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Abstract

The HLA gene complex is the most important, single genetic factor in susceptibility to most
diseases with autoimmune or autoinflammatory origin and in transplantation matching. The majority of
the studies have focused on the huge allelic variation in these genes; only a few studies have explored
differences in expression levels of HLA alleles. To study the expression levels of HLA alleles more
systematically we utilised two different RNA sequencing methods. Illumina RNAseq has a high
sequencing accuracy and depth but is limited by the short read length, whereas Oxford Nanopore’s
technology can sequence long templates, but has a poor accuracy. We studied allelic mRNA levels of
HLA class I and II alleles from peripheral blood samples of 50 healthy individuals. The results
demonstrate large differences in mRNA expression levels between HLA alleles. The method can be
applied to quantitate the expression differences of HLA alleles in various tissues and to evaluate the role

of this type of variation in transplantation matching and susceptibility to autoimmune diseases.
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Author Summary

Even though HLA is widely studied less is known of its allele-specific expression. Due to the pivotal role
of HLA in infection response, autoimmunity, and transplantation biology its expression surely must play
a part as well. In hematopoietic stem cell transplantation the challenge often is to find a suitable HLA-
matched donor due to the high allelic variation. Classical HLA typing methods do not take into account
HLA allele-specific expression. However, differential allelic expression levels could be crucial in finding
permissive mismatches in order to save a patient’s life. Additionally, differential HLA expression levels
can lead into beneficial impact in viral clearance but also undesirable effects in autoimmune diseases. To
study HLA expression we developed a novel RNAseq-based method to systematically characterize allele-
specific expression levels of classical HLA genes. We tested our method in a set of 50 healthy individuals
and found differential expression levels between HLA alleles as well as interindividual variability at the
gene level. Since NGS is already well adopted in HLA research the next step could be to determine HLA
allele-specific expression in addition to HLA allelic variation and HLA-disease association studies in

various cells, tissues, and diseases.

Introduction

The highly polymorphic human leukocyte antigens (HLA) are crucial in presentation of self, non-
self and tumor antigens to T cells, and play a crucial part in autoimmunity and infection responses, as well
as in organ and hematopoietic stem cell transplantation (HSCT). In the thymus and bone marrow the HLA
molecules presenting self-derived peptides to maturing T- and B-cells induce the central tolerance. The
classical HLA genes are divided into two classes. HLA class I genes including HLA-A, HLA-B, and
HLA-C are expressed on the surface of all nucleated cells, whereas the expression of class II genes; HLA-
DR, HLA-DQ, and HLA-DP is restricted to professional antigen presenting cells.[1,2] Recently a few

studies reported varying expression levels of HLA alleles based on the real-time polymerase chain
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reaction (PCR) and the mean fluorescence intensity (MFI).[3—10] The differential expression of HLA
alleles has been associated with immunologically mediated diseases, such as Crohn’s disease [11] and
HIV [6,12], follicular lymphoma[7], and the outcome of HSCT through the risk of graft versus host
disease (GvHD)[8,9]. In fact, incompatibilities between the donor and the recipient in HSCT have made
the expression differences of HLA molecules an interesting target for finding permissive mismatches.
Although currently only the qualitative HLA typing is considered in donor selection, RNAseq-based
techniques can be used to determine differences in HLA expression that may influence the outcome of
transplantation. The differences may also be related to the susceptibility to autoimmune diseases, tumor

invasion and infections.

NGS has enabled a rapid development of several novel high-throughput HLA typing methods
using different sequencing platforms.[13—22] Unlike genomic DNA based applications RNA sequencing
provides a comprehensive gene expression information in addition to HLA allele calling. Precise
identification of HLA alleles from NGS data is challenging due to the high polymorphism and
homologous nature of HLA genes leading often to ambiguous typing results. Several existing tools, such
as seq2HLA[23], HLAforest[24], and HLAProfiler[25], have been developed to perform HLA typing
from short RNA sequencing reads using the whole transcriptome data. Even though these tools enable
accurate and comprehensive allele determination, they only accept data with a very low error rate and are
designed merely for short-read Illumina data. Owing to the complex nature of HLA genes and consequent
challenges in allele assignment, ONT’s single-molecule sequencing technology has been of great interest

due to its fitness for sequencing long reads.[26—28]

Here we describe a highly multiplexed RNA-based HLA sequencing method that is based on the
[llumina and ONT platforms. For an accurate, high throughput quantification of the expression levels of
HLA genes and alleles we developed an informatics pipeline, written in R, based on counting of unique
molecular identifiers (UMI)[29,30] which work as molecular barcodes in distinguishing original

transcripts from PCR copies.
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79  Results

80 We tested two different sequencing platforms, ONT and Illumina to determine HLA gene- and
81  allele-specific expression. For this we developed a targeted ONT-based RNAseq protocol for 13 HLA
82  genes and compared it with our Illumina-based RNAseq approach (S1 Fig). Our dataset involved RNA
83  samples from peripheral blood of 50 healthy individuals and it consisted of 50 different HLA class I
84  alleles and 61 different HLA class II alleles (at 2-field level) with loci HLA-B, -C and -DRB1 showing
85  the highest heterozygosity rates of 94%, 92% and 90% respectively. The heterozygosity rate of HLA-A, -
86  DQAL, -DQBI1, -DPA1 and -DPB1 were 62%, 84%, 88%, 78%, respectively. Lower heterozygosity rates
87  were observed with loci HLA-DPAT1 (22%) and -DRA (16%). The heterozygosity rates of DRBS5, and -

88  DRB3, were 5%, and 3%, whereas all -DRB4 alleles were either homozygous or hemizygous.

&9

90  Comparison of HLA expression quantification between datasets

91 For accurate HLA expression analysis we determined the numbers of HLA gene- and allele-
92  specific unique UMIs. To take into account only the unique transcripts we counted UMIs for a given
93  gene using the UMI tools pipeline with Illumina cDNA data. To collect the number of UMIs per gene and
94  allele, all three datasets: ONT, Illumina ¢cDNA, and Illumina HLA amplicon, underwent the UMI
95  counting using the custom pipeline. For the cDNA this was done to overcome the poor alignment result
96  of HLA alleles due to the missing allelic diversity in the human reference genome. Highly homologous
97  sequences between HLA alleles and loci made the read assignment between alleles ambiguous in some
98  cases. The problem with multimapping reads caused by this high sequence similarity, was clear when we
99  compared the alignment rates in the three datasets between the number of all aligning reads per HLA gene
100  and the sum of uniquely aligning reads to the two alleles after the read assignment step. This comparison
101 across all alleles in the Illumina cDNA showed that in average 12% (range 0.1-64%) of all reads aligning

102 per gene were aligned uniquely to the two alleles of the gene in question. The same rates for Illumina
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103 HLA amplicon and ONT data were 48% (range 0.08-95%) and 43% (1.8-98%), respectively. The UMI
104 duplication rate was calculated for every allele using the number of unique UMIs. Uniquely aligning
105  reads varied in the Illumina cDNA data between 0% and 63% with the mean value of 12.6%. In the
106  Ilumina HLA amplicon data the mean duplication rate was 18.9%, (range 0% to 79%) and in the ONT

107  data 16.5% with a range of 0-96%.

108 To test the correlation between the datasets, we calculated the allele-to-allele ratio from
109  unnormalized unique UMIs for each allele pair within all 50 samples and compared the ratios to those
110  from the Illumina cDNA and Illumina HLA amplicon data. The Illumina cDNA and Illumina amplicon
111 data were strongly correlated (r = 0.8, p < 0.0001; Spearman rank correlation) with all HLA genes (Fig
112 1A), suggesting that both datasets alone were able to identify the expression difference between the two
113 alleles. In this comparison between the two datasets, the correlation of HLA class I genes was higher (r =
114 0.92, p < 0.0001) compared to HLA class II genes (r = 0.69, p < 0.0001) (Fig 1B—C). In a gene-wise
115  comparison, the strongest correlation was seen in HLA-A (r = 0.91, p < 0.0001), and HLA-B (r =0.93, p
116 < 0.0001) of the class I genes and HLA-DPAT1 (r = 0.99, p < 0.0001), and HLA-DPB1 (r = 0.78, p <

117 0.0001) of the class II genes (Fig 1D-K).

