTP datasets, we verified that omitting the Xenome step to filter the mouse reads
resulted in very low precision (Figure 3B), i.e. large number of FPs, in the absence
of the quality hard filters (Supplementary Table S1). These FPs were due to mouse
reads being aligned to the reference genome with mismatches and subsequently

called as variants with low quality scores (QD).

While the default thresholds for GATK hard filtering parameters [29] removed a
large proportion of the FPs, applying Xenome to filter for human reads yielded
superior performance in terms of substantially higher precision, as well as
improvement in recall. In addition, Xenome filtering maintained the correlation
between the predicted versus actual allele frequencies, which would otherwise

decrease with higher mouse contamination (Supplementary Table S2).

Filtering germline variants. To enhance filtering out germline variants from
somatic mutations, we sequenced and analyzed 20 normal blood samples using
the CTP targeted panel. As shown in Supplementary Figure S1A and S1B, 87% of
the variants identified in normal blood had allele frequencies of 40% - 60% or
>90% across all the samples, indicating the presence of heterozygous or
homozygous common variants, respectively. Ninety-one percent of the variants
identified in these 20 samples were annotated in the public germline databases.
4% of these variants were not found in public germline databases, but were
recurrent in these normal samples or across the PDX tumors in our collection
(Supplementary Figure S1C) and so were added to our list of putative germline
variants. Only 5% of all of the variants in the 20 samples were private events.
Based on these observations, the variants in each PDX tumor with an allele
frequency of 40% - 60% or >90%, and present in either public germline database
or our list of putative germline variants (Supplementary Table S3) were filtered
out as germline variants (Supplementary Table S3). This was a more conservative
approach given that these known germline variants in regions of copy number
alterations where the ratio of both alleles were not balanced would not be filtered.
Figure 3C shows that the germline filters effectively rectified the estimated

somatic mutational load in the PDX tumors (Supplementary Table S5) by about
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four-fold reduction (Supplementary Table S4), which was reasonable as a large

proportion of the variants were expected to be germline.

Filtering false positives due to systematic errors. Putative somatic variants with
no known effects in cancer that recur across large numbers of PDX samples are
potentially FPs arising from sequence assembly based error in the reference the
genome, sequencing errors or alignment errors in low mappability regions [30].
To detect these, we filtered out the variants at loci that were recurrently mutated
in 225% of PDX tumors (Figure 2C). The distribution of tumor types for each of
these recurrently mutated positions (n=52) was highly similar to the overall
distribution of tumor types in the PDX resource (Supplementary Figure S2A) with
Pearson correlation coefficient >0.9 (Supplementary Figure 2B). This implies that
these mutations were systematic errors and were not selected for any tumor type,
and thus, biologically irrelevant. Filtering these highly recurrent loci did not
significantly reduce the predicted mutational load per tumor (Figure 3C and

Supplementary Table S4).

Rescuing variants. The germline filters might filter out actual somatic events in
each PDX sample, leading to false negatives. However, retaining all variants
represented in cancer variant databases such as COSMIC would lead to excess FPs.
For example, 46% of the variants in the normal samples are present in the COSMIC
database (Supplementary Figure S1A). To address the balance of false positive and
false negative mutation calls, we “rescued” variants that were initially filtered out
based on curated annotations available in the JAX-Clinical Knowledgebase (CKB,
https://ckb.jax.org/) [31]. The criteria for rescuing variants included those with
1) known or predicted gain or loss of protein function, 2) potential treatment
approach for any cancer type and 3) drug sensitivity and resistance effects in
clinical or preclinical studies (Supplementary Table S4). We also included an
additional indel caller, Pindel [32], in the workflow in order to increase the
sensitivity of indel prediction. As Pindel results contained a large number of FPs,
we only included those that were present in the JAX-CKB by the same criteria.
Overall, 127 unique variants from 52 genes (1.03% of the total and 2.21 % of the

filtered unique variants detected by the CTP platform) were rescued from 381
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PDX CTP samples. Nine of these mutations have been validated to be present in
the PDX model (Figure 3D). Almost all were initially filtered as germline events, as
many well-known actionable cancer mutations (e.g. BRAF V600E and KRAS G12(C)
are presentin the dbSNP database and were filtered if they fall within the germline
allele frequency. Two other variants that were not called by GATK initially but

were detected by Pindel were rescued as they were annotated clinically relevant.

Optimized workflow achieves high performance in somatic mutation calling.
Figure 3B shows that our full feature workflow on the simulated datasets achieved
the highest precision in variant calling, with insignificant compromise on the
recall (Supplementary Table S1). We observed that the allele frequencies of the
true positive (TP) variants correlates well (Pearson correlation coefficient >0.99)
with the input allele frequencies for all samples (Supplementary Figure S3 and
Figure S4, and Supplementary Table S2). Although the estimated allele
frequencies were lower than the true allele frequencies, this difference was
marginal and could be attributed to the reads carrying the variants being classified
as non-human reads by Xenome or not mapped to the genome. Moreover, all (20
out of 20) clinically relevant mutations experimentally validated or clinically
reported in the corresponding patient tumors were detected in the PDX tumors

(Figure 3D).

Gene expression analysis in PDXs
A schematic overview of the PDX gene expression workflow is provided in Figure

4A (see Methods).

Screening of EBV-associated lymphomas by RNA-Seq expression data. We
observed that the EBV-associated lymphoma tumors that arise in PDX samples
display a distinct and highly reproducible expression pattern, regardless of the
platforms in which the expression was measured (RNA-Seq, Affymetrix Human
Gene 1.0 ST arrays and Human Gene 133 Version 2 arrays). The PDX tumors
identified as EBV-associated routinely showed higher correlation in expression
profiles than distinct pairs of PDX models derived from common original tumor

materials (Supplementary Figure S5). This expression profile was also
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independent of the tissue of origin of the tumors from which the EBV-associated
lymphomas were derived. Given the high similarity in expression profiles, we
identified a gene signature based on the most differentially expressed genes
between EBV-associated lymphomas and non-EBV-associated tumors (data not
shown). Using gene set analysis, we observed that genes associated with B-
lymphocytes and other immune processes were over-expressed, while cell-to-cell
communication and adherence genes were suppressed (data not shown). We
developed a classifier that scored each PDX sample based on the expression levels
of the genes in the gene signature (Supplementary Table S6). This single score,
when applied on RNA-Seq data, was able to effectively distinguish PDX tumors
that were either EBV-transformed or originated from human lymphomas from
non-lymphoma PDX tumors (Figure 4B). Overall, 8.5% (32 out of 376) of the non-
lymphoma PDX samples with RNA-Seq data in the PDX resource progressed to
EBV-associated lymphomas. These tumors were further confirmed to be CD45
positive by immunohistochemistry (IHC) staining, which is the primary tool at JAX

to identify PDX tumors that are EBV-transformed.

Copy Number Variant (CNV) analysis in PDXs
A schematic overview of the PDX CNV workflow is provided in Figure 5A (see

Methods).

Effect of mouse DNA on CNV calls. We studied the effect of mouse contamination
on array data by hybridizing DNA of the NSG mouse on the human SNP array, and
observed that the signal intensity from mouse DNA is negligible (Supplementary
Figure S6). Samples with higher mouse content are more likely to result in failure
of the standard array quality control or the analysis workflow, due to lower
amount of human DNA to give sufficient probe signal, thus enabling samples with

substantial mouse contamination to be screened out.

Absence of matched normal to call somatic copy number aberrations. We
compared the results of the single-tumor CNV analysis with the tumor-normal
CNV analysis to access the reliability of the single-tumor CNV analysis results. For

the limited number of PDX samples with paired normal samples, we observed
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overall high similarity between the segmented copy number profiles analyzed
with and without the paired-normal sample (Supplementary Figure S7). The gene-
based log2(total CN/ploidy) showed good correlation between the single-tumor
and tumor-normal CNV analysis (Pearson correlation >0.81, n=9), with 8 out of 9
PDX samples having a correlation of >0.93 (Supplementary Table S7), indicating

that the single-tumor CNV analysis was sufficiently robust.

Establishing the appropriate baseline to call copy number gains and losses.
We analyzed the effects of using different baselines for “normal state” to compute
copy number gains and losses using a list of significantly amplified and deleted
genes from TCGA (Supplementary Figure S8). When the overall cancer genome
ploidy was used as the normal baseline, we observed a balance of a larger
proportion of the significantly amplified being called copy number gain, and
similarly a larger proportion of the significantly deleted genes being called copy
number loss among the PDX samples (Supplementary Figure S9). However, more
of both significantly amplified and deleted genes were being classified as
amplified when copy number aberrations were calculated relative to the diploid
state. While the average ploidy could be estimated differently across the samples
for the same model, the copy number changes relative to ploidy remained

consistent (Figure 5B and Supplementary Figure S7).

