

1 **The role of BMP6 in the proliferation and differentiation of**

2 **chicken cartilage cells**

3 Fei Ye, Hengyong Xu, Huadong Yin, Xiaoling Zhao, Diyan Li, Qing Zhu, Yan Wang*

4 Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road,

5 Chengdu 611130, China

6 * Corresponding author

7 E-mail: as519723614@163.com

8 **Abstract**

9 Previous studies have indicated that bone morphogenetic protein (BMP) 6 plays an important
10 role in skeletal system development and progression. However, the mechanism underlying the
11 effects of BMP6 in cartilage cell proliferation and differentiation remains unknown. In this
12 study, cartilage cells were isolated from shanks of chicken embryos and treated with different
13 concentrations of GH. Cell proliferation and differentiation potential was assessed using real-
14 time polymerase chain reaction (RT-PCR) and CCK-8 assays in vitro. The results showed that
15 at 48 h, the Collagen II and BMP6 expression levels in 50 ng/μl GH-treated cartilage cells were
16 significantly higher than in groups treated with 100 ng/μl or 200 ng/μl GH. We further observed
17 that knockdown of BMP6 in cartilage cells led to significantly decreased expression levels of
18 Collagen II and Collagen X. Moreover, the suppression of BMP6 expression by a specific
19 siRNA vector led to significantly decreased expression levels of IGF1R, JAK, PKC, PTH, IHH
20 and PTHrP. Taken together, our data suggest that BMP6 may play a critical role in chicken

21 cartilage cell proliferation and differentiation through the regulation of IGF1, JAK2, PKC, PTH,
22 and Ihh-PTHrP signaling pathways.

23 **Keywords:** Cartilage cells; *BMP6* gene; proliferation; differentiation; GH

24 **Introduction**

25 Bone morphogenetic proteins (BMPs) are secreted-type multifunctional proteins belonging to
26 the transforming growth factor (TGF)- β superfamily. Many studies have reported that BMPs
27 play very important roles in bone formation and cartilage induction in both vertebrates and
28 invertebrates [1, 2]; moreover, they are also considered crucial molecules involved in cell
29 growth, differentiation, chemotaxis and apoptosis during embryonic development and postnatal
30 tissue remodeling [3]. BMPs stimulate target cells mainly through their specific type I and type
31 II receptors on the cell membrane. When signal transduction occurs, BMPs usually combine
32 with the type II receptor, then increase the expression and activation of receptor type I [4, 5].
33 BMPs first bind to the receptors on the membrane and transmit this signal through the Smads
34 pathway to promote the differentiation of chondrocytes into the osteogenic lineage [6]. In
35 addition to the Smads signaling pathway, other signaling pathways can also transmit signals
36 from the BMP family, such as mitogen-activated protein kinase (MAPK) pathways [7, 8].

37 In the BMP family, BMP2, 4 and 6 are all thought to play the most important roles in
38 skeletogenesis. Many studies have suggested that BMP2 is a pivotal signal for the regulation of
39 osteoblastogenesis [9]. Mas et al [10] also showed that BMP2 promotes the expression of Ihh
40 in anterior hypertrophic chondrocytes and the proliferation of chondrocytes. BMP6 is mainly
41 expressed in cartilaginous tissue, where it stimulates mesenchymal cell differentiation into

42 chondrocytes and promote the synthesis of chondrocytes and articular cartilage-specific
43 glycoproteins [11]. BMP6 can also induce the differentiation of MSCs into chondrocytes [12].
44 In BMPs, BMP6 is a strong factor for bone induction [13]. In addition to the differentiation of
45 MSCs, chondrocytes can be derived from BMSCs, ADSCs and other stem cells induced by
46 BMP6 [14-16]. These findings indicate that BMP6 is an important regulator of bone and
47 cartilage cell proliferation and differentiation. However, the biological activity of BMP6 in
48 cartilage cell proliferation and differentiation, as well as related signaling pathways, has
49 remained unclear. Therefore, a further understanding of the molecular mechanism of BMP6 in
50 cartilage is urgently needed.

51 In this study, we first extracted and cultured cartilage cells from different breeds of chickens,
52 and we then investigated the expression of BMP6 and the changes in expression of key genes
53 involved in related signaling pathways through GH-mediated induction at different
54 concentrations to determine its potential role in cell proliferation and differentiation. Finally, to
55 explore the mechanism of BMP6-mediated effects on the proliferation and differentiation of
56 cartilage cells, we modulated the expression of BMP6 through siRNA and measured its effects
57 by quantitative real-time PCR analysis. Collectively, this study provides evidence that within
58 cartilage cells, BMP signaling regulates genes associated with both cell proliferation and
59 differentiation.

60 **Materials and Methods**

61 **Animals**

62 Avian broiler and Yellow bantam chickens, which have major differences, were used in this

63 study. Avian broilers were provided by the Zheng Da Company (Chengdu, China). Yellow
64 bantam chickens were provided by the Jin Ling Company (Guangzhou, China). All animal
65 studies were performed in accordance with appropriate guidelines. All experimental protocols
66 were approved by the Committee on Experimental Animal Management of Sichuan
67 Agricultural University, permit number 2014-18.

68 **Cell culture**

69 The eggs were incubated for 15 days after sterilization. Primary cartilage cells were isolated
70 from the shank of 15-day-old chicken embryos with 0.25% trypsin (Gibco, USA), digestion for
71 0.5 h and then 0.1% collagenase II (Gibco, USA) for 1.5 h at 37°C under sterile conditions.
72 The cells were grown in DMEM/F12 medium (Gibco, USA) supplemented with 10% fetal
73 bovine serum (FBS, Gibco, USA), 100 U/ml penicillin and 100 U/ml streptomycin (Gibco,
74 USA) in a humidified atmosphere of 5% CO₂ at 37°C.

75 **Immunofluorescence**

76 Cartilage cells were fixed in 4% paraformaldehyde for 20 min after adhering for 24 h in the
77 incubator and were then washed three times in PBS, 5 min per wash. The cells were
78 permeabilized with 0.5% Triton-X-100 (Gibco, USA) for 15 min at room temperature and then
79 washed three times in PBS, 5 min per wash. The cells were blocked with Blocking buffer (Bio-
80 Rad, USA) for 2 h at 37°C and then washed as above. The cells were incubated in PBS
81 containing an antibody towards type II collagen (1:1000) (Abcam, USA) overnight at 4°C. The
82 following day, the cells were washed as described above and incubated in PBS containing IgG
83 (1:250) (Abcam, USA) for 2 h at 37°C under dark conditions. After washing three times, the

84 cells were counterstained with DAPI. Photomicrographs were taken using an Olympus digital
85 camera system.