118 To test the correlation between ONT and Illumina HLA amplicon data at allele level we
119 calculated the allele ratio from ONT data as well. This comparison showed a weaker correlation with all
120 HLA genes included (r = 0.47, p < 0.0001) (Fig 2A). The class I genes showed a moderate to strong
121 correlation (r = 0.67, p < 0.0001), whereas the correlation of class Il genes was weaker (r = 0.32, p <
122 0.0001) (Fig 2B—C). HLA-B (r=0.61, p <0.0001) and HLA-C (r = 0.79) correlated better than HLA-A (r
123 =0.49, p = 0.0008) (Fig 2D—F). In class II genes HLA-DRB1 (r = 0.62, p < 0.0001) and HLA-DPAI1 (r =
124 0.53, p = 0.0003) showed the strongest correlation, while the other class II genes showed a weak
125  correlation (Fig 2G—K). Surprisingly, the same comparison between ONT and Illumina ¢cDNA data
126  correlated better with all HLA genes (r = 0.53, p < 0.0001) (Fig3A). Similarly, HLA class I gave a

127  stronger correlation (r = 0.59, p < 0.0001) when compared to class II (r = 0.48, p < 0.0001) (Fig 3B-C),
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128  however, for both the correlation was moderate at best. In the gene-wise comparison the strongest
129 correlations were seen in HLA-A (r = 0.57, p < 0.0001) (Fig 3D), HLA-B (r =0.59, p < 0.0001) (Fig 3E),
130 HLA-C (r=0.68, p <0.0001) (Fig 3F), HLA-DQA1 (1=0.59, p < 0.0001) (Fig 3H), HLA-DQBI1 (r =0.49,
131  p=0.0003) (Fig 3I), and HLA-DPA1 (r = 0.54, p = 0.0002) (Fig 3J), and the lowest in HLA-DRBI (r =
132 0.46, p =0.0022) (Fig 3G), and HLA-DPBI1 (r = 0.47, p = 0.0009) (Fig 3K). The correlation comparisons
133 of allele ratios between ONT and Illumina datasets suggest that we are either unable to assign all the reads
134 properly to the correct alleles or that we miss UMIs in the UMI quantification step with ONT data, or
135  both. This result indicates the difficulty of finding the UMI position in ONT reads compared to [llumina
136  reads where the 10 bp UMI is always sequenced first in the beginning of read 1. Due to a moderate

137  correlation result between ONT and Illumina, no gene- and allele-level expression comparison is shown.

138  HLA gene-specific expression

139 To characterize gene and allelic expression profiles across samples Illumina cDNA and HLA
140  amplicon UMI counts were normalized to library size using the CPM method. First, we explored the
141 amount of HLA expression from the total expression of all genes across the samples using unique UMIs
142 of the Illumina cDNA data. The proportion of total HLA expression out of all cDNAs varied between
143 0.96% and 2.54%, and HLA class I and HLA class II from 0.48% to 1.99% and 0.26% to 1.14%,
144  respectively (S4 Fig). For the gene-level comparison the sum of two alleles was calculated from the
145  CPM-normalized unique UMI values. This comparison was done between the Illumina cDNA and HLA
146  amplicon datasets across the 50 samples. In [llumina cDNA data we clearly see a higher expression of
147  HLA class I genes compared to class II, whereas in the Illumina HLA amplicon data HLA-DRB gene
148  shows high expression values across samples (Fig 4). In the cDNA data HLA-B and -C were expressed at
149  the highest levels. HLA-A gene expression was lower compared to the two other class I genes. In the
150  HLA class I HLA-DRA and -DRB genes were expressed at the highest levels following -DPA1 and -
151  DPBI. HLA-DQAT1 and -DQB1 were expressed clearly at the lowest levels. The evaluation between the

152 two Illumina datasets revealed that in the HLA amplicon dataset HLA class II has higher gene-level
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153  expression than in the Illumina cDNA dataset. The genes expressed at the highest levels in this data were
154  HLA-DRB, and HLA class I genes. The bias towards HLA class Il and especially in HLA-DRB in the
155 HLA amplicon data most likely arises from the different efficacy rates of HLA primers used in the
156  amplification and leading to uneven pooling in the library preparation step. Since every cell expresses
157  HLA class I, it is logical that the expression of HLA class I genes should be higher compared to HLA-
158  DRB expression. For this reason, in the following analyses we show the data from the [llumina cDNA

159 dataset.

160 The further comparison between the two Illumina datasets at the allele-specific level is shown in
161  the supplementary information (S5-S6 Fig). The overall class-level comparison across all 50 samples
162  showed that mRNA for HLA class I was expressed in significantly higher levels than HLA class II (p <
163 0.0001) (Fig 5B). Between HLA class I genes, the expression of HLA-A was lower than HLA-B (p <
164 0.005) and HLA-C (p < 0.005), however, there was no significant difference between HLA-B and -C
165 mRNA expressions (Fig 5B). In the class II gene-level comparison, HLA-DR (including mRNAs for
166 DRA, DRBI1, DRB3-5) was expressed at higher level compared to HLA-DP (p < 0.0001) and HLA-DQ
167  (p <0.0001) (Fig 5B). The expression of HLA-DP and -DQ also differed statistically significantly (p <

168  0.05), the expression of HLA-DQ being the lowest.

169 To assess the differential expression of HLA genes between individuals we calculated the relative
170 expression of all genes present per sample using unique UMIs and compared these relative expression
171  profiles between 50 individuals. The comparison demonstrated that the relative amounts of different HLA
172 mRNAs varied greatly between individuals (Fig 6). In addition, the total amount of mRNA for HLA
173 varied between individuals (data not shown). We found that in average 65% (range 45-84%) of the total
174  HLA expression came from the HLA class 1 genes, whereas the average of HLA class II expression

175  across individuals was 35% (range 16-54%).
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176 A comparison of HLA class | and II expression between genders (n = 27 females and n =
177 23 males) showed no significant difference. Also no significant correlation between the expression levels
178  of HLA class II and the class II transactivator, CIITA (r = 0.16, p = 0.2654) was found across the 50

179 individuals.

180

181  HLA allele-specific expression

182 To assess HLA allelic expression we studied the number of unique UMISs representing the mRNA
183  expression of individual alleles for a given gene across all 50 samples. The mean HLA-A mRNA
184  expression level as defined by UMIs was 1275. Compared to this level, the HLA-A alleles A*03:01 (n =
185  28),and A*68:01 (n = 3) had higher than the average expression levels. Alleles A*01:01 (n = 8), A*02:01
186  (n = 26), and A*24:02 (n = 16) were associated expression levels lower than average (Fig 7A). Alleles
187  A*32:01 (n =4) with a mean of 1324 was not associated to either due to their expression levels so close
188  to the mean expression value (henceforth neutral). Homozygous allele pairs showed lower expression
189  levels than heterozygotes in all allele groups carrying both individuals. The expression levels between
190  different allele groups differed significantly (H = 11.75, p = 0.04), however, a pairwise comparison

191  showed no significant differences between allele groups.