Effects copy number aberrations on expression changes. We observed that the
estimated copy number gains and losses of known oncogenes (n=23) and tumor
suppressor genes (n=40) [33], relative to the average ploidy per PDX sample,
generally results in expression fold change (relative to the average expression at
copy number normal state) in the same direction (Supplementary Table S8) [11,
34, 35]. Most of these genes show significant over-expression with copy number
gain and significant under-expression with copy number loss across the PDX
samples (p<0.05) (Figure 5C and Supplementary Figure S10). This shows that the
baselines to call copy number gain and loss, and over and under-expression, were
correctly established. This significant observation, however, did not hold when we
did a global analysis across all genes instead of selected oncogenes and tumor

suppressor genes. This was because many genes were not expressed in the
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respective tissue types even though they were in regions affect by copy number
alterations, and the expression of many genes, despite being non-altered regions,

could be regulated by other mutations or epigenetic mechanisms in the tumors.

Comparison of genomic and transcriptomic profiles of PDX models and TCGA patient
tumors

Due to the lack of paired-normal samples for the PDX models in the JAX PDX
Resource, we were unable to experimentally validate the somatic calls predicted
from the various workflows. To determine if the results of our genomic analysis
workflows were similar to known somatic profiles of the same tumor type, we
compared the overall genomic and transcriptomic profiles for selected tumor

types between the JAX PDX resource and patient tumor cohorts in the TCGA.

Frequently mutated genes in primary patient tumors in TCGA detected in the
PDX resource. The distribution of somatic coding non-silent mutational load of
the CTP genes for each tumor type was comparable between PDX and TCGA
(Figure 6A). Despite the much smaller sample size for each PDX tumor type, we
still observed higher mutational load in colorectal cancer and melanoma.
Nonetheless, the overall mutational load remained higher in PDX tumors, which
could be possibly due to the fact that the PDX tumors were sequenced at a higher
coverage (>900X) using the CTP targeted panel, and thus more variants were
detected per base pair compared to exome sequencing (~100X) of TCGA tumors.
Moreover, known germline variants with allele frequency outside the range of
40% - 60% and >90%, possibly due to errors in allele frequency estimation or
copy number aberrations at the variant position, as well as private germline
variants, were not filtered. The mutations in TCGA were curated with partial
experimental validations, hence the mutation count and FP rate were expected to
be lower. Given that there were more samples in the TCGA cohorts, we compared
the genes that were mutated at 5% frequency with genes that were mutated in at
least one sample within the same tumor type in the PDX resource. Almost all genes
mutated at high frequencies in TCGA tumors were mutated in PDX tumors, with

significant p-values (p < 1x10-4) by Fisher’s exact test (Figure 6B, Supplementary
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Table S9). This indicates that the key drivers by mutation within each cancer type

were preserved in PDX tumors.

Expression signatures of primary patient tumors in TCGA recapitulated in the
PDXresource. The top 1000 most varying genes by expression z-scores in 6 TCGA
tumor types (Supplementary Table S10) were able to independently cluster both
TCGA samples and the PDX samples by their tumor types (Figure 6C). We
observed clusters of genes that were highly expressed in specific tumor types in
TCGA were recapitulated in the PDX expression data (hypergeometric p-value <
1x10-8), which demonstrated the replicability of TCGA expression signatures in
the PDX resource. The frequencies of over- and under-expression for the top-
varying genes for each tumor type displayed better correlation for the same tumor
type for PDX versus TCGA compared to other tumor types (Figure 6D). The
varying level of concordance between different tumor types in TCGA data was also
maintained in the PDX versus TCGA comparison (Supplementary Figure S11).
Alternatively, the differentially expressed genes of each tumor type versus all
other tumors within the TCGA or PDX samples displayed significant overlaps
(p<1xe®), despite different sample sizes and different proportion of tumor types

(Supplementary Table S11).

Copy number profiles of primary patient tumors in TCGA recapitulated in PDX
resource. We showed that the frequency of genome-wide copy number
aberrations for each tumor type in the PDX resource (Supplementary Table S12,
Supplementary Figure S12) were similar to the primary tumors in TCGA
(Supplementary Figure S13). Moreover, the PDX tumors had the highest
correlation in gain and loss frequencies of significantly amplified and deleted
genes for the same tumor type in TCGA compared to other tumor types (Figure 6E
and Supplementary Figure S14A). The varying levels of correlation between
different tumor types were preserved between the TCGA versus TCGA tumors and
the TCGA versus PDX tumors (Figure 6E and Supplementary Figure S15B).
Consistent with the earlier observations, there was a weaker concordance with
TCGA data when amplification and deletion was called relative to the diploid state

(Supplementary Figure S14B).
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Discussion

The application of PDX models in pre-clinical research and personalized therapy
requires that the engrafted human tumors are accurately characterized for tumor-
specific mutations [3]. The development of bioinformatics workflows to call
somatic mutations (SNVs, Indels), copy number aberrations and gene expression
from PDX sequencing or array data requires balancing sensitivity and specificity
[22, 30], especially when paired normal samples for engrafted tumors are not
available. Using genomic and transcriptomic data from models in the JAX PDX
Resource, we conducted a systematic analysis to address several key data analysis
challenges and tailored our workflows to optimize the sensitivity and specificity

of the results.

Our recommendations for the somatic mutation calling from PDX DNA sequencing

data in the absence of paired-normal samples are as follows:

e Remove mouse reads with Xenome (or equivalent) to eliminate variants called
from mouse reads mapping to the human reference genome

e Filter with germline variant databases to improve somatic mutation calling

e Filter highly recurrent mutations to remove false positives arising from
sequencing or analysis related errors

e Rescue clinically relevant variants which were filtered in the upstream steps

as they were likely to be present as important mutations in the tumor

Despite implementing multiple filters to remove putative germline and other FP
mutations, the mutation rate remains higher in PDX tumor types when compared
to TCGA. One possible reason for this difference that is not related to the
informatics challenges described in this paper is that many of the human tumor
samples used to generate PDX models arose from metastatic lesions and from
patients with prior treatment whereas many of the tumor samples used for TCGA
were early stage tumors. PDX tumors were thus expected to harbor more
mutations due to longer tumor evolution [36, 37]. Also, previous studies have
noted that PDX engraftment success is better for late stage tumors that are likely

to have more aggressive phenotypes than early stage tumors [38, 39]. As such,
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there is a likelihood for biased selection towards such tumor subtypes in the
engrafted tumors that are known to harbor more mutations than tumors from

early stages.

For evaluation of gene expression differences in individual tumors, matched
normal tissue is ideal but not available for PDX models in the JAX PDX Resource.
To compare gene expression among the engrafted tumors, we used expression z-
scores across all tumor types as the best proxy for calling over- and under-
expression. In a subset of PDX samples in which both expression and copy number
data are available, we estimated the “normal” expression of each gene with the
average expression for samples with normal copy number state, given that
sufficient samples are available for the tumor type. While this approach neglects
other mechanisms of gene regulation, we were able to better estimate the normal
expression for some genes like MYC which tends to be frequently amplified and
over-expressed across many tumor types. For copy number, we defined the
“normal” state of each PDX tumor using the estimated ploidy to call relative gain

and losses as this takes into account errors in ploidy estimation.

As one approach to assessing the results of our genomic characterization
workflows, we compared the JAX PDX models with patient cohorts in TCGA at the
genomic and transcriptomic level. Other than small differences in genomic
mutations, the engrafted PDX tumors reflected the human tumors in copy number
variations and gene expression. Using colorectal cancer as an example, we
demonstrated that the integration of different data types showed that known
perturbed pathways in cancer were altered in a consistent manner across PDX and
TCGA tumors (Supplementary Figure S16), with similar combinations of
alterations occuring at comparable frequencies. Taken together, we have created
a set of workflows for the analysis of genomic and transcriptomic data from PDX
tumors that have no paired normal sample to reliably identify true somatic

mutations and expression changes.
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Methods

Genomic and transcriptomic profiling of samples

DNA sequencing. Flash frozen tissues were pulverized using a Bessman Tissue
Pulverizer (Spectrum Chemical) and homogenized in Nuclei Lysis Buffer
(Promega) using a gentleMACS dissociator (Miltenyi Biotec Inc). DNA was isolated
using the Wizard Genomic DNA Purification Kit (Promega) according to
manufacturer’s protocols. DNA quality and concentration were assessed using a
Nanodrop 2000 spectrophotometer (Thermo Scientific), a Qubit dsDNA BR Assay
Kit on a Qubit Fluorometer (Thermo Scientific), and the Genomic DNA ScreenTape
on a 4200 TapeStation (Agilent Technologies). Libraries were prepared using the
Hyper Prep Kit (KAPA Biosystems) and SureSelectXT Target Enrichment System
with the JAX Cancer Treatment Profile (CTP) targeted panel (Agilent
Technologies), according to the manufacturer’s instructions. Briefly, the protocol
entails shearing the DNA using the Covaris E220 Focused-ultrasonicator
(Covaris), ligating Illumina specific adapters, and PCR amplification. Amplified
DNA libraries are then hybridized to the CTP probes, amplified using indexed
primers, and checked for quality and concentration using the High Sensitivity
D5000 ScreenTape (Agilent Technologies) and Qubit dsDNA HS Assay Kit
(Thermo Scientific). Libraries were pooled and sequenced 150 bp paired-end on

the NextSeq 500 (Illumina) using NextSeq v2 reagents (Illumina).