86 **Cell viability assay**

87 Cell proliferation activity was evaluated via Cell Counting Kit-8 assay (CCK8, Bioss, China).
88 At different time points, the medium was replaced with 100 μ l of fresh medium containing 10
89 μ l of CCK8. Three hours after the addition of CCK8, cell viability was determined with a
90 microplate reader (Thermo Electron, USA) at a wavelength of 450 nm. All plates had control
91 wells containing medium without cells to obtain a value for background luminescence, which
92 was subtracted from the test sample readings. Each experiment was performed in triplicate.

93 **Cell treatments**

94 Cells were treated with 0 ng/ μ l, 50 ng/ μ l, 100 ng/ μ l, and 200 ng/ μ l GH while cells were grown
95 to 80% confluence. Cells were harvested after transfection for 24 h, 48 h, and 72 h. Each
96 experiment was performed in triplicate.

97 Two siRNAs were designed based on the sequence from NCBI (XM-418956.4) and are listed
98 in Table 1. The cartilage cells were grown to 80% confluence and transfected with 5 μ l of
99 Lipofectamine 2000 (Invitrogen, USA) and 5 μ l of siRNA (Sangon Biotech, China) according
100 to the manufacturer's instructions. Cells were harvested after transfection at 24 h, 48 h, and 72
101 h. Each experiment was performed in triplicate.

102 **Table 1: Sequences of siRNA targeting the BMP6 gene**

103 **RNA Extraction and qRT-PCR**

104 Total RNA was extracted from cells using the RNAiso plus Reagent (Takara, Japan) according
105 to the manufacturer's instructions. The first-strand cDNA was synthesized using the
106 PrimeScript™ RT reagent Kit reverse transcriptase (Takara, Japan) with 1 µg of total RNA
107 according to the manufacturer's instructions. β -actin was chosen as an internal standard to
108 control for variability in amplification due to differences in the starting mRNA concentrations.
109 The forward and reverse primer sequences used to amplify the genes were designed according
110 to the sequence retrieved from the NCBI and listed in Table 2. Quantitative PCR was performed
111 using SYBR Green PCR technology with a Bio-Rad CFX Connect Real Time System (Bio-
112 Rad, USA). PCR was performed at 98°C for 120 s, followed by 40 amplification cycles (98°C
113 for 2 s, X°C for 15 s, 72°C for 10 s), followed by 65°C to 95°C per second and then 4°C forever.
114 The relative gene expression level was calculated using the $2^{-\Delta\Delta C_T}$ method. All PCR runs were
115 performed in triplicate.

116 **Table 2: Primer sequences for qRT-PCR**

117 **Statistical analyses**

118 All cell culture experiments were performed a minimum of three times. Statistical analyses
119 were conducted using SAS 8.0 software for Windows. All data are expressed as means \pm SEM,
120 and statistical analysis was performed using Student's t-test. P-values < 0.05 were considered
121 statistically significant.

122 **Results**

123 **Immunofluorescence of cartilage cells**

124 Collagen II as a special marker for cartilage cells was imaged in cartilage cells isolated from

125 avian broiler and yellow bantam chickens, and the cells morphologies of the two breeds was
126 consistent (Fig 1). These results indicate that the cells we cultured were cartilage cells.

127 **Fig 1: Immunofluorescence of markers in cartilage cells.** Nuclei stained with DAPI are
128 shown in the left panels. The pictures above indicated that staining of the cells for the marker
129 collagen II was positive. The merged images are shown in the right-most panels. Scale bar =
130 100 μ m.

131 **Growth Kinetics of cartilage cells of the two breeds**

132 The growth kinetics of the cartilage cells from the two breeds at different timepoints are shown
133 by the growth curves. Avian broiler cartilage cells entered the logarithmic phase after
134 approximately 3 days, which ended at the ninth day, whereas yellow bantam cartilage cells
135 entered the logarithmic after approximately 4 days and ended at the tenth day. Over additional
136 days, the ability of cells to grow decreased (Fig 2).

137 **Fig 2: Growth curves of chicken cartilage cells.** The growth curves of cells were typically
138 sigmoidal, with cell density reflected by the vertical axis. The growth curve consisted of a latent
139 phase, a logarithmic phase, and a plateau phase (n=3).

140 **Expression of *BMP6* mRNA in cartilage cells of the two chicken 141 breeds**

142 The relative expression level of BMP6 mRNA was detected in cartilage cells from avian
143 broilers and yellow bantams at day 0, day 1, day 2, day 3, day 4, and day 5 according to the
144 growth curves of cells (Fig 3). Real-time PCR experiments showed that the cellular expression
145 of BMP6 significantly ($P < 0.05$) increased at the fourth day and fifth day, which was consistent
146 with the growth curves.

147 **Fig 3: The relative expression level of BMP6 in cartilage cells of avian broilers and yellow**
148 **bantams at different days.** All values are presented as the means \pm SEM (n=3). (*) represents
149 statistical significance (P<0.05).

150 **Expression of *BMP6* mRNA after GH induction**

151 Based on the growth curves and the relative expression of BMP6 mRNA in cartilage cells of
152 avian broilers and yellow bantams, we selected cartilage cells of avian broilers for induction by
153 GH and interference by siRNA targeting BMP6. Collagen II, a special marker for cartilage
154 cells, was detected in cartilage cells after GH-induction. Relative to the β -actin gene, the
155 expression levels of BMP6 mRNA varied considerably at different times (Fig 4). As seen from
156 the results (Fig 4(A)), the proliferation of cartilage cells in the three treatment groups at 24 h
157 and 72 h was not significantly higher than that in the blank treatment group (P<0.05). However,
158 at 48 h, the proliferation of cartilage cells was significantly elevated in the treatment group
159 compared to that of the blank group, 100 ng/ μ l and 200 ng/ μ l groups (P<0.05). These results
160 indicated that 50 ng/ μ l GH was the most sensitive to the proliferation induction of cartilage
161 cells. The relative expression levels of BMP6 mRNA in cartilage cells after induction are shown
162 in Fig 4 (B). In the 50 ng/ μ l- and 100 ng/ μ l-treatment groups, the expression of BMP6 mRNA
163 was significantly increased relative to the blank treatment group and 200 ng/ μ l at 48 h, which
164 was consistent with the expression of Collagen II mRNA (P<0.05). This showed that the
165 expression of BMP6 mRNA was significantly increased in the process of proliferation of
166 cartilage cells.

167 **Fig 4: The relative expression of Collagen II (A) and BMP6 (B) mRNA in cartilage cells**
168 **after GH induction.** All values are represented as the means \pm SEM (n=3). (*) represent
169 statistical significance (P<0.05).

