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17 Abstract

18 The HLA gene complex is the most important, single genetic factor in susceptibility to most 

19 diseases with autoimmune or autoinflammatory origin and in transplantation matching. The majority of 

20 the studies have focused on the huge allelic variation in these genes; only a few studies have explored 

21 differences in expression levels of HLA alleles. To study the expression levels of HLA alleles more 

22 systematically we utilised two different RNA sequencing methods. Illumina RNAseq has a high 

23 sequencing accuracy and depth but is limited by the short read length, whereas Oxford Nanopore’s 

24 technology can sequence long templates, but has a poor accuracy.  We studied allelic mRNA levels of 

25 HLA class I and II alleles from peripheral blood samples of 50 healthy individuals. The results 

26 demonstrate large differences in mRNA expression levels between HLA alleles.  The method can be 

27 applied to quantitate the expression differences of HLA alleles in various tissues and to evaluate the role 

28 of this type of variation in transplantation matching and susceptibility to autoimmune diseases.

29
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30 Author Summary
31

32 Even though HLA is widely studied less is known of its allele-specific expression. Due to the pivotal role 

33 of HLA in infection response, autoimmunity, and transplantation biology its expression surely must play 

34 a part as well. In hematopoietic stem cell transplantation the challenge often is to find a suitable HLA-

35 matched donor due to the high allelic variation. Classical HLA typing methods do not take into account 

36 HLA allele-specific expression. However, differential allelic expression levels could be crucial in finding 

37 permissive mismatches in order to save a patient’s life. Additionally, differential HLA expression levels 

38 can lead into beneficial impact in viral clearance but also undesirable effects in autoimmune diseases. To 

39 study HLA expression we developed a novel RNAseq-based method to systematically characterize allele-

40 specific expression levels of classical HLA genes. We tested our method in a set of 50 healthy individuals 

41 and found differential expression levels between HLA alleles as well as interindividual variability at the 

42 gene level. Since NGS is already well adopted in HLA research the next step could be to determine HLA 

43 allele-specific expression in addition to HLA allelic variation and HLA-disease association studies in 

44 various cells, tissues, and diseases.

45 Introduction

46 The highly polymorphic human leukocyte antigens (HLA) are crucial in presentation of self, non-

47 self and tumor antigens to T cells, and play a crucial part in autoimmunity and infection responses, as well 

48 as in organ and hematopoietic stem cell transplantation (HSCT). In the thymus and bone marrow the HLA 

49 molecules presenting self-derived peptides to maturing T- and B-cells induce the central tolerance. The 

50 classical HLA genes are divided into two classes. HLA class I genes including HLA-A, HLA-B, and 

51 HLA-C are expressed on the surface of all nucleated cells, whereas the expression of class II genes; HLA-

52 DR, HLA-DQ, and HLA-DP is restricted to professional antigen presenting cells.[1,2] Recently a few 

53 studies reported varying expression levels of HLA alleles based on the real-time polymerase chain 
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54 reaction (PCR) and the mean fluorescence intensity (MFI).[3–10] The differential expression of HLA 

55 alleles has been associated with immunologically  mediated diseases, such as Crohn’s disease [11] and 

56 HIV [6,12], follicular lymphoma[7], and the outcome of HSCT through the risk of graft versus host 

57 disease (GvHD)[8,9]. In fact, incompatibilities between the donor and the recipient in HSCT have made 

58 the expression differences of HLA molecules an interesting target for finding permissive mismatches. 

59 Although currently only the qualitative HLA typing is considered in donor selection, RNAseq-based 

60 techniques can be used to determine differences in HLA expression that may influence the outcome of 

61 transplantation. The differences may also be related to the susceptibility to autoimmune diseases, tumor 

62 invasion and infections. 

63 NGS has enabled a rapid development of several novel high-throughput HLA typing methods 

64 using different sequencing platforms.[13–22] Unlike genomic DNA based applications RNA sequencing 

65 provides a comprehensive gene expression information in addition to HLA allele calling. Precise 

66 identification of HLA alleles from NGS data is challenging due to the high polymorphism and 

67 homologous nature of HLA genes leading often to ambiguous typing results. Several existing tools, such 

68 as seq2HLA[23], HLAforest[24], and HLAProfiler[25], have been developed to perform HLA typing 

69 from short RNA sequencing reads using the whole transcriptome data. Even though these tools enable 

70 accurate and comprehensive allele determination, they only accept data with a very low error rate and are 

71 designed merely for short-read Illumina data. Owing to the complex nature of HLA genes and consequent 

72 challenges in allele assignment, ONT’s single-molecule sequencing technology has been of great interest 

73 due to its fitness for sequencing long reads.[26–28] 

74 Here we describe a highly multiplexed RNA-based HLA sequencing method that is based on the 

75 Illumina and ONT platforms. For an accurate, high throughput quantification of the expression levels of 

76 HLA genes and alleles we developed an informatics pipeline, written in R, based on counting of unique 

77 molecular identifiers (UMI)[29,30] which work as molecular barcodes in distinguishing original 

78 transcripts from PCR copies. 
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79 Results

80 We tested two different sequencing platforms, ONT and Illumina to determine HLA gene- and 

81 allele-specific expression. For this we developed a targeted ONT-based RNAseq protocol for 13 HLA 

82 genes and compared it with our Illumina-based RNAseq approach (S1 Fig). Our dataset involved RNA 

83 samples from peripheral blood of 50 healthy individuals and it consisted of 50 different HLA class I 

84 alleles and 61 different HLA class II alleles (at 2-field level) with loci HLA-B, -C and -DRB1 showing 

85 the highest heterozygosity rates of 94%, 92% and 90% respectively. The heterozygosity rate of HLA-A, -

86 DQA1, -DQB1, -DPA1 and -DPB1 were 62%, 84%, 88%, 78%, respectively. Lower heterozygosity rates 

87 were observed with loci HLA-DPA1 (22%) and -DRA (16%). The heterozygosity rates of DRB5, and -

88 DRB3, were 5%, and 3%, whereas all -DRB4 alleles were either homozygous or hemizygous.

89

90 Comparison of HLA expression quantification between datasets

91 For accurate HLA expression analysis we determined the numbers of HLA gene- and allele-

92 specific unique UMIs.  To take into account only the unique transcripts we counted UMIs for a given 

93 gene using the UMI tools pipeline with Illumina cDNA data. To collect the number of UMIs per gene and 

94 allele, all three datasets: ONT, Illumina cDNA, and Illumina HLA amplicon, underwent the UMI 

95 counting using the custom pipeline.  For the cDNA this was done to overcome the poor alignment result 

96 of HLA alleles due to the missing allelic diversity in the human reference genome. Highly homologous 

97 sequences between HLA alleles and loci made the read assignment between alleles ambiguous in some 

98 cases. The problem with multimapping reads caused by this high sequence similarity, was clear when we 

99 compared the alignment rates in the three datasets between the number of all aligning reads per HLA gene 

100 and the sum of uniquely aligning reads to the two alleles after the read assignment step. This comparison 

101 across all alleles in the Illumina cDNA showed that in average 12% (range 0.1–64%) of all reads aligning 

102 per gene were aligned uniquely to the two alleles of the gene in question. The same rates for Illumina 
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103 HLA amplicon and ONT data were 48% (range 0.08–95%) and 43% (1.8–98%), respectively. The UMI 

104 duplication rate was calculated for every allele using the number of unique UMIs. Uniquely aligning 

105 reads varied in the Illumina cDNA data between 0% and 63% with the mean value of 12.6%. In the 

106 Illumina HLA amplicon data the mean duplication rate was 18.9%, (range 0% to 79%) and in the ONT 

107 data 16.5% with a range of 0–96%.

108 To test the correlation between the datasets, we calculated the allele-to-allele ratio from 

109 unnormalized unique UMIs for each allele pair within all 50 samples and compared the ratios to those 

110 from the Illumina cDNA and Illumina HLA amplicon data. The Illumina cDNA and Illumina amplicon 

111 data were strongly correlated (r = 0.8, p < 0.0001; Spearman rank correlation) with all HLA genes (Fig 

112 1A), suggesting that both datasets alone were able to identify the expression difference between the two 

113 alleles.  In this comparison between the two datasets, the correlation of HLA class I genes was higher (r = 

114 0.92, p < 0.0001) compared to HLA class II genes (r = 0.69, p < 0.0001) (Fig 1B–C). In a gene-wise 

115 comparison, the strongest correlation was seen in HLA-A (r = 0.91, p < 0.0001), and HLA-B (r = 0.93, p 

116 < 0.0001) of the class I genes and HLA-DPA1 (r = 0.99, p < 0.0001), and HLA-DPB1 (r = 0.78, p < 

117 0.0001) of the class II genes (Fig 1D–K). 

