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Abstract 
 
The aim of this study was to identify the hub genes in breast cancer and provide further 
insight into the tumorigenesis and development of breast cancer. To explore the hub genes in 
breast cancer, we performed an integrated bioinformatics analysis. Two gene expression 
profiles were downloaded from the GEO database. The differentially expressed genes (DEGs) 
were identified by using the “limma” package. Then, we performed Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to explore the 
functional annotation and potential pathways of the DEGs. Next, protein–protein interaction 
(PPI) network analysis and weighted gene coexpression network analysis (WGCNA) were 
conducted to screen for hub genes. To confirm the reliability of the identified hub genes, we 
obtained TCGA-BRCA data by using WGCNA to screen for genes that were strongly related 
to breast cancer. By combining the results from the GEO and TCGA datasets, we finally 
identified 15 real hub genes in breast cancer. Finally, we performed an overall survival 
analysis to explore the connection between the expression of hub genes and the overall 
survival time of breast cancer patients. We found that for all hub genes, higher expression 
was associated with significantly shorter overall survival times among breast cancer patients. 
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1. Introduction 

Breast cancer is one the most severe types of tumor worldwide and is the leading cause of 
cancer death in women[1]. The breast cancer incidence rate varies widely across regions, 
with rates ranging from 0.194‰ in East Africa to 0.897‰ in West Europe, and is increasing 
gradually[2]. There are many risk factors associated with breast cancer, including long-term 
fertility, the use of hormonal contraception, physical inactivity, and alcohol consumption, but 
its etiology and pathogenesis are still not definitively understood[3]. 

With the implementation of some large-cohort human tumor genome projects (for instance, 
The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium 
(ICGC)), an unprecedented amount of genomic data on tumor samples was generated and 
became highly important in human cancer research[4]. In addition, many smaller-scale cancer 
projects led by individual institutions also made great contributions and provided large 
amounts of valuable data, which were deposited into public databases such as the Gene 
Expression Omnibus (GEO)[5]. These public cancer data will accelerate the comprehensive 
understanding of the genetics of cancer, facilitating exploration of the underlying 
mechanisms of cancer and helping to improve diagnostic methods and preventive strategies. 

Due to the limitations of experimental techniques, the development and productive 
application of microarray and sequencing technology brought cancer research into a new era. 
These high-throughput techniques have been widely used for global gene expression profiling, 
which reflect the molecular basis of tumor phenotypes and can be used to classify tumors, 
discover the pathogenic genes of tumors, explore tumorigenesis and distinguish the 
occurrence and progression of tumors[6]. A large number of gene microarray datasets in 
public databases facilitates comprehensive analyses of gene expression in cancer. By using 
bioinformatics methods and associating the results with clinical data, new biomarkers could 
be found for the diagnosis, therapy and prognosis of cancer. 

In this study, we obtained and used two original microarray gene expression datasets, 
GSE10810[7] and GSE65194[8], from the GEO database. Strict calibration and filtering were 
used to obtain differentially expressed genes (DEGs). Then, by a series of bioinformatics 
approaches, hub genes were identified, and enrichment analysis was used to find possible key 
pathways of breast cancer. We also downloaded breast cancer gene expression data from 
TCGA and performed the same strategy to verify our results. A series of Kaplan-Meier (KM) 
survival plots were also constructed to reveal the connection between hub genes and the 
prognosis of breast cancer. Finally, we identified 15 true hub genes that closely related to 
breast cancer. We expect this work to provide further insight into the tumorigenesis and 
development of breast cancer at the molecular level and provide more precise, practically 
valuable markers for the diagnosis, therapy, monitoring and prognosis of breast cancer. 

2. Materials and Methods 
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2.1 Datasets 

The GEO is a public database of gene expression profiles and sequence-based data and is 
freely available for users. Two gene expression profile datasets (GSE10810 and GSE65194) 
were downloaded from the GEO. Both GSE10810 and GSE65194 were obtained from the 
GPL570 platform [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array. 
GSE10810 includes 58 samples, including 31 breast cancer samples and 27 normal samples, 
while GSE65194 includes 130 breast cancer samples and 11 normal control samples. 