RNA sequencing. Tissues preserved in RNAlater were homogenized in TRIzol
(ThermoFisher Scientific) using a gentleMACS dissociator (Miltenyi Biotec Inc).
Total RNA was isolated using the miRNeasy Mini kit (Qiagen) according to
manufacturer’s protocols, including the optional DNase digest step. RNA quality

and concentration were assessed using the RNA 6000 Nano LabChip assay on the
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2100 Bioanalyzer instrument and Nanodrop 2000 spectrophotometer (Thermo
Scientific). Prior to 2016, non-stranded libraries were constructed using TruSeq
RNA Library Prep Kit v2 (Illumina). Starting in 2016, stranded libraries were
prepared by the Genome Technologies core facility at The Jackson Laboratory
using the KAPA mRNA HyperPrep Kit (KAPA Biosystems), according to the
manufacturer’s instructions. Briefly, the protocol entails isolation of polyA
containing mRNA using oligo-dT magnetic beads, RNA fragmentation, first and
second strand cDNA synthesis, ligation of Illumina-specific adapters containing a
unique barcode sequence for each library, and PCR amplification. Libraries were
checked for quality and concentration using the DNA 1000 assay (Agilent
Technologies) and quantitative PCR (KAPA Biosystems), according to the
manufacturers’ instructions. Libraries were pooled and sequenced 75 bp paired-
end on the NextSeq 500 (Illumina) using NextSeq High Output Kit v2 reagents
(Illumina), or 100 bp paired-end on the HiSeq2500 (Illumina) using TruSeq SBS

v3 reagents (Illumina).

SNP array. DNA samples were sent to the Genotyping Core at the Hussman
Institute for Human Genomics (University of Miami) for genotyping on the
Genome-Wide Human SNP Array 6.0 (Affymetrix). Quality control on the CEL files
was carried out using the standard Contrast QC metric from the Affymetrix

Genome Wide SNP 6.0 array manual.

Somatic point mutation and indel calling workflow

Preprocessing and removal of mouse reads. DNA sequence data generated from
PDX tumors underwent initial data processing as follows: (i) sequence reads with
70% of the bases having a quality score <30 (Q30) were discarded, (ii) bases with
quality scores less than Q30 were trimmed from the 3’ end of the read, (iii)
sequence reads with <70% of bases remain after trimming were discarded, (iv)
both reads from pair-end sequencing were discarded if either read was discarded.
If <50% of the total reads remained following the preprocessing steps, the sample
was removed from the analysis. Following the initial data processing step

described above, mouse reads were identified and filtered out using Xenome
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v1.0.0 [13].Only read pairs with both reads classified as human were included in
further analyses.

Sequence reads that passed all pre-processing steps were mapped to the
reference human genome (build GRCh38.p5 with 262 alternate loci) using the
BWA-MEM alignment tool with ALT-Aware mapping (Supplementary Figure S14)
[40, 41]. Because low sequence coverage leads to poor sensitivity in variant
calling, samples with less than 75% of the target region covered at least at >100X

by human reads were excluded from further analysis.

Variant calling. The GATK best practices workflow
(https://gatkforums.broadinstitute.org/gatk/categories/best-practices-

workflows) using the UnifiedGenotyper, was used for variant discovery analysis
[42-44], which is comprised of the following steps: (i) sorting the SAM/BAM file
by coordinate, (ii) removing duplicates to mitigate biases introduced by library
preparation steps such as PCR amplification by Picard
(https://broadinstitute.github.io/picard/), and (iii) recalibrating the base quality
scores as the variant calling algorithms rely heavily on the quality scores assigned
to the individual base calls in each sequence read. Pindel [32] was also
incorporated into the workflow to call indels that have been missed by the GATK

UnifiedGenotyper.

Quality filtering of variants for targeted sequencing. High quality variants from
both variant callers in the PDX samples were obtained based on GATK hard
filtering (see below), and have a read depth (DP) of 2140 and allele frequency
(ALT_AF) of 25%. These DP and ALT_AF thresholds were optimized using a set of
known and validated mutations and samples reported earlier for the JAX CTP
targeted panel sequencing at high coverage (average 941X) [45]. The parameters
for GATK hard filtering [29] were set as default as recommended by GATK best
practices
(https://software.broadinstitute.org/gatk/documentation/article.php?id=6925,
https:/ /software.broadinstitute.org/gatk/documentation/article.php?id=3225,
https://gatkforums.broadinstitute.org/gatk/discussion/2806 /howto-apply-

hard-filters-to-a-call-set):
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(i) for point mutations, QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum < -12.5,
ReadPosRankSum < -8.0

(ii) for indels, QD < 2.0, FS > 200.0, ReadPosRankSum < -20.0.

In addition, we verified that these default thresholds were able to detect all the
known mutations in the CTP samples [45]. The average number of variants before
and after quality filtering across the CTP samples is shown Supplementary Table

S4.

Annotation of variants. Variants were annotated for their effect (gene,
consequence, amino acid change, etc.) using SnpEff v4.3 [46] based on gene
annotations from Ensembl (version GRCh38.84) and information from COSMIC
version 80 [47], dbSNP build 144 [48]. The observed variant allele frequency in
1000 Genomes Project [49] and ExAC version 0.3 [45, 50] database were obtained
using SnpSift tool by utilizing dbNSFP3.2a.txt database. We further annotated each
variant with 1) known or predicted gain or loss of protein function, 2) potential
treatment approach for any cancer type and 3) drug sensitivity and resistance
effects in clinical or preclinical studies, based on curated clinical information from
the JAX clinical knowledge base (CKB, https://ckb.jax.org/) [31]. The average
number of variants annotated to be clinically relevant across the CTP samples is

shown in Supplementary Table S4.

Filtering of germline variants. Since normal samples were unavailable for patients
whose tumors were used to generate the PDX models, we generated a dataset of
putative human germline variants using data from several public resources: (i)
dbSNP, (ii) 1000 Genomes Project, (iii) EXAC database with MAF >21%, and (iv) a
compendium of variants from 20 normal blood samples that were prepped and
sequenced on the CTP panel using the same protocol as the PDX samples, with a
frequency of 2/20 in normal samples or 1/20 in normal samples and 2/20 in PDX
models. The number of variants in each of these databases are shown in
Supplementary Table S3. The variants identified via GATK and Pindel in the PDX
model tumors were annotated as germline and filtered out of the model’s somatic
mutation calls if they were present in our aggregated dataset of putative germline

variants and had allele frequencies between 40% to 60% or more than 90%.
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Filtering putative false positives. Variants not in our aggregated dataset of putative
germline variants described above but occurred at a frequency of 25% or greater
across all PDX models (n=236) were considered to be putative false positive (FP)
mutations. The rationale for this data filtering step was based on our observation
that the maximum recurrent frequency of somatic mutated base positions was 6%
across a compendium of TCGA tumor samples (n=3576, 9 tumor types that were
also represented in the PDX model). Thus, we would expect that any mutated loci
recurring across PDX samples at significantly higher rates to likely be FP.
Systematic technical errors in sequencing and/or mapping are possible
explanations for the common recurrent non-somatic mutations identified PDX

models.

Rescuing the false negative variants. An exception to the germline and false
positives exclusion process was made for variants (from GATK or Pindel) that
were annotated as clinically relevant in JAX CKB. We rescued any filtered variants
that were curated into the proprietary JAX-Clinical Knowledgebase (CKB,
https://ckb.jax.org/) [31] with 1) known or predicted gain or loss of protein
function, 2) potential treatment approach for any cancer type and 3) drug

sensitivity and resistance effects in clinical or preclinical studies.

Benchmarking of PDX somatic mutation workflow

To benchmark the PDX somatic mutation workflow, a simulated dataset (45
samples) was generated that included sequenced reads that includes sequencing
errors of an [llumina HiSeq were generated in-silico for different samples with, 1)
varying sequencing coverage, 2) spiked-in mutations to the reference human
sequence representative of different tumor types, and 3) different proportions of

spiked-in mouse reads (Supplementary Table S1).