118 To test the correlation between ONT and Illumina HLA amplicon data at allele level we 

119 calculated the allele ratio from ONT data as well. This comparison showed a weaker correlation with all 

120 HLA genes included (r = 0.47, p < 0.0001) (Fig 2A). The class I genes showed a moderate to strong 

121 correlation (r = 0.67, p < 0.0001), whereas the correlation of class II genes was weaker (r = 0.32, p < 

122 0.0001) (Fig 2B–C). HLA-B (r = 0.61, p < 0.0001) and HLA-C (r = 0.79) correlated better than HLA-A (r 

123 = 0.49, p = 0.0008) (Fig 2D–F). In class II genes HLA-DRB1 (r = 0.62, p < 0.0001) and HLA-DPA1 (r = 

124 0.53, p = 0.0003) showed the strongest correlation, while the other class II genes showed a weak 

125 correlation (Fig 2G–K). Surprisingly, the same comparison between ONT and Illumina cDNA data 

126 correlated better with all HLA genes (r = 0.53, p < 0.0001) (Fig3A). Similarly, HLA class I gave a 

127 stronger correlation (r = 0.59, p < 0.0001) when compared to class II (r = 0.48, p < 0.0001) (Fig 3B–C), 
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128 however, for both the correlation was moderate at best. In the gene-wise comparison the strongest 

129 correlations were seen in HLA-A (r = 0.57, p < 0.0001) (Fig 3D), HLA-B (r =0.59, p < 0.0001) (Fig 3E), 

130 HLA-C (r = 0.68, p < 0.0001) (Fig 3F), HLA-DQA1 (r=0.59, p < 0.0001) (Fig 3H), HLA-DQB1 (r =0.49, 

131 p = 0.0003) (Fig 3I), and HLA-DPA1 (r = 0.54, p = 0.0002) (Fig 3J), and the lowest in HLA-DRB1 (r = 

132 0.46, p = 0.0022) (Fig 3G), and HLA-DPB1 (r = 0.47, p = 0.0009) (Fig 3K). The correlation comparisons 

133 of allele ratios between ONT and Illumina datasets suggest that we are either unable to assign all the reads 

134 properly to the correct alleles or that we miss UMIs in the UMI quantification step with ONT data, or 

135 both. This result indicates the difficulty of finding the UMI position in ONT reads compared to Illumina 

136 reads where the 10 bp UMI is always sequenced first in the beginning of read 1. Due to a moderate 

137 correlation result between ONT and Illumina, no gene- and allele-level expression comparison is shown.

138 HLA gene-specific expression

139 To characterize gene and allelic expression profiles across samples Illumina cDNA and HLA 

140 amplicon UMI counts were normalized to library size using the CPM method. First, we explored the 

141 amount of HLA expression from the total expression of all genes across the samples using unique UMIs 

142 of the Illumina cDNA data. The proportion of total HLA expression out of all cDNAs varied between 

143 0.96% and 2.54%, and HLA class I and HLA class II from 0.48% to 1.99% and 0.26% to 1.14%, 

144 respectively (S4 Fig). For the gene-level comparison the sum of two alleles was calculated from the 

145 CPM-normalized unique UMI values. This comparison was done between the Illumina cDNA and HLA 

146 amplicon datasets across the 50 samples. In Illumina cDNA data we clearly see a higher expression of 

147 HLA class I genes compared to class II, whereas in the Illumina HLA amplicon data HLA-DRB gene 

148 shows high expression values across samples (Fig 4). In the cDNA data HLA-B and -C were expressed at 

149 the highest levels. HLA-A gene expression was lower compared to the two other class I genes. In the 

150 HLA class II HLA-DRA and -DRB genes were expressed at the highest levels following -DPA1 and -

151 DPB1. HLA-DQA1 and -DQB1 were expressed clearly at the lowest levels. The evaluation between the 

152 two Illumina datasets revealed that in the HLA amplicon dataset HLA class II has higher gene-level 
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153 expression than in the Illumina cDNA dataset. The genes expressed at the highest levels in this data were 

154 HLA-DRB, and HLA class I genes. The bias towards HLA class II and especially in HLA-DRB in the 

155 HLA amplicon data most likely arises from the different efficacy rates of HLA primers used in the 

156 amplification and leading to uneven pooling in the library preparation step. Since every cell expresses 

157 HLA class I, it is logical that the expression of HLA class I genes should be higher compared to HLA-

158 DRB expression. For this reason, in the following analyses we show the data from the Illumina cDNA 

159 dataset. 

160 The further comparison between the two Illumina datasets at the allele-specific level is shown in 

161 the supplementary information (S5–S6 Fig). The overall class-level comparison across all 50 samples 

162 showed that mRNA for HLA class I was expressed in significantly higher levels than HLA class II (p < 

163 0.0001) (Fig 5B). Between HLA class I genes, the expression of HLA-A was lower than HLA-B (p < 

164 0.005) and HLA-C (p < 0.005), however, there was no significant difference between HLA-B and -C 

165 mRNA expressions (Fig 5B). In the class II gene-level comparison, HLA-DR (including mRNAs for 

166 DRA, DRB1, DRB3-5) was expressed at higher level compared to HLA-DP (p < 0.0001) and HLA-DQ 

167 (p < 0.0001) (Fig 5B). The expression of HLA-DP and -DQ also differed statistically significantly (p < 

168 0.05), the expression of HLA-DQ being the lowest. 

169 To assess the differential expression of HLA genes between individuals we calculated the relative 

170 expression of all genes present per sample using unique UMIs and compared these relative expression 

171 profiles between 50 individuals. The comparison demonstrated that the relative amounts of different HLA 

172 mRNAs varied greatly between individuals (Fig 6). In addition, the total amount of mRNA for HLA 

173 varied between individuals (data not shown). We found that in average 65% (range 45-84%) of the total 

174 HLA expression came from the HLA class I genes, whereas the average of HLA class II expression 

175 across individuals was 35% (range 16-54%). 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/413534doi: bioRxiv preprint 

https://doi.org/10.1101/413534
http://creativecommons.org/licenses/by/4.0/


9

176 A comparison of HLA class I and II expression between genders (n = 27 females and n = 

177 23 males) showed no significant difference. Also no significant correlation between the expression levels 

178 of HLA class II and the class II transactivator, CIITA (r = 0.16, p = 0.2654) was found across the 50 

179 individuals. 

180

181 HLA allele-specific expression

182 To assess HLA allelic expression we studied the number of unique UMIs representing the mRNA 

183 expression of individual alleles for a given gene across all 50 samples. The mean HLA-A mRNA 

184 expression level as defined by UMIs was 1275. Compared to this level, the HLA-A alleles A*03:01 (n = 

185 28), and A*68:01 (n = 3) had higher than the average expression levels. Alleles A*01:01 (n = 8), A*02:01 

186 (n = 26), and A*24:02 (n = 16) were associated expression levels lower than average (Fig 7A). Alleles 

187 A*32:01 (n = 4) with a mean of 1324 was not associated to either due to their expression levels so close 

188 to the mean expression value (henceforth neutral). Homozygous allele pairs showed lower expression 

189 levels than heterozygotes in all allele groups carrying both individuals. The expression levels between 

190 different allele groups differed significantly (H = 11.75, p = 0.04), however, a pairwise comparison 

191 showed no significant differences between allele groups. 