We also downloaded RNA-sequencing gene expression data from TCGA on the UCSC Xena 
(https://xena.ucsc.edu/) “GDC TCGA Breast Cancer (BRCA)” cohort, which includes 1104 
breast cancer samples and 113 normal samples. 

2.2 Filtering of differentially expressed genes (DEGs) 

The “limma” R package[9] was applied to filter the DEGs between the breast cancer patient 
group and the normal group. The P-value of each DEG was calculated and then adjusted by 
the Bonferroni method. The threshold that used to DEGs was |log fold change (FC)| ≥ 2 and a 
Bonferroni P-value <0.01. 

2.3 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology 
(GO) enrichment analysis of DEGs 

KEGG database is used for systematically analyze and annotate gene functions[10]. The GO 
database provides a classification of genes into three functional groups: the molecular 
function (MF) group, biological process (BP) group, and cellular component (CC) group[11]. 
In this study, KEGG pathway and GO enrichment analyses were conducted by using the 
“clusterProfiler”[12] R package with a cutoff P-value of 0.05 on the DEGs that we obtained 
in the previous step. 

2.4 Integration of protein-protein interaction (PPI) network and cluster analysis 

The Search Tool for the Retrieval of Interacting Genes (STRING)[13] is a biological database 
for predicting pairs of PPIs. We evaluated the interactive relationships of DEGs by STRING 
and defined the genes with a combined score > 0.9 as key DEGs. Then, we used Cytoscape to 
develop the PPI network of the key DEGs that we identified. Molecular Complex Detection 
(MCODE)[14], a plugin for Cytoscape, was used with the default parameters to identify the 
most important module of the PPI network. 

2.5 Coexpression network construction and analysis of clinically significant modules  

The coexpression network was established by WGCNA, an R package for the construction of 
weighted gene coexpression networks[15]. 

In this study, an automatic one-step network construction and module detection method in 
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WGCNA was performed with the default settings, including a correlation type of Pearson, an 
unsigned type of topological overlap matrix (TOM), a merge cut height of 0.25 and a default 
minimal module size. The first principal component calculation module eigengene (ME) was 
used to quantify the coexpression similarity of entire modules. To assess the potential 
associations between ME and phenotype (case or normal), Pearson’s correlations between 
them were calculated. 

2.6 Hub gene selection 

We obtained the key genes in the most significant module of the PPI network. The 
phenotype-related modules in the WGCNA network were also identified, and the genes in 
those modules were extracted. Hub genes common to both networks were selected as 
candidates for further analysis and validation. 

2.7 Coexpression network construction of the TCGA dataset for further validation 

To confirm the reliability of the identified DEGs, we analyzed the TCGA-BRCA data by 
using the same strategy to obtain the TCGA DEGs. We performed a one-step function of 
WGCNA for TCGA DEG network construction and the detection of consensus modules. In 
addition, the correlation between ME and phenotype (cancer or normal) was calculated. The 
candidate genes that also appeared in the TCGA coexpression network were considered to be 
the true hub genes. 

2.8 Kaplan-Meier (KM) survival analysis 

The online survival analysis software program called Kaplan-Meier plotter 
(http://kmplot.com/) contains and utilizes expression data from 5,143 breast cancer 
patients[16]. The median expression level was used to divide patients into two groups, and 
overall survival analysis was performed to determine the connection between the expression 
level of hub genes and the overall survival time of patients. The hazard ratio (HR) was 
provided, and the P-value was calculated by log-rank tests. 

3. Results 

3.1 DEG filtering 

With thresholds of |logFC| ≥ 2 and Bonferroni adjusted P-value < 0.01, we extracted 540 and 
2,509 DEGs from the expression profile datasets GSE10180 and GSE65194, respectively. 
Scatter volcano plots were developed to illustrate the distribution of each gene on logFC and 
-log(P-value) values (Figure 1A). After integrated bioinformatics analysis, a total of 322 
consistently DEGs were identified from the two datasets (Table S1). Among those DEGs, 69 
are up-regulated and 253 are down-regulated. In addition, the gene expression pattern was 
consistent in both datasets, as shown in the heatmap (Figure 1B, 1C). 
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3.2 KEGG pathway analysis and GO enrichment analysis 

To explore the DEG functions, we performed KEGG pathway and GO enrichment analysis. 
The top results of each functional group are shown in Figure 2A and Table S2. Oocyte 
meiosis, cell cycle and progesterone-mediated oocyte maturation are the pathways in which 
up-regulated genes are mainly enriched. Most of the down-regulated genes were enriched in 
the PPAR signaling pathway, AMPK signaling pathway, regulation of lipolysis in adipocytes 
and adipocytokine signaling pathway. The GO enrichment results showed that most of the 
up-regulated genes were enriched in nuclear division, mitotic nuclear division, organelle 
fission and the regulation of nuclear division, and the down-regulated genes were mainly 
enriched in lipid localization. 

