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Abstract

The aim of this study was to identify the hub genesin breast cancer and provide further
insight into the tumorigenesis and development of breast cancer. To explore the hub genesin
breast cancer, we performed an integrated bioinformatics analysis. Two gene expression
profiles were downloaded from the GEO database. The differentially expressed genes (DEGS)
were identified by using the “limma’ package. Then, we performed Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to explore the
functional annotation and potential pathways of the DEGs. Next, protei n—protein interaction
(PPI) network analysis and weighted gene coexpression network analysis (WGCNA) were
conducted to screen for hub genes. To confirm the reliability of the identified hub genes, we
obtained TCGA-BRCA data by using WGCNA to screen for genes that were strongly related
to breast cancer. By combining the results from the GEO and TCGA datasets, we finally
identified 15 real hub genes in breast cancer. Finally, we performed an overall survival
analysis to explore the connection between the expression of hub genes and the overall
survival time of breast cancer patients. We found that for all hub genes, higher expression
was associated with significantly shorter overall survival times among breast cancer patients.
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1. Introduction

Breast cancer is one the most severe types of tumor worldwide and is the leading cause of
cancer death in women[1]. The breast cancer incidence rate varies widely across regions,
with rates ranging from 0.194%o. in East Africato 0.897%. in West Europe, and isincreasing
gradually[2]. There are many risk factors associated with breast cancer, including long-term
fertility, the use of hormonal contraception, physical inactivity, and alcohol consumption, but
its etiology and pathogenesis are till not definitively understood[3].

With the implementation of some large-cohort human tumor genome projects (for instance,
The Cancer GenomeAtlas (TCGA) and the International Cancer Genome Consortium
(ICGC)), an unprecedented amount of genomic data on tumor samples was generated and
became highly important in human cancer research[4]. In addition, many smaller-scale cancer
projects led by individua institutions also made great contributions and provided large
amounts of valuable data, which were deposited into public databases such as the Gene
Expression Omnibus (GEO)[5]. These public cancer data will accelerate the comprehensive
understanding of the genetics of cancer, facilitating exploration of the underlying
mechanisms of cancer and helping to improve diagnostic methods and preventive strategies.

Due to the limitations of experimental techniques, the development and productive
application of microarray and sequencing technology brought cancer research into anew era.
These high-throughput techniques have been widely used for global gene expression profiling,
which reflect the molecular basis of tumor phenotypes and can be used to classify tumors,
discover the pathogenic genes of tumors, explore tumorigenesis and distinguish the
occurrence and progression of tumors[6]. A large number of gene microarray datasetsin
public databases facilitates comprehensive analyses of gene expression in cancer. By using

bi oinformatics methods and associating the results with clinical data, new biomarkers could
be found for the diagnosis, therapy and prognosis of cancer.

In this study, we obtained and used two original microarray gene expression datasets,
GSE10810[7] and GSE65194[8], from the GEO database. Strict calibration and filtering were
used to obtain differentially expressed genes (DEGS). Then, by a series of bioinformatics
approaches, hub genes were identified, and enrichment analysis was used to find possible key
pathways of breast cancer. We also downloaded breast cancer gene expression data from
TCGA and performed the same strategy to verify our results. A series of Kaplan-Meier (KM)
survival plots were aso constructed to reveal the connection between hub genes and the
prognosis of breast cancer. Finally, we identified 15 true hub genesthat closely related to
breast cancer. We expect this work to provide further insight into the tumorigenesis and
development of breast cancer at the molecular level and provide more precise, practically
valuable markers for the diagnosis, therapy, monitoring and prognosis of breast cancer.

2. Materialsand Methods
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2.1 Datasets

The GEO is a public database of gene expression profiles and sequence-based data and is
freely available for users. Two gene expression profile datasets (GSE10810 and GSE65194)
were downloaded from the GEO. Both GSE10810 and GSE65194 were obtained from the
GPL570 platform [HG-U133 Plus 2] Affymetrix Human Genome U133 Plus 2.0 Array.
GSE10810 includes 58 samples, including 31 breast cancer samples and 27 normal samples,
while GSE65194 includes 130 breast cancer samples and 11 normal control samples.