170 **The interference efficiency of the two siRNAs**

171 It can be seen from Fig 5 that the relative expression of BMP6 mRNA of cartilage cells after
172 interference with siBMP6.1 and siBMP6.2 at 24 h was not significantly ($P>0.05$) different from
173 the control group, indicating that the efficiency of siRNA interference was not reflected at this
174 time. At 48 h, the expression levels of BMP6 mRNA in the treatment groups were significantly
175 ($P<0.05$) decreased, to 25% and 25%, respectively, compared with the control group. At 72 h,
176 the expression levels of BMP6 mRNA in the siRNA groups were significantly ($P<0.05$)
177 decreased, to 34% and 29%, respectively, compared with the control group. The interference
178 efficiency of the two siRNAs at 48 h and 72 h were marked and stable, indicating their utility
179 for subsequent experiments.

180 **Fig 5: The interference efficiency of the two siRNAs.** All values represent means \pm SEM
181 ($n=3$). (*) represents statistical significance ($P<0.05$).

182 **The expression levels of *Collagen II* and *Collagen X* mRNA after 183 interference with *BMP6***

184 Collagen II and Collagen X have been suggested to be important regulators of chondrocyte
185 proliferation and differentiation. We therefore further measured their gene expression levels
186 after interfering with BMP6 expression. As shown in Fig 6, we found that at 48 h and 72 h after
187 interference with BMP6, the Collagen II and Collagen X mRNA expression levels in
188 chondrocytes were significantly lower than in the control group ($P < 0.05$).

189 **Fig 6: The relative expression levels of Collagen II and Collagen X mRNA in cartilage
190 cells after siRNA treatment.** All values are represented as the means \pm SEM ($n=3$). (*)
191 represents statistical significance ($P<0.05$).

192 **The expression levels of *IGF1R*, *JAK*, *PKC*, *PTH* and *PTHrP* mRNA
193 after interference with *BMP6***

194 Since IGF1, PKC, JAK2/STAT, Ihh/PTHrP and PTH signaling have been reported to affect the
195 proliferation and differentiation of chondrocytes, we further investigated whether BMP6 was
196 also involved in these processes. We used siRNA to knock down BMP6 gene expression in
197 plasmid-transfected cells. Real-time PCR analysis showed that transfecting chondrocytes with
198 BMP6-targeting siRNA resulted in a significant inhibition of expression of IGF1R, JAK, PKC,
199 PTH and PTHrP at 72 h (Fig 7). However, at 48 h, the relative expression of IGF1R, JAK, PKC,
200 PTH and PTHrP mRNAs had no significant ($P > 0.05$) differences between the treatment and
201 control cartilage cells, whereas the relative expression of IHH in the treatment groups was
202 significantly ($P < 0.05$) lower than in the control group.

203 **Fig 7: The relative mRNA expression of selected genes in cartilage cells after siRNA
204 treatment.** All values represent means \pm SEM (n=3). (*) represents statistical significance
205 ($P < 0.05$).

206 **Discussion**

207 Currently, studies regarding the BMP6 gene in chondrocytes have primarily focused on humans,
208 mice, rabbits and other mammals, with few studies focused on chickens. We used
209 immunofluorescence to identify and observe the cell morphology, used CCK8 assays to detect
210 the proliferation of cartilage cells and real-time PCR to detect the BMP6 mRNA expression in
211 cartilage cells cultured from avian broiler and yellow bantam chickens. Collagen II is a
212 representative protein indicating the proliferation of chondrocytes, and thus can be used as a
213 cell marker; many studies have examined the expression of type II collagen in the mandibular

214 condyle, using both immunohistochemistry and in situ hybridization techniques[17-24]. Our
215 results showed that the avian and yellow bantam cartilage cells had no significant difference.
216 According to these results, we selected cartilage cells cultured from avian chicken growth plates
217 to research the function of BMP6 for regulating the proliferation and differentiation of cartilage
218 cells.

219 GH is an important regulatory factor for longitudinal growth of the bone [25]. Local injection
220 of GH can increase the number of cartilage cells in rats [26]. The expression of GH can promote
221 the expression of Collagen II mRNA in cartilage cells and maintain a chondrocyte phenotype.
222 We used GH to induce the cartilage cells in order to detect the expression of BMP6 mRNA in
223 proliferative cells. The results showed that the sensitivity of cartilage cells to GH varied with
224 GH concentration. When cartilage cells proliferated, the expression of BMP6 was significantly
225 increased. Therefore, we speculated that BMP6 participates in the proliferation of cartilage cells.

226 RNA interference uses homologous double-stranded RNA (dsRNA) to induce the silencing of
227 specific target genes and block gene activity. SiRNA (small interfering RNA) is the
228 intermediate of RNA interference, which is necessary for the RNA interference and can
229 stimulate the complementary target mRNA silencing. Collagen X is specifically expressed in
230 hypertrophic chondrocytes [27]. In this experiment, two siRNAs were designed and synthesized
231 according to the BMP6 gene CDS region, and the expression of BMP6 mRNA was inhibited.
232 BMP6 was involved in the proliferation of cartilage cells, and, when the expression of BMP6
233 mRNA was suppressed in cartilage cells, the expression of Collagen II and Collagen X
234 mRNA—two marker genes representing the proliferation and differentiation of cartilage
235 cells—decreased in cartilage cells. These results showed that the proliferation and

236 differentiation of chondrocytes were both blocked following the disruption of the expression of
237 BMP6. Together with the previous results, we speculate that BMP6 is involved in the
238 proliferation and differentiation of cartilage cells, which is consistent with the existing research
239 findings.

240 IGF1 plays an important role in the growth and development of bone cells; it can regulate the
241 function of osteoblasts in various forms and participates in bone reconstruction. IGF1 can
242 significantly promote the proliferation of bone progenitor cells both in vivo and in vitro [28].

243 The signal transmission mediated by IGF1 is specifically induced by the IGF1R on the cell
244 surface, thus promoting the growth, differentiation and apoptosis of tissue cells. To explore
245 whether IGF1R is involved in the regulation of chondrocyte proliferation and differentiation of
246 BMP6, the expression of IGF1R mRNA was detected while using RNAi technology to interfere
247 with the expression of BMP6. When the expression of BMP6 was inhibited, the expression of
248 IGF1R was also inhibited. Therefore, we speculate that BMP6 has a regulatory effect on IGF1.

249 JAK2 is a common signaling pathway induced by multiple cytokine- and growth factor-
250 mediated signaling within cells [29]. When JAK activity is inhibited, osteoarthritis articular
251 chondrocytes can reproduce and differentiate normally [30]. Interleukin-6 and interleukin-7 can
252 induce cartilage cell activity through the JAK2/STAT signaling pathway [31, 32]. It has been
253 found that BMP7 can promote osteogenic differentiation of osteoblasts through JAK2/STAT5B
254 signaling [33], and we hypothesized that BMP6 may regulate the proliferation and
255 differentiation of chondrocytes through the JAK2/STAT signaling pathway. To explore
256 whether JAK2 is involved in the regulatory effects of BMP6 on the proliferation and
257 differentiation of cartilage cells, we used RNAi technology to interfere with the expression of

258 BMP6 and subsequently detect the expression of JAK2 in the JAK2/STAT signaling pathway.
259 Our results showed that the expression of JAK2 was also inhibited when the expression of
260 BMP6 was decreased. We hypothesize that BMP6 has regulatory effects on JAK2 expression.