192 By comparing the expression levels to the mean HLA-B mRNA expression value of 2158, alleles
193  B*07:02 (n = 18), B*08:01 (n =7), B*15:01 (n = 11), and B*39:01 (n = 4) had a higher expression and
194  B*13:02 (n = 6), B¥27:05 (n =5), B*35:01 (n = 14), B*40:01 (n = 5), B*44:02 (n = 4), and B*51:01 (n =
195  4) had a lower than the mean expression level (Fig 7B). Alleles B*18:01 (n = 6) with a mean of 2094)
196  was considered neutral. A comparison of expression levels showed a significant difference between allele
197  groups (H = 55.26, p < 0.0001). In the pairwise comparison significant difference (p < 0.05) was seen

198  between pairs B*15:01~B*44:02, B*15:01~B*51:01, and B*39:01~B*44:02.
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199 Among 14 HLA-C alleles with a mean expression of 2257, C*02:02 (n = 3), C*03:03 (n = 8),
200  C*03:04 (n = 9), C*05:01 (n = 4), and C*06:02 (n = 10) were associated with a higher expression and
201  C*01:02 (n=4), C*04:01 (n=20), C*¥07:01 (n=16), C*07:02 (n = 15), C*12:03 (n = 3), and C*15:02 (n
202 = 5) with a lower expression (Fig 7C). These results correlate with previously reported allelic mRNA
203  expression levels [3]. Similarly to HLA-A locus, we observed lower expression levels in homozygous
204  individuals. Allele-specific expression comparison showed a significant difference between allele groups
205 (H = 35.73, p < 0.0001). In the pairwise comparison allele groups C*03:04 ~ C*07:02, C*04:01~

206  C*06:02, and C*06:02 ~ C*07:02 were significantly different (p < 0.05).

207 The comparison of HLA-DRBI1 expression values to the mean expression value of 745
208  categorized DRB1*01:01 (n = 16), DRB1*10:01 (n = 3), and 15:01 (n = 17) into a group of high-
209  expression associated alleles, whereas DRB1*03:01 (n = 7), DRB1*07:01 (n = 9), DRB1*13:02 (n = 5),
210  and DRBI1*16:01 (n = 4) were grouped to a low-expression (Fig 8B). Alleles DRB1*04:01 (n = 6),
211 DRBI1*08:01 (n = 10), and DRB1*13:01 (n = 12), were considered neutral. Overall, this locus was very
212 heterozygous as only four homozygous individuals were observed in DRB1*01:01 and DRB1*08:01. In
213 contrast to HLA-A and HLA-C, homozygous individuals in HLA-DRB1 were expressed at higher levels.
214  The expression levels between allele groups were significantly different (H = 19.26, p = 0.02), though, no
215  significant differences were seen between alleles in the pairwise comparison. HLA-DRA is not shown
216  due to possible bias between homozygous and heterozygous individuals. This bias most likely results
217  from an allele assignment problem in short Illumina reads caused by the low number of variant positions
218  between DRA alleles. In case of a heterozygous individual carrying DRA*01:01 we constantly observed a

219  low number of unique UMIs resulting from the second allele.

220 Out of the four HLA-DRB3 alleles present in this data, DRB3*01:01 (n = 15) and DRB3*02:02
221  (n = 8) were the most frequent. DRB4*01:03 (n = 20) was the only allele representing this locus in our
222 data. Among HLA-DRBS alleles, DRB5*01:01 (n = 16) was the most frequent. In a pairwise comparison

223 no significant differences were found between alleles. However, DRB4*01:03 was expressed at

10
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224  significantly lower levels than DRB3*01:01 and DRB5*01:01 (p < 0.005 for both). The majority of
225  samples were hemizygous for DRB3, DRB4, and DRB5 and hence it was surprising that compared to the
226  homozygotes and heterozygotes of all DRB3, DRB4, DRBS5, hemizygotes were expressed at higher levels
227  (p < 0.05) (Fig 8A). This might derive from a bias problem between two alleles in the read assignment.
228  Reads which passed the set parameters in the read assignment after alignment are considered in the UMI
229  counting. With homozygous and hemizygous alleles there is no need to assign reads between two alleles
230  and hence a bias might occur if more reads are saved for the UMI counting compared to the

231  heterozygotes.

232 At HLA-DQALI locus, DQA1*01:03 (n = 12), DQA1*03:01 (n = 8), and DQA1*03:03 (n = 3)
233 were associated with a higher expression levels when compared to the mean expression value of 67 (Fig
234 8C). In contrast, alleles DQA1*01:01 (n = 17), DQA1*01:02 (n = 26), DQA1*04:01 (n = 9), and
235  DQA1*05:01 (n = 10) were linked to a lower expression. The alleles expressed at higher levels exhibited
236  a heterogeneous expression, whereas the expression of low expression associated alleles was more
237  uniform. Two alleles, DQA1*01:05 (n = 3) and DQA1*02:01 (n = 8) were not clearly associated to either
238  of the former groups and hence were considered neutral. Significantly different expression levels were
239  found between two high-low expression associated allele groups, DQA1*01:03 ~ DQA1*05:01 and
240  DQA1*03:01 ~ DQA1*05:01 (p < 0.05 for both). Among HLA-DQBI1 alleles, only two alleles,
241 DQBI1*05:01 (n = 20), DQB1*05:02 (n = 4) were associated with a higher expression compared to the
242 mean expression value of 234 (Fig 8D). The other DQB1 alleles, DQB1*02:01 (n = 8), DQB1*03:02 (n
243 =10), DQB1*03:03 (n = 4), DQB1*04:02 (n = 9), DQB1*06:02 (n = 16), DQB1*06:03 (n = 12), and
244  DQBI1*06:04 (n = 5) were associated to a lower expression with more homogenous distribution. Allele-
245  level expression was different between the allele groups (H = 49.21, p < 0.0001) and the pairwise
246  comparison showed a significant difference (p < 0.05) between allele groups DQB1*03:02 ~

247  DQB1*05:01, DQB1*03:03 ~ DQB1*05:01, DQB1*03:03 ~ DQB1*05:02, DQB1*05:01~ DQB1*06:02,

11
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248  DQB1*05:01~ DQB1*06:03, DQB1*05:01~ DQBI1*06:04, DQBI1*05:02~ DQB1*06:03, and

249  DQB1*05:02~ DQB1*06:04.

250

251 Considering the mean expression value of 365 in HLA-DPBI1 locus, alleles DPB1*01:01 (n = 3),
252 DPBI1*03:01 (n = 14), and DPB1*14:01 (n = 3) were associated with a high expression, whereas alleles
253  DPBI1*02:01 (n = 11), DPB1*04:01 (n = 40), and DPB1*04:02 (n = 19) were associated with lower
254  expression levels (Fig 8F). DPB1*05:01 (n = 4) was not linked to either due to its wide distribution of
255  expression values. Different from the other loci, HLA-DPB1 showed a strinkingly heterogeneous
256  distribution across the vast majority of alleles, excluding only DPB1*01:01, and hence no significant

257  differences were found between different allele groups.

258  Discussion

259 In the present study we demonstrate that it is possible to determine both the HLA alleles and their
260 mRNA levels using RNA sequencing methodology. This type of tool can be applied in various
261  approaches related to autoimmune and transplantation genetics as well as in studies of HLA expression
262  levels in different cells and tissues, for example in the thymus. Despite the increasing evidence that HLA
263  mRNA and surface protein expression differences may influence the immune response and susceptibility
264  to several human diseases, only a few studies have systematically focused on the gene and especially the
265  HLA allele-specific mRNA expression levels. The protein expression studies are certainly hampered by
266  the fact that no allele-specific monoclonal antibodies recognizing all HLA alleles with equal affinity are
267  available. Real-time PCR has been adopted in several studies for determining the expression of HLA
268  alleles , however, the focus has mainly been on HLA class 1.[3-5,10] Given the high number of known
269  HLA alleles, real-time PCR approach requires a combination of allele-specific primers to amplify

270  different alleles of the same locus. Using RNAseq data of 50 individuals, we performed a high-throughput
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271  screen for HLA expression profiles of class I and class II alleles in peripheral blood samples. To our
272 knowledge, no method based on NGS has been reported for systematically quantifying the mRNA

273  expression of HLA alleles.

274 Since genomic ONT data have been shown to be successful in HLA-typing [18,21], we explored
275  the accuracy of ONT RNAseq data in HLA allele calling. The 2D reads from the full-length sequencing
276  of HLA amplicons with MinlON resulted in a good accordance with the Luminex reference methods at
277  the 2-field resolution level, suggesting that HLA typing can be performed from targeted ONT RNAseq
278  data. Our method provided a sufficient read depth for HLA class I and class II alleles to be assigned
279  accurately with SeqNext-HLA. HLA class II genes showed more uniform distribution of read depth
280  across the exons, whereas the coverage of HLA class I exon 1 and the beginning of HLA class I exon 2
281  were systematically lower in our data, independent from allele and gene. This may be due to a lower
282  efficiency of reverse transcription enzyme with longer transcripts or a higher turnover of HLA class I
283  mRNA. Moreover, this might have been the reason for the higher mismatch rate observed in HLA class I
284  alleles since most of the polymorphisms lie in the exon 2 and 3 area. To ensure an adequate mRNA
285  capture efficacy we chose the TSO’s UMI length to be 10 bp which we assumed still to provide sufficient

286  complexity to enable corrections of PCR biases.