Generation of simulated sequence reads. SeqMaker was used to generate simulated
sequencing data based on human genome assembly GRCh38 with varying
sequencing depth, read length, duplication rate, sequencing error and base quality

range [51]. Reference sequences were extracted from target region of the CTP
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panel. Sequence reads for 5 samples were simulated using predicted mutations
from PDX models of different cancer types from the CTP dataset to represent
different spectrum of mutations, with a range of allele frequency to mimic
germline and somatic mutations. For each simulated sample, we generated three

technical replicates at 500X, 1000X and 1500X coverage.

Addition of mouse reads. Mouse sequencing reads were added in different fractions
to the human-specific simulated dataset to mimic mouse contamination observed
in PDX models. The mouse reads were extracted from the sequencing data of
mouse DNA isolated from fresh spleen tissue of NSG mice on the CTP. For each
simulated human-specific sample, we added mouse reads in three proportions

(10, 15 and 25% of the total coverage).

Calculate sensitivity and specificity of mutation results based on different workflow
filters. To evaluate the effect of each filter used in our workflow, we modified the
somatic mutation workflow by: (i) omitting Xenome to filter mouse reads, and (ii)
mapping to the reference sequence using BWA-MEM. Each modified workflow
was used to process each PDX simulated library and each set of results, with and
without quality filters, was used to compute the lists of true positive, false positive,
true negative and false negative variants. As such, we can calculate the range of
sensitivities and specificities of the predicted variants for all the simulated PDX
models. We compared the distributions of precision, recall and F1-score
(2*(Recall*Precision)/(Recall+Precision)) for different variations of the variant
calling workflow on the simulated datasets. Furthermore, we compared the
predicted allele frequencies of the true positives of each sample with the input by

correlation.

RNA-Seq expression workflow

Data processing and expression estimation. Prior to alignment to the human
transcriptome, sequences from PDX tumors were processed for sequence quality.
Only sequences with base qualities 230 over 70 percent of read length were used
in downstream analyses. Quality trimmed reads were then analyzed using

the default parameters of Xenome v1.0.0 (k=25) [13] to separate human, mouse,
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and ambiguous sequences (i.e., sequences that cannot be reliably classified as
mouse or human). Sequence reads that passed the quality and Xenome screening
were aligned to a human transcriptome dataset (ENSEMBL version GRCh38.84)
using Bowtie v2.2.0 [52, 53]. Only samples with at least 1 million human reads
were retained for expression analysis. Gene expression estimates were
determined using RSEM v1.2.19 [54] (rsem-calculate-expression) with default
parameters. We further normalized the expression estimate (expected_count
from RSEM) using upper quantile normalization of non-zero expected counts and

scaling to 1000.

Classifier for EBV-associated PDX lymphomas

A gene signature for differentiating EBV-associated lymphomas was derived from
the most highly differentially expressed genes between 20 EBV-associated
lymphomas and 100 non-EBV tumors based on upper-quantile normalized RNA-
Seq counts (RSEM). Gene set analysis on the resulting expression vector was
performed with GSEA using the GenePattern webserver and default parameters
(data not shown). 24 up-regulated and 24 downregulated genes from the set of
differentially expressed genes were used to define the list of classifier genes
(Supplementary Table S10). For each PDX sample, the upper-quantile normalized
counts from RSEM of the classifier genes were transformed into z-scores using the
mean and standard deviation computed across all PDX samples for each gene.
Subsequently, a sign corresponding to the direction of regulation in the classifier
table was multiplied to each z-score and the sum of these modified z-scores
resulted in a single score for each PDX sample. A classifier score of >3.0 was used

to identify a PDX tumor sample as a potential EBV-associated lymphoma.

Copy Number Variant (CNV) workflow

Assessing the effects of mouse DNA on SNP array. DNA of the NSG mouse was
hybridized on the Affymetrix SNP 6.0 array, and the signal intensity was extracted
from the CEL files using Affymetrix Power Tools (apt-cel-extract). The mouse
content for each PDX sample was estimated by the mouse reads proportion
computed by Xenome of the mutation calling pipeline for the CTP sequencing of

the same PDX sample.
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Single-tumor CNV analysis. PennCNV-Affy and Affymetrix Power Tools [55-57]
were used to extract the B-allele frequency (BAF) and Log R Ratio (LRR) from the
resulting CEL files of the Affymetrix Human SNP 6.0 array. Due to the absence of
paired-normal samples, the allele-specific signal intensity for each PDX tumor
were normalized relative to 300 randomly selected sex-matched Affymetrix
Human SNP 6.0 array samples obtained from the International HapMap project
[58]. The single tumor version of ASCAT 2.4.3 [59] was then used for GC
correction, predictions of the heterozygous germline SNPs and estimation of
ploidy, tumor content and copy number segments with allele-specific copy

number.

Annotation of CNV segments. The resultant copy number segments were
annotated with loss of heterozygosity (LOH) and log; ratio of total copy number
relative to diploid state (copy number 2) and predicted ploidy from ASCAT. A
segment was defined as LOH when the major-allele copy number was 2 0.5 and
the minor-allele copy number was < 0.1. Gene-level copy number and LOH were
estimated by intersecting the genome coordinates of copy number segments with
genome coordinates of genes (Ensembl annotation version 84 for genome
assembly GRCh38). In cases where a segment boundary was contained within a
gene’s coordinates, the most conservative (lowest) estimate of copy number was

used and the gene was annotated with the number of overlapping segments.

Defining copy number gain and loss. The low-level copy number gain or loss of a
gene was defined by the log ratio of the copy number relative to the average
ploidy of the sample or diploid state with a threshold of £0.4 respectively. We
compiled a list of genes with focal copy number aberrations that were significantly
amplified (n=273) or deleted (n=820) in the 8 tumor types (Supplementary Table
S8) from the GISTIC 2.0 analysis from the TCGA FireBrowse website
(http://firebrowse.org/). Using this set of genes, we compared the proportion of
genes that would be classified as gain and loss when using different baselines
(diploid state 2 or ASCAT predicted ploidy) for PDX models listed in
Supplementary Table S12.
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Comparison of copy number aberrations with gene expression. Using annotations
from the Cancer Census resource [33] we analyzed the relationship between copy
number aberrations and gene expression using a list of 23 oncogenes that are
commonly amplified in cancers and a list of 40 tumor suppressor genes that are
commonly deleted in cancers. These genes were classified into copy number states
of high-level loss (log2(CN/ploidy) < -1), normal (-1 < log2(CN/ploidy) < +1) and
high-level gain (log2(CN/ploidy) > +1). The expression fold change of each gene
was calculated as the logz(TPM+1) relative to the mean expression across PDX
samples with a stringent normal copy number state (-0.4 <log2(CN/ploidy) < 0.4).
The significance of expression changes of each gene for the entire PDX resource
with copy number gain or loss relative to the normal state was calculated using

the Student’s t-Test.

Comparison between PDX and TCGA data

Somatic mutations. We calculated the distribution of mutational load (number of
non-silent, coding mutations in exonic regions per sample) of the CTP genes for 6
tumor types with at least 10 models in the PDX resource (colorectal cancer, lung
adenocarcinoma, lung squamous cell carcinoma, melanoma, bladder carcinoma
and triple-negative breast cancer, Supplementary Table S5). MAF files for somatic
mutations based on whole-exome sequencing of the TCGA samples of 6 tumor
types [60-64] were obtained from TCGA Data Portal and were used to compute
the mutation frequency for CTP genes only. The Fisher’s exact test was used to test
the significance of overlap of mutated genes between the PDX resource and TCGA
patient cohorts for each tumor type. The genes in each PDX resource were
considered if they were mutated in at least one sample, while the genes in each
TCGA tumor cohort were considered if they were mutated with at least 5%

frequency, due to a much larger sample size.

RNA-Seq gene expression. 6 tumor types with at least 10 models in the PDX
resource were selected for comparison with TCGA (colorectal cancer, lung
adenocarcinoma, lung squamous cell carcinoma, melanoma, bladder carcinoma

and triple-negative breast cancer, Supplementary Table S10). The scaled estimate
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(TPM x 10-°) from the RNA-Seq data of 6 tumor types in TCGA [60-65] were
obtained from the TCGA FireBrowse website (http://firebrowse.org/). Non-
expressed genes across all tumor types were removed (log2(TPM+1) < 2), and the
top 1000 most varying genes based on their z-scores of logz(TPM+1) across all
tumor types were selected to cluster the samples by hierarchical clustering. The
frequencies of over-expression and under-expression of each gene is defined by
the z-scores of log2(TPM+1) of £1. Correlation of the gene expression frequencies
in each tumor type was computed using Pearson correlation. The differential gene
expression of each tumor type compared to all other tumor types was computed
using limma [66] based on logz(TPM+1) values. Up-regulated (adjusted p-value <
0.05, log (fold change of TPM+1) > 1 by limma) or down-regulated (adjusted p-
value < 0.05, log (fold change of TPM+1) < -1 by limma) genes were obtained for
the PDX resource and TCGA patient cohorts separately. The significance of overlap
of each set of genes between PDX and TCGA RNA-Seq data was determined using

hypergeometric p-value.