261 PKC is an important substance in cell signal transduction pathways and participates in the
262 process of proliferation and differentiation of chondrocytes; it is one of the important signal
263 transducers affecting the growth and development of cartilage and its eventual degeneration
264 [34]. PKC signaling and multiple other signaling pathways participate in IGF1 induction of
265 chondrocyte proliferation and differentiation [35]. Estrogen and vitamin D-mediated signaling
266 depends on the PKC α pathway to regulate the activity of cartilage cells [36]. To explore whether
267 PKC is involved in the BMP6-mediated regulation of the proliferation and differentiation of
268 cartilage cells, we used RNAi technology to interfere with the expression of BMP6 and detect
269 the subsequent expression of PKC. Our results showed that PKC expression was inhibited when
270 the expression of BMP6 was inhibited. We hypothesize that PKC is involved in the regulation
271 of chondrocyte proliferation and differentiation mediated by BMP6.

272 The main function of PTH is to regulate Ca $^{2+}$ and Phosphorous metabolism and promote bone
273 absorption. PTH stimulates the expression of Collagen II in cartilage cells [37]. A previous
274 study found that PTH interacts with the TGF-beta signaling pathway at the receptor level [38].
275 BMP6 belongs to the TGF-beta family, therefore we speculated that PTH may participate in the
276 regulation of chondrocytes by BMP6. We used RNAi technology to interfere with the
277 expression of BMP6 and detected subsequent PTH expression. Our results showed that PTH
278 expression was also inhibited when the expression of BMP6 was inhibited. We hypothesize that
279 PTH participates in the regulation of chondrocyte proliferation and differentiation by BMP6.

280 Ihh/PTHrP signaling is important in bone development regulation, modulating the
281 differentiation of chondrocytes and osteoblasts, maintaining the cartilage cell proliferation state
282 [39] and determining the length of the growth plate cartilage by regulating the bone longitudinal
283 growth rate [40, 41]. PTHrP can inhibit osteoblast differentiation by down-regulating BMP2
284 expression [41]. We hypothesized that the Ihh/PTHrP signaling pathway may be involved in
285 the regulation by BMP6 of chondrocytes. We used RNAi technology to interfere with the
286 expression of BMP6 and detect the subsequent expression of Ihh and PTHrP. Our results
287 showed that the expression of Ihh and PTHrP mRNA was also inhibited when the expression
288 of BMP6 mRNA was decreased. The Ihh/PTHrP signaling pathway participates in the
289 regulation by BMP6 of the proliferation and differentiation of cartilage cells.

290 BMP6 belongs to the TGF β family, and current research indicates that the regulation of
291 chondrocytes is mainly achieved through the Smad signaling pathway of TGF β [42]. BMP2,
292 BMP9 and BMP6 belong to the BMP family. BMP2 can increase the proliferation of
293 chondrocytes and the elongation of chondrocytes by inducing the expression of Ihh [10]. BMP9
294 and GH can synergize the osteogenic differentiation of mesenchymal stem cells through the
295 JAK/STAT/IGF1 signaling pathway. As one of the strongest members of the BMPs family,
296 BMP6 may regulate the proliferation and differentiation of chondrocytes through other
297 signaling pathways in addition to the Smad signaling pathway. Therefore, we analyzed the
298 IGF1/JAK/PKC/PTH/Ihh-PTHrP signaling pathways, which play important roles in the process
299 of proliferation and differentiation of cartilage cells, and detected the expression changes of
300 several key genes (IGF1R, JAK2, PKC, PTH, Ihh, PTHrP) in these signaling pathways when
301 the expression of BMP6 mRNA was inhibited. The results collectively showed that the

302 expression of these genes decreased significantly. IGF1/JAK/PKC/PTH/Ihh-PTHrP are
303 involved in the regulation by BMP6 of the proliferation and differentiation of cartilage cells.

304 Conclusion

305 There was no significant difference in cartilage cells cultured from different chicken breeds.
306 BMP6 was highly expressed when cartilage cells proliferated. When the expression of BMP6
307 mRNA was decreased, the proliferation and differentiation of chondrocytes was blocked,
308 indicating that BMP6 is involved in the proliferation and differentiation of cartilage cells. The
309 expression levels of key genes involved in the IGF1R, JAK2, PKC, PTH, IHH and PTHrP
310 signaling pathways were significantly lower in cartilage cells when the expression of BMP6
311 mRNA was decreased. These key genes involved in signaling pathways were involved in the
312 regulation by BMP6 of the proliferation and differentiation of cartilage cells.

313 Acknowledgments

314 Conceived and designed the experiments: Y.W. and Q.Z.; Performed the experiments: F.Y.,
315 H.Y.X., H.D.Y.; Analyzed the data: F.Y.; Contributed reagents/materials/analysis tools: H.Y.X.,
316 D.Y.L., X.L.Z.; Wrote the paper: F.Y.; Revised the manuscript: Y.W. and Q.Z.

317 Conflict of interest statement

318 The authors declare no conflicts of interest.

319 References

- 320 1. Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Developmental cell. 2002;2(4):389-406.
- 321 2. Zuscik MJ, Hilton MJ, Zhang X, Chen D, O'Keefe RJ. Regulation of chondrogenesis and chondrocyte
322 differentiation by stress. The Journal of clinical investigation. 2008;118(2):429-38.
- 323 3. Sandell LJ, Nalin AM, Reife RA. Alternative splice form of type II procollagen mRNA (IIA) is predominant in
324

325 skeletal precursors and non - cartilaginous tissues during early mouse development. *Developmental dynamics*.
326 1994;199(2):129-40.

327 4. Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, et al. Activin receptor-like kinase 1 modulates
328 transforming growth factor- β 1 signaling in the regulation of angiogenesis. *Proceedings of the National Academy
329 of Sciences*. 2000;97(6):2626-31.

330 5. Miyazono K, Miyazawa K. Id: a target of BMP signaling. *Science signaling*. 2002;2002(151):pe40-pe.

331 6. Vukicevic S, Grgurevic L. BMP-6 and mesenchymal stem cell differentiation. *Cytokine & growth factor
332 reviews*. 2009;20(5-6):441-8.

333 7. Li C, Yang X, He Y, Ye G, Li X, Zhang X, et al. Bone morphogenetic protein-9 induces osteogenic differentiation
334 of rat dental follicle stem cells in P38 and ERK1/2 MAPK dependent manner. *International journal of medical
335 sciences*. 2012;9(10):862-71.

