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Growth rate and yield are fundamental features of micro-
bial growth. However, we lack a mechanistic and quantita-
tive understanding of the rate-yield relationship. Studies
pairing computational predictions with experiments have
shown the importance of maintenance energy and proteome
allocation in explaining rate-yield tradeoffs and overflow
metabolism. Recently, adaptive evolution experiments of Es-
cherichia coli reveal a phenotypic diversity beyond what has
been explained using simple models of growth rate versus
yield. Here, we identify a two-dimensional rate-yield trade-
off in adapted E. coli strains where the dimensions are (A) a
tradeoff between growth rate and yield and (B) a tradeoff
between substrate (glucose) uptake rate and growth yield.
We employ a multi-scale modeling approach, combining a
previously reported coarse-grained small-scale proteome
allocation model with a fine-grained genome-scale model of
metabolism and gene expression (ME-model), to develop a
quantitative description of the full rate-yield relationship
for E. coli K-12 MG1655. The multi-scale analysis resolves
the complexity of ME-model which hindered its practical
use in proteome complexity analysis, and provides a mecha-

nistic explanation of the two-dimensional tradeoff. Further,




2 CHUANKAI CHENG ET AL.

the analysis identifies modifications to the P/O ratio and the
flux allocation between glycolysis and pentose phosphate
pathway as potential mechanisms that enable the tradeoff
between glucose uptake rate and growth yield. Thus, the
rate-yield tradeoffs that govern microbial adaptation to new
environments are more complex than previously reported,
and they can be understood in mechanistic detail using a

multi-scale modeling approach.
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1 | INTRODUCTION

Growth rate and yield are basic features of microbial life that are widely implicated in cell fitness, adaptation, and
evolution (Lipson, 2015). The specific growth rate u represents number of doublings of bacterial density per unit time
(Monod, 1949). Theyield, Y, is the ratio between the biomass dry weight produced and the weight of the substrate
uptaken (Monod, 1949; Pirt, 1965). There is great interest in developing quantitative descriptions of the relationship
between p and Y. The wide-ranging measurements of u and Y (Fig. 1A) across microbial communities and environments
raised interest into the exact nature of the u-Y relationship (Lipson, 2015). At low y, positive correlations between y and
Y have been observed (Nanchen et al., 2006), and these can be explained by non-growth-associated cell maintenance
requirements that make slow growth inefficient (Pirt, 1965). At high y, negative correlations between g and Y are
observed (Basan et al., 2015), and in Escherichia coli, these can be explained by a tradeoff between metabolic efficiency
and enzymatic efficiency that lead to decreased Y when at high u (Novak et al., 2006; Pfeiffer et al., 2001). In particular,
E. coli exhibits a tradeoff between respiration, which has higher energy yield per carbon substrate (more metabolically-
efficient), and acetate fermentation, which requires less enzyme per carbon substrate (more proteome-efficient) (Basan
et al., 2015). Lipson proposes a synthesis of these observations where positive u-Y correlation at low ¢ and negative
u-Y correlation at high u are different parts of a bell-shaped u-Y curve (Lipson, 2015). However, recent experiments
suggest that adaptation to new environments can modify the bell-shaped p-Y tradeoff (LaCroix et al., 2015; Sandberg
et al.,, 2014; Bachmann et al., 2013).

Microorganisms rapidly adapt to environmental niches (Booth, 2002; Elena and Lenski, 2003), and adaptation
mechanisms can be studied directly through adaptive laboratory evolution (ALE) (Barrick and Lenski, 2013). When
strains are adapted through ALE for growth in a liquid minimal medium, they achieve higher y compared to the wild-
type (Fig. 1A), ALE-adapted strains have been shown to rapidly acquire regulatory mutations that modify proteome
allocation, but they do not acquire new metabolic capabilities within the time frame of reported short-term (4 to 8
weeks) adaptation experiments (LaCroix et al., 2015; Sandberg et al., 2014; Utrilla et al., 2016). By analyzing ALE-
adapted strains, we can reveal the strategies that allow cells to optimize their proteome allocation for growth in an
environmental niche, subject to the constraints of their metabolic capabilities (i.e. their repertoire of pathways) and
constraints on the kinetic efficiencies of their enzymes (LaCroix et al., 2015; Utrilla et al., 2016; Ibarra et al., 2002).