Copy number aberrations. 8 tumor types with at least 10 models in the PDX
resource (colorectal cancer, lung adenocarcinoma, lung squamous cell carcinoma,
melanoma, glioblastoma multiforme, bladder carcinoma, triple-negative breast
cancer and ovarian carcinoma, Supplementary Table S12) selected to compare
with corresponding primary tumors in the TCGA [60-65, 67-69]. For PDX samples,
the low-level copy number gain or loss of a gene was defined by the log> ratio of
the copy number relative to the average ploidy of the sample (or copy number
state 2) with a threshold of £0.4 respectively. The amplification or deletion calls
of each gene for the TCGA samples were provided (loss=-1, normal=0, gain=1) by
FireBrowse (http://firebrowse.org/). Using the list of genes with focal copy
number aberrations that were significantly amplified (n=273) or deleted (n=820)
in the 8 tumor types from the GISTIC 2.0 analysis from the TCGA FireBrowse
website, we calculated the copy number gain and loss frequencies of these genes
for each tumor type in the PDX resource and TCGA cohorts using the respective

gain and loss calls.
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Figure 1

(A) The Jackson Laboratory (JAX) has generated, clinically annotated, and genomically characterized more than 450 patient-derived xenograft (PDX) cancer
models from about 20 different types of cancer using the immunodeficient NOD.Cg-Prkdc“id IIngt’"l"W/SzJ (aka, NSG™) mouse as the host strain
(http://tumor.informatics.jax.org/mtbwi/index.do). This figure shows the workflow of PDX model generation from patient tumor, the process of
engraftment and passaging that supplies to the JAX PDX resource, and the generation of genomic and transcriptomic data to profile the PDX models.

(B) The PDX models are profiled by: 1) DNA mutations from capture sequencing using the JAX Cancer Treatment Profile™ (CTP,
https://www.jax.org/clinical-genomics/clinical-offerings/jax-cancer-treatment-profile), the lllumina Truseq panel or whole-exome sequencing, 2) DNA
copy-number variations using Affymetrix SNP 6.0 arrays, and 3) gene expression profiles from Affymetrix microarrays or RNA sequencing (lllumina

HiSeq). The analysis of the genomic and transcriptomic data of PDX models poses several challenges which we have developed several strategies to
circumvent these issues.
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Figure 2

(A) This flow chart describes the variant calling pipeline for PDX DNA sequencing data.

(B) This figure shows the different filters used the variant calling pipeline for PDX DNA sequencing data applied to the CTP panel sequencing (see Methods
for details). MTB is the Mouse Tumor Biology Database in JAX, PDX models in the JAX PDX resource can be searched in
http://tumor.informatics.jax.org/mtbwi/pdxSearch.do. (RD: Read depth, AF: Allele-frequency, FP: False positives

(C) The recurrent frequencies of the mutated positions (after germline filtering) for various genes that were found to be recurrent in more than 25% of
PDX samples. These were identified as additional false positive variants due to sequencing errors or mapping issues.
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Figure 3

(A) Proportion of mouse reads detected by Xenome for CTP and RNA sequencing data of PDX models.

(B) This figure shows the benchmarking of the CTP variant calling pipeline using 45 simulated sequencing datasets different samples, sequencing coverages,
and mouse DNA content (see Supplementary Table S2) using precision, recall and F1 score based on the input variants for each sample. Complete:
variant calling pipeline with all steps included; NoXenome: variant calling pipeline with Xenome omitted; all: all variants called by the pipeline; pass:
variants annotated as “PASS” in the pipeline which pass the hard filters, minimum read depth and minimum alternate allele frequency of the variant.
Distribution of mutational load per sample of non-silent coding somatic mutations of CTP genes from exome sequencing TCGA samples and from CTP-
panel sequencing of PDX models. TCGA somatic: TCGA somatic mutations reported in maf files; PDX: all variants annotated as “PASS” (pass the hard
filters, minimum read depth and minimum alternate allele frequency of the variant); PDX filter germline: all variants annotated as “PASS” and filtered
from putative germline variants; PDX filter germline & FP: all variants annotated as “PASS” and filtered from putative germline variants and false

Q)

positives.

(D) Mutations in PDX models that were detected by CTP-panel sequencing and experimentally validated in the corresponding patient tumor. Some of these
variants were rescued after initial filtering.
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Figure 4
(A) This flow chart describes the RNA expression pipeline and fusion gene prediction for PDX RNA sequencing data.
(B) Distribution of lymphoma classification scores of PDX tumors.
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Figure 5

(A) This flow chart describes the CNV and LOH prediction pipeline for PDX SNP array data.

(B) Comparison of copy number relative to the estimated overall ploidy of the PDX sample or the diploid state between analyses with and
without matched normal.

(C) Mean expression fold change of genes with copy number normal, gain and loss state for a selected list of known oncogenes that are amplified
in cancers and known tumor suppressor genes that are deleted in cancers from the Cancer Census [34]. Overexpressed and under-expressed
genes marked with * indicates significant differences in expression fold change with copy number gain or loss state respectively relative to the
normal state across all PDX samples.
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Figure 6

(A) Distribution of mutational load per sample of non-silent coding somatic mutations of CTP genes from exome sequencing of TCGA samples and from
CTP-panel sequencing of PDX models (all filters included).

(B) Overlap of CTP genes that have non-silent coding somatic mutations with >5% mutation frequency in TCGA data with genes that have at least one non-
silent coding somatic mutation in PDX CTP data (all filters and rescue of clinically relevant variants included) for each tumor type. Fisher’s exact test is
used to compute the significance of the overlap.

(C) Hierarchical clustering of z-score of expression (log2(TPM+1)) of top 1000 most varying genes of TCGA RNA-Seq samples across different tumor types.
The same set of genes (omitting non-expressed genes) is used to cluster the expression z-score by Hierarchical clustering of PDX RNA-Seq models across
different tumor types. Gene sets were identified to be high expression in specific tumor types TCGA and PDX separately and were found to share
significant overlap.

(D) Correlation frequency of genes that are over-expressed (z-score of log2(TPM+1) > 1, green) or under-expressed (z-score of loga(TPM+1) < -1, orange)
across each tumor type between PDX models and TCGA samples.

(E) Correlation of frequency of copy number gain (red) or loss (blue) of selected genes frequently amplified or deleted in TCGA tumors predicted by GISTIC
analysis for each tumor type between PDX and TCGA datasets.
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Supplementary Figure S1

(A) This figure shows the annotation of variants of the 20 normal samples in JAX using public
databases (dbSNP Build 144, 1000 Genomes, ExAC version 0.3, and COSMIC version 80)

(B) The allele frequencies and recurrent frequencies of the variants.

(C) Recurrent frequency of variants (> 1 sample) found in 20 normal samples and the
corresponding recurrent frequency across 236 PDX models of different tumor types.
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Supplementary Figure S2

(A) Top left (dark blue): Distribution of tumor types across 236 PDX models; Others (grey):
Frequency of tumor types for each frequently mutated position normalized by the
recurrent frequency of the mutation.

(B) Correlations of tumor type frequency for the 236 PDX models (dark blue in B) with the
tumor type frequency for each frequently mutated position (grey in B).
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Supplementary Figure S3

(A) Correlation of alternate allele frequencies between input and true positive variants for
one of the simulated samples for the complete feature pipeline. ALL: all variants called by the
pipeline; PASS: variants annotated as “PASS” in the pipeline which pass the hard filters,
minimum read depth and minimum alternate allele frequency of the variant. The correlation
coefficient for all simulated samples are found in Supplementary Table S3.

(B) Difference in alternate allele frequencies between input and true positive variants for one
of the simulated samples (J0O00093572_1000X_10percent) for the complete feature pipeline.
ALL: all variants called by the pipeline; PASS: variants annotated as “PASS” in the pipeline
which pass the hard filters, minimum read depth and minimum alternate allele frequency of
the variant.


https://doi.org/10.1101/414946
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/414946; this version posted September 12, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Completes  Complstepass  NoXenome.al NoXenomepass NoAtawarell NoAtaware pass

Supplementary Figure S4

This figure shows the benchmarking of the CTP variant calling pipeline using 45 simulated
sequencing datasets different samples, sequencing coverages, and mouse DNA content (see
Supplementary Table S2) using precision, recall and F1 score based on the input variants for
each sample. Complete: variant calling pipeline with all steps included; NoXenome: variant
calling pipeline with Xenome omitted; NoAltaware: variant calling pipeline using hg38
reference with alternate sequences but using standard BWA for mapping instead of BWA-
ALT-Aware; all: all variants called by the pipeline; pass: variants annotated as “PASS” in the
pipeline which pass the hard filters, minimum read depth and minimum alternate allele
frequency of the variant.