287 The comparison of allele ratios calculated from unique UMIs between the three datasets showed
288  that both our targeted Illumina HLA amplicon and non-targeted Illumina cDNA method were able to
289  quantitate the allele-specific expression differences. The same comparison between Illumina and ONT
290  data, however, showed varying correlation values, suggesting that ONT is not yet able for accurate allele-
291  level expression quantification. This is most likely due to the challenges of finding UMIs from the error-
292 prone reads. A missing UMI position results in discarding the read leading to a reduced unique UMI
293 count. Future improvements in the read quality could ease the UMI detection making ONT an option for
294  HLA RNA sequencing. The comparison of Illumina datasets at the gene-level showed that HLA class 11

295  genes, and especially HLA-DR, were expressed at high levels in our targeted HLA amplicon data. This
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296  might be due to different efficacies of the gene-specific primers in the enrichment step or the fact that
297  pooling of gene-specific PCR products was done in equal volumes instead of equal molarities. Even
298  though our pipeline uses UMIs in PCR bias removal and considers only original transcripts, it is not able
299  to correct bias between genes. Because Illumina cDNA method is not based on enrichment, we believe it
300 is more accurate to quantify and compare the expression between genes as no bias is introduced in the
301  library preparation step. Though, since the allele ratios were highly concordant between the two datasets,
302  the targeted approach would be a valuable option for being more cost-effective. However, it still needs

303  optimization in equalizing primer efficiencies and molarities between different HLA genes.

304 Although several HLA-typing tools for RNAseq data exist [23-25], they do not provide
305  expression quantification with UMI counting. By using our custom pipeline we were able to determine
306 HLA mRNA expression levels to the allele level. Our results of HLA class-level expression from ¢cDNA
307  data were concordant with previously reported [43] as HLA class I was expressed at higher levels than
308  class II in all 50 samples. We also detected heterogeneity in the expression levels of HLA genes and
309  heterodimers. Our results confirmed varying expression of HLA genes both within and between
310  individuals. Despite a high interindividual variation, the data showed that HLA-B and HLA-C were
311  equally abundant on transcript level and that they were expressed at higher levels than HLA-A. It is
312 known that at the cell surface HLA-A and HLA-B are expressed at higher levels than HLA-C, however, is
313  not entirely clear why this is. In a previous study low HLA-C protein level resulted from a faster
314  degradation of HLA-C mRNA than HLA-A and HLA-B. [44] However, it is possible that HLA-C
315  mRNA is initially levels similar to HLA-A and -B but post-transcriptional mechanisms such as inefficient
316  assembly with B2-microglobulin affect its protein level expression. [44,45] Moreover, HLA-C mRNA
317  expression can be tissue-dependent. In peripheral blood lymphocytes HLA-C had comparable mRNA

318  levels to HLA-A and -B while in larynx mucosa it was lower.[46]

319 The imbalanced expression between HLA class II loci is in line with previous findings [43] as

320 HLA-DR was confirmed to express at higher levels compared to HLA-DP and HLA-DQ. It is of note that
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321  we analysed the peripheral blood samples without any quantifications of their cellular contents and it is

322 not clear how much variation in immune cell numbers affects the interindividual results.

323 To add one level of complexity we investigated the HLA allele-specific expression. Among our
324 50 samples we found distinct allele-specific expression profiles. This result has many interesting
325  consequences worth further studies. For example, in the current transplantation donor selection only
326  qualitative HLA allele typing is done. However, some previous studies have shown that the allele-level
327  expression of a mismatched donor-recipient pair has an impact to the outcome of HSCT. [8,9] A
328  mismatch between recipient’s high-expression allele and donor’s low-expression allele was found
329  immunogenic and associated with an increased risk of acute GVHD and non-relapse mortality, whereas
330  allotypes expressed at lower levels were not and hence were hypothesized as permissive. [8,9] In addition
331  to the outcome of HSCT [8], differential expression of HLA class I genes or alleles have been associated
332 with HIV control [6,12] and Crohn’s disease [11]. Considering the mean mRNA expression we were able
333 to classify the alleles into high-expression and low-expression alleles. Among HLA-A alleles we found
334  no significant difference between these two groups. However, our results showed that A*68:01 was
335  expressed at higher levels compared to other HLA-A alleles and hence could be considered as
336  immunogenic risk allele in HSCT and HIV control [12]. In contrast low-expression associated alleles
337 such as A*01:01, and A*02:02, A*25:01, A*29:01, and A*29:02 with homogeneous expression
338  distributions could be considered as possible permissive mismatches in HSCT. Our results are partly
339  concordant with a previous study where the authors reported A*29 as an allele with a low expression.[4]
340  However, in our data A*02:01 was associated with a lower mRNA expression demonstrating that the
341  population origin can affect to the allele-specific expression. At HLA-B and HLA-C loci our results
342 confirmed a significant difference in mRNA expression levels between high-expression and low-
343  expression associated alleles indicating strong allele-specific expression. These loci showed more
344  heterogeneous expression distributions within allele groups suggesting that the mRNA expression level is

345  not always allele-bound. Due to the high haplotypic variety among our 50 samples, we did not inspect the
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346  effect of different haplotypes on HLA allele-specific expression. However, both HLA gene and allele
347  level expression have shown to differ between haplotypes [3,47] and hence it is noteworthy that the

348  heterogeneous expression within allele group might result from different haplotypes also in our data.

349 Variation in allele-specific expression of HLA-C has been already reported by a previous
350  study.[3] Since our results are consistent with this data demonstrating C*01:02 and C*07:02 as low-
351 expression associated alleles, and C*03:04 as high-expression allele, we can assume that some alleles are
352 associated to high or low expression across populations, although this need further confirmation. HLA-C
353 alleles, such as C*02:02, C*03:03, C*05:01, and C*06:02, were also linked to high expression levels. The
354  risk allele of psoriasis [48], C*06:02, was observed to express at the highest level. These findings of the
355  allele-specific expression are highly interesting from the perspective of human diseases. High HLA-C
356  expression on cell-surface has already been shown to correlate with improved cytotoxic T lymphocyte
357  response in HIV [6], as well increased risk for Crohn’s disease [11]. Moreover, the expression of HLA-C,
358  which is the dominant ligand for natural killer (NK) cell killer immunoglobulin-like receptors (KIRs),
359  was shown to associate with changes in NK subset distribution and licensing, especially in HLA-C1/C1,
360 KIR2DL3+2DL2 individuals[49]. In addition to the enhanced T cell response, elevated HLA-C
361 expression levels could affect NK cell development as well and result in a more effective respond upon

362 infection.

363 The allele-level expression quantification also revealed differential expression profiles in class 11
364  genes. Despite heterogeneous expression profiles within allele groups, we observed HLA-DRBI1 alleles
365  associating with a high or low mRNA expression supporting the idea of allele-specific expression. The
366  most striking differences in mean mRNA expression between alleles were seen at HLA-DRB3, and HLA-
367 DRBS. In both genes the most frequent allele (DRB3*01:01, and DRB5*01:01) showed highest
368  expression values and was dominated by hemizygous individuals. Since individuals carrying only one
369 DRB3 or DRBS5 allele were also expressed at lower levels, we concluded that there was no bias between

370  hemizygous and heterozygous individuals in our data. However, we could not reliably determine allele-
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371  specific expression of HLA-DRA alleles. This locus turned out to be problematic for our pipeline as we
372  observed a clear bias in unique UMI counts between heterozygous and homozygous individuals. We
373  suspect that our pipeline could not quantify the allele-specific number of unique UMIs from Illumina
374  short reads with the low number of polymorphic positions between HLA-DRA alleles. This is something

375  we need to investigate further.