We also downloaded RNA-sequencing gene expression data from TCGA on the UCSC Xena
(https://xena.ucsc.edu/) “GDC TCGA Breast Cancer (BRCA)” cohort, which includes 1104
breast cancer samples and 113 normal samples.

2.2 Filtering of differentially expressed genes (DEGS)

The “limma”’ R package[9] was applied to filter the DEGs between the breast cancer patient
group and the normal group. The P-value of each DEG was calculated and then adjusted by
the Bonferroni method. The threshold that used to DEGs was [log fold change (FC)| > 2 and a
Bonferroni P-value <0.01.

2.3 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology
(GO) enrichment analysis of DEGs

KEGG database is used for systematically analyze and annotate gene functions[10]. The GO
database provides a classification of genes into three functional groups: the molecular
function (MF) group, biological process (BP) group, and cellular component (CC) group[11].
In this study, KEGG pathway and GO enrichment analyses were conducted by using the
“clusterProfiler’[12] R package with a cutoff P-value of 0.05 on the DEGs that we obtained
in the previous step.

2.4 Integration of protein-protein interaction (PPI) network and cluster analysis

The Search Tool for the Retrieval of Interacting Genes (STRING)[13] is abiological database
for predicting pairs of PPIs. We evaluated the interactive relationships of DEGs by STRING
and defined the genes with a combined score > 0.9 as key DEGs. Then, we used Cytoscape to
develop the PPI network of the key DEGs that we identified. Molecular Complex Detection
(MCODE)[14], a plugin for Cytoscape, was used with the default parameters to identify the
most important module of the PPI network.

2.5 Coexpression network construction and analysis of clinically significant modules

The coexpression network was established by WGCNA, an R package for the construction of
weighted gene coexpression networkg 15].

In this study, an automatic one-step network construction and module detection method in
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WGCNA was performed with the default settings, including a correlation type of Pearson, an
unsigned type of topological overlap matrix (TOM), a merge cut height of 0.25 and a default
minimal module size. The first principal component calculation module eigengene (ME) was
used to quantify the coexpression similarity of entire modules. To assess the potentia
associations between ME and phenotype (case or normal), Pearson’s correlations between
them were calculated.

2.6 Hub gene selection

We obtained the key genes in the most significant module of the PPl network. The
phenotype-related modules in the WGCNA network were also identified, and the genes in
those modules were extracted. Hub genes common to both networks were selected as
candidates for further analysis and validation.

2.7 Coexpression network construction of the TCGA dataset for further validation

To confirm the reliability of the identified DEGs, we analyzed the TCGA-BRCA data by
using the same strategy to obtain the TCGA DEGs. We performed a one-step function of
WGCNA for TCGA DEG network construction and the detection of consensus modules. In
addition, the correlation between ME and phenotype (cancer or normal) was calculated. The
candidate genes that also appeared in the TCGA coexpression network were considered to be
the true hub genes.

2.8 Kaplan-Meier (KM) survival analysis

The online surviva analysis software program caled Kaplan-Meier plotter
(http://kmplot.com/) contains and utilizes expression data from 5,143 breast cancer
patients[16]. The median expression level was used to divide patients into two groups, and
overal survival analysis was performed to determine the connection between the expression
level of hub genes and the overall survival time of patients. The hazard ratio (HR) was
provided, and the P-value was calculated by log-rank tests.