Contrary to the expected negative p-Y relationship at high p, ALE experiments of E. coli selected for high y in a
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minimal medium reveal an uncorrelated relationship between p and Y (LaCroix et al., 2015; Sandberg et al., 2014).
These experiments compared the phenotypes of highly-adapted, isogenic E. coli strains and revealed little variation in u
between strains but high variation in Y. Previous studies similarly reported that overflow metabolism can be nearly
eliminated through genetic engineering without any effect on growth rate in E. coli (Peebo et al., 2014; Bekker et al.,
2009). Thus, the negative u-Y correlation at high growth rates does not appear to be a fundamental constraint on
fast-growing cells. A mechanistic model of the full u-Y relationship must be able to reconcile the bell-shaped curve
observed for individual strains with the uncorrelated u-Y phenotypes seen in ALE-adapted strains (Fig. 1A).

A number of theoretical and computational models have been developed to describe rate-yield tradeoffs. For the
positive u-Y correlation, maintenance requirements can be quantitatively described using algebraic growth laws (Pirt,
1965; Nanchen et al., 2006). This relationship can also be predicted for complete metabolic networks using genome-
scale models (GEMs) of metabolism that encode non-growth associated maintenance (NGAM) costs in an optimization
problem that can predict 4 and Y when substrate uptake rates are known (Varma et al., 1993). For the negative py-Y
correlation, quantitative models of overflow metabolism have been developed (Basan et al., 2015; Mori et al., 2016;
Molenaar et al., 2009). In particular, quantitative measurements of E. coli growth in well-controlled environments
revealed a linear-threshold response of acetate excretion (g,.) with increasing u (Basan et al., 2015). To represent
the full range of the u-Y relationship, a constraint allocation flux balance analysis model (CAFBA) was reported that
combines a GEM with proteome allocation constraints (Mori et al., 2016). A similar solution can be formulated from
a bottom-up reconstruction of metabolism and macromolecular expression (ME-model,O’Brien et al. (2013)) that
incorporates the protein synthesis pathways into a GEM and applies coupling constraints related to enzyme kinetics
parameters on each individual reaction. However, none of these models have been used to explain experiments where u
and Y are decoupled through laboratory evolution or genetic engineering (LaCroix et al., 2015; Sandberg et al., 2014;
Peebo et al., 2014).

In this study, we show that the wide range of u-Y observations in E. coli can be explained by a two-dimensional rate-
yield tradeoff, where the first dimension is the characteristic u-Y tradeoff associated with acetate overflow metabolism
and the second dimension is a tradeoff between glucose uptake rate (gz/c) and Y that appears during ALE adaptation. We
employ a multi-scale modeling approach to provide a mechanistic description of the two-dimensional rate-yield tradeoff.
By deriving the relationship between the ME-model and the previously reported small-scale proteome allocation model
(Basan et al., 2015), we are able to develop a workflow for fitting ME-model parameters to experimental data, and we
achieve quantitative accuracy for simulations of u-Y. This multi-scale modeling approach predicts a two-dimensional
rate-yield tradeoff, and it suggests that the second dimension of the tradeoff can be explained by changes in P/O ratio

and the flux balance between glycolysis and pentose phosphate pathway.

2 | RESULTS

2.1 | Adaptivelaboratory evolution reveals a two-dimensional rate-yield tradeoff

To explore the metabolic constraints on E. coli growth, adaptive laboratory evolution (ALE) was used to adapt E. coli K-12
MG1655 to maximize growth at 37°C in a liquid culture with a minimal medium containing glucose LaCroix et al. (2015).
Eight independent experiments were performed on an automated ALE platform to achieve 8.3 x 10'2 to 18.3 x 10'2
cumulative cell divisions Lee et al. (2011). Phenotypic characterization was performed on eight ALE endpoint strains,
including quantitative measurements of u, gg/c, gac, and other common metabolic byproducts of E. coli (Methods).

A diversity of metabolic phenotypes was observed in the ALE endpoint strains. Through ALE, y increased from
0.7 h'! for wild-type (red triangles in Fig. 1A-D) to 0.95-1.10 h'! (red circles with error bars in Fig. 1A-D). Based on
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previous reports, we expected a linear relationship between y and g,.. However, ALE endpoint strains achieved a wide
ranging g, from 3.9-11.4 mmol gDW-1 h'! (where wild-type g, was 3.9 mmol gDW-1 h 1. While we did not observe a
correlation between p and g, in these strains (Fig. 1B), there was a clear correlation between g, and g.. (Fig. 1D).