376 Our data showed a low allelic diversity at HLA-DPA1 with the majority of individuals carrying
377  DPA1*01:03 which was a high-expression allele. DPA1*01:03 together with DPB1*04:02 has been
378  reported as the most protective heterodimer from narcolepsy.[50] Considering the mean mRNA
379  expression of HLA-DPBI1 locus we found our results to be concordant with a previous study [9]
380  associating alleles DPB1*01:01, DPB1*03:01, DPB1*14:01, and DPB1*15:02 to higher expression levels
381 and alleles DPB1*04:01, and DPB1*04:02 to lower expression levels. However, it is notable that
382  expression distributions at this locus varied greatly within several allele groups indicating that assigning
383  alleles as high or low-expression linked is not straightforward. Interestingly, at HLA-DQBI1 alleles
384  DQB1*05:01 and DQB1*05:02 were expressed at clearly higher levels than the other HLA-DQBI1 alleles.
385 DRBI1*01:01~DQB1*05:01 haplotype was recently shown to be significantly protective for MS. [51]
386  Moreover, DQB1*05:01 has been identified earlier as protective allele from narcolepsy [52,53] indicating
387  that the high expression we see in our data would be beneficial at the population level. In contrast, the
388  narcolepsy risk allele, DQB1*06:02 [54] and celiac disease risk alleles, DQA1*05:01, DQB1*02:01,

389  DQA1*02:01, DQB1*02:02, HLA-DQA1*03, and DQB1*03:02 [55] were expressed at low levels.

390 Using RNAseq approach we have provided a new insight into the complexity of HLA allele-level
391  expression. With increasing information of different factors affecting to the outcome of HSCT, it might
392  be challenging to find a donor with suitable criteria and thus, make the donor selection more complicated.
393  Therefore, our aim is to propose a tool to explore the differential HLA allele expression that in the future
394  might ease the finding of possible permissive mismatches and help to avoid high-risk transplantations

395  making HSCTs safer when no matched donor is available. Since several research and clinical HLA
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396  laboratories have already adopted NGS in HLA typing, the leap from DNA sequencing to RNAseq
397  enabling both the HLA typing and expression quantification could be possible in the future changing the

398  nature of HLA research from qualitative to quantitative.

399  Materials and methods

400  Samples and RNA extraction

401 This study collected 50 healthy blood donor buffy coat samples, which underwent an isolation of
402  pheripheral blood mononuclear cells (PBMC) using Ficoll-Paque™ Plus (GE Healthcare), Dulbecco's
403  Phosphate Buffered Saline DPBS CTS™ (Gibco life technologies), Fetal Bovine Serum FBS (Sigma) and
404  SepMate™-50 tubes following the manufacturer’s protocol (Stemcell Technologies). The use of
405  anonymized PBMCs from blood donors is in accordance with the rules of the Finnish Supervisory
406  Authority for Welfare and Health (Valvira). Cell count was measured from a mix of 50 pl of cell
407  suspension in DPBS with 2% FBS, 50 ul of Reagent A100 lysis buffer, and 50 pl of Reagent B stabilizing
408  buffer using a NucleoCassette and a NucleoCounter® NC-100™ (all chemometec). Total RNA was
409  isolated from fresh PBMC samples containing 1-10 x10° cells using RNeasy Mini kit and Rnase-Free
410  DNAse Set (both Qiagen) within two hours after PBMC isolation. RNA samples were quantified and the
411  purity was assessed with the Qubit™ RNA High Sensitivity Assay Kit in Qubit® 2.0 fluorometer
412 (ThermoScientific). The RNA quality was checked using an RNA 6000 Pico Kit (Agilent Genomics) in a

413 2100 Bioanalyzer (Agilent Genomics) to obtain a RNA Integrity Number (RIN) score.

414  Reverse transcription by template switching and target amplification

415 We used an adaptation of the STRT method to generate full length cDNA molecules from RNA
416  transcripts.[31] Briefly, the poly-A hybridization to the first strand cDNA synthesis primer was performed
417  in a 96-well plate in a T100™ Thermal Cycler (Biorad) with 3 min at 72°C with 25 ng of RNA, 1%

418  Triton™ X-100 (Sigma), 20 uM of STRT-V3-T30-VN oligo, 100 uM of DTT (invitrogen, life
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419  technologies, Thermo Fisher), 10 mM dNTP (Bioline), 4 U of Recombinant RNase Inhibitor (Takara
420  Clontech), 1:1000 The Ambion® ERCC RNA Spike-In Control Mix (life technologies, Thermo Fisher) in
421  a total volume of 3 pul. All oligos were from Integrated DNA Technologies and are listed in S1 Table.
422  Reverse transcription of the whole transcriptome was performed adding 3.7 pl of the RT mix containing
423 5x SuperScript first strand buffer (invitrogen by Thermo Fisher Scientific), 1 M MgCl, (Sigma), 5 M
424  Betaine solution (Sigma), 134 U of SuperScript ® II Reverse Transcriptase (invitrogen by Thermo Fisher
425  Scientific), 40 uM RNA-TSO 10bp UMI, 5.6 U of Recombinant RNase Inhibitor immediately to each
426  reaction. To complete the reverse transcription and the template switching the plate was incubated 90 min
427  at 42°C followed by 10 min at 72°C. In this reaction every transcript receives a unique distinct barcode.
428  After RT the cDNA was further amplified with 2x KAPA HiFi HotStart ReadyMix (Kapa Biosystems),
429 10 uM ImSTRT-TSO-PCR with a thermal profile consisted of an initial denaturation of 3 min at 95°C
430  followed by 20 cycles of 20 s at 95°C, 15 s 55°C, 30 s at 72 and 1 cycle of final elongation of 1 min at
431  72°C in a final volume of 50 pl. Qubit™ dsDNA High Sensitivity Assay Kit (Thermo Fisher Scientific)
432  was used to measure the concentration of all cDNA samples. The 3’ fragments of the cDNA were
433  released in a restriction reaction using Sall-HH (New England Biolabs) according to the manufacturer’s
434  protocol. The concentration of DNA was measured using Qubit™ dsDNA High Sensitivity Assay Kit and
435 DNA integrity and the size distribution were assessed with High Sensitivity DNA Kit (Agilent
436  Genomics). For HLA target enrichment one TSO-specific universal forward primer and eight gene-
437  specific reverse primers with universal tails for amplicon sequencing were used to amplify exons 1 to 8 in
438 class I genes HLA-A, -B, -C and -G or exons 1 to 5 in class II genes HLA-DRA, -DRBI1, -DRB3, -DRB4,
439 -DRBS, -DPAL, -DPBI1, -DQA1 and -DQB1. HLA-A, -B and -C had one common primers as well as -
440  DRBI, -DRB3, -DRB4 and -DRBS. All seven gene-specific primers were designed to fall within a non-
441  polymorphic region using the known sequence diversity, as described in the international
442  ImMunoGeneTics IMGT/HLA database (http://www.ebi.ac.uk/imgt/hla/). The amplification was
443  performed in 96-well plates with 3 pl of template cDNA, 10x Advantage 2 PCR buffer, 50x Advantage®

444 2 Polymerase Mix (Takara, Clontech), 10 mM dNTP (Bioline), 10 uM TSO forward primer and one of
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445  the seven HLA gene-specific reverse primers in a total volume of 15 pl. The PCR reaction consisted of an
446  initial denaturation of 30 s at 98 °C following 3 cycles of 10 s at 98°C, 30 s at 55°C, 30 s at 72°C and 27
447  cycles of 10 s at 98°C, 30 s at 71°C, 30 s at 72°C and final elongation of 5 min at 72°C. To confirm the
448  amplicon lengths and non-specific amplification 4 samples were selected from each plate with the
449  amplification performed using different gene-specific primer. These samples were run on a 2% agarose
450  gel (Bioline) with 10x BlueJuice™ loading dye (invitrogen by Thermo Fisher Scientific) in 0.5X TBE
451  (Thermo Fisher Scientific) with the GelGreen™ (Biotium) and visualized using the Quick-Load 1kb
452  DNA Ladder (New England Biolabs). DNA of the PCR amplicons was quantified with the Qubit™
453  dsDNA High Sensitivity Assay Kit and the fragment sizes analyzed with Agilent’s High Sensitivity DNA