3.3 Identification of key DEGs and significant clusters in the PPI network 

STRING database was used to obtain the interactive relationships of DEGs. Genes with a 
combined score > 0.9 were defined as key DEGs. Finally, 95 key DEGs as network nodes and 
244 edges were used to construct the PPI network (Figure S1A). MCODE recognized three of 
the most significant clusters and identified 28 genes = from the PPI network (Figure S1B, 
Table 1). 

3.4 Construction of the weighted coexpression network and identification of key 
modules 

WGCNA analysis was used to classify the DEGs into different modules based on their 
similarity of expression patterns by performing the method of average linkage clustering. In 
this study, three modules were identified according to the breast cancer phenotype (Figure 
3A). We considered the blue module of the MEs to be the one we found, due to its highest 
correlation with breast cancer (Figure 3B). Finally, a total of 35 genes were identified in the 
blue module (Table 2) and were considered the most relevant genes for breast cancer. 

3.5 Hub gene selection 

According to the WGCNA results, a total of 35 genes were considered to be highly correlated 
with the blue module (Table S3). We then found that 17 genes identified from the PPI 
network are consistent across the WGCNA network. Hence, 17 common network genes were 
considered hub genes, subject to further analysis and validation. 

3.6 Coexpression network construction of the TCGA dataset for further validation 

The coexpression network of the differential expression profile data from TCGA was also 
constructed by WGCNA with the same approach described in this report, and four modules 
were found to be related to the breast cancer phenotype (Figure 3C). The MEs of the blue and 
brown modules exhibited a much higher correlation with breast cancer phenotype than the 
other modules (Figure 3D). Upon integrating the 17 hub genes obtained from the PPI and 
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WGCNA network above, the genes MAD2L1 and IGF1 were excluded, and the remaining 15 
(AURKA, BIRC5, BUB1B, CCNB1, CCNB2, CDC20, CDK1, CDKN3, CENPF, PRC1, 
PTTG1, TOP2A, TPX2, UBE2C and ZWINT) were found in the blue module. Based on both 
methods, we finally identified 15 hub genes for breast cancer. 

3.7 Kaplan-Meier (KM) survival analysis 

To further evaluate the prognostic importance of the genes that we considered hub genes in 
this report, overall survival analysis was applied to investigate the association of these genes 
with the overall survival time of breast cancer patients by using Kaplan-Meier plotter (Figure 
4). We found that all the hub genes with higher expression levels were associated with 
significantly shorter overall survival time among breast cancer patients, which might suggest 
that these hub genes are closely related to breast cancer. 

4. Discussion 

Although the treatment of breast cancer has improved markedly, it remains the most 
prevalent malignant tumor with the highest increase in prevalence among women worldwide. 
Uncovering the molecular mechanisms of breast cancer is critical to its diagnosis, therapy 
and prognosis. The DNA microarray gene expression profile has proven its value and is 
widely used to explore differentially expressed genes involved in tumorigenesis, which will 
provide valuable information for clinical applications. 

In this study, two gene expression profile datasets (GSE10810 and GSE65194) from the GEO 
database were retrieved and analyzed. We filtered common DEGs and then identified 17 hub 
genes that were detected in both the PPI and WGCNA coexpression networks. To further 
validate these genes, we extracted TCGA-BRCA data to screen the modules related to the 
phenotype of breast cancer by using WGCNA. After this comparison, 15 real hub genes that 
were closely associated with breast cancer were identified. This finding may provide valuable 
information for treatment decisions and prognosis predictions regarding breast cancer. 