These correlations have been observed previously for E. coli strains (LaCroix et al., 2015; Peebo et al., 2014;
Bekker et al., 2009), and moreover, a bacterial engineering approach has been reported to vary g, by manipulating the
substrate uptake system (Lara et al., 2008). In one of these studies, Bekker et al. (2009) showed that switching electron
transport chain (ETC) enzyme selection (and thereby modifying the P/O ratio) can cause a g/~ Y tradeoff at alow u
of 0.15 h'L. ALE gained g, and Y decoupled from u, which is seemingly contradict to the reported correlated mu-Y
and mu-q,-(Basan et al., 2015; Nanchen et al., 2006). The ME-model we used in this study is aiming to simulate the
relationships between these gz/.-gac and gg - Y tradeoffs, connecting to the mechanisms of - Y tradeoffs (including
Lipson’s bell-shaped curve, Fig. 1A) by established models (Basan et al., 2015; Mori et al., 2016).

To enable our analysis, it is important to note that ALE endpoint strains rapidly acquire regulatory mutations, but
they do not acquire new metabolic capabilities within the time frame of these experiments (Sandberg et al., 2014;
LaCroix et al., 2015; Utrilla et al., 2016). The linear correlation between g,. and u reported previously was identified for
an isogenic strain (Nanchen et al., 2006; Basan et al., 2015). In contrast, our observations of a decoupling between g,
and p appear when comparing adapted strains. However, because these adapted strains have only regulatory mutations,
their phenotypes represent the limits of what E. coli cells can achieve while bounded by metabolic and proteomic
constraints (but not by regulation). This type of adaptation and the associated phenotypic tradeoffs are useful for
understanding cellular adaptation to ecological niches where regulatory adaptation can occur rapidly (Elena and Lenski,
2003).

2.2 | ME-model data fitting with a multi-scale modeling approach

To explain these experimental observations, we sought a modeling approach that could quantitatively predict the
u-Y and u-gq,. relationships. Our modeling approach starts with fitting the linear-threshold (blue line in Fig.1B) mu-
gac relation (Basan et al., 2015) using the framework of ME-model (O’Brien et al., 2013; Lloyd et al., 2018). We first
considered a previously reported coarse-grained model of proteome allocation (Basan et al., 2015) that describes E. coli
overflow metabolism (Fig. 1E). The Y-maximizing approach done by Basan et al. (2015) indicates that high-Y growth
strategies have a fitness benefit in spatially structured environments (like biofilms) that has been demonstrated through
a Y-selection system Bachmann et al. (2013), and more efficient strategies also leave more resources for cells that are
hedging against future stresses Utrilla et al. (2016). The evolutionary history of E. coli includes growth in structured
environments and a wide range of stresses that could have placed a selection pressure on increasing Y. Therefore, we
focused on fitting the observed chemostat Nanchen et al. (2006) and uptake titration Basan et al. (2015) data for the
Y -maximized growth solution (green and blue curves in Fig. 2).

The coarse-grained proteome allocation model was intended to make predictions at high iz and thus only captures
the negative u-Y relation (Fig. 2A). The parameters in the coarse-grained model have a strong experimental basis in
fine-grained protein abundances measurements in high growths, and the model produces accurate predictions of u-g,c
(Basanetal.,, 2015).

We also considered the genome-scale ME-model iJL678-ME (Lloyd et al., 2018). With the default parameter
settings in the ME-model, simulations had a poor quantitative prediction (O’Brien et al., 2013) of u-q,. to the uptake
titration data (Fig. S3F). This poor fit can be explained by inaccurate genome-wide enzyme turnover rates (k.rrs) that
ME-model researchers have been seeking to improve (Lloyd et al., 2018; Ebrahim et al., 2016; Nilsson et al., 2017).

We sought to modify the k¢¢s to fit the y-g,. data. However, since each of the 5266 reactions in the genome-scale
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ME-model has a k.rr parameter, it is difficult to directly fit the parameters to measured data.