3. Reaults
3.1 DEG filtering

With thresholds of |logFC| > 2 and Bonferroni adjusted P-value < 0.01, we extracted 540 and
2,509 DEGs from the expression profile datasets GSE10180 and GSE65194, respectively.
Scatter volcano plots were developed to illustrate the distribution of each gene on logFC and
-log(P-value) values (Figure 1A). After integrated bioinformatics analysis, a total of 322
consistently DEGs were identified from the two datasets (Table S1). Among those DEGs, 69
are up-regulated and 253 are down-regulated. In addition, the gene expression pattern was
consistent in both datasets, as shown in the heatmap (Figure 1B, 1C).
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3.2 KEGG pathway analysis and GO enrichment analysis

To explore the DEG functions, we performed KEGG pathway and GO enrichment analysis.
The top results of each functional group are shown in Figure 2A and Table S2. Oocyte
meiosis, cell cycle and progesterone-mediated oocyte maturation are the pathways in which
up-regulated genes are mainly enriched. Most of the down-regulated genes were enriched in
the PPAR signaling pathway, AMPK signaling pathway, regulation of lipolysis in adipocytes
and adipocytokine signaling pathway. The GO enrichment results showed that most of the
up-regulated genes were enriched in nuclear division, mitotic nuclear division, organelle
fisson and the regulation of nuclear division, and the down-regulated genes were mainly
enriched in lipid localization.

3.3 Identification of key DEGs and significant clustersin the PPl network

STRING database was used to obtain the interactive relationships of DEGs. Genes with a
combined score > 0.9 were defined as key DEGs. Finally, 95 key DEGs as network nodes and
244 edges were used to construct the PPl network (Figure S1A). MCODE recognized three of
the most significant clusters and identified 28 genes = from the PPl network (Figure S1B,
Table 1).

3.4 Construction of the weighted coexpression network and identification of key
modules

WGCNA analysis was used to classify the DEGs into different modules based on their
similarity of expression patterns by performing the method of average linkage clustering. In
this study, three modules were identified according to the breast cancer phenotype (Figure
3A). We considered the blue module of the MEs to be the one we found, due to its highest
correlation with breast cancer (Figure 3B). Finally, atotal of 35 genes were identified in the
blue module (Table 2) and were considered the most relevant genes for breast cancer.

3.5 Hub gene selection

According to the WGCNA results, atotal of 35 genes were considered to be highly correlated
with the blue module (Table S3). We then found that 17 genes identified from the PPI
network are consistent across the WGCNA network. Hence, 17 common network genes were
considered hub genes, subject to further analysis and validation.

3.6 Coexpression network construction of the TCGA dataset for further validation

The coexpression network of the differential expression profile data from TCGA was also
constructed by WGCNA with the same approach described in this report, and four modules
were found to be related to the breast cancer phenotype (Figure 3C). The MEs of the blue and
brown modules exhibited a much higher correlation with breast cancer phenotype than the
other modules (Figure 3D). Upon integrating the 17 hub genes obtained from the PPl and
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WGCNA network above, the genes MAD2L1 and IGF1 were excluded, and the remaining 15
(AURKA, BIRC5, BUB1B, CCNB1, CCNB2, CDC20, CDK1, CDKN3, CENPF, PRC1,
PTTGL1, TOP2A, TPX2, UBE2C and ZWINT) were found in the blue module. Based on both
methods, we finally identified 15 hub genes for breast cancer.

3.7 Kaplan-Meier (KM) survival analysis

To further evaluate the prognostic importance of the genes that we considered hub genes in
this report, overall survival analysis was applied to investigate the association of these genes
with the overall survival time of breast cancer patients by using Kaplan-Meier plotter (Figure
4). We found that al the hub genes with higher expression levels were associated with
significantly shorter overall survival time among breast cancer patients, which might suggest
that these hub genes are closely related to breast cancer.

4. Discussion

Although the treatment of breast cancer has improved markedly, it remains the most
prevalent malignant tumor with the highest increase in prevalence among women worldwide.
Uncovering the molecular mechanisms of breast cancer is critical to its diagnosis, therapy
and prognosis. The DNA microarray gene expression profile has proven its value and is
widely used to explore differentially expressed genes involved in tumorigenesis, which will
provide valuable information for clinical applications.

In this study, two gene expression profile datasets (GSE10810 and GSE65194) from the GEO
database were retrieved and analyzed. We filtered common DEGs and then identified 17 hub
genes that were detected in both the PPl and WGCNA coexpression networks. To further
validate these genes, we extracted TCGA-BRCA data to screen the modules related to the
phenotype of breast cancer by using WGCNA. After this comparison, 15 real hub genes that
were closely associated with breast cancer were identified. This finding may provide valuable
information for treatment decisions and prognosis predictions regarding breast cancer.