Notably, these 15 hub genes were all commonly overexpressed among breast cancer patients. 
KEGG enrichment analysis demonstrated that these hub genes were mostly related to the cell 
cycle, oocyte meiosis and p53 signaling pathways, and GO enrichment analysis also revealed 
that they were significantly involved in the cell cycle, cell division, nuclear division and 
chromosome segregation processes (Figure S2, Table S4). These results suggested that the 
hub genes were highly related to chromosome instability and probably play an irreplaceable 
role in tumorigenesis and tumor proliferation. Furthermore, by performing KM survival 
analysis on these hub genes, we also found that higher expression of those genes was 
associated with a worse prognosis among breast cancer patients. All of these results indicated 
that the 15 hub genes might be closely associated with breast cancer and could be potential 
biomarkers for prognosis. 

We also identified that three (BUB1B, TOP2A and AURKA) of the 15 hub genes were 
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commonly found in the OncoKB cancer gene list[17]. This finding could validate our 
conclusion from another perspective. BUB1B encodes a kinase that is related to the spindle 
checkpoint function and controls proper chromosome segregation during cell division[18]. 
The protein encoded by this gene is localized to the kinetochore and is involved in 
anaphase-promoting complex/cyclosome (APC/C) inhibition, which delays the onset of 
anaphase and ensures proper chromosome segregation. Thus, it plays important roles in 
tumor proliferation and progression among multiple cancer types[19]. As a 
checkpoint-related gene, BUB1B overexpression might increase the risk of cancer . TOP2A 
controls DNA topologic states and cell progression[20]. This nuclear enzyme is mainly 
related to processes such as chromatid separation, chromosome condensation, and the relief 
of torsional stress that occurs during DNA transcription and replication. The upregulation of 
TOP2A was associated with female breast cancer and other cancer types[21]. As a negative 
regulator of p53, AURKA promotes tumor growth and cell survival. Myc and AURKA regulate 
each other’s expression at the transcriptional level and contribute to the genesis of liver 
carcinoma[22]. 

The remaining 12 hub genes are also important and highly involved in many tumor processes. 
PTTG1 prevents separin from promoting sister chromatid separation by encoding securin 
proteins. PTTG1 promotes tumor cell growth and malignancy in breast cancer[23]. CDK1 
promotes cell cycle gene expression and is necessary for faithful cell division[24]. Targeting 
CDK1 can inhibit the cellular proliferation of liver cancer cells. As a member of the E2 
ubiquitin-conjugating enzyme family, the protein that UBE2C encodes is highly involved in 
mitotic cyclin disassembly and the cell cycle. Hence, UBE2C might affect the progression of 
cancer to some extent. BIRC5 is a protein-coding gene from the inhibitor of apoptosis (IAP) 
gene family. It functions as a negative regulator that prevents the cell from undergoing 
apoptosis [25]. CCNB1 and CCNB2 are both members of the cyclin family. As essential 
components in cell cycle regulation, CCNB1 and CCNB2 appear to act as oncogenes and are 
highly associated with breast cancer according to many studies[26]. Acting as a regulatory 
protein during cell cycle progression, CDC20 performs certain functions in coordination with 
a series of other proteins. Moreover, it has been suggested to affect breast cancer survival. 
ZWINT, however, is believed to be involved in kinetochore function, although the detailed 
mechanism remains unknown. A study revealed that ZWINT overexpression affects cell 
proliferation in breast cancer[27]. CENPF protein is required for kinetochore function during 
cell division and is related to the cell cycle, mitotic, and cell proliferation pathways. Together 
with FOXM1, these genes become copilots driving cancer malignancy[28]. PRC1 encodes a 
protein that is involved in cytokinesis and is essential for cell cleavage. PRC1 overexpression 
was detected in p53-defective cells, and a negative regulation cycle was found to be 
controlled by p53[29]. CDKN3 encodes a cyclin-dependent kinase inhibitor protein and is 
essential for normal mitosis and G1/S transition[30]. Its overexpression in human cancer 
usually indicates poor survival for patients. Therefore, it is also a target in cancer treatment 
research. TPX2 is a spindle assembly factor that could serve as a prognostic marker and 
promote proliferation, progression, migration and invasion in breast cancer. 
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In conclusion, this study identified 322 consistent candidate DEGs and finally revealed 15 
hub genes by using multiple cohort profile datasets and a series of bioinformatics analyses. 
These hub genes were significantly associated with the cell cycle, oocyte meiosis, and p53 
signaling pathways and were also significantly enriched in the cell cycle, cell division, 
nuclear division, chromosome segregation and other tumor-related processes, which might 
prove their value in clinical applications involving breast cancer. This finding would 
effectively promote the understanding of the inner cause of breast cancer, and the 15 hub 
genes might serve as cancer biomarkers for prediction, diagnosis, individualized prevention, 
therapy and prognosis. 
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Figure and Table Legends: 