Therefore, we pursued a multi-scale modeling approach where the coarse-grained model was used to analyze the
effects of proteome-efficiency at the level of complete pathways, and this insight was used to tune parameters in the ME-
model in bulk. To connect the models, we first found that the proteome efficiency (¢) parameters in the coarse-grained
model share a conceptual basis with the enzyme efficiency parameter k.rrs in ME-models ("2 Proteome constraints in
the ME-model" in Appendix). Thus, we were able to reformulate the coarse-grained model within the framework of a
ME-model (Fig. S1). The resulting small-scale ME-model (SSME-model) has parameters directly analogous to those in the
genome-scale ME-model (See "4 SSME-model parameters derivation" and "5 Matlab and COBRAme implementation" in
Appendix). The resulting SSME-model generates identical u-Y and u-q,. predictions to the proteome allocation model.

The most obvious difference between the SSME-model derived from Basan et al. (2015) model and ME-model for
these phenotypic predictions is the expanded solution space of the ME-model (Fig. 2). However, much of the ME-model
solution space corresponds to very low yield metabolic solutions. If Y is maximized during simulations of the SSME-
model and ME-model (achieved by minimizing g,/ at a given u), the resulting predictions are more similar between the
models and lie closer to experimental data (solid blue curves in Fig. 2).

To enable ME-model fitting starting from the poor fit in Fig. S3F, we first analyzed parameter sensitivities in the
SSME-model. The SSME-model has a small number of k.¢s, with only three pathways (respiration, fermentation,
biomass) with k.rrs, making it easy to test the sensitivities of predictions to changes in k.rr (Cheng, 2017). The
SSME-model shows that dropping the k.¢r for respiration decreases the slope of the u-g,. line without affecting umax,
suggesting that dropping the k.rrs of TCA cycle enzymes in genome-scale ME-model would lead to a more accurate fit
("7 Experimental data fitting" in Appendix). However, only dropping the TCA k.f¢s leads to a u-q, slope that is still not
gradual enough (Cheng, 2017). Next, we determined that secondary pathways in the ME-model carry unrealistic fluxes,
and they could be responsible for the remaining prediction gap. We used an iterative approach to block the metabolic
reactions in the ME-model ("7 Experimental data fitting" in Appendix) and achieved an accurate ME-model prediction of
the u-g,c acetate line (solid blue line in Fig. 2D and Fig. S3F). The three global parameters unmodeled protein fraction
(UPF), growth-associated maintenance (GAM), and NGAM (Table S2 in Appendix) were then used to fit predictions to
individual datasets (green, blue and red curves in Figure 2).

2.3 | The ME-model predicts phenotypic diversity in ALE strains

As a result of data fitting, we achieved a quantitative fit of chemostat (Nanchen et al., 2006) and uptake titration
(Basan et al., 2015) data with the Y-maximized ME-model solutions (blue and green curves in Fig. 2C,D). The ALE-
adapted strains (red circles in Fig. 2) do not align well with the Y-maximizing solutions (red curves in Fig. 2), but they
are encompassed by the ME-model solution space, and further analysis of these data points and the corresponding
ME-model solutions were used to understand the phenotypic diversity of these adapted strains.

Feasible solutions other than the Y-maximized solution are achieved through the activation of alternative metabolic
pathways. The SSME-model does not capture the ALE data points with high g, (red region in Fig. 2B), while the genome-
scale ME-model does (red region in Fig. 2D). Moreover, the ME-model predicts feasible growth at lower Y in the u-Y
solution space than the SSME-model. We sought to determine which pathways are responsible for the lower ¥ and
higher g, in ME-model that was not captured by the SSME-model.

Removing reactions from the ME-model can decrease the size of the solution space (Fig. S4, “8 Solution space
variation” in Appendix), making the solution space more similar to the SSME-model solution space. We employed a
workflow to identify 24 reactions (Table S3 in Data) that are not activated in the Y-maximized solutions but are used to

enable higher g, at lower Y. We observed that these 24 reactions are part of metabolically inefficient pathways that



6 CHUANKAI CHENG ET AL.

are alternatives to the high Y pathways in Y-maximized solutions. By extension, metabolically inefficient pathways
can be added to the SSME-model to increase the size of the solution space (Fig. 10), making it more similar to the
ME-model solution space. Thus, the modified SSME-model can achieve low Y (Fig. 10A) at high g, (Fig. 10C). Therefore,
the difference in predictions between the ME-model and SSME-model is a result of the greater range of metabolic
capabilities of the genome-scale model.