Presence of alternate loci in the genome assembly. The GRCh38.p5 human genome assembly
includes 262 regions of alternate loci to account for human chromosomal regions that exhibit
sufficient variability to prevent adequate representation by a single sequence [29]. As such,
we aligned the reads to both primary and alternate chromosomal reference sequences using
BWA-MEM with ALT-aware. When alignment is performed using BWA-MEM only, the recall
of the variants is much lower (~¥30%) than the standard pipeline with or without hard-filtering
(Supplementary Figure S14 and Supplementary Table S2). This shows that using an alignment
tool not catered for alternate loci mapping reduces the overall sensitivity of the variant calling
due to lesser reads being correctly mapped. The correlation of allele frequencies also
decreases and the reduction in median allele frequency increases up to 15% (Supplementary
Table S3).
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Supplementary Figure S5

(A) Hierarchical clustering of the pairwise correlations of microarray expression between
pairs of models, with red representing perfect correlation (+1), and blue perfect anti-
correlation (-1). The two largest red blocks (highlighted in white and yellow) show the
mouse introgressed and EBV transformed models. The other blocks, which much lower
average correlation, typically show related tumor types (e.g., the lower right block is all
neurological tumors).

(B) A small fraction of tumors, highlighted in white in (A), that were heavily introgressed by
mouse tissues were clustered with expression of NSG mouse (skin sample).

(C) EBV Lymphoma models, highlight in yellow in (A), show an extremely highly correlated
expression pattern regardless of the original tissue or tumor type.
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Supplementary Figure S6

(A) Distribution of probe intensity of the SNP array for PDX samples with different mouse DNA
content (using the percentage of human reads estimated from the CTP sequencing as a proxy
for human DNA content on the SNP array): > 99% human DNA (green), < 50% human DNA
with QC failure of SNP array CEL file (red), and 100% NSG mouse DNA (black).

(B) Human DNA content of PDX samples classified by successful CNV prediction (black
squares), failure in QC of CEL files (orange circles), and failure in ASCAT analysis red triangles).
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Supplementary Figure S7

(A) And (B): CNV profiles of PDX models with matched models and multiple samples from the
corresponding patient tumor, multiple passages or multiple samples (mouse) of same
passage.


https://doi.org/10.1101/414946
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/414946; this version posted September 12, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Color Key Color Key

m— TCGA gain frequency of GISTIC Amplified genes (273) m— ] TCGA loss frequency of GISTIC Deleted genes (820)
02 08 02 08

7 o
==

TCGA_BLCA
TCGA_GBM
TCGA_LUAD
TCGA_LUSC
TCGA_SKCM
TCGA_OV
TCGA_BLCA
TCGA_GBM
TCGA_LUAD
TCGA_LUSC
TCGA_SKCM
TCGA_OV

TCGA_COADREAD

TCGA_COADREAD
TCGA_BRCA_TNBC
TCGA_BRCA_TNBC

Supplementary Figure S8

Frequency of copy number gain (red) or loss (blue) of selected genes frequently amplified or
deleted in TCGA tumors predicted by GISTIC analysis for each tumor type in TCGA SNP array
datasets.
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Supplementary Figure S9

N =172200 Bandwidth =0.05706

Distribution of log; ratio of gene copy number relative to the estimated overall ploidy of each
individual PDX sample or the diploid state for selected frequently amplified or deleted genes
in TCGA tumors predicted by GISTIC analysis across all PDX samples. The threshold of low-
level gain and loss is defined as log2(CN/ploidy) > +0.4 and log2(CN/ploidy) < -0.4 respectively.
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Supplementary Figure S10
Expression fold change of each gene across all PDX samples, defined by fold change of
log2(TPM+1) relative to the mean expression of samples with a stringent normal copy number
state (-0.4 < log2(CN/ploidy) < 0.4). Here, a higher-level copy number gain and loss is defined
as log2(CN/ploidy) > +1 and logz2(CN/ploidy) < -1 respectively. The normal copy number state
is defined as -1 < log2(CN/ploidy) < +1. Significance in differences in expression by Student’s
t-test (*: p-value < 0.005, NS: non-significant).
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Supplementary Figure S11

Correlation frequency of genes that are over-expressed (z-score of log2(TPM+1) > 1, green) or
under-expressed (z-score of log,(TPM+1) < -1, orange) between each tumor type in TCGA
RNA-Seq samples.
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Supplementary Figure S12
Frequency of genome-wide copy number gain, loss and LOH across PDX models for 8 tumor
types.
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Supplementary Figure S13
Frequency of genome-wide copy number gain and loss across TCGA samples for 8 tumor types.
(Compiled from UCSC Cancer Browser, https://genome-cancer.ucsc.edu/)
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Supplementary Figure S14

(A) Comparison of frequency of copy number gain (red) or loss (blue) of selected genes
frequently amplified or deleted in TCGA tumors predicted by GISTIC analysis for each
tumor type between PDX and TCGA datasets using predicted ploidy as a reference state.

(B) Comparison of frequency of copy number gain (red) or loss (blue) of genes frequently
amplified or deleted in TCGA tumors predicted by GISTIC analysis for each tumor type
between PDX and TCGA datasets using diploid as a reference state.
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Supplementary Figure S15

(A) Correlation of frequency of copy number gain (red) or loss (blue) of selected genes
frequently amplified or deleted in TCGA tumors predicted by GISTIC analysis between

each tumor type in TCGA SNP array datasets.
(B) Ranked correlation coefficients based on Figure 4b and Supplementary Figure S6.
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Supplementary Figure S16

Frequency of genes altered PDX and TCGA tumors for each genomic datatype for colorectal
cancer. These genes are identified by commonly affected pathways in colorectal cancer
reported in TCGA studies. For both PDX and TCGA cohorts of colorectal cancer, we observed
high frequencies in the 1) mutation of APC and over-expression of AXIN2 in the WNT signaling
pathway, 2) amplification of IRS2 in the PI3K signaling pathway, 3) copy number loss of
SMAD2 and SMAD4 in the TGF-B signaling pathway, 4) under-expression of BRAF in the RTK-
RAS signaling pathway, and 5) copy number loss of TP53 in the TP53 signaling pathway.
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Supplementary Table S1
This table summarizes the results from the benchmarking studies of the CTP variant calling
pipeline using 45 simulated sequencing datasets different samples, sequencing coverages,
and mouse DNA content.
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ALT_AF Correlation ALT_AF Difference Median
Coverage | Mouse
Model X percent | Output ALL | Output NoXenome | NoXenome [NoAltAware [NoAltAware Output ALL| Output NoXenome | NoXenome |NoAltAware [NoAltAware
PASS ALL PASS ALL PASS PASS ALL PASS ALL PASS
10 0.995 0.995 0.985 0984 0.982 0.981 ) 3 3 3 13 15
500 15 0.995 0.995 0.976 0.975 0.982 0.981 -3 -3 -3 -3 13 -15
0.995 0.995 0.957 0.952 0.982 0.981 -3 -3 -3 3 -13 -15
10 0.996 0.996 0.986 0.985 0.983 0.984 -3 -3 -3 -3 -135 -14
1000093572 | 1000 | 15 0.99 0.996 0.977 0974 0.983 0984 -3 -3 -3 3 -14 -15
0.996 0.996 0.960 0.955 0.983 0.984 -3 -3 -3 -3 13 -15
10 0.997 0.997 0.986 0.985 0976 0974 -3 -3 -3 3 -13 -15
15 0.997 0.997 0.977 0.974 0.976 0.974 -3 -3 -3 2 13 -15
0997 0997 0.961 0.955 0.976 0974 -3 -3 -3 -3 13 -15
10 0.991 0.990 0.954 0.927 0.970 0.958 3 3 4 -4 12 12
500 15 0.990 0.990 0.931 0.878 0.970 0.958 -3 -3 -4 -4 12 12
0.990 0.990 osss RO o970 0.959 3 3 -4 -4 12 12
10 0.990 0.989 0.952 0.935 0.966 0.955 -3 -3 -4 -4 12 12
TMI00055 1000 | 15 0.991 0.989 0.929 0.894 0.963 0.950 -3 -3 -4 -4 ) E10)
0.991 0.989 osss [N081EN o963 0.951 -3 -3 -4 -4 12 12
10 0.991 0.988 0.953 0.931 0.968 0.953 -3 -4 -4 -4 E1D) E10)
15 0.991 0.989 0.930 0.882 0.969 0.954 -3 -4 -4 -4 12 12
0991 0989 | osss [INOSIIN  0.969 0953 3 -4 -4 -4 12 B2
10 0.990 0.990 0.974 0.977 0.976 0.980 3 3 3 3 14 15
500 15 0.990 0.990 0.963 0.965 0.976 0.980 -3 -3 =S 2 -14 -15
0.990 0.990 0.939 0.943 0.976 0.980 -3 -3 -3 2 -14 -15
10 0.992 0.992 0.977 0.980 0.977 0.982 -3 -3 =3 =3 BTS, -15
TM00926 1000 | 15 0992 0992 0.965 0.970 0.977 0.982 -3 -3 -3 3 -15 -15
0.992 0992 0.943 0.947 0.977 0.982 3 -3 3 3 -15 =15
10 0.993 0.993 0.977 0.981 0.974 0976 -3 -3 -3 -3 -14 -15
15 0.992 0.993 0.966 0971 0974 0976 -3 -3 -3 -3 -14 -15
0992 0993 0.945 0.950 0.974 0977 -3 -3 -3 -3 -14 -15
10 0.994 0.992 0.979 0.979 0.977 0977 ) 3 3 3 13 14
500 15 0.994 0.993 0.969 0.968 0.977 0977 -3 -3 -3 -3 13 -14
0.994 0992 0.946 0.942 0977 0977 -3 -3 -3 3 -13 -14
10 0.995 0.994 0.979 0.981 0.981 0.983 -3 -3 -3 -3 -14 -14
T™O1117 1000 | 15 0.995 0.994 0.969 0.969 0.981 0.983 -3 -3 -3 -3 -14 -14
0.995 0.994 0.949 0.945 0.981 0.983 -3 -3 -3 -3 -14 -14
10 0.995 0.995 0.980 0.982 0978 0978 -3 -3 -3 -3 13 -14
15 0.995 0.994 0.971 0.971 0.979 0.979 -3 -3 -3 -3 13 -135
0.995 0.995 0.951 0.947 0978 0977 -3 -3 -3 -3 -13 -14
10 0.984 0.988 0.962 0.970 0.971 0.972 3 3 3 S 14 15
500 15 0.984 0.988 0.950 0.959 0971 0972 -3 -3 -3 -3 -14 -15
0.984 0.988 0.921 0.934 0.971 0972 -3 -3 -4 -4 -14 -15
10 0.981 0.990 0.961 0973 0.970 0972 -3 -3 -4 -3 -15 -15
T™M01443 1000 | 15 0.982 0.990 0.947 0.959 0.970 0972 -3 -3 -4 -4 -15 -15
0.982 0.990 0.925 0.937 0.970 0972 -3 -3 -4 -4 -15 -15
10 0.984 0.991 0.962 0.974 0.968 0.968 -3 -3 -3 2 -14 -15
15 0.984 0.991 0.949 0.960 0.967 0.967 -3 -3 -3 -4 -15 -15
0.984 0.991 0.924 0.939 0.968 0.967 -3 2 -4 -4 -14 -15