192 By comparing the expression levels to the mean HLA-B mRNA expression value of 2158, alleles 

193 B*07:02 (n = 18), B*08:01 (n = 7), B*15:01 (n = 11), and B*39:01 (n = 4) had a higher expression and 

194 B*13:02 (n = 6), B*27:05 (n = 5), B*35:01 (n = 14), B*40:01 (n = 5), B*44:02 (n = 4), and B*51:01 (n = 

195 4) had a lower than the mean expression level (Fig 7B). Alleles B*18:01 (n = 6) with a mean of 2094) 

196 was considered neutral. A comparison of expression levels showed a significant difference between allele 

197 groups (H = 55.26, p < 0.0001). In the pairwise comparison significant difference (p < 0.05) was seen 

198 between pairs B*15:01~B*44:02, B*15:01~B*51:01, and B*39:01~B*44:02. 
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199 Among 14 HLA-C alleles with a mean expression of 2257, C*02:02 (n = 3), C*03:03 (n = 8), 

200 C*03:04 (n = 9), C*05:01 (n = 4), and C*06:02 (n = 10) were associated with a higher expression and 

201 C*01:02 (n = 4), C*04:01 (n = 20), C*07:01 (n = 16), C*07:02 (n = 15), C*12:03 (n = 3), and C*15:02 (n 

202 = 5) with a lower expression (Fig 7C). These results correlate with previously reported allelic mRNA 

203 expression levels [3]. Similarly to HLA-A locus, we observed lower expression levels in homozygous 

204 individuals. Allele-specific expression comparison showed a significant difference between allele groups 

205 (H = 35.73, p < 0.0001). In the pairwise comparison allele groups C*03:04 ~ C*07:02, C*04:01~ 

206 C*06:02, and C*06:02 ~ C*07:02 were significantly different (p < 0.05).

207 The comparison of HLA-DRB1 expression values to the mean expression value of 745 

208 categorized DRB1*01:01 (n = 16), DRB1*10:01 (n = 3), and 15:01 (n = 17) into a group of high-

209 expression associated alleles, whereas DRB1*03:01 (n = 7), DRB1*07:01 (n = 9), DRB1*13:02 (n = 5), 

210 and DRB1*16:01 (n = 4) were grouped to a low-expression (Fig 8B). Alleles DRB1*04:01 (n = 6), 

211 DRB1*08:01 (n = 10), and DRB1*13:01 (n = 12), were considered neutral. Overall, this locus was very 

212 heterozygous as only four homozygous individuals were observed in DRB1*01:01 and DRB1*08:01. In 

213 contrast to HLA-A and HLA-C, homozygous individuals in HLA-DRB1 were expressed at higher levels. 

214 The expression levels between allele groups were significantly different (H = 19.26, p = 0.02), though, no 

215 significant differences were seen between alleles in the pairwise comparison. HLA-DRA is not shown 

216 due to possible bias between homozygous and heterozygous individuals. This bias most likely results 

217 from an allele assignment problem in short Illumina reads caused by the low number of variant positions 

218 between DRA alleles. In case of a heterozygous individual carrying DRA*01:01 we constantly observed a 

219 low number of unique UMIs resulting from the second allele. 

220 Out of the four HLA-DRB3 alleles present in this data, DRB3*01:01 (n = 15) and DRB3*02:02 

221 (n = 8) were the most frequent. DRB4*01:03 (n = 20) was the only allele representing this locus in our 

222 data. Among HLA-DRB5 alleles, DRB5*01:01 (n = 16) was the most frequent. In a pairwise comparison 

223 no significant differences were found between alleles. However, DRB4*01:03 was expressed at 
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224 significantly lower levels than DRB3*01:01 and DRB5*01:01 (p < 0.005 for both). The majority of 

225 samples were hemizygous for DRB3, DRB4, and DRB5 and hence it was surprising that compared to the 

226 homozygotes and heterozygotes of all DRB3, DRB4, DRB5, hemizygotes were expressed at higher levels 

227 (p < 0.05) (Fig 8A). This might derive from a bias problem between two alleles in the read assignment. 

228 Reads which passed the set parameters in the read assignment after alignment are considered in the UMI 

229 counting. With homozygous and hemizygous alleles there is no need to assign reads between two alleles 

230 and hence a bias might occur if more reads are saved for the UMI counting compared to the 

231 heterozygotes.

232 At HLA-DQA1 locus, DQA1*01:03 (n = 12), DQA1*03:01 (n = 8), and DQA1*03:03 (n = 3) 

233 were associated with a higher expression levels when compared to the mean expression value of 67 (Fig 

234 8C). In contrast, alleles DQA1*01:01 (n = 17), DQA1*01:02 (n = 26), DQA1*04:01 (n = 9), and 

235 DQA1*05:01 (n = 10) were linked to a lower expression. The alleles expressed at higher levels exhibited 

236 a heterogeneous expression, whereas the expression of low expression associated alleles was more 

237 uniform. Two alleles, DQA1*01:05 (n = 3) and DQA1*02:01 (n = 8) were not clearly associated to either 

238 of the former groups and hence were considered neutral. Significantly different expression levels were 

239 found between two high-low expression associated allele groups, DQA1*01:03 ~ DQA1*05:01 and 

240 DQA1*03:01 ~ DQA1*05:01 (p < 0.05 for both). Among HLA-DQB1 alleles, only two alleles, 

241 DQB1*05:01 (n = 20), DQB1*05:02 (n = 4) were associated with a higher expression compared to the 

242 mean expression value of 234 (Fig 8D).  The other DQB1 alleles, DQB1*02:01 (n = 8), DQB1*03:02 (n 

243 = 10), DQB1*03:03 (n = 4), DQB1*04:02 (n = 9), DQB1*06:02 (n = 16), DQB1*06:03 (n = 12), and 

244 DQB1*06:04 (n = 5) were associated to a lower expression with more homogenous distribution. Allele-

245 level expression was different between the allele groups (H = 49.21, p < 0.0001) and the pairwise 

246 comparison showed a significant difference (p < 0.05) between allele groups DQB1*03:02 ~ 

247 DQB1*05:01, DQB1*03:03 ~ DQB1*05:01, DQB1*03:03 ~ DQB1*05:02, DQB1*05:01~ DQB1*06:02, 
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248 DQB1*05:01~ DQB1*06:03,  DQB1*05:01~ DQB1*06:04,  DQB1*05:02~ DQB1*06:03, and 

249 DQB1*05:02~ DQB1*06:04.

250

251 Considering the mean expression value of 365 in HLA-DPB1 locus, alleles DPB1*01:01 (n = 3), 

252 DPB1*03:01 (n = 14), and DPB1*14:01 (n = 3) were associated with a high expression, whereas alleles 

253 DPB1*02:01 (n = 11), DPB1*04:01 (n = 40), and DPB1*04:02 (n = 19) were associated with lower 

254 expression levels (Fig 8F). DPB1*05:01 (n = 4) was not linked to either due to its wide distribution of 

255 expression values. Different from the other loci, HLA-DPB1 showed a strinkingly heterogeneous 

256 distribution across the vast majority of alleles, excluding only DPB1*01:01, and hence no significant 

257 differences were found between different allele groups.

258 Discussion

259 In the present study we demonstrate that it is possible to determine both the HLA alleles and their 

260 mRNA levels using RNA sequencing methodology. This type of tool can be applied in various 

261 approaches related to autoimmune and transplantation genetics as well as in studies of HLA expression 

262 levels in different cells and tissues, for example in the thymus. Despite the increasing evidence that HLA 

263 mRNA and surface protein expression differences may influence the immune response and susceptibility 

264 to several human diseases, only a few studies have systematically focused on the gene and especially the 

265 HLA allele-specific mRNA expression levels. The protein expression studies are certainly hampered by 

266 the fact that no allele-specific monoclonal antibodies recognizing all HLA alleles with equal affinity are 

267 available. Real-time PCR has been adopted in several studies for determining the expression of HLA 

268 alleles , however, the focus has mainly been on HLA class I.[3–5,10] Given the high number of known 

269 HLA alleles, real-time PCR approach requires a combination of allele-specific primers to amplify 

270 different alleles of the same locus. Using RNAseq data of 50 individuals, we performed a high-throughput 
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271 screen for HLA expression profiles of class I and class II alleles in peripheral blood samples. To our 

272 knowledge, no method based on NGS has been reported for systematically quantifying the mRNA 

273 expression of HLA alleles. 

274 Since genomic ONT data have been shown to be successful in HLA-typing [18,21], we explored 

275 the accuracy of ONT RNAseq data in HLA allele calling. The 2D reads from the full-length sequencing 

276 of HLA amplicons with MinION resulted in a good accordance with the Luminex reference methods at 

277 the 2-field resolution level, suggesting that HLA typing can be performed from targeted ONT RNAseq 

278 data. Our method provided a sufficient read depth for HLA class I and class II alleles to be assigned 

279 accurately with SeqNext-HLA. HLA class II genes showed more uniform distribution of read depth 

280 across the exons, whereas the coverage of HLA class I exon 1 and the beginning of HLA class I exon 2 

281 were systematically lower in our data, independent from allele and gene. This may be due to a lower 

282 efficiency of reverse transcription enzyme with longer transcripts or a higher turnover of HLA class I 

283 mRNA. Moreover, this might have been the reason for the higher mismatch rate observed in HLA class I 

284 alleles since most of the polymorphisms lie in the exon 2 and 3 area. To ensure an adequate mRNA 

285 capture efficacy we chose the TSO’s UMI length to be 10 bp which we assumed still to provide sufficient 

286 complexity to enable corrections of PCR biases. 