2.4 | Thetwo-dimensional rate-yield tradeoff

We can now provide a theory to connect the correlations in u-Y (Fig. 1A) (and the associated acetate curve in g,.-Y,
Fig. 1B) with the negative correlationin g,,.-Y (Fig. 1C) and positive g,/ -qac correlations (Fig. 1D).

To see the relationship between the three variables y, g/, and Y we generated ME-model solution spaces in gg/c
and Y at increasing lower bounds of u (Fig. 3A). These solution spaces represent the flexibility in the model to achieve
a growth rate. At the Y-maximed limit of these solution space, we see the established negative u-Y tradeoff where
increasing growth rate requires decreasing Y (dashed arrow marked as “d1” in Fig. 3A) coupling with increasing g, (top
edges of solution spaces in Fig. 3B). This is the first dimension of the rate-yield tradeoff.

At agiven y, the ME-model solution spaces extend toward lower Y and higher g, revealing an inverse proportional
relationship in g,/.-Y. This relationship is also observed in ALE endpoint strains with similar u (Fig. 3A). This is the
second dimension of the rate-yield relationship (“d2” in Fig. 3A) defining the second-order rate-yield tradeoff. The
second dimension can also be seen in g,c-qg/c where the ME-model predicts the g.c-g,/c correlation observed in
ALE endpoint as the g,.-minimized edge of the solution space (Fig. 3B). Interestingly, the solution spaces predicted by
ME-model show broad feasible ranges of acetate production at a given g, and y ("bold" solution spaces in Fig. 3B), so
the gg/c—gac tradeoff is not required by the model. On the other hand, the relationship between g,/. and Y is a strict
tradeoff in the model ("thin" solution spaces in Fig. 3A), so we propose that gg/.~Y is the more fundamental second

dimension of the rate-yield tradeoff.

2.5 | Mechanisms for the additional rate-yield tradeoff

We sought to identify the particular alternate metabolic strategies in the ME-model that could enable a g,/.-Y tradeoff
by identifying the differential pathway usage at a fixed high u (1.05 h™1 in the ME-model (Fig. 3C). The model predicts
that when g, increases from the Y-maximized state (minimum g,/.), flux through the proton-coupled NAD(P) transhy-
drogenase increases (reaction THD2pp, catalyzed by pntAB. In addition, a pathway switch between two different NADH
dehydrogenase reactions, NADH5 (ndh and NADH16pp (nuo, appears at high g,/ In fact, each of or any combination of
the 24 reactions in Table S4 (Expanded view, Data) can be activated in the ME-model to achieve high Ggic, high gac, and
low Y. There are two common threads among these pathway activations. First, they all decrease the P/O ratio in the
simulations (Fig. 3C). NADH5 contributes fewer protons to the periplasm per electron than NADH16pp. And increasing
THD2pp flux drains the proton gradient without contributing to ATP production, thereby decreasing P/O ratio (Fig. 3D).
Second, glycolytic flux increases (Fig. 3D) and pentose phosphate pathway flux decreases (Fig. 3C).

Experiments that introduce proton leakage have shown a shift towards high g,. and low Y (Basan et al., 2015). It
has also been shown that the variation of P/O ratio can uncouple the regulation of cytochrome oxidase from the cellular
ATP demand (Bekker et al., 2009). More broadly, energy dissipation through proton leakage is known to be a method of
metabolic control in bacteria (Russell and Cook, 1995; Russell, 2007). To clarify the effect of decreasing of P/O ratio
in the ME-model, we added a reaction in the model representing proton leakage (Methods). As a result, we see the

Y-maximized solution with decreased P/O ratios have higher g, higher g.., and lower Y at a given u (Fig. 4). Finally,
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experiments have shown that knocking out gnd leads to increased g,/ and gac and decreased Y with little change in
(Jiao et al., 2003). The ME-model also predicts that gnd knockout mutants ("gnd knockout simulation" Methods) will have
increased qg/c, gac and decreased Y (Fig. 4). Thus, the ME-model points to general mechanisms for this fundamental
second-order tradeoff, but the exact pathways involved can be determined in future experiments, and it may be that
multiple pathways work together to enable it.