336 8. Sheu S-Y, Tsai C, Sun J, Chen M, Liu M, Sun M. Stimulatory effect of puerarin on bone formation through co-
337 activation of nitric oxide and bone morphogenetic protein-2/mitogen-activated protein kinases pathways in mice.
338 *Chinese medical journal*. 2012;125(20):3646-53.

339 9. Farnum CE, Wilsman NJ. Cellular turnover at the chondro - osseous junction of growth plate cartilage:
340 Analysis by serial sections at the light microscopical level. *Journal of orthopaedic research*. 1989;7(5):654-66.

341 10. Uyama Y, Yagami K, Hatori M, Kakuta S, Nagumo M. Recombinant human bone morphogenetic protein - 2
342 promotes Indian hedgehog - mediated osteo - chondrogenic differentiation of a human chondrocytic cell line in
343 vivo and in vitro. *Differentiation*. 2004;72(1):32-40.

344 11. Cook SD, Rueger DC. Osteogenic protein-1: biology and applications. *Clinical orthopaedics and related
345 research*. 1996;324:29-38.

346 12. de Mara CS, Duarte A, Sartori-Cintra A, Luzo A, Saad ST, Coimbra I. Chondrogenesis from umbilical cord
347 blood cells stimulated with BMP-2 and BMP-6. *Rheumatology international*. 2013;33(1):121-8.

348 13. Choi S, Cho T-J, Kwon S-K, Lee G, Cho J. Chondrogenesis of periodontal ligament stem cells by transforming
349 growth factor-&bgr; 3 and bone morphogenetic protein-6 in a normal healthy impacted third molar. *International
350 journal of oral science*. 2013;5(1):7-13.

351 14. Liu Y, Buckley CT, Mulhall KJ, Kelly DJ. Combining BMP-6, TGF- β 3 and hydrostatic pressure stimulation
352 enhances the functional development of cartilage tissues engineered using human infrapatellar fat pad derived
353 stem cells. *Biomaterials Science*. 2013;1(7):745-52.

354 15. Estes BT, Wu AW, Guilak F. Potent induction of chondrocytic differentiation of human adipose - derived
355 adult stem cells by bone morphogenetic protein 6. *Arthritis & Rheumatism*. 2006;54(4):1222-32.

356 16. Kayabaşı GK, Tigli Aydin RS, Gümüşderelioğlu M. In vitro chondrogenesis by BMP6 gene therapy. *Journal of
357 Biomedical Materials Research Part A*. 2013;101(5):1353-61.

358 17. Silbermann M, von der Mark K. An immunohistochemical study of the distribution of matrical proteins in
359 the mandibular condyle of neonatal mice. I. Collagens. *Journal of anatomy*. 1990;170:11.

360 18. Mizoguchi I, Nakamura M, Takahashi I, Kagayama M, Mitani H. A comparison of the immunohistochemical
361 localization of type I and type II collagens in craniofacial cartilages of the rat. *Cells Tissues Organs*.
362 1992;144(1):59-64.

363 19. SHIBATA S, FUKADA K, SUZUKI S, YAMASHITA Y. Immunohistochemistry of collagen types II and X, and
364 enzyme-histochemistry of alkaline phosphatase in the developing condylar cartilage of the fetal mouse mandible.
365 *The Journal of Anatomy*. 1997;191(4):561-70.

366 20. Luder HU, Leblond C, Von Der Mark K. Cellular stages in cartilage formation as revealed by morphometry,
367 radioautography and type II collagen immunostaining of the mandibular condyle from weanling rats.
368 *Developmental Dynamics*. 1988;182(3):197-214.

369 21. Visnapuu V, Peltomäki T, Säämänen A, Rönning O. Collagen I and II mRNA distribution in the rat
370 temporomandibular joint region during growth. *Journal of craniofacial genetics and developmental biology*.
371 2000;20(3):144-9.

372 22. Ohashi N, Ejiri S, Hanada K, Ozawa H. Changes in type I, II, and X collagen immunoreactivity of the
373 mandibular condylar cartilage in a naturally aging rat model. *Journal of bone and mineral metabolism*.
374 1997;15(2):77-83.

375 23. FUKADA K, SHIBATA S, SUZUKI S, OHYA K, KURODA T. In situ hybridisation study of type I, II, X collagens and
376 aggrecan mRNAs in the developing condylar cartilage of fetal mouse mandible. *The Journal of Anatomy*.
377 1999;195(3):321-9.

378 24. Mizoguchi I, Nakamura M, Takahashi I, Kagayama M, Mitani H. An immunohistochemical study of
379 localization of type I and type II collagens in mandibular condylar cartilage compared with tibial growth plate.
380 *Histochemistry*. 1990;93(6):593-9.

381 25. Gevers EF, Van Der Eerden BC, Karperien M, Raap AK, Robinson IC, Wit JM. Localization and regulation of
382 the growth hormone receptor and growth hormone - binding protein in the rat growth plate. *Journal of Bone*
383 *and Mineral Research*. 2002;17(8):1408-19.

384 26. Dos Santos C, Essioux L, Teinturier C, Tauber M, Goffin V, Bougnères P. A common polymorphism of the
385 growth hormone receptor is associated with increased responsiveness to growth hormone. *Nature genetics*.
386 2004;36(7):720-4.

387 27. Aigner T, Greskötter K-R, Fairbank J, Von Der Mark K, Urban J. Variation with age in the pattern of type X
388 collagen expression in normal and scoliotic human intervertebral discs. *Calcified tissue international*.
389 1998;63(3):263-8.

390 28. Kasukawa Y, Stabnov L, Miyakoshi N, Baylink DJ, Mohan S. Insulin - Like Growth Factor I Effect on the
391 Number of Osteoblast Progenitors Is Impaired in Ovariectomized Mice. *Journal of Bone and Mineral Research*.
392 2002;17(9):1579-87.

393 29. Ghoreschi K, Laurence A, O'Shea JJ. Janus kinases in immune cell signaling. *Immunological reviews*.
394 2009;228(1):273-87.

395 30. van Beuningen HM, de Vries-van Melle ML, Vitters EL, Schreurs W, van den Berg WB, van Osch GJ, et al.
396 Inhibition of TAK1 and/or JAK can rescue impaired chondrogenic differentiation of human mesenchymal stem
397 cells in osteoarthritis-like conditions. *Tissue Engineering Part A*. 2014;20(15-16):2243-52.

398 31. Yammani RR, Long D, Loeser RF. Interleukin - 7 stimulates secretion of S100A4 by activating the JAK/STAT
399 signaling pathway in human articular chondrocytes. *Arthritis & Rheumatism*. 2009;60(3):792-800.