 
Figure 1. DEGs in each GEO dataset and common DEGs between two GEO datasets. 
A. Volcano plot of DEGs in each GEO dataset. B. Common DEGs shared by two datasets. C. 
Common DEGs in both datasets with the same gene expression pattern (red: up-regulated 
genes, blue: down-regulated genes). 
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Figure 2. Top KEGG pathway enrichment and GO functional enrichment of 322 common 
DEGs. 
A. Top KEGG pathway enrichment results of 322 DEGs. B. Top enriched GO terms of key 
DEGs classified into the molecular function (MF) group, the biological process (BP) group 
and the cellular component (CC) group. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2018. ; https://doi.org/10.1101/414532doi: bioRxiv preprint 

https://doi.org/10.1101/414532
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Figure 3. WGCNA coexpression network analysis of the GEO datasets and TCGA dataset. 
A. Gene dendrogram obtained by clustering the DEGs in the GEO datasets. B. Relationships 
of consensus module eigengenes and phenotype in the GEO datasets. C. Gene dendrogram 
obtained by clustering the DEGs in TCGA dataset. D. Correlations of consensus module 
eigengenes and phenotype in TCGA dataset. 
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Figure 4. The overall survival of hub genes in breast cancer. 
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Table 1. The key genes of DEGs identified from the PPI network. 

Gene 
MCODE 
Cluster MCODE Score Degree 

Clustering 
Coefficient 

Topological 
Coefficient Expression 

PTTG1 

Cluster 1 

8.836363636 11 0.92727273 0.85795455 

Up-regulated 

CDK1 7.2 16 0.73333333 0.75 
UBE2C 8.836363636 11 0.92727273 0.85795455 
ZWINT 9 9 1 0.86805556 

CENPF 9 10 0.93333333 0.85625 

BUB1B 7.813186813 14 0.8021978 0.79017857 

MAD2L1 7.2 15 0.77142857 0.77083333 

PRC1 7.822222222 9 0.97222222 0.88888889 

BIRC5 7.961538462 13 0.80769231 0.79326923 

CCNB2 7.2 16 0.73333333 0.75 

CCNB1 7.2 16 0.73333333 0.75 

CDC20 7.2 16 0.73333333 0.75 

MLF1IP 9 9 1 0.86805556 

TOP2A 9 13 0.80769231 0.78846154 

AURKA 8.192307692 13 0.84615385 0.80288462 

CDKN3 8 9 0.94444444 0.88194444 

TPX2 8 8 1 0.875 

IGF1 

Cluster 2 

3.733333333 5 0.9 0.92 

Down-regulated 

CLU 3.733333333 5 0.9 0.92 

VWF 3.733333333 5 0.9 0.92 

CLEC3B 3.733333333 5 0.9 0.92 

FIGF 4 4 1 1 

CFD 4 4 1 1 

FABP4 

Cluster 3 

3 3 1 1 

Down-regulated 

PPARG 2.4 4 0.83333333 0.875 

ADIPOQ 2.7 4 0.83333333 0.875 

LEP 3 3 1 1 

EBF1 2.7 4 0.83333333 0.875 

 

Table 2. The genes identified from the weighted coexpression network. 

Genes in the blue module 

ANLN, ASPM, AURKA, BIRC5, BUB1B, CCNB1, CCNB2, CDC20, CDK1, 
CDKN3, CENPF, CENPU, CKS2, CXCL10, DTL, GINS1, HMGB3, HN1, 

IGF1, KIAA0101, MAD2L1, MELK, NUSAP1, PBK, PRC1, PTTG1, 
RRM2, TK1, TOP2A, TPX2, TYMS, UBE2C, UBE2T, UHRF1, ZWINT 
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