Alternative explanations of the rate-yield tradeoff have been proposed, including membrane (Zhuang et al., 2011;
Szenk et al., 2017) and cytosolic crowding (Adadi et al., 2012; Vazquez and Oltvai, 2016). It is difficult to rule out these
alternative constraints on cell growth, and it may be that multiple constraints operate at once. However, it is encouraging
to see that the ME-model can explain the complex relationship between y, Y, g.c, and g,/ with only metabolic and
proteome allocation constraints. In the future, it will be possible to extend ME-models with additional constraints. For
example, it has been proposed that the UPF parameter is growth-rate dependent, and thus existing proteome allocation
models with fixed UPF are inaccurate (Vazquez and Oltvai, 2016). If this is indeed the case, then SSME- and ME-models
with cytosolic crowding constraints can be developed to fully represent the interplay between crowding, proteome

allocation, and pathway selection.

3 | DISCUSSION

The E. coli ME-model provides a mechanistic and predictive model of rate-yield tradeoffs. It successfully reconciles
several experimental data sets: i) uptake titration at low growth (Nanchen et al., 2006), i) batch culture at higher growth
rates (Basan et al., 2015), and iii) ALE endpoint strains (this study). These data sets, when analyzed with the ME-model,
show the existence of a two-dimensional rate-yield tradeoff. This two-dimensional tradeoff cannot be deciphered from
simpler intuitive models, but it can be derived from the comprehensive set of biochemical mechanisms represented by
the ME-model.

Furthermore, this study employed a multi-scale modeling approach where a small-scale model was used to guide
parameter estimation in the genome-scale ME-model. This approach—which has been termed Tunable Resolution (TR)
modeling (Kirschner et al., 2014)—was essential to the success of the study, and we expect that both small-scale and
genome-scale models will continue to play an important role in understanding the genotype-phenotype relationship.

The two-dimensional rate-yield tradeoff appears as a result of ALE selection for y when alternative pathway
selection strategies achieve the same growth rate. Proton leakage and alternative ETC pathway selection are plausible
mechanisms for modifying the P/O ratio and creating the gz~ Y tradeoff. In addition, the flux ratio between glycolysis
and the pentose phosphate pathway might play a significant role in the g, /.-Y tradeoff. Those mechanisms can be
tested experimentally. Finally, revealing the underlying regulation would be of great interest for establishing a deeper
understanding of rate-yield tradeoffs. Combining ME-models with known regulatory mechanisms to explain cellular

choices would achieve a long-standing goal in systems biology (Reed and Palsson, 2003).

4 | MATERIALS AND METHODS

Phenotypic data including u, gg/c, gac, and excretion rates of other metabolic byproducts were collected for ALE
endpoint strains ("1 Phenotypic characterization of E. coli strains" in Appendix). Reference data points were collected
from published studies Nanchen et al. (2006); Basan et al. (2015). The coarse-grained proteome allocation model from
Basan et al. (2015) was reformulated as a small-scale ME-model (SSME-model, detail in "4 SSME-model parameters

derivation" in Appendix) and implemented by the COBRAme framework Lloyd et al. (2018) . The genome-scale model
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iJL1678-ME was modified to fit experimental data by modifying the k.rrs of TCA cycle reactions, blocking target
reactions, and modifying UPF, GAM, and NGAM ("7 Experimental data fitting" in Appendix). Solution spaces were
generated using flux balance analysis (incorporated in COBRAme) in the ME-model ("6 Solution space of the ME-model"
in Appendix). To determine the effect of modifying P/O ratio on ME-model solution spaces, a reaction representing
proton leakage was added to the ME-model ("9 P/O ratio manipulation" in Appendix). The effect of the gnd knockout
was demonstrated by blocking the reaction GND in ME-model simulations ("10 gnd knockout simulation" in Appendix).