400 32. Aida Y, Honda K, Tanigawa S, Nakayama G, Matsumura H, Suzuki N, et al. IL - 6 and soluble IL - 6 receptor
401 stimulate the production of MMPs and their inhibitors via JAK—STAT and ERK—MAPK signalling in human
402 chondrocytes. *Cell biology international*. 2012;36(4):367-76.

403 33. Joung YH, Lim EJ, Darvin P, Jang JW, Park KD, Lee HK, et al. Hwanggeumchal sorghum extract enhances
404 BMP7 and GH signaling through the activation of Jak2/STAT5B in MC3T3-E1 osteoblastic cells. *Molecular*
405 *medicine reports*. 2013;8(3):891-6.

406 34. Nakajima T. Positive and negative regulation of radiation-induced apoptosis by protein kinase C. *Journal of*
407 *radiation research*. 2008;49(1):1-8.

408 35. Ciarmatori S, Kiepe D, Haarmann A, Huegel U, Tönshoff B. Signaling mechanisms leading to regulation of
409 proliferation and differentiation of the mesenchymal chondrogenic cell line RCJ3. 1C5. 18 in response to IGF-I.
410 *Journal of molecular endocrinology*. 2007;38(4):493-508.

411 36. Boyan B, Schwartz Z. Rapid vitamin D-dependent PKC signaling shares features with estrogen-dependent
412 PKC signaling in cartilage and bone. *Steroids*. 2004;69(8):591-7.

413 37. Siebuhr A, Gudmann N, Musa K, Kehlet S, Hansen G, Byrjalsen I, et al. AB0086 PTH Stimulates Cartilage
414 Formation in Low Turnover Patients—a Possible Systemic Anabolic Treatment for OA? Annals of the Rheumatic
415 Diseases. 2015;74(Suppl 2):919-.

416 38. Qiu T, Xian L, Crane J, Wen C, Hilton M, Lu W, et al. PTH receptor signaling in osteoblasts regulates
417 endochondral vascularization in maintenance of postnatal growth plate. Journal of Bone and Mineral Research.
418 2015;30(2):309-17.

419 39. Litherland GJ, Elias MS, Hui W, Macdonald CD, Catterall JB, Barter MJ, et al. Protein kinase C isoforms ζ and
420 ι mediate collagenase expression and cartilage destruction via STAT3-and ERK-dependent c-fos induction. Journal
421 of Biological Chemistry. 2010;285(29):22414-25.

422 40. Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE. Targeted overexpression of parathyroid
423 hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation.
424 Proceedings of the National Academy of Sciences. 1996;93(19):10240-5.

425 41. Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, et al. PTH/PTHRP receptor in early development
426 and Indian hedgehog-regulated bone growth. Science. 1996;273(5275):663-6.

427 42. Aref-Eshghi E, Liu M, Harper PE, Doré J, Martin G, Furey A, et al. Overexpression of MMP13 in human
428 osteoarthritic cartilage is associated with the SMAD-independent TGF- β signalling pathway. Arthritis research &
429 therapy. 2015;17(1):1-8.

430 **Supporting information**

431 **S1 Table 1: Sequences of siRNA targeting the BMP6 gene**

432 **S2 Table 2: Primer sequences for qRT-PCR**

433 **S1 Fig 1: Immunofluorescence of markers in cartilage cells.** Nuclei stained with DAPI are
434 shown in the left panels. The pictures above indicated that staining of the cells for the marker
435 collagen II was positive. The merged images are shown in the right-most panels. Scale bar =
436 100 μ m.

437 **S2 Fig 2: Growth curves of chicken cartilage cells.** The growth curves of cells were typically
438 sigmoidal, with cell density reflected by the vertical axis. The growth curve consisted of a latent
439 phase, a logarithmic phase, and a plateau phase (n=3).

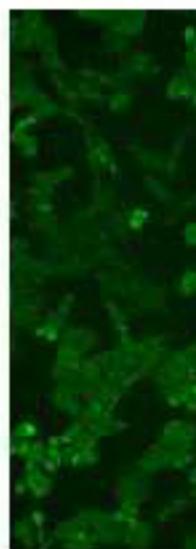
440 **S3 Fig 3: The relative expression level of BMP6 in cartilage cells of avian broilers and**
441 **yellow bantams at different days.** All values are presented as the means \pm SEM (n=3). (*)
442 represents statistical significance (P<0.05).

443 **S4 Fig 4: The relative expression of Collagen II (A) and BMP6 (B) mRNA in cartilage cells**
444 **after GH induction.** All values are represented as the means \pm SEM (n=3). (*) represent
445 statistical significance (P<0.05).

446 **S5 Fig 5: The interference efficiency of the two siRNAs.** All values represent means \pm SEM
447 (n=3). (*) represents statistical significance (P<0.05).

448 **S6 Fig 6: The relative expression levels of Collagen II and Collagen X mRNA in cartilage**
449 **cells after siRNA treatment.** All values are represented as the means \pm SEM (n=3). (*)
450 represents statistical significance (P<0.05).

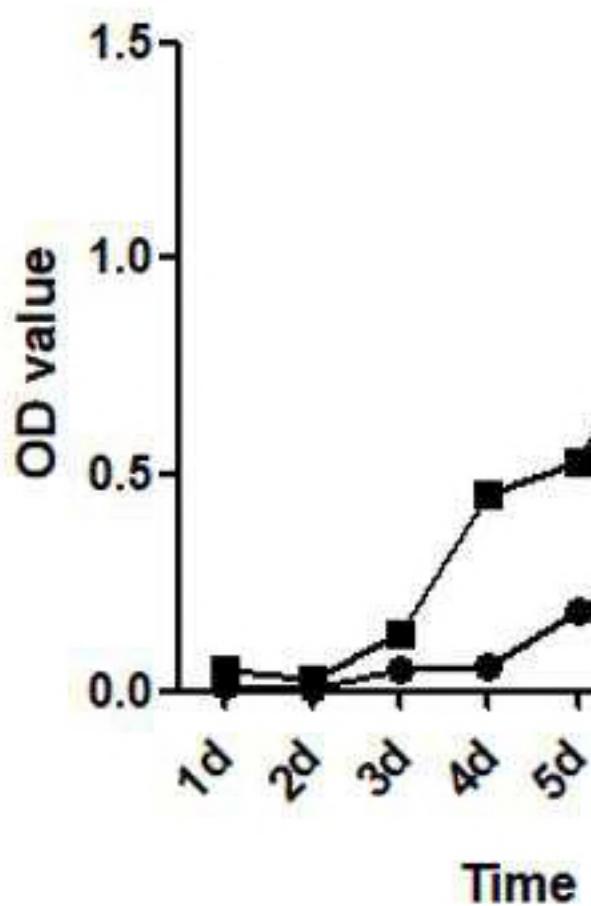
451 **S7 Fig 7: The relative mRNA expression of selected genes in cartilage cells after siRNA**
452 **treatment.** All values represent means \pm SEM (n=3). (*) represents statistical significance
453 (P<0.05).