454  Kit.

455 HLA amplicons were pooled into two groups per sample by dividing genes that share the
456 closest homology to different pools. The first pool contained genes HLA-A, -B, -C, -DRB1, -DRB3, -
457  DRBA4, -DRBS and -DPB1 (henceforth gene pool 1) and the second HLA-DRA, -DPA1, -DQA1, -DQBI
458  and -G (henceforth gene pool 2). In the pooling 5 pl of PCR product was used from each PCR plate
459  resulting in a final volume of 15 pul and 25 pl in gene pools 1 and 2, respectively. A purification and size
460  selection of the pools were performed in a 0.7X beads:DNA ratio by using the Agencourt AMPure XP
461  beads (Beckman coulter) according the manufacturer’s protocol and eluted in 15 pl of nuclease-free
462  water. DNA of all 100 pools was quantified with the Qubit™ dsDNA High Sensitivity Assay Kit. The
463  average fragment size distribution of gene pools 1 and 2 was assessed with Agilent’s High Sensitivity
464  DNA Kit from 10 samples of both pools. The molarity of each pool was then calculated using the DNA

465  concentration (ng/ ul) and the average fragment length (bp).

466  ONT library preparation and sequencing

467 ONT sequencing compatible barcoded fragments were prepared in a PCR reaction 0.5 nM of

468  DNA from gene pools, 2 pl of PCR barcode from the 96 PCR Barcoding Kit (ONT), 50 ul of LongAmp
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469  Taq 2x Mix (New England Biolabs) and Nuclease-Free water in a final volume of 100 pl where ONT’s
470  universal tails were used as a template for barcode introducing primers. The PCR was performed in the
471  following conditions; initial denaturation of 3 min at 95°C, following 15 cycles of 15 s at 95°C, 15 s at
472  62°C, 30 s at 65°C and a final extension step 3 min at 65°C. A second DNA purification and size
473  selection was done in a 1X beads:DNA ratio by using the Agencourt AMPure XP beads according to the
474  manufacturer’s instructions and eluted in 20 pl of nuclease-free water. After the purification DNA was
475  quantified with the Qubit™ dsDNA High Sensitivity Assay Kit and barcoded PCR amplicons were
476  pooled with equal molarities in 10 library pools in a total volume of 50 pl each consisting of 10
477  individuals and either 8 loci (gene pool 1) or 5 loci (gene pool 2). 1 pug of pooled barcoded PCR products
478  were treated with the NEBNext Ultra I End-repair / dA-tailing Module (New England Biolabs) according
479  a Ligation Sequencing Kit 2D (SQK-LSK208) protocol (ONT) using a DNA CS 3.6kb (ONT) as a
480  positive control. A third DNA purification was performed using 1X beads:DNA ratio by using the
481  Agencourt AMPure XP beads following the Ligation Sequencing Kit 2D protocol. ONT sequencing
482  adapters were ligated using NEB Blunt / TA Ligase Master Mix (New England Biolabs) and Adapter Mix
483  and HP Adaptor provided by ONT following a purification step using MyOne C1 Streptavidin beads
484  (invitrogen by Thermo Fisher Scientific) according to the Ligation Sequencing Kit 2D protocol to capture
485  HP adaptor containing molecules. The libraries were eluted in 25 ul of elution buffer and mixed with
486  running buffer and library loading beads (ONT) prior to sequencing. All 10 libraries were sequenced for
487 48 hours on R9.4 SpotON flow cells (FLO-MIN106) on MinlON Mk 1b device using the MinKNOW

488  software (versions 1.1.21, 1.3.24, 1.3.25 and 1.1.30).

489  Illumina library preparation and sequencing

490 For Illumina sequencing, all loci of 50 HLA amplicons were multiplexed per sample. 50 cDNA
491  and 50 HLA amplicon libraries were prepared using the Nextera XT DNA Library Preparation Kit
492  (Illumina). For an optimal insert size and a library concentration 600 pg of each cDNA and PCR

493  amplicon sample was tagmented for 5 min at 55°C using 5 pl of Nextera’s Tagment DNA Buffer, 0.25 pl
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494  of Nextera’s Amplicon Tagment Mix in a final volume of 10 pl. The transposone was inactivated with 2.5
495  pl of Nextera’s Neutralize Tagment Buffer for 5 min at room temperature. The dual indexing and adapter
496  ligation took place in a PCR reaction with 7.5 pl of Nextera PCR Master Mix, 4 pl of nuclease-free water
497  and 10 uM of i5 custom oligo and 10 uM of Nextera i7 N7XX oligo using a limited-cycle PCR program:
498  an initial denaturation 30 s at 95°C following 12 cycles of 10 s at 95°C, 30 s at 55°C, 30s at 72°C with a
499  final elongation step of 5 min at 72°C. After the amplification all 50 cDNA and HLA amplicons samples
500  were pooled together into two separate pools, one cDNA and one HLA amplicon pool. These two pools
501  were then purified twice using the Agencourt AMPure XP beads according to the manufacturer’s
502  instructions first with 0.6X beads:DNA ratio and then with 1X beads:DNA ratio and eluted in 30 pl.
503  Qubit™ dsDNA High Sensitivity Assay Kit was used to quantify DNA and HT DNA HiSens Reagent kit
504  and DNA Extended Range LabChip in LabChip GXII Touch HT (all PerkinElmer) to assess the size
505  distribution of the libraries. A double size selection was performed with the Agencourt AMPure XP beads
506  according to the manufacturer’s instructions to remove fragments over 1000 bp (0.8X beads:DNA ratio)
507  and under 300 bp (0.6X beads:DNA ratio). Prior to sequencing the DNA concentration was assessed with
508  Qubit™ dsDNA High Sensitivity Assay Kit HT DNA HiSens Reagent kit and the library size verified
509  with HT DNA HiSens Reagent kit. The two pooled and barcoded libraries were denaturated with 0.2 M
510 NaOH and diluted in the HT1 buffer to obtain a final library concentration of 20 pM in 0.95:0.05
511  cDNA:HLA amplicon ratio. The libraries were sequenced by using MiSeq and Nextseq sequencers with
512 600 cycles (Miseq v3) and 300 cycles (NextSeq 500/550 v2) kits (both Illumina) generating 300 bp and

513 150 bp pair-end sequence reads.

514  Data analysis

515 ONT reads were processed using the 2D Basecalling plus barcoding for FLO-MIN106 250
516  bps workflow (version v1.125) on the cloud-based Metrichor platform (v2.45.5, v2.44.1, ONT)

517  generating 1D template, 1D complement and 2D reads. The fastq files were extracted from the native
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518  fast5 files using NanoOK [32]. Illumina paired-end reads from cDNA and HLA amplicon libraries in
519  fastq format underwent a UMI extraction using the UMI-tools (v0.5.11) [33] and were quality trimmed
520  using trimmomatic (v0.35). HLA typing was done from ONT reads using SeqNext-HLA SeqPilot
521 software (v.4.3.1, JSI Medical Systems) and [llumina Miseq reads using three different typing softwares:
522 Omixon Explore (v1.2.0, Omixon), HLAProfiler [2], and an in-house HLA-typing tool (S1 Text). After
523  this Miseq and Nextseq data were combined. Processed cDNA library reads were aligned using HISAT2
524 (v2.1.0) [34] to the human genome (GRCh38) and assigned to genes according to the UMI-tools pipeline
525  using featureCounts tool from the subread package (v1.5.3) [35]. Samtools (v1.4) were used to sort and
526  index BAM files and UMI-tools count tool to count the number of unique UMIs per gene. The set of 50
527  count files were then merged into a single count table using the Define NGS experiment tool in Chipster

528 (v3.12.2) [36].