287 The comparison of allele ratios calculated from unique UMIs between the three datasets showed 

288 that both our targeted Illumina HLA amplicon and non-targeted Illumina cDNA method were able to 

289 quantitate the allele-specific expression differences. The same comparison between Illumina and ONT 

290 data, however, showed varying correlation values, suggesting that ONT is not yet able for accurate allele-

291 level expression quantification. This is most likely due to the challenges of finding UMIs from the error-

292 prone reads. A missing UMI position results in discarding the read leading to a reduced unique UMI 

293 count. Future improvements in the read quality could ease the UMI detection making ONT an option for 

294 HLA RNA sequencing. The comparison of Illumina datasets at the gene-level showed that HLA class II 

295 genes, and especially HLA-DR, were expressed at high levels in our targeted HLA amplicon data.  This 
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296 might be due to different efficacies of the gene-specific primers in the enrichment step or the fact that 

297 pooling of gene-specific PCR products was done in equal volumes instead of equal molarities. Even 

298 though our pipeline uses UMIs in PCR bias removal and considers only original transcripts, it is not able 

299 to correct bias between genes. Because Illumina cDNA method is not based on enrichment, we believe it 

300 is more accurate to quantify and compare the expression between genes as no bias is introduced in the 

301 library preparation step. Though, since the allele ratios were highly concordant between the two datasets, 

302 the targeted approach would be a valuable option for being more cost-effective. However, it still needs 

303 optimization in equalizing primer efficiencies and molarities between different HLA genes. 

304 Although several HLA-typing tools for RNAseq data exist [23–25], they do not provide 

305 expression quantification with UMI counting. By using our custom pipeline we were able to determine 

306 HLA mRNA expression levels to the allele level. Our results of HLA class-level expression from cDNA 

307 data were concordant with previously reported [43] as HLA class I was expressed at higher levels than 

308 class II in all 50 samples. We also detected heterogeneity in the expression levels of HLA genes and 

309 heterodimers. Our results confirmed varying expression of HLA genes both within and between 

310 individuals. Despite a high interindividual variation, the data showed that HLA-B and HLA-C were 

311 equally abundant on transcript level and that they were expressed at higher levels than HLA-A. It is 

312 known that at the cell surface HLA-A and HLA-B are expressed at higher levels than HLA-C, however, is 

313 not entirely clear why this is. In a previous study low HLA-C protein level resulted from a faster 

314 degradation of HLA-C mRNA than HLA-A and HLA-B. [44]  However, it is possible that HLA-C 

315 mRNA is initially levels similar to HLA-A and -B but post-transcriptional mechanisms such as inefficient 

316 assembly with β2-microglobulin affect its protein level expression. [44,45] Moreover, HLA-C mRNA 

317 expression can be tissue-dependent. In peripheral blood lymphocytes HLA-C had comparable mRNA 

318 levels to HLA-A and -B while in larynx mucosa it was lower.[46]

319 The imbalanced expression between HLA class II loci is in line with previous findings [43] as 

320 HLA-DR was confirmed to express at higher levels compared to HLA-DP and HLA-DQ. It is of note that 
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321 we analysed the peripheral blood samples without any quantifications of their cellular contents and it is 

322 not clear how much variation in immune cell numbers affects the interindividual results.  

323 To add one level of complexity we investigated the HLA allele-specific expression. Among our 

324 50 samples we found distinct allele-specific expression profiles. This result has many interesting 

325 consequences worth further studies. For example, in the current transplantation donor selection only 

326 qualitative HLA allele typing is done. However, some previous studies have shown that the allele-level 

327 expression of a mismatched donor-recipient pair has an impact to the outcome of HSCT. [8,9] A 

328 mismatch between recipient’s high-expression allele and donor’s low-expression allele was found 

329 immunogenic and associated with an increased risk of acute GVHD and non-relapse mortality, whereas 

330 allotypes expressed at lower levels were not and hence were hypothesized as permissive. [8,9] In addition 

331 to the outcome of HSCT [8], differential expression of HLA class I genes or alleles have been associated 

332 with HIV control [6,12] and Crohn’s disease [11]. Considering the mean mRNA expression we were able 

333 to classify the alleles into high-expression and low-expression alleles. Among HLA-A alleles we found 

334 no significant difference between these two groups. However, our results showed that A*68:01 was 

335 expressed at higher levels compared to other HLA-A alleles and hence could be considered as 

336 immunogenic risk allele in HSCT and HIV control [12]. In contrast low-expression associated alleles 

337 such as A*01:01, and A*02:02, A*25:01, A*29:01, and A*29:02 with homogeneous expression 

338 distributions could be considered as possible permissive mismatches in HSCT. Our results are partly 

339 concordant with a previous study where the authors reported A*29 as an allele with a low expression.[4] 

340 However, in our data A*02:01 was associated with a lower mRNA expression demonstrating that the 

341 population origin can affect to the allele-specific expression. At HLA-B and HLA-C loci our results 

342 confirmed a significant difference in mRNA expression levels between high-expression and low-

343 expression associated alleles indicating strong allele-specific expression. These loci showed more 

344 heterogeneous expression distributions within allele groups suggesting that the mRNA expression level is 

345 not always allele-bound. Due to the high haplotypic variety among our 50 samples, we did not inspect the 
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346 effect of different haplotypes on HLA allele-specific expression. However, both HLA gene and allele 

347 level expression have shown to differ between haplotypes [3,47] and hence it is noteworthy that the 

348 heterogeneous expression within allele group might result from different haplotypes also in our data.

349 Variation in allele-specific expression of HLA-C has been already reported by a previous 

350 study.[3] Since our results are consistent with this data demonstrating C*01:02 and C*07:02 as low-

351 expression associated alleles, and C*03:04 as high-expression allele, we can assume that some alleles are 

352 associated to high or low expression across populations, although this need further confirmation. HLA-C 

353 alleles, such as C*02:02, C*03:03, C*05:01, and C*06:02, were also linked to high expression levels. The 

354 risk allele of psoriasis [48], C*06:02, was observed to express at the highest level.  These findings of the 

355 allele-specific expression are highly interesting from the perspective of human diseases. High HLA-C 

356 expression on cell-surface has already been shown to correlate with improved cytotoxic T lymphocyte 

357 response in HIV [6], as well increased risk for Crohn’s disease [11]. Moreover, the expression of HLA-C, 

358 which is the dominant ligand for natural killer (NK) cell killer immunoglobulin-like receptors (KIRs), 

359 was shown to associate with changes in NK subset distribution and licensing, especially in HLA-C1/C1, 

360 KIR2DL3+2DL2 individuals[49]. In addition to the enhanced T cell response, elevated HLA-C 

361 expression levels could affect NK cell development as well and result in a more effective respond upon 

362 infection.

363 The allele-level expression quantification also revealed differential expression profiles in class II 

364 genes. Despite heterogeneous expression profiles within allele groups, we observed HLA-DRB1 alleles 

365 associating with a high or low mRNA expression supporting the idea of allele-specific expression. The 

366 most striking differences in mean mRNA expression between alleles were seen at HLA-DRB3, and HLA-

367 DRB5. In both genes the most frequent allele (DRB3*01:01, and DRB5*01:01) showed highest 

368 expression values and was dominated by hemizygous individuals. Since individuals carrying only one 

369 DRB3 or DRB5 allele were also expressed at lower levels, we concluded that there was no bias between 

370 hemizygous and heterozygous individuals in our data. However, we could not reliably determine allele-
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371 specific expression of HLA-DRA alleles. This locus turned out to be problematic for our pipeline as we 

372 observed a clear bias in unique UMI counts between heterozygous and homozygous individuals. We 

373 suspect that our pipeline could not quantify the allele-specific number of unique UMIs from Illumina 

374 short reads with the low number of polymorphic positions between HLA-DRA alleles. This is something 

375 we need to investigate further. 