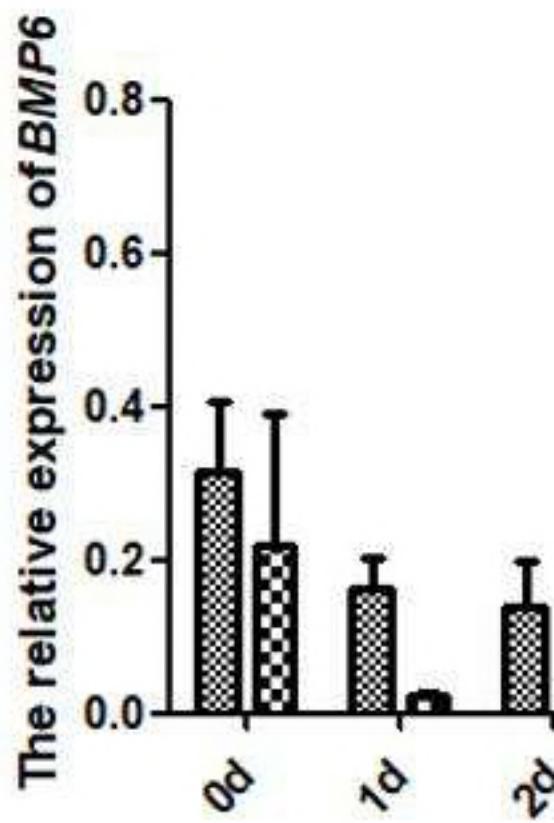

454

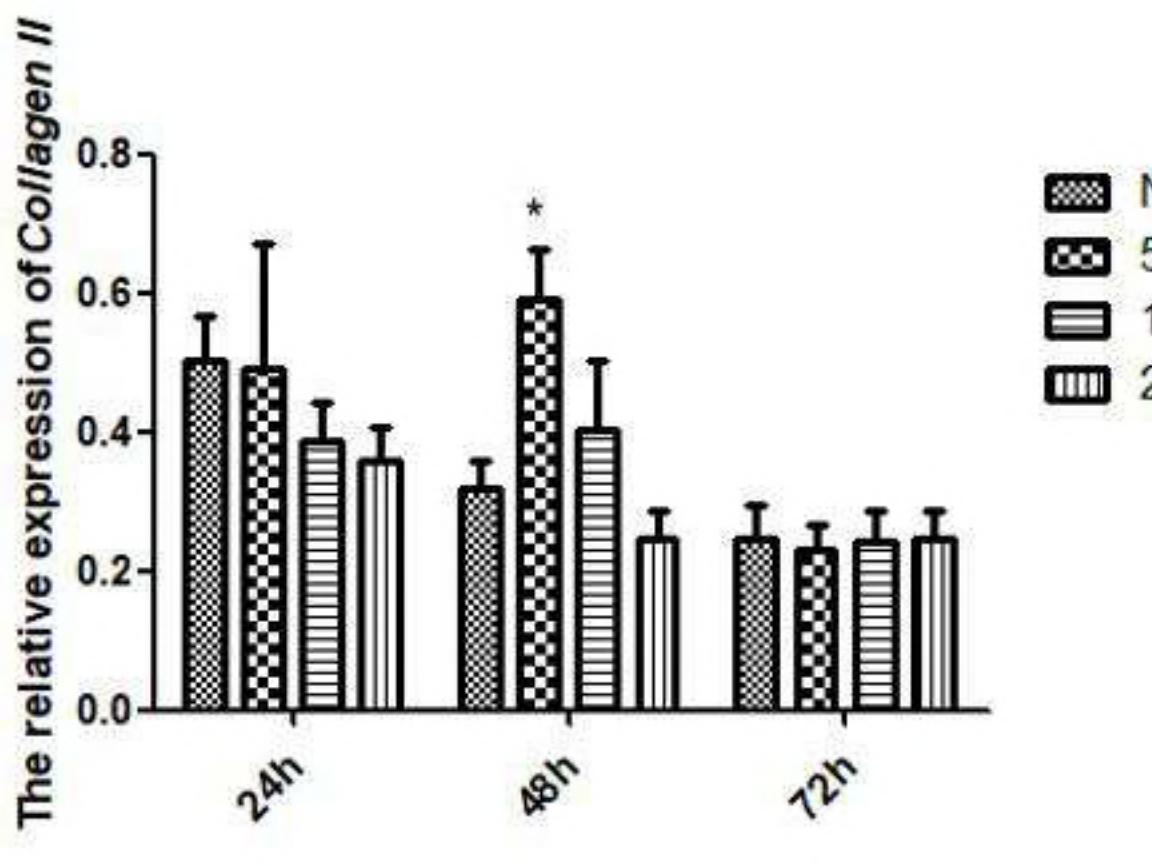
DAPI

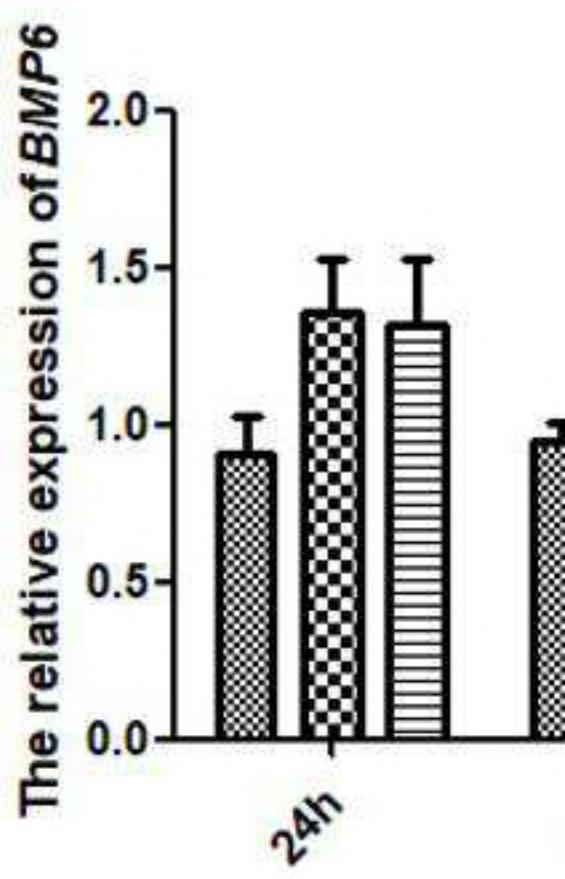


Avian broiler:

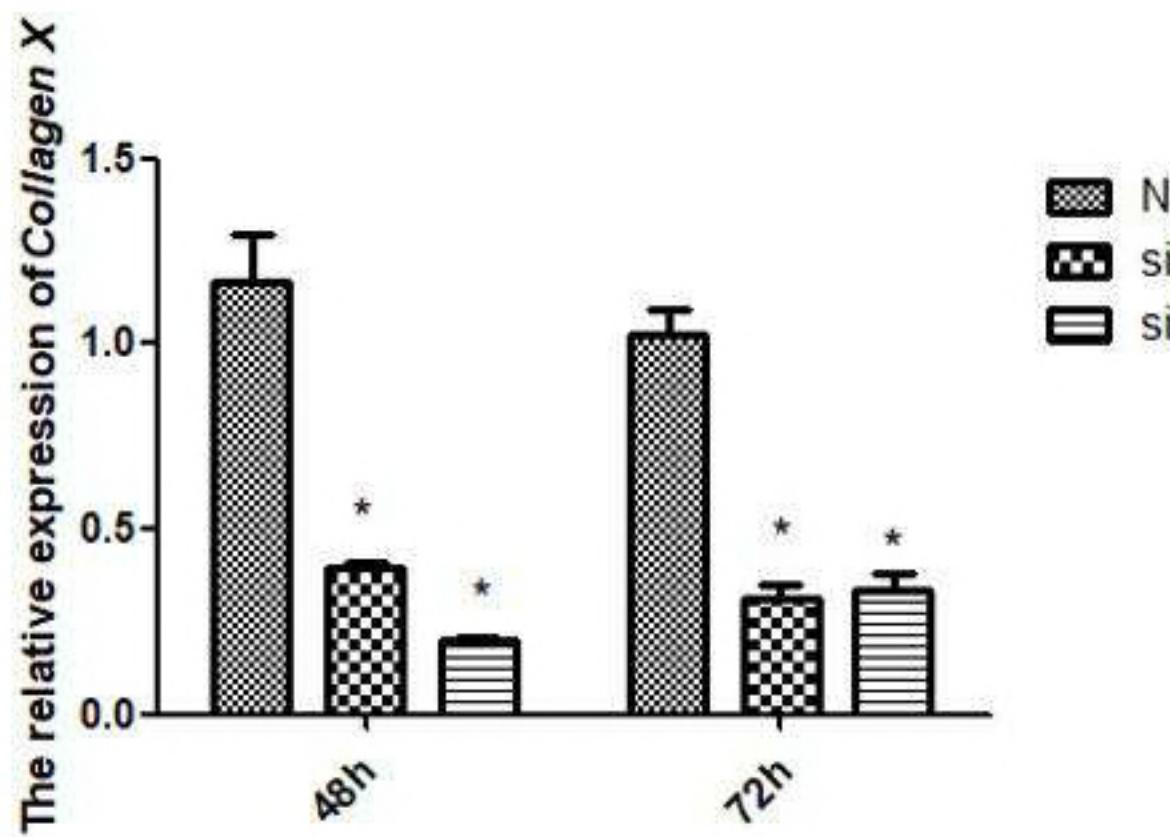

Flu


Yellow bantam:

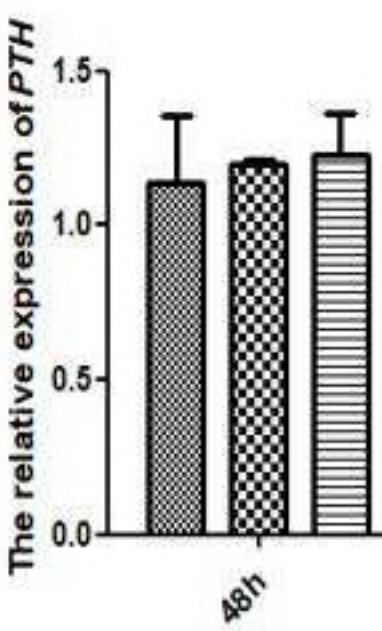
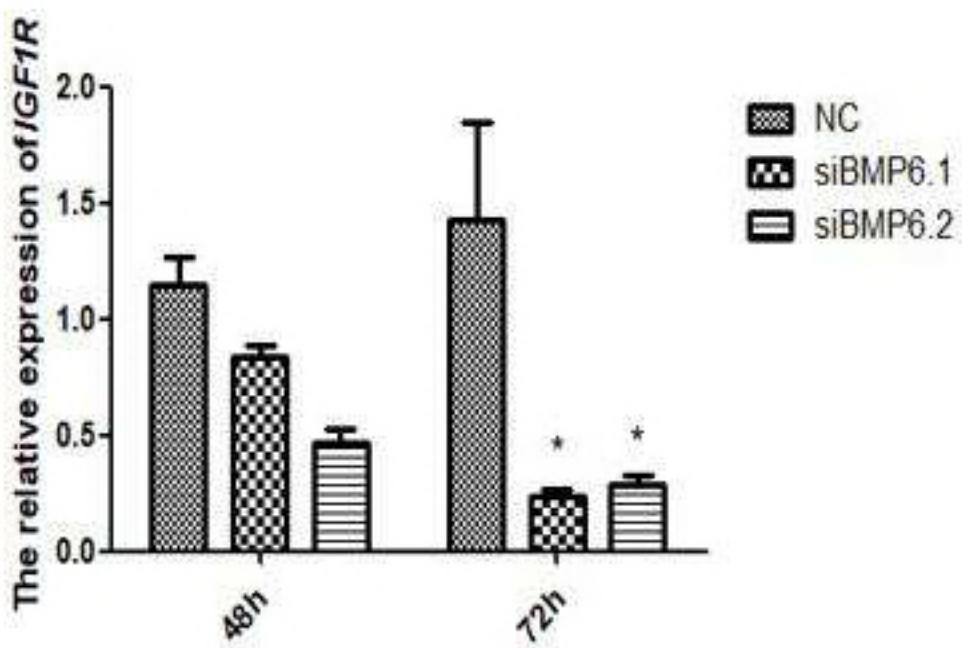
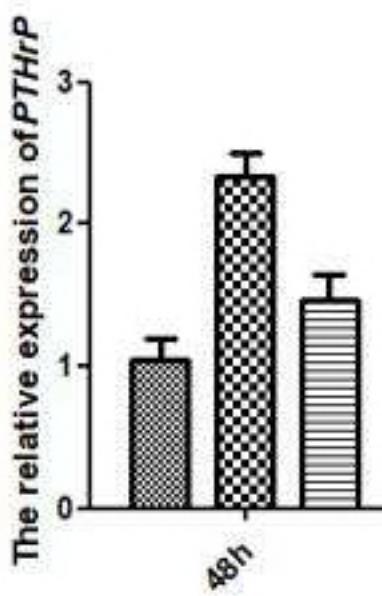