Notably, these 15 hub genes were all commonly overexpressed among breast cancer patients.
KEGG enrichment analysis demonstrated that these hub genes were mostly related to the cell
cycle, oocyte meiosis and p53 signaling pathways, and GO enrichment anaysis also revealed
that they were significantly involved in the cell cycle, cell division, nuclear division and
chromosome segregation processes (Figure S2, Table $4). These results suggested that the
hub genes were highly related to chromosome instability and probably play an irreplaceable
role in tumorigenesis and tumor proliferation. Furthermore, by performing KM survival
analysis on these hub genes, we also found that higher expression of those genes was
associated with a worse prognosis among breast cancer patients. All of these results indicated
that the 15 hub genes might be closely associated with breast cancer and could be potential
biomarkers for prognosis.

We aso identified that three (BUB1B, TOP2A and AURKA) of the 15 hub genes were
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commonly found in the OncoKB cancer gene list[17]. This finding could validate our
conclusion from another perspective. BUB1B encodes a kinase that is related to the spindle
checkpoint function and controls proper chromosome segregation during cell division[18].
The protein encoded by this gene is localized to the kinetochore and is involved in
anaphase-promoting complex/cyclosome (APC/C) inhibition, which delays the onset of
anaphase and ensures proper chromosome segregation. Thus, it plays important roles in
tumor proliferation and progresson among multiple cancer types[19]. As a
checkpoint-related gene, BUB1B overexpression might increase the risk of cancer . TOP2A
controls DNA topologic states and cell progression[20]. This nuclear enzyme is mainly
related to processes such as chromatid separation, chromosome condensation, and the relief
of torsional stress that occurs during DNA transcription and replication. The upregulation of
TOP2A was associated with female breast cancer and other cancer types[21]. As a negative
regulator of p53, AURKA promotes tumor growth and cell survival. Myc and AURKA regulate
each other’s expression at the transcriptional level and contribute to the genesis of liver
carcinoma[22].

The remaining 12 hub genes are also important and highly involved in many tumor processes.
PTTGL1 prevents separin from promoting sister chromatid separation by encoding securin
proteins. PTTG1 promotes tumor cell growth and malignancy in breast cancer[23]. CDK1
promotes cell cycle gene expression and is necessary for faithful cell division[24]. Targeting
CDKZ1 can inhibit the cellular proliferation of liver cancer cells. As a member of the E2
ubiquitin-conjugating enzyme family, the protein that UBE2C encodes is highly involved in
mitotic cyclin disassembly and the cell cycle. Hence, UBE2C might affect the progression of
cancer to some extent. BIRCS is a protein-coding gene from the inhibitor of apoptosis (IAP)
gene family. It functions as a negative regulator that prevents the cell from undergoing
apoptosis [25]. CCNB1 and CCNB2 are both members of the cyclin family. As essential
components in cell cycle regulation, CCNB1 and CCNB2 appear to act as oncogenes and are
highly associated with breast cancer according to many studies[26]. Acting as a regulatory
protein during cell cycle progression, CDC20 performs certain functions in coordination with
a series of other proteins. Moreover, it has been suggested to affect breast cancer survival.
ZWINT, however, is believed to be involved in kinetochore function, although the detailed
mechanism remains unknown. A study revealed that ZWINT overexpression affects cell
proliferation in breast cancer[27]. CENPF protein is required for kinetochore function during
cell divison and is related to the cell cycle, mitotic, and cell proliferation pathways. Together
with FOXM1, these genes become copilots driving cancer malignancy[28]. PRC1 encodes a
protein that is involved in cytokinesis and is essential for cell cleavage. PRC1 overexpression
was detected in p53-defective cells, and a negative regulation cycle was found to be
controlled by p53[29]. CDKN3 encodes a cyclin-dependent kinase inhibitor protein and is
essential for normal mitosis and G1/S transition[30]. Its overexpression in human cancer
usually indicates poor survival for patients. Therefore, it is also a target in cancer treatment
research. TPX2 is a spindle assembly factor that could serve as a prognostic marker and
promote proliferation, progression, migration and invasion in breast cance.
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In conclusion, this study identified 322 consistent candidate DEGs and finally revealed 15
hub genes by using multiple cohort profile datasets and a series of bioinformatics analyses.
These hub genes were significantly associated with the cell cycle, oocyte meiosis, and p53
signaling pathways and were also significantly enriched in the cell cycle, cell division,
nuclear division, chromosome segregation and other tumor-related processes, which might
prove their value in clinical applications involving breast cancer. This finding would
effectively promote the understanding of the inner cause of breast cancer, and the 15 hub
genes might serve as cancer biomarkers for prediction, diagnosis, individualized prevention,
therapy and prognosis.
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Figure 1. DEGs in each GEO dataset and common DEGs between two GEO datasets.