Supplementary Table S2
This table shows the correlation and difference in median of alternate allele frequencies
between input and true positive variants for all the simulated samples. ALL: all variants called

by the pipeline; PASS: variants annotated as “PASS” in the pipeline which pass the hard filters,
minimum read depth and minimum alternate allele frequency of the variant.
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Database Number of variants
dbSNP Build 144 143,257,868
1000 Genomes 637,385
EXAC >1% MAF 38,129
Recurrent in 20 normals on CTP panel 105
Cosmic v80 18,974,374

Supplementary Table S3
Number of variants in each germline databases.
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CTP (383 samples) SNP INDEL

Number of unique variants Mean Median Standard deviation Mean Median Standard deviati
Total 798 779 107 30 28 13

DP, AF and Hard filters 601 592 80 23 22 11
Germline filters 164 146 84 9.9 9 79

Recurrent variants filter and

67 57 42 31 2 3.2
High/Moderate impact variants
Clincally relevant variants rescue 71 61 42 3.2 2 3.6
Clincally relevant variants 5.6 5 21 0.18 ] 0.65

Supplementary Table S4

Number of unique variants in each CTP sample (n=383), represented by mean, median and
standard deviation, called by GATK and after each filtering or rescue step. The last row shows
the average number of variants annotated as clinically relevant.
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Number of ) Number of
PDX CTP TCGA Whole Exome (Somatic) i
models/samples samples (patients)

Lung adenocarcinoma Lung adenocarcinoma

36 571 (569)
(PDX_LUAD) (TCGA_LUAD)
Lung squamous cell carcinoma 28 Lung squamous cell carcinoma 494 (454)
(PDX_LUSC) (TCGA_LUSC)
Colorectal cancer Colorectal adenocarcinoma

41 595 (592)
(PDX_Colorectal) (TCGA_COADREAD)
Triple negative breast cancer 12 Breast invasive carcinoma, Triple-negative 132 (131)
(PDX_TNBC) (TCGA_BRCA_TNBC)
Bladder cancer, Muscle invasive Bladder urothelial carcinoma

) ) 12 413 (412)

(PDX_BLCAinvasive) (TCGA_BLCA)
Melanoma Skin cutaneous melanoma

12 472 (470)
(PDX_Melanoma) (TCGA_SKCM)

Supplementary Table S5
Number of PDX and TCGA samples for 5 tumor types used for analysis of variant calling.
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Ensembl ID Gene Symbol Up or Down regulation
ENSG00000002919  [SNX11 1
ENSG00000007866 |TEAD3 -1
ENSG00000009790 (TRAF3IP3 1
ENSG00000028277 [POU2F2 1
ENSG00000056558  [TRAF1 1
ENSG00000061676  [NCKAP1 -1
ENSG00000062370 (ZFP112 -1
ENSG00000072818 [ACAP1 1
ENSG00000076662  [ICAM3 1
ENSG00000084070 [SMAP2 1
ENSG00000086730 [LAT2 1
ENSG00000088256 [(GNA11 -1
ENSG00000102096  |PIM2 1
ENSG00000104067 (TJP1 -1
ENSG00000104814 [MAP4K1 1
ENSG00000110031  [LPXN 1
ENSG00000110777 |POU2AF1 1
ENSG00000116473 [RAP1A 1
ENSG00000120256  [LRP11 -1
ENSG00000122386  [ZNF205 -1
ENSG00000126822 [PLEKHG3 -1
ENSG00000130147  [SH3BP4 -1
ENSG00000137693  |YAP1 -1
ENSG00000138185 [ENTPD1 1
ENSG00000142192 (APP -1
ENSG00000144677 (CTDSPL -1
ENSG00000147799 |ARHGAP39 -1
ENSG00000150760 [DOCK1 -1
ENSG00000152990 [GPR125 -1
ENSG00000156052 [GNAQ -1
ENSG00000157985 |AGAP1 -1
ENSG00000162627  |SNX7 -1
ENSG00000163625 (WDFY3 -1
ENSG00000167984 [NLRC3 1
ENSG00000172578  [KLHL6 1
ENSG00000173200 [PARP15 1
ENSG00000180096 |1-Sep 1
ENSG00000180891 [CUEDC1 -1
ENSG00000187079 |TEAD1 -1
ENSG00000187164  [KIAA1598 -1
ENSG00000188822 |CNR2 1
ENSG00000197702 |PARVA -1
ENSG00000197763  [TXNRD3 -1
ENSG00000198833  (UBE2J1 1
ENSG00000211895 [IGHA1 1
ENSG00000213402 [PTPRCAP 1
ENSG00000213999 |MEF2B 1
ENSG00000249096 [RP11-290F5.1 1

Supplementary Table S6
Classifier gene table to classify EBV-associated PDX lymphomas versus other tumors. Up-
regulation: +1; Down-regulation: -1.

26


https://doi.org/10.1101/414946
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/414946; this version posted September 12, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Model ID Sample ID Correlation coefficient (Pearson)
J000077712 JO00077712PT 0.811
J000079689 J000095142 0.938
J000079689 JO00079689PT 0.983
TMO00327 OVIX01FO00PO 0.974
TMO00327 OVIX01F017P0 0.955
TMO00327 OVJX01F020P0 0.969
TMO00327 OVJX01F021P0O 0.968
TM01594 TMO01594F062P2 0.966
TMO01594 TMO1594FPT 0.978

Supplementary Table S7
Pearson correlation coefficient of gene-based log2(total CN/ploidy) between the single-tumor
and tumor-normal CNV analysis.
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Cancer |Gene Loss: log2(CN/ploidy) < -1 Normal: -1 <= log2(CN/ploidy) <= 1 Gain: log2(CN/ploidy) > 1 P-value

Census |symbol # Samples Mean Exp FC # Samples Mean Exp FC # Samples Mean Exp FC Loss vs Norm Gain vs Norm