529 By using the allele types determined for each HLA gene, the reads of each sample were further
530  processed to estimate their expression levels. The HLA genes are highly polymorphic, with more than
531 18,000 HLA alleles documented in the version 3.28.0 of IMGT/HLA reference database upon writing
532 [37]. Despite the critical differences, the HLA gene sequences are highly similar resulting in very high
533  multi-mapping of the reads. Thus, we implemented the strategy of assessing allele-specific expression by
534  aligning reads, using last [38] only to selected reference sequences extracted from the IMGT/HLA HLA

535 reference database.

536 For each HLA gene, all reads of a sample were aligned to a database containing only the
537  reference sequences of the two identified alleles for the gene. For ONT reads, last was used with
538  parameters -s 2 -T 0 -1 100 -a 100 -Q 1 for alignment of the template, complement and 2D reads. For
539  Illumina reads, last with parameters -s 2 -T 0 -1 50 -a 100 -Q 1 -il was used for alignment of R1 reads
540  only, R2 reads only, and paired end alignment (using last-pair-probs). The three Illumina read alignments
541  were combined to include all reads that possibly originated from the two alleles. This alignment step

542  filtered out reads that do not map to the two known alleles for the gene. The set of reads that aligned to
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543 the two references of the known alleles were retained, and their aligned portions along with their base
544  qualities were extracted from the last MAF file format alignment output. To assign each read to either
545  allele, (i) the polymorphic positions between the two reference sequences of the known alleles are
546  identified by first performing multiple alignment of the two sequences (using msa R package) [39], and
547  then getting the positions with high diversity (Shannon entropy index > 0.5) from the consensus matrix of
548  the two sequences (generated using Biostrings v2.46.0 and ShortRead R packages) [40,41], (ii) the
549  corresponding bases at the polymorphic positions are identified for the two reference sequences, (iii)
550  reads from the set of retained reads that aligned only to either of the reference alleles, covering at least
551  30% of the polymorphic sites with at least 60% accuracy are kept (60% or more accurate matching at the
552 polymorphic sites for the allele) and recorded as belonging to each allele; for reads from the set of
553  retained reads that aligned to both alleles, their aligned portions are re-aligned separately to each
554  reference allele sequence using overlap alignment (pairwiseAlignment function of Biostrings R package),
555  then Bayesian statistical model is used to assign each read to either allele as follows: the read’s likelihood
556  of originating from each of the two reference alleles is calculated based on how well the read matches the
557  corresponding bases of the reference allele at the polymorphic positions, the likelihood is calculated as the
558  sum of matches at the polymorphic positions given a reference allele (for a matching position, the match
559  is quantified as the read base quality/maximum possible base quality, which is at maximum 1 for high
560  quality bases in the read that match the reference allele base) divided by the number of polymorphic
561  positions, a likelihood close to 1 suggests strong match between the read and the reference allele, the
562  likelihoods of the read to the two reference alleles is calculated, the posterior probability for the two
563  reference alleles given the read is then calculated by normalizing each likelihood by the sum of all
564  likelihoods, the read is assigned to the reference allele with the higher posterior probability. Reads that
565  cover less than 60% of the polymorphic sites between the two alleles are discarded. The remaining reads
566  that are assigned to either allele are then combined with the previously recorded reads belonging to each
567  allele from the previous step; for homozygous HLA genes, reads aligning to just one of the allele

568  reference sequence that cover at least 30% of the polymorphic sites with at least 60% accuracy are kept,
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569  and (iv) to estimate allele-specific expression, all UMIs are extracted from the reads that belong to each
570  allele. For Illumina reads, the UMIs are extracted from the read names. For ONT reads, the position of the
571  TSO sequence is first pattern searched in the reads (using vcountPattern function of R Biostrings
572 package), the 10 bases following the 3bp GGG at the end of the TSO sequence in the reads is extracted as
573  the UMIs. Once all UMIs are collected for the reads belonging to an allele, UMIs are deduplicated by
574  counting all UMIs within 1 Levenshtein distance (LD) only once. The total number UMIs after

575  deduplication represent the expression of an allele.

576 After HLA expression quantification Illumina cDNA and HLA amplicon reads were normalized
577  in three parts. First, HLA gene-specific counts resulting from the alignment of cDNA reads to the human
578  genome were removed and replaced in the merged count table with HLA allele-specific UMI counts
579  derived from cDNA reads after the custom pipeline. Second, read counts were normalized to counts per
580  million (CPM) using the cpm tool from the limma package (v3.30.13)[42]. Third, number of unique
581  UMIs of each allele in Illumina HLA amplicon libraries was normalized by calculating unique UMI
582  proportions between alleles out of the total number of unique UMIs per sample. For each individual these
583  proportions were then multiplied by the total number of CPM-normalized unique UMIs of all HLA alleles
584  in cDNA library. To study the relationship between the class II transactivator (CIITA) and HLA class II

585  expression, unique UMIs per CIITA were extracted from CPM-normalized cDNA data.

586  Statistical Analyses

587  All statistical analyses were performed using non-parametric methods with GraphPad Prism v7.03
588  (GraphPad Software). The Spearman’s rank correlation and linear regression with 95% confidence
589  intervals were applied in the comparison of allelic ratios between the datasets, and in the expression
590  comparison of HLA class II and CIITA. Expression differences of heterodimer groups (HLA-A, -B, -C, -
591 DR, -DQ, -DP) and HLA allele-specific expression (allele groups with n > 3) were analyzed using the

592  non-parametric Kruskal-Wallis test followed by the pairwise Dunn’s multiple comparisons test. For HLA
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593  class-level and gender-level comparisons pairwise analyses were performed using the Mann-Whitney U

594  test. In all tests p-values < 0.05 were considered significant.
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Fig 1. Illumina ¢cDNA and Illumina amplicon datasets show a high correlation in allelic mRNA
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769  The allele expression ratio was calculated for each allele pair in the two datasets and a non-parametric
770  Spearman’s rank correlation was used to compare the allele-level expression between cDNA and
771  amplicon data. Each dot represents a ratio value of heterozygous allele pairs. Homozygous allele pairs
772  receive a ratio value of 1 which is plotted twice, once for each dataset. The line indicates the linear
773  regression and dashed lines the 95 % confidence intervals. The Spearman correlation coefficient is given
774  for all genes (A), HLA class I (B), HLA class II (C), and for genes HLA-A (D), HLA-B (E), HLA-C (F),
775  HLA-DRB1 (G), HLA-DQA1 (H), HLA-DQB1 (I), HLA-DPA1 (J), and HLA-DPBI1 (K). The
776 comparison between loci DRA, DRB3, DRB4, and DRBS is not shown due to a low number of data
777  points.

778

779  Fig 2. A Spearman’s rank correlation of the allele expression ratio between ONT and amplicon
780  data shows weak to strong correlation.

781  Correlations of allelic mRNA expression are given as expression ratios for each heterozygous allele pair
782  which each dot represents in the scatter plot. Homozygous allele pairs receive a ratio value of 1 which is
783  plotted twice, once for each dataset. The line indicates the linear regression and dashed lines the 95 %
784  confidence intervals. The Spearman correlation coefficient is shown for all genes (A), HLA class I (B),
785  HLA class II (C), and for genes HLA-A (D), HLA-B (E), HLA-C (F), HLA-DRBI1 (G), HLA-DQA1 (H),
786  HLA-DQBI (I), HLA-DPAI (J), and HLA-DPBI (K).

787

788  Fig 3. Correlation comparison of allelic HLA mRNA expression between Illumina cDNA and ONT
789  amplicon datasets.

790  Scatter plots showing the Spearman’s rank correlation and a linear regression of allele expression ratio
791  between ONT and Illumina cDNA data. Dots represent a ratio value of heterozygous allele pairs.
792  Homozygous allele pairs receive a ratio value of 1 which is plotted twice, once for each dataset. The
793  dashed lines indicate the 95 % confidence intervals. The Spearman correlation coefficient is shown for all
794  genes (A), HLA class I (B), HLA class II (C), and for genes HLA-A (D), HLA-B (E), HLA-C (F), HLA-
795  DRBI (G), HLA-DQA1 (H), HLA-DQBI1 (I), HLA-DPAT1 (J), and HLA-DPBI1 (K).

796

797  Fig 4. Hierarchial clustering and heatmap of gene expression levels of 12 HLA loci in the Illumina
798  c¢DNA and HLA amplicon datasets.