376  Our data showed a low allelic diversity at HLA-DPA1 with the majority of individuals carrying 

377 DPA1*01:03 which was a high-expression allele. DPA1*01:03 together with DPB1*04:02 has been 

378 reported as the most protective heterodimer from narcolepsy.[50] Considering the mean mRNA 

379 expression of HLA-DPB1 locus we found our results to be concordant with a previous study [9] 

380 associating alleles DPB1*01:01, DPB1*03:01, DPB1*14:01, and DPB1*15:02 to higher expression levels 

381 and alleles DPB1*04:01, and DPB1*04:02 to lower expression levels. However, it is notable that 

382 expression distributions at this locus varied greatly within several allele groups indicating that assigning 

383 alleles as high or low-expression linked is not straightforward. Interestingly, at HLA-DQB1 alleles 

384 DQB1*05:01 and DQB1*05:02 were expressed at clearly higher levels than the other HLA-DQB1 alleles. 

385 DRB1*01:01~DQB1*05:01 haplotype was recently shown to be significantly protective for MS. [51] 

386 Moreover, DQB1*05:01 has been identified earlier as protective allele from narcolepsy [52,53] indicating 

387 that the high expression we see in our data would be beneficial at the population level. In contrast,  the 

388 narcolepsy risk allele, DQB1*06:02 [54] and  celiac disease risk alleles, DQA1*05:01, DQB1*02:01, 

389 DQA1*02:01, DQB1*02:02, HLA-DQA1*03, and DQB1*03:02 [55] were expressed at low levels. 

390 Using RNAseq approach we have provided a new insight into the complexity of HLA allele-level 

391 expression. With increasing information of different factors affecting to the outcome of HSCT, it might 

392 be challenging to find a donor with suitable criteria and thus, make the donor selection more complicated. 

393 Therefore, our aim is to propose a tool to explore the differential HLA allele expression that in the future 

394 might ease the finding of possible permissive mismatches and help to avoid high-risk transplantations 

395 making HSCTs safer when no matched donor is available. Since several research and clinical HLA 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/413534doi: bioRxiv preprint 

https://doi.org/10.1101/413534
http://creativecommons.org/licenses/by/4.0/


18

396 laboratories have already adopted NGS in HLA typing, the leap from DNA sequencing to RNAseq 

397 enabling both the HLA typing and expression quantification could be possible in the future changing the 

398 nature of HLA research from qualitative to quantitative.

399 Materials and methods

400 Samples and RNA extraction

401 This study collected 50 healthy blood donor buffy coat samples, which underwent an isolation of 

402 pheripheral blood mononuclear cells (PBMC) using Ficoll-PaqueTM Plus (GE Healthcare), Dulbecco's 

403 Phosphate Buffered Saline DPBS CTSTM (Gibco life technologies), Fetal Bovine Serum FBS (Sigma) and 

404 SepMate™-50 tubes following the manufacturer’s protocol (Stemcell Technologies). The use of 

405 anonymized PBMCs from blood donors is in accordance with the rules of the Finnish Supervisory 

406 Authority for Welfare and Health (Valvira). Cell count was measured from a mix of 50 µl of cell 

407 suspension in DPBS with 2% FBS, 50 µl of Reagent A100 lysis buffer, and 50 µl of Reagent B stabilizing 

408 buffer using a NucleoCassette and a NucleoCounter® NC-100™ (all chemometec). Total RNA was 

409 isolated from fresh PBMC samples containing 1–10 x106 cells using RNeasy Mini kit and Rnase-Free 

410 DNAse Set (both Qiagen) within two hours after PBMC isolation. RNA samples were quantified and the 

411 purity was assessed with the Qubit™ RNA High Sensitivity Assay Kit in Qubit® 2.0 fluorometer 

412 (ThermoScientific). The RNA quality was checked using an RNA 6000 Pico Kit (Agilent Genomics) in a 

413 2100 Bioanalyzer (Agilent Genomics) to obtain a RNA Integrity Number (RIN) score. 

414 Reverse transcription by template switching and target amplification

415 We used an adaptation of the STRT method to generate full length cDNA molecules from RNA 

416 transcripts.[31] Briefly, the poly-A hybridization to the first strand cDNA synthesis primer was performed 

417 in a 96-well plate in a T100™ Thermal Cycler (Biorad) with 3 min at 72°C with 25 ng of RNA, 1% 

418 TritonTM X-100 (Sigma), 20 µM of STRT-V3-T30-VN oligo, 100 µM of DTT (invitrogen, life 
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419 technologies, Thermo Fisher), 10 mM dNTP (Bioline), 4 U of Recombinant RNase Inhibitor (Takara 

420 Clontech), 1:1000 The Ambion® ERCC RNA Spike-In Control Mix (life technologies, Thermo Fisher) in 

421 a total volume of 3 µl. All oligos were from Integrated DNA Technologies and are listed in S1 Table. 

422 Reverse transcription of the whole transcriptome was performed adding 3.7 µl of the RT mix containing 

423 5x SuperScript first strand buffer (invitrogen by Thermo Fisher Scientific), 1 M MgCl2 (Sigma), 5 M 

424 Betaine solution (Sigma), 134 U of SuperScript ® II Reverse Transcriptase (invitrogen by Thermo Fisher 

425 Scientific), 40 µM RNA-TSO 10bp UMI, 5.6 U of Recombinant RNase Inhibitor immediately to each 

426 reaction. To complete the reverse transcription and the template switching the plate was incubated 90 min 

427 at 42°C followed by 10 min at 72°C. In this reaction every transcript receives a unique distinct barcode. 

428 After RT the cDNA was further amplified with 2x KAPA HiFi HotStart ReadyMix (Kapa Biosystems), 

429 10 µM ImSTRT-TSO-PCR with a thermal profile consisted of an initial denaturation of 3 min at 95°C 

430 followed by 20 cycles of 20 s at 95°C, 15 s 55°C, 30 s at 72 and 1 cycle of final elongation of 1 min at 

431 72°C in a final volume of 50 µl. Qubit™ dsDNA High Sensitivity Assay Kit (Thermo Fisher Scientific) 

432 was used to measure the concentration of all cDNA samples. The 3’ fragments of the cDNA were 

433 released in a restriction reaction using SalI-HH (New England Biolabs) according to the manufacturer’s 

434 protocol. The concentration of DNA was measured using Qubit™ dsDNA High Sensitivity Assay Kit and 

435 DNA integrity and the size distribution were assessed with High Sensitivity DNA Kit (Agilent 

436 Genomics).  For HLA target enrichment one TSO-specific universal forward primer and eight gene-

437 specific reverse primers with universal tails for amplicon sequencing were used to amplify exons 1 to 8 in 

438 class I genes HLA-A, -B, -C and -G or exons 1 to 5 in class II genes HLA-DRA, -DRB1, -DRB3, -DRB4, 

439 -DRB5, -DPA1, -DPB1, -DQA1 and -DQB1. HLA-A, -B and -C had one common primers as well as -

440 DRB1, -DRB3, -DRB4 and -DRB5. All seven gene-specific primers were designed to fall within a non-

441 polymorphic region using the known sequence diversity, as described in the international 

442 ImMunoGeneTics IMGT/HLA database (http://www.ebi.ac.uk/imgt/hla/). The amplification was 

443 performed in 96-well plates with 3 µl of template cDNA, 10x Advantage 2 PCR buffer, 50x Advantage®  

444 2 Polymerase Mix (Takara, Clontech), 10 mM dNTP (Bioline), 10 µM TSO forward primer and one of 
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445 the seven HLA gene-specific reverse primers in a total volume of 15 µl. The PCR reaction consisted of an 

446 initial denaturation of 30 s at 98 °C following 3 cycles of 10 s at 98°C, 30 s at 55°C, 30 s at 72°C and 27 

447 cycles of 10 s at 98°C, 30 s at 71°C, 30 s at 72°C and final elongation of 5 min at 72°C. To confirm the 

448 amplicon lengths and non-specific amplification 4 samples were selected from each plate with the 

449 amplification performed using different gene-specific primer. These samples were run on a 2% agarose 

450 gel (Bioline) with 10x BlueJuiceTM  loading dye (invitrogen by Thermo Fisher Scientific) in 0.5X TBE 

451 (Thermo Fisher Scientific) with the GelGreen™ (Biotium) and visualized using the Quick-Load 1kb 