EXPANDED VIEW
| Appendix

The appendix includes the detailed introduction and discussions of the materials and methods.

| Data

Includes Tables S3-510. Table S3 presents the blocked reactions in the ME-model to achieve a quantitative fit to
experimental data. Table S4 shows the essential exchange reactions that should be turned on for maintaining growth.
Tables S5 and Sé6 show the target reactions that vary the solution space of the ME-model. Tables S7-510 include all data
that are presented in the figures in the paper.
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FIGURE 1 E. coligrowth phenotypes (Data on the plots are recorded in Table S7-10 in Data (Expanded view).) in
minimal media and multi-scale modeling approaches. (A-D) Phenotypic data for E. coli strains including Y, 4, ¢, and
Ggic data. Two datasets are presented from literature, for chemostat growth Nanchen et al. (2006) (green triangles) and
substrate titration Basan et al. (2015) (blue squares). These are compared to strains adapted for maximum growth rate
through ALE (this study; red circles; error bars for standard deviation across duplicates). The bell-shaped u-Y
relationship proposed by Lipson (2015) is included for reference. (E) Diagram of the SSME-model derived from Basan
et al. (2015). The model consists of three pathways: respiration (res) and fermentation (fer) generate different amounts
of energy, feeding the biomass (bms) pathway to synthesize biomass. (F) Diagram of the genome-scale ME-model that
includes a genome-scale reconstruction of metabolic pathways and detailed protein expression machinery (O’Brien

etal.,2013; Lloyd et al., 2018).
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FIGURE 2 Growth phenotypes from simulations of E. coli (A, B) using the SSME-model and (C, D) using the
ME-model. Simulations were fit to experimental data for each of the three datasets, for K-12 MG1655 chemostat
(Nanchen et al., 2006) (green triangles)) and NCM3722 substrate titration (Basan et al., 2015) (blue squares)), and
strains adapted from wild-type K-12 MG1655 (red triangle, LaCroix et al. (2015) for maximum growth rate through ALE
(this study; red circles; error bars for standard deviation across duplicates). The Y-maximized solutions are displayed as
solid lines in all plots. For both models, fitting was performed by manipulating three global parameters: unmodeled
protein fraction (UPF), growth-associated maintenance (GAM), and non-growth associated maintenance (NGAM).
Details of the fitting approach are provided in the Methods.
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FIGURE 3 Analysis of the second dimension of the rate-yield tradeoff. (A) Two dimensions of the rate-yield tradeoff.
The first dimension "d1" is the negative u-Y correlation at maximum Y, and the second dimension "d2" is the negative
qgic—Y correlation at a fixed . These correlations are observed in ME-model simulations and experimental data from
ALE strains. (B) A correlation between g, and ga. is also observed at fixed 4 in both the ME-model and ALE endpoint
data. Linear fits for the experimental data at similar growth rates are shown as dash-dotted (1=0.95-0.97 h'1, dashed
(4=1.00-1.04 h'1, and solid (1=1.08-1.10 h"1 orange lines. These fits are described by the upper edges of the Aglc—qac
solution space at fixed y. For growth between 1.00 and 1.04 h™1, 2=0.931 and p=0.035. For growth between 1.08 and
1.1h1, r2=0.986 and p=0.071. (C) The reaction fluxes in ME-model simulations along the upper edge (maximizing g.c)
of the solution space for u=1.05 h"1. Notably, the P/O ratio (gray dashed curve) is decreasing with increasing Ggic- (D) A
pathway map of central metabolism showing the changes of the reaction fluxes with increasing g,/ and ga.. "al" and
"a2" represent the rate of proton flux through the membrane. Abbreviations. ac: acetate excretion; THD2pp: NAD(P)
transhydrogenase (catalyzed by the gene product of pntAB; NADH16pp: NADH dehydrogenase (nuoA-N; NADHS5:
NADH dehydrogenase (ndh; GND: Phosphogluconate dehydrogenase (gnd; GAPD: Glyceraldehyde-3-phosphate
dehydrogenase (gapA; CS: Citrate synthase (gltA; PTAr: Phosphotransacetylase (pta and eutD; ATPS: ATP synthase
(atpA-I; PL: model reaction representing proton leakage (Methods).
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FIGURE 4 The second-order rate-yield tradeoff demonstrated by decreasing the P/O ratio and and knocking out
gnd ("Agnd") in ME-model simulations. The drop of P/O ratio is achieved by inducing the proton leakage ("PL" in Fig. 3D)
reaction flux, as 0, 50 mmol gDW'1 h'1 (labeled "50"), and 200 mmol gDW'1 h'1 (labeled "100"). The new Y-maximized
solution curves (solid red for "PL" flux variation, dashed grey for Agnd) and the g,.-g,/. solution space contours (fixed
u=1.0 h1, solid blue for "PL" flux variation, dashed grey for Agnd) were simulated in the ME-model.