799  (A) The gene-specific comparison of Illumina cDNA data and (B) Illumina HLA amplicon data. The
800  represented gene expression is the sum of unique UMIs from the two alleles (homozygous and
801  heterozygous individuals) or the unique UMI count of on allele (hemizygous individuals) in HLA-DRB3,
802  -DRB4, and -DRBS5. The columns represent 50 individuals and the rows different HLA genes. Expression
803  levels are colored with yellow for high expression and red for low expression. The blue color indicates
804  missing expression values for a given gene.

805

806  Fig 5. The expression of HLA class I and class II genes.

807  (A) The mRNA expression at a heterodimer level was calculated from the allele-level unique UMIs for all
808 50 individuals. For class I genes the gene-specific expression corresponds to the sum of two alleles for a
809  given gene. For HLA-DPA1/B1 and HLA-DQA1/B1 the expression value was calculated using the sum
810  of unique UMIs from both a- and B-chain alleles (4 alleles). The expression of HLA-DR depends from
811  the individual’s haplotype and was either calculated from the allele-level unique UMIs of HLA-DRA and
812  HLA-DRBI (4 alleles), or from the combination of these two and genes DRB3, DRB4, and DRBS. (B)
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813  For class-level expression comparison allele-level unique UMIs were calculated together class-wise for
814  each individual. Each dot represents the expression value of one individual per group. Wide horizontal
815  lines correspond to the mean expression and short horizontal lines for standard deviation for each group.
816 A Kruskal-Wallis test was performed to compare the expression difference between HLA-A, -B, -C, -DR,
817  -DP, and -DQ and Mann-Whitney U test to compare the expression between HLA class I and class II. *p-
818  value <0.05; **p-value < 0.005; ***p-value < 0.0001.

819

820  Fig 6. The mRNA expression distribution of 12 HLA genes across 50 individuals.

821  The relative expression of each HLA gene was calculated from the number of unique UMIs (Illumina’s
822  c¢DNA dataset) of two alleles (homozygous and heterozygous samples) or one allele (hemizygous
823  samples) out of the total unique UMI number per individual. Different colors show the distribution of 12
824  HLA genes within individuals.

825

826  Fig 7. Allele-specific expression of HLA class I genes

827  Allele-level unique UMIs representing the allelic mRNA expression values of 50 individuals were first
828  normalized and then grouped and plotted according to different alleles in Illumina cDNA data. Mean
829  expression of individual alleles is indicated by a solid bar and mean expression of all alleles is represented
830 by the dotted line. Open circles correspond to homozygous individuals. All class I genes; (A) HLA-A
831 alleles (n = 12), (B) HLA-B alleles (n = 25), (C) HLA-C alleles (n = 14) show differential mRNA
832  expression levels between and within allele group.

833

834  Fig 8. Allele-specific expression of HLA class II genes

835  Differential allele-specific expression profiles of 50 individuals are represented for each gene (A) HLA-
836  DRB3 (n=4), HLA-DRB4 (n = 1), HLA-DRBS5 (n = 3), (B) HLA-DRBI1 (n = 18), (C) HLA-DQA1 (n =
837 11), (D) HLA-DQBI (n = 12), (E) HLA-DPAI (n = 4), (F) HLA-DPBI (n = 10). Each dot refers to a
838  unique UMI value which are plotted according to alleles. The horizontal black bars indicate the mean
839  expression of individual alleles and the dotted line corresponds to mean expression of all alleles. Open
840  circles correspond to homozygous individuals and black triangles to hemizygous individuals (DRB3,
841  DRB4, and DRBS5).

842

843 S1 Table. Primer sequences.
844

845  S1 Text. HLA genotyping.
846

847  S1 Fig. Experimental design of Illumina and ONT platform.

848  In the library preparation process of Illumina and ONT mRNA is first transcribed into cDNA with
849  simultaneous integration of 10 bp UMI in rmaTSO and further amplified. The full length cDNA is then
850  divided and processed in parallel in Illumina’s and ONT’s protocol both involving an enrichment of HLA
851  genes and adding sample-specific barcodes for multiplexing. In I[llumina’s protocol both full length
852  c¢DNA and HLA amplicons are tagmented resulting in 5” end library molecules.

853

854  S2 Fig. Comparison of the number of raw reads between Illumina and ONT MinlON datasets
855  according to 50 individuals.
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856  White bars correspond to Illumina cDNA reads, grey bars to Illumina HLA amplicon reads, and black
857  bars to barcoded ONT reads. The ONT sequencing of gene pools 1 and 2 on SpotON flow cells with the
858  R9.4 chemistry generated 22,487 to 193,467 barcoded reads per sample. Illumina sequencing of the
859  tagmented cDNA and HLA amplicons on MiSeq and Nextseq in total generated 497,134 to 6,649,598,
860  and 36,638 to 169,116 reads per sample, respectively.

861

862  S3 Fig. HLA typing accuracy of ONT dataset and concordance with Luminex.

863  (A-B) The concordance rates of SeqNext-HLA typing results from ONT and Illumina datasets and at 1-
864  field and 2-field resolution level. Alleles assigned by SeqNext-HLA were 100% concordant at 1-field
865  level with alleles assigned by Luminex. At 2-field level the allele assigned by SeqNext-HLA was
866  considered concordant if it was found in the list of alleles by Luminex technology. HLA-DRBI, -DRB3, -
867  DRBS5 and -DPB1 were 100% concordant with Luminex and with HLA-A, -B, -C, -DRB4, -DQAI, -
868  DQBI and -DPAI the concordance rate was between 94% and 99%. No reads were assigned to the HLA-
869 G gene. (C) Gene-specific distribution of mismatches between the allele assigned by SeqNext-HLA and
870  the closest reference allele. (D-E) The concordance rates of ensemble typing results and Luminex HLA
871  typing at 1-field and 2-field resolution level. At 1-field level all loci but HLA-DQB1 were over 90%
872 concordant with the reference alleles. At 2-field the concordance rate for HLA-A, -B, and -C was 95%,
873 87%, and 86%. In class II the concordance rate varied from 71 to 99%. With Illumina data, in case of an
874  expression difference within a heterozygous allele pair, the second allele was sometimes missed and the
875  genotype was falsely assigned as homozygous.

876

877

878  S4 Fig. The proportion of total and class-level HLA expression of the whole transcriptome
879  expression according to 50 individuals.

880  (A) Total HLA expression was calculated from normalized unique UMI counts of all HLA genes per
881  individual and dividing this sum by the total number of normalized unique UMIs of the whole
882  transcriptome. The percentages of HLA class I (B) and HLA class II (C) were calculated in a similar
883  manner.

884

885 S5 Fig. The comparison of HLA class I allele-specific expression values between Illumina amplicon
886  and Illumina cDNA data.

887  The expression profiles showing the normalized allele-level unique UMI counts of HLA class I genes (A—
888  B) HLA-A, (C-D) HLA-B, (E-F) HLA-C in Illumina amplicon and cDNA data according to the 50
889  individuals. Mean expression of individual alleles is indicated by a solid bar and mean expression of all
890 alleles is represented by the dotted line. Open circles correspond to homozygous individuals.

891  S6 Fig. The comparison of HLA class II allele-specific expression values between Illumina amplicon
892  and Illumina cDNA data.

893  The expression profiles showing the normalized allele-level unique UMI counts of HLA class II genes
894  (A-B) HLA-DRBI, (C-D) HLA-DRB3, HLA-DRB4, HLA-DRB5, (E-F) HLA-DPA1, (G-H) HLA-
895  DPBI, (I-J) HLA-DQAI1, (K-L) HLA-DQBI1 of 50 individuals according to alleles. Mean expression of
896  individual alleles is indicated by a solid bar and mean expression of all alleles is represented by the dotted
897  line. Open circles correspond to homozygous individuals and black triangles to hemizygous individuals.
898

899  S2 Table. UMIs from Illumina cDNA data.
900
901 S3 Table. UMIs from Illumina amplicon data.
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902
903  S4 Table. UMIs from Nanopore data.
904

905
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