452 DNA Ladder (New England Biolabs). DNA of the PCR amplicons was quantified with the Qubit™ 

453 dsDNA High Sensitivity Assay Kit and the fragment sizes analyzed with Agilent’s High Sensitivity DNA 

454 Kit.

455 HLA amplicons were pooled into two groups per sample by dividing genes that share the 

456 closest homology to different pools. The first pool contained genes HLA-A, -B, -C, -DRB1, -DRB3, -

457 DRB4, -DRB5 and -DPB1 (henceforth gene pool 1) and the second HLA-DRA, -DPA1, -DQA1, -DQB1 

458 and -G (henceforth gene pool 2). In the pooling 5 µl of PCR product was used from each PCR plate 

459 resulting in a final volume of 15 µl and 25 µl in gene pools 1 and 2, respectively. A purification and size 

460 selection of the pools were performed in a 0.7X beads:DNA ratio by using the Agencourt AMPure XP 

461 beads (Beckman coulter) according the manufacturer’s protocol and eluted in 15 µl of nuclease-free 

462 water. DNA of all 100 pools was quantified with the Qubit™ dsDNA High Sensitivity Assay Kit. The 

463 average fragment size distribution of gene pools 1 and 2 was assessed with Agilent’s High Sensitivity 

464 DNA Kit from 10 samples of both pools. The molarity of each pool was then calculated using the DNA 

465 concentration (ng/ µl) and the average fragment length (bp). 

466 ONT library preparation and sequencing

467 ONT sequencing compatible barcoded fragments were prepared in a PCR reaction 0.5 nM of 

468 DNA from gene pools, 2 µl of PCR barcode from the 96 PCR Barcoding Kit (ONT), 50 µl of LongAmp 
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469 Taq 2x Mix (New England Biolabs) and Nuclease-Free water in a final volume of 100 µl where ONT’s 

470 universal tails were used as a template for barcode introducing primers.  The PCR was performed in the 

471 following conditions; initial denaturation of 3 min at 95°C, following 15 cycles of 15 s at 95°C, 15 s at 

472 62°C, 30 s at 65°C and a final extension step 3 min at 65°C. A second DNA purification and size 

473 selection was done in a 1X beads:DNA ratio by using the Agencourt AMPure XP beads according to the 

474 manufacturer’s instructions and eluted in 20 µl of nuclease-free water. After the purification DNA was 

475 quantified with the Qubit™ dsDNA High Sensitivity Assay Kit and barcoded PCR amplicons were 

476 pooled with equal molarities in 10 library pools in a total volume of 50 µl each consisting of 10 

477 individuals and either 8 loci (gene pool 1) or 5 loci (gene pool 2). 1 µg of pooled barcoded PCR products 

478 were treated with the NEBNext Ultra II End-repair / dA-tailing Module (New England Biolabs) according 

479 a Ligation Sequencing Kit 2D (SQK-LSK208) protocol (ONT) using a DNA CS 3.6kb (ONT) as a 

480 positive control. A third DNA purification was performed using 1X beads:DNA ratio by using the 

481 Agencourt AMPure XP beads following the Ligation Sequencing Kit 2D protocol. ONT sequencing 

482 adapters were ligated using NEB Blunt / TA Ligase Master Mix (New England Biolabs) and Adapter Mix 

483 and HP Adaptor provided by ONT following a purification step using MyOne C1 Streptavidin beads 

484 (invitrogen by Thermo Fisher Scientific) according to the Ligation Sequencing Kit 2D protocol to capture 

485 HP adaptor containing molecules. The libraries were eluted in 25 µl of elution buffer and mixed with 

486 running buffer and library loading beads (ONT) prior to sequencing. All 10 libraries were sequenced for 

487 48 hours on R9.4 SpotON flow cells (FLO-MIN106) on MinION Mk 1b device using the MinKNOW 

488 software (versions 1.1.21, 1.3.24, 1.3.25 and 1.1.30).

489 Illumina library preparation and sequencing

490 For Illumina sequencing, all loci of 50 HLA amplicons were multiplexed per sample. 50 cDNA 

491 and 50 HLA amplicon libraries were prepared using the Nextera XT DNA Library Preparation Kit 

492 (Illumina).  For an optimal insert size and a library concentration 600 pg of each cDNA and PCR 

493 amplicon sample was tagmented for 5 min at 55°C using 5 µl of Nextera’s Tagment DNA Buffer, 0.25 µl 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/413534doi: bioRxiv preprint 

https://doi.org/10.1101/413534
http://creativecommons.org/licenses/by/4.0/


22

494 of Nextera’s Amplicon Tagment Mix in a final volume of 10 µl. The transposone was inactivated with 2.5 

495 µl of Nextera’s Neutralize Tagment Buffer for 5 min at room temperature. The dual indexing and adapter 

496 ligation took place in a PCR reaction with 7.5 µl of Nextera PCR Master Mix, 4 µl of nuclease-free water 

497 and 10 µM of i5 custom oligo and 10 µM of Nextera i7 N7XX oligo using a limited-cycle PCR program: 

498 an initial denaturation 30 s at 95°C following 12 cycles of 10 s at 95°C, 30 s at 55°C, 30s at 72°C with a 

499 final elongation step of 5 min at 72°C. After the amplification all 50 cDNA and HLA amplicons samples 

500 were pooled together into two separate pools, one cDNA and one HLA amplicon pool. These two pools 

501 were then purified twice using the Agencourt AMPure XP beads according to the manufacturer’s 

502 instructions first with 0.6X beads:DNA ratio and then with 1X beads:DNA ratio and eluted in 30 µl. 

503 Qubit™ dsDNA High Sensitivity Assay Kit was used to quantify DNA and HT DNA HiSens Reagent kit 

504 and DNA Extended Range LabChip in  LabChip GXII Touch HT (all PerkinElmer) to assess the size 

505 distribution of the libraries. A double size selection was performed with the Agencourt AMPure XP beads 

506 according to the manufacturer’s instructions to remove fragments over 1000 bp (0.8X beads:DNA ratio) 

507 and under 300 bp (0.6X beads:DNA ratio). Prior to sequencing the DNA concentration was assessed with 

508 Qubit™ dsDNA High Sensitivity Assay Kit HT DNA HiSens Reagent kit and the library size verified 

509 with HT DNA HiSens Reagent kit. The two pooled and barcoded libraries were denaturated with 0.2 M 

510 NaOH and diluted in the HT1 buffer to obtain a final library concentration of 20 pM in 0.95:0.05 

511 cDNA:HLA amplicon ratio. The libraries were sequenced by using MiSeq and Nextseq sequencers with 

512 600 cycles (Miseq v3) and 300 cycles (NextSeq 500/550 v2) kits (both Illumina) generating 300 bp and 

513 150 bp pair-end sequence reads.

514 Data analysis

515 ONT reads were processed using the 2D Basecalling plus barcoding for FLO-MIN106 250 

516 bps workflow (version v1.125) on the cloud-based Metrichor platform (v2.45.5, v2.44.1, ONT) 

517 generating 1D template, 1D complement and 2D reads. The fastq files were extracted from the native 
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518 fast5 files using NanoOK [32]. Illumina paired-end reads from cDNA and HLA amplicon libraries in 

519 fastq format underwent a UMI extraction using the UMI-tools (v0.5.11) [33] and were quality trimmed 

520 using trimmomatic (v0.35). HLA typing was done from ONT reads using SeqNext-HLA SeqPilot 

521 software (v.4.3.1, JSI Medical Systems) and Illumina Miseq reads using three different typing softwares: 

522 Omixon Explore (v1.2.0, Omixon), HLAProfiler [2], and an in-house HLA-typing tool  (S1 Text). After 

523 this Miseq and Nextseq data were combined. Processed cDNA library reads were aligned using HISAT2 

524 (v2.1.0) [34] to the human genome (GRCh38) and assigned to genes according to the UMI-tools pipeline 

525 using featureCounts tool from the subread package (v1.5.3) [35]. Samtools (v1.4) were used to sort and 

526 index BAM files and UMI-tools count tool to count the number of unique UMIs per gene. The set of 50 

527 count files were then merged into a single count table using the Define NGS experiment tool in Chipster 

528 (v3.12.2) [36]. 