KAT6A 13 -0.574 170 0.124 12 1.160 9.91E-04 5.40E-03

MYCL 9 -0.352 182 -0.018 4 4.380 2.26E-01 5.65E-02

RAF1 36 -0.755 155 -0.073 4 1.506 4.58E-10 7.03E-05

MDM2 4 -0.362 182 0.022 9 1.431 7.08E-02 2.38E-03

NKX2-1 18 -0.859 168 -0.083 9 4.744 1.59€-07 1.00E-03

Amplified MYC 5 -2.363 143 0.295 47 1.009 2.05E-02 2.64E-04

Oncogenes ERBB2 3 -0.407 186 0.108 6 2.126 1.69E-01 3.12E-03

EGFR 4 -0.945 171 -0.056 20 1.906 8.21E-02 4.42E-04

WHSC1L1 29 -0.732 156 0.026 10 1.648 3.65E-09 3.18E-04

ERG 21 -0.627 170 0.051 4 1.977 4.52E-05 1.24€E-01

PPM1D 4 -0.775 182 0.037 9 0.729 6.15E-03 5.23E-02

JUN 10 -0.545 182 0.061 3 0.876 2.32E-02 1.59E-02

SOX2 3 -0.509 173 0.317 19 4.109 1.17€-01 2.98E-07

BRCA1 3 -1.515 189 -0.032 3 0.445 1.40E-01 1.90E-01

BIRC3 26 0.131 160 0.237 9 1.847 4.15E-01 4.10E-02

MAP2K4 39 -0.798 153 -0.050 3 1.731 2.50E-10 8.16E-02

SMARCB1 13 -0.892 178 0.022 4 1.252 1.96E-06 1.83E-02

TNFAIP3 30 -0.679 162 -0.044 3 -0.422 1.19€-02 6.50E-01

VHL 33 -0.896 156 -0.083 6 0.988 1.58E-05 1.71E-02

BRCA2 21 -0.517 151 0.191 23 0.407 6.08E-05 1.99€-01

RB1 26 -1.041 150 -0.022 19 0.217 4.11E-05 1.74E-01

Deleted FANCD2 34 -0.638 155 -0.018 6 1.265 1.00E-08 1.29€-04

TSGs KDM6A 27 -0.527 159 0.051 9 0.655 5.14E-05 2.00E-02

GPC3 27 -0.572 156 -0.139 12 -1.442 1.50E-01 9.98E-01

CDKN2A 68 -3.020 124 -0.064 3 1.326 7.86E-15 2.95E-01

ATM 44 -0.682 148 0.036 3 1.527 1.80E-05 2.00E-14

APOBEC3B 17 -1.016 172 -0.124 6 1.449 1.81E-02 1.70€E-02

AMER1 23 -0.173 165 -0.026 7 0.282 2.24E-01 1.53E-01

WT1 14 -0.434 176 -0.162 5 -0.130 8.75E-02 4.75E-01

IKZF1 10 -0.262 166 0.004 19 -0.381 1.54€E-01 9.89E-01

NF2 14 -0.950 178 0.014 3 1.239 7.53E-05 1.16E-02

NF1 12 -1.263 179 -0.028 4 0.599 2.86E-04 1.02E-01

Mean Expression Fold Change = log2(TPM+1) - Mean(log2(TPM+1)Jnorm, where norm: -0.4 <= log2(CN/ploidy) <= 0.4

Supplementary Table S8

Mean expression fold change of genes with copy number normal, gain and loss state for genes
found in the Cancer Census that is listed as oncogenes affected by amplification and tumor
suppressor genes affected by deletions (refer to Supplementary Figure S16). The p-value,
calculated by Student’s t-test, measures if the difference in expression for each gene between
the copy number loss models versus normal models, and between the copy number gain
models versus normal models is significant.
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COADREAD CTP (coding, non-silent) [ TCGA mut >=5% | TCGA mut <5% Total
PDX mut 54 244 298
PDX not mut 0 60 60
Total 54 304 358
LUAD CTP (coding, non-silent) TCGA mut >=5% | TCGA mut <5% Total
PDX mut 44 220 264
PDX not mut 1 93 94
Total 45 313 358
LUSC CTP (coding, non-silent) TCGA mut >=5% | TCGA mut <5% Total
PDX mut 29 197 226
PDX not mut 1 131 132
Total 30 328 358
BLCA CTP (coding, non-silent) TCGA mut >=5% | TCGA mut <5% Total
PDX mut 37 151 188
PDX not mut 6 164 170
Total 43 315 358
SKCM CTP (coding, non-silent) TCGA mut >=5% | TCGA mut <5% Total
PDX mut 84 145 229
PDX not mut 5 124 129
Total 89 269 358
BRCA TNBC CTP (coding, non-silent) | TCGA mut >=5% | TCGA mut <5% Total
PDX mut 18 173 191
PDX not mut 1 166 167
Total 19 339 358

Supplementary Table S9

Contingency table for Fisher’s Exact Test for CTP genes with coding, non-silent mutations for
different tumor types in the PDX and TCGA cohort. For PDX, the number of CTP genes with
and without coding, non-silent mutations in each tumor type cohort was counted. For TCGA
data with more samples than PDX, the number of CTP genes with coding, non-silent mutations
at >5% and <5% frequency in each tumor type cohort was counted.
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N f N f
PDX RNA-Seq umberof - GA RNA-Seq umber o
models/samples samples (patients)

Lung adenocarcinoma Lung adenocarcinoma

28 517 (515)
(PDX_LUAD) (TCGA_LUAD)
Lung squamous cell carcinoma Lung squamous cell carcinoma

17 501 (501)
(PDX_LUSC) (TCGA_LUSC)
Colorectal cancer Colorectal adenocarcinoma

48 626 (623)
(PDX_Colorectal) (TCGA_COADREAD)
Triple negative breast cancer 15 Breast invasive carcinoma, Triple-negative 140 (139)
(PDX_TNBC) (TCGA_BRCA_TNBC)
Bladder cancer, Muscle invasive Bladder urothelial carcinoma

. ) 14 408 (408)

(PDX_BLCAinvasive) (TCGA_BLCA)
Melanoma Skin cutaneous melanoma

11 472 (469)
(PDX_Melanoma) (TCGA_SKCM)

Supplementary Table S10
Number of PDX and TCGA samples for 6 tumor types used for analysis of RNA-Seq expression
profiling.
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Up-regulated (Adjusted p-value < 0.05, logFC > 1) Down-regulated (Adjusted p-value < 0.05, logFC < -1)
TCGA PDX Overlap | Jaccard index |Hypergeometric p-value| TCGA PDX Overlap | Jaccard index | Hypergeometric p-value
Lung adenocarcinoma (LUAD) 952 681 323 0.165 3.33E-241 296 267 19 0.033 1.01E-07
Lung squamous cell carcinoma (LUSC) 779 1230 454 0.184 0.00E+00 232 363 26 0.042 1.49E-12
Colorectal cancer (COADREAD) 981 796 290 0.140 2.32E-170 1149 1599 379 0121 3.50E-128
Triple negative breast cancer (TNBC) 625 1011 264 0.139 1.02E-169 430 504 42 0.043 1.97E-12
Bladder cancer, Muscle invasive (BLCA) 394 293 89 0.115 1.15E-77 613 106 22 0.030 7.61E-12
Melanoma (SKCM) 856 1051 293 0.133 4.13E-154 1540 1402 512 0.148 7.87E-212

Total genes = 17,978

Supplementary Table S11

Number of genes that are up-regulated (adjusted p-value < 0.05, log (fold change of TPM+1) >
1 by limma) or down-regulated (adjusted p-value < 0.05, log (fold change of TPM+1) < -1 by
limma) for each tumor types versus all other tumor types for PDX and TCGA RNA-Seq data
respectively. This table shows the overlap of each set of genes between PDX and TCGA RNA-
Seq data.
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PDX CNV Number of TCGA CNV Number of
models/samples tumors/samples

Lung adenocarcinoma 30 Lung adenocarcinoma 516

(PDX_LUAD) (TCGA_LUAD)

Lung squamous cell carcinoma 27 Lung squamous cell carcinoma =0t

(PDX_LUSC) (TCGA_LUSC)

Colorectal cancer 60 Colorectal adenocarcinoma -

(PDX_Colorectal) (TCGA_COADREAD)

Glioblastoma multiforme 27 Glioblastoma multiforme -

(PDX_GBM) (TCGA_GBM)

Triple negative breast cancer 2 Breast invasive carcinoma, Triple-negative 136

(PDX_TNBC) (TCGA_BRCA_TNBC)

Bladder cancer, Muscle invasive 17 Bladder urothelial carcinoma .

(PDX_BLCAinvasive) (TCGA_BLCA)

Melanoma 15 Skin cutaneous melanoma 267

(PDX_Melanoma) (TCGA_SKCM)

Ovarian carcinoma 12 Ovarian serous cystadenocarcinoma -

(PDX_OVcarcinoma) (TCGA_OV)

Supplementary Table S12
Number of PDX and TCGA samples for 8 tumor types used for analysis of copy number and
LOH predicted from SNP array.
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