A. Volcano plot of DEGsin each GEO dataset. B. Common DEGs shared by two datasets. C.
Common DEGs in both datasets with the same gene expression pattern (red: up-regulated
genes, blue: down-regulated genes).
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Figure 3. WGCNA coexpression network analysis of the GEO datasets and TCGA dataset.

A. Gene dendrogram obtained by clustering the DEGs in the GEO datasets. B. Relationships
of consensus module eigengenes and phenotype in the GEO datasets. C. Gene dendrogram
obtained by clustering the DEGs in TCGA dataset. D. Correlations of consensus module
eigengenes and phenotype in TCGA dataset.
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Figure 4. The overall survival of hub genesin breast cancer.
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Table 1. The key genes of DEGs identified from the PPl network.

Gene Mcﬁgz'z MCODE Score  Degree gg‘éﬁ%‘;ﬂ TC%pe‘f’;?g'eﬁ' Expression
PTTGL 8.836363636 1 0.92727273 0.85795455
CDK1 7.2 16 0.73333333 0.75
UBE2C 8.836363636 1 0.92727273 0.85795455
ZWINT 9 9 1 0.86805556
CENPF 9 10 0.93333333 0.85625
BUBLB 7.813186813 14 0.8021978 0.79017857
MAD2L1 7.2 15 0.77142857 0.77083333
PRC1 7.802000222 9 0.97222222 0.88888889
BIRCS  Clusterl  7.961538462 13 0.80769231 0.79326923 Up-regulated
CCNB2 7.2 16 0.73333333 0.75
CCNBL 72 16 0.73333333 0.75
CDC20 7.2 16 0.73333333 0.75
MLF1IP 9 9 1 0.86805556
TOP2A 9 13 0.80769231 0.78846154
AURKA 8.192307692 13 0.84615385 0.80288462
CDKN3 8 9 0.94444444 0.88194444
TPX2 8 8 1 0875
IGF1 3733333333 5 09 0.92
cLU 3.733333333 5 09 0.92
VWF 3733333333 5 09 0.92
CLEC3B  Cluster2 3733333333 5 09 0.92 Down-regulated
FIGF 4 4 1 1
CFD 4 4 1 1
FABP4 3 3 1 1
PPARG 24 4 0.83333333 0875
ADIPOQ  Clugter 3 27 4 0.83333333 0875 Down-regulated
LEP 3 3 1 1
EBF1 27 4 0.83333333 0875

Table 2. The genesidentified from the weighted coexpression network.

Genesin the blue module

ANLN, ASPM, AURKA, BIRC5, BUB1B, CCNB1, CCNB2, CDC20, CDK1,
CDKN3, CENPF, CENPU, CKS2, CXCL10, DTL, GINS1, HMGB3, HNL1,
IGF1, KIAA0101, MADZ2L1, MELK, NUSAPL, PBK, PRC1, PTTG1,
RRM2, TK1, TOP2A, TPX2, TYMS, UBE2C, UBE2T, UHRF1, ZWINT
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