529 By using the allele types determined for each HLA gene, the reads of each sample were further 

530 processed to estimate their expression levels. The HLA genes are highly polymorphic, with more than 

531 18,000 HLA alleles documented in the version 3.28.0 of IMGT/HLA reference database upon writing 

532 [37]. Despite the critical differences, the HLA gene sequences are highly similar resulting in very high 

533 multi-mapping of the reads. Thus, we implemented the strategy of assessing allele-specific expression by 

534 aligning reads, using last [38] only to selected reference sequences extracted from the IMGT/HLA HLA 

535 reference database. 

536 For each HLA gene, all reads of a sample were aligned to a database containing only the 

537 reference sequences of the two identified alleles for the gene. For ONT reads, last was used with 

538 parameters -s 2 -T 0 -l 100 -a 100 -Q 1 for alignment of the template, complement and 2D reads. For 

539 Illumina reads, last with parameters -s 2 -T 0 -l 50 -a 100 -Q 1 -i1 was used for alignment of R1 reads 

540 only, R2 reads only, and paired end alignment (using last-pair-probs). The three Illumina read alignments 

541 were combined to include all reads that possibly originated from the two alleles. This alignment step 

542 filtered out reads that do not map to the two known alleles for the gene. The set of reads that aligned to 
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543 the two references of the known alleles were retained, and their aligned portions along with their base 

544 qualities were extracted from the last MAF file format alignment output. To assign each read to either 

545 allele, (i) the polymorphic positions between the two reference sequences of the known alleles are 

546 identified by first performing multiple alignment of the two sequences (using msa R package) [39], and 

547 then getting the positions with high diversity (Shannon entropy index > 0.5) from the consensus matrix of 

548 the two sequences (generated using Biostrings v2.46.0 and ShortRead R packages) [40,41], (ii) the 

549 corresponding bases at the polymorphic positions are identified for the two reference sequences, (iii) 

550 reads from the set of retained reads that aligned only to either of the reference alleles, covering at least 

551 30% of the polymorphic sites with at least 60% accuracy are kept (60% or more accurate matching at the 

552 polymorphic sites for the allele) and recorded as belonging to each allele; for reads from the set of 

553 retained reads that aligned to both alleles, their aligned portions are re-aligned separately to each 

554 reference allele sequence using overlap alignment (pairwiseAlignment function of Biostrings R package), 

555 then Bayesian statistical model is used to assign each read to either allele as follows: the read’s likelihood 

556 of originating from each of the two reference alleles is calculated based on how well the read matches the 

557 corresponding bases of the reference allele at the polymorphic positions, the likelihood is calculated as the 

558 sum of matches at the polymorphic positions given a reference allele (for a matching position, the match 

559 is quantified as the read base quality/maximum possible base quality, which is at maximum 1 for high 

560 quality bases in the read that match the reference allele base) divided by the number of polymorphic 

561 positions, a likelihood close to 1 suggests strong match between the read and the reference allele, the 

562 likelihoods of the read to the two reference alleles is calculated, the posterior probability for the two 

563 reference alleles given the read is then calculated by normalizing each likelihood by the sum of all 

564 likelihoods, the read is assigned to the reference allele with the higher posterior probability. Reads that 

565 cover less than 60% of the polymorphic sites between the two alleles are discarded. The remaining reads 

566 that are assigned to either allele are then combined with the previously recorded reads belonging to each 

567 allele from the previous step; for homozygous HLA genes, reads aligning to just one of the allele 

568 reference sequence that cover at least 30% of the polymorphic sites with at least 60% accuracy are kept, 
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569 and (iv) to estimate allele-specific expression, all UMIs are extracted from the reads that belong to each 

570 allele. For Illumina reads, the UMIs are extracted from the read names. For ONT reads, the position of the 

571 TSO sequence is first pattern searched in the reads (using vcountPattern function of R Biostrings 

572 package), the 10 bases following the 3bp GGG at the end of the TSO sequence in the reads is extracted as 

573 the UMIs. Once all UMIs are collected for the reads belonging to an allele, UMIs are deduplicated by 

574 counting all UMIs within 1 Levenshtein distance (LD) only once. The total number UMIs after 

575 deduplication represent the expression of an allele.

576 After HLA expression quantification Illumina cDNA and HLA amplicon reads were normalized 

577 in three parts. First, HLA gene-specific counts resulting from the alignment of cDNA reads to the human 

578 genome were removed and replaced in the merged count table with HLA allele-specific UMI counts 

579 derived from cDNA reads after the custom pipeline. Second, read counts were normalized to counts per 

580 million (CPM) using the cpm tool from the limma package (v3.30.13)[42]. Third, number of unique 

581 UMIs of each allele in Illumina HLA amplicon libraries was normalized by calculating unique UMI 

582 proportions between alleles out of the total number of unique UMIs per sample. For each individual these 

583 proportions were then multiplied by the total number of CPM-normalized unique UMIs of all HLA alleles 

584 in cDNA library. To study the relationship between the class II transactivator (CIITA) and HLA class II 

585 expression, unique UMIs per CIITA were extracted from CPM-normalized cDNA data.

586 Statistical Analyses

587 All statistical analyses were performed using non-parametric methods with GraphPad Prism v7.03 

588 (GraphPad Software). The Spearman’s rank correlation and linear regression with 95% confidence 

589 intervals were applied in the comparison of allelic ratios between the datasets, and in the expression 

590 comparison of HLA class II and CIITA. Expression differences of heterodimer groups (HLA-A, -B, -C, -

591 DR, -DQ, -DP) and HLA allele-specific expression (allele groups with n ≥ 3) were analyzed using the 

592 non-parametric Kruskal-Wallis test followed by the pairwise Dunn’s multiple comparisons test. For HLA 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/413534doi: bioRxiv preprint 

https://doi.org/10.1101/413534
http://creativecommons.org/licenses/by/4.0/


26

593 class-level and gender-level comparisons pairwise analyses were performed using the Mann-Whitney U 

594 test. In all tests p-values < 0.05 were considered significant. 

595
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766

767 Fig 1. Illumina cDNA and Illumina amplicon datasets show a high correlation in allelic mRNA 
768 expression.
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769 The allele expression ratio was calculated for each allele pair in the two datasets and a non-parametric 
770 Spearman’s rank correlation was used to compare the allele-level expression between cDNA and 
771 amplicon data. Each dot represents a ratio value of heterozygous allele pairs. Homozygous allele pairs 
772 receive a ratio value of 1 which is plotted twice, once for each dataset. The line indicates the linear 
773 regression and dashed lines the 95 % confidence intervals. The Spearman correlation coefficient is given  
774 for all genes (A), HLA class I (B), HLA class II (C), and for genes HLA-A (D), HLA-B (E), HLA-C (F), 
775 HLA-DRB1 (G), HLA-DQA1 (H), HLA-DQB1 (I), HLA-DPA1 (J), and HLA-DPB1 (K).  The 
776 comparison between loci DRA, DRB3, DRB4, and DRB5 is not shown due to a low number of data 
777 points.
778
779 Fig 2. A Spearman’s rank correlation of the allele expression ratio between ONT and amplicon 
780 data shows weak to strong correlation.
781 Correlations of allelic mRNA expression are given as expression ratios for each heterozygous allele pair 
782 which each dot represents in the scatter plot. Homozygous allele pairs receive a ratio value of 1 which is 
783 plotted twice, once for each dataset. The line indicates the linear regression and dashed lines the 95 % 
784 confidence intervals. The Spearman correlation coefficient is shown for all genes (A), HLA class I (B), 
785 HLA class II (C), and for genes HLA-A (D), HLA-B (E), HLA-C (F), HLA-DRB1 (G), HLA-DQA1 (H), 
786 HLA-DQB1 (I), HLA-DPA1 (J), and HLA-DPB1 (K).  
787
788 Fig 3. Correlation comparison of allelic HLA mRNA expression between Illumina cDNA and ONT 
789 amplicon datasets. 
790 Scatter plots showing the Spearman’s rank correlation and a linear regression of allele expression ratio 
791 between ONT and Illumina cDNA data. Dots represent a ratio value of heterozygous allele pairs. 
792 Homozygous allele pairs receive a ratio value of 1 which is plotted twice, once for each dataset. The 
793 dashed lines indicate the 95 % confidence intervals. The Spearman correlation coefficient is shown for all 
794 genes (A), HLA class I (B), HLA class II (C), and for genes HLA-A (D), HLA-B (E), HLA-C (F), HLA-
795 DRB1 (G), HLA-DQA1 (H), HLA-DQB1 (I), HLA-DPA1 (J), and HLA-DPB1 (K).  
796
797 Fig 4. Hierarchial clustering and heatmap of gene expression levels of 12 HLA loci in the Illumina 
798 cDNA and HLA amplicon datasets. 
799 (A) The gene-specific comparison of Illumina cDNA data and (B) Illumina HLA amplicon data. The 
800 represented gene expression is the sum of unique UMIs from the two alleles (homozygous and 
801 heterozygous individuals) or the unique UMI count of on allele (hemizygous individuals) in HLA-DRB3, 
802 -DRB4, and -DRB5. The columns represent 50 individuals and the rows different HLA genes. Expression 
803 levels are colored with yellow for high expression and red for low expression. The blue color indicates 
804 missing expression values for a given gene.
805
806 Fig 5. The expression of HLA class I and class II genes. 
807 (A) The mRNA expression at a heterodimer level was calculated from the allele-level unique UMIs for all 
808 50 individuals. For class I genes the gene-specific expression corresponds to the sum of two alleles for a 
809 given gene. For HLA-DPA1/B1 and HLA-DQA1/B1 the expression value was calculated using the sum 
810 of unique UMIs from both α- and β-chain alleles (4 alleles). The expression of HLA-DR depends from 
811 the individual’s haplotype and was either calculated from the allele-level unique UMIs of HLA-DRA and 
812 HLA-DRB1 (4 alleles), or from the combination of these two and genes DRB3, DRB4, and DRB5. (B) 
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813 For class-level expression comparison allele-level unique UMIs were calculated together class-wise for 
814 each individual. Each dot represents the expression value of one individual per group. Wide horizontal 
815 lines correspond to the mean expression and short horizontal lines for standard deviation for each group. 
816 A Kruskal-Wallis test was performed to compare the expression difference between HLA-A, -B, -C, -DR, 
817 -DP, and -DQ and Mann-Whitney U test to compare the expression between HLA class I and class II. *p-
818 value < 0.05; **p-value < 0.005; ***p-value < 0.0001.
819
820 Fig 6. The mRNA expression distribution of 12 HLA genes across 50 individuals. 
821 The relative expression of each HLA gene was calculated from the number of unique UMIs (Illumina’s 
822 cDNA dataset) of two alleles (homozygous and heterozygous samples) or one allele (hemizygous 
823 samples) out of the total unique UMI number per individual. Different colors show the distribution of 12 
824 HLA genes within individuals.
825
826 Fig 7. Allele-specific expression of HLA class I genes 
827 Allele-level unique UMIs representing the allelic mRNA expression values of 50 individuals were first 
828 normalized and then grouped and plotted according to different alleles in Illumina cDNA data. Mean 
829 expression of individual alleles is indicated by a solid bar and mean expression of all alleles is represented 
830 by the dotted line. Open circles correspond to homozygous individuals. All class I genes; (A) HLA-A 
831 alleles (n = 12), (B) HLA-B alleles (n = 25), (C) HLA-C alleles (n = 14) show differential mRNA 
832 expression levels between and within allele group. 
833
834 Fig 8. Allele-specific expression of HLA class II genes
835 Differential allele-specific expression profiles of 50 individuals are represented for each gene (A) HLA-
836 DRB3 (n = 4), HLA-DRB4 (n = 1), HLA-DRB5 (n = 3), (B) HLA-DRB1 (n = 18), (C) HLA-DQA1 (n = 
837 11), (D) HLA-DQB1 (n = 12), (E) HLA-DPA1 (n = 4), (F) HLA-DPB1 (n = 10). Each dot refers to a 
838 unique UMI value which are plotted according to alleles. The horizontal black bars indicate the mean 
839 expression of individual alleles and the dotted line corresponds to mean expression of all alleles. Open 
840 circles correspond to homozygous individuals and black triangles to hemizygous individuals (DRB3, 
841 DRB4, and DRB5). 
842
843 S1 Table. Primer sequences.
844
845 S1 Text. HLA genotyping.
846
847 S1 Fig. Experimental design of Illumina and ONT platform. 
848 In the library preparation process of Illumina and ONT mRNA is first transcribed into cDNA with 
849 simultaneous integration of 10 bp UMI in rnaTSO and further amplified. The full length cDNA is then 
850 divided and processed in parallel in Illumina’s and ONT’s protocol both involving an enrichment of HLA 
851 genes and adding sample-specific barcodes for multiplexing. In Illumina’s protocol both full length 
852 cDNA and HLA amplicons are tagmented resulting in 5’ end library molecules.
853
854 S2 Fig. Comparison of the number of raw reads between Illumina and ONT MinION datasets 
855 according to 50 individuals. 
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856 White bars correspond to Illumina cDNA reads, grey bars to Illumina HLA amplicon reads, and black 
857 bars to barcoded ONT reads. The ONT sequencing of gene pools 1 and 2 on SpotON flow cells with the 
858 R9.4 chemistry generated 22,487 to 193,467 barcoded reads per sample. Illumina sequencing of the 
859 tagmented cDNA and HLA amplicons on MiSeq and Nextseq in total generated 497,134 to 6,649,598, 
860 and 36,638 to 169,116 reads per sample, respectively.
861
862 S3 Fig. HLA typing accuracy of ONT dataset and concordance with Luminex. 
863 (A–B) The concordance rates of SeqNext-HLA typing results from ONT and Illumina datasets and at 1-
864 field and 2-field resolution level. Alleles assigned by SeqNext-HLA were 100% concordant at 1-field 
865 level with alleles assigned by Luminex. At 2-field level the allele assigned by SeqNext-HLA was 
866 considered concordant if it was found in the list of alleles by Luminex technology. HLA-DRB1, -DRB3, -
867 DRB5 and -DPB1 were 100% concordant with Luminex and with HLA-A, -B, -C, -DRB4, -DQA1, -
868 DQB1 and -DPA1 the concordance rate was between 94% and 99%. No reads were assigned to the HLA-
869 G gene. (C) Gene-specific distribution of mismatches between the allele assigned by SeqNext-HLA and 
870 the closest reference allele. (D–E) The concordance rates of ensemble typing results and Luminex HLA 
871 typing at 1-field and 2-field resolution level. At 1-field level all loci but HLA-DQB1 were over 90% 
872 concordant with the reference alleles. At 2-field the concordance rate for HLA-A, -B, and -C was 95%, 
873 87%, and 86%. In class II the concordance rate varied from 71 to 99%. With Illumina data, in case of an 
874 expression difference within a heterozygous allele pair, the second allele was sometimes missed and the 
875 genotype was falsely assigned as homozygous.
876
877
878 S4 Fig. The proportion of total and class-level HLA expression of the whole transcriptome 
879 expression according to 50 individuals.
880 (A) Total HLA expression was calculated from normalized unique UMI counts of all HLA genes per 
881 individual and dividing this sum by the total number of normalized unique UMIs of the whole 
882 transcriptome. The percentages of HLA class I (B) and HLA class II (C) were calculated in a similar 
883 manner.
884
885 S5 Fig. The comparison of HLA class I allele-specific expression values between Illumina amplicon 
886 and Illumina cDNA data.
887 The expression profiles showing the normalized allele-level unique UMI counts of HLA class I genes (A–
888 B) HLA-A, (C–D) HLA-B, (E–F) HLA-C in Illumina amplicon and cDNA data according to the 50 
889 individuals.  Mean expression of individual alleles is indicated by a solid bar and mean expression of all 
890 alleles is represented by the dotted line. Open circles correspond to homozygous individuals. 

891 S6 Fig. The comparison of HLA class II allele-specific expression values between Illumina amplicon 
892 and Illumina cDNA data.
893 The expression profiles showing the normalized allele-level unique UMI counts of HLA class II genes 
894 (A–B) HLA-DRB1, (C–D) HLA-DRB3, HLA-DRB4, HLA-DRB5, (E–F) HLA-DPA1, (G–H) HLA-
895 DPB1, (I–J) HLA-DQA1, (K–L) HLA-DQB1 of 50 individuals according to alleles. Mean expression of 
896 individual alleles is indicated by a solid bar and mean expression of all alleles is represented by the dotted 
897 line. Open circles correspond to homozygous individuals and black triangles to hemizygous individuals.
898

899 S2 Table. UMIs from Illumina cDNA data.
900
901 S3 Table. UMIs from Illumina amplicon data.
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902
903 S4 Table. UMIs from Nanopore data.
904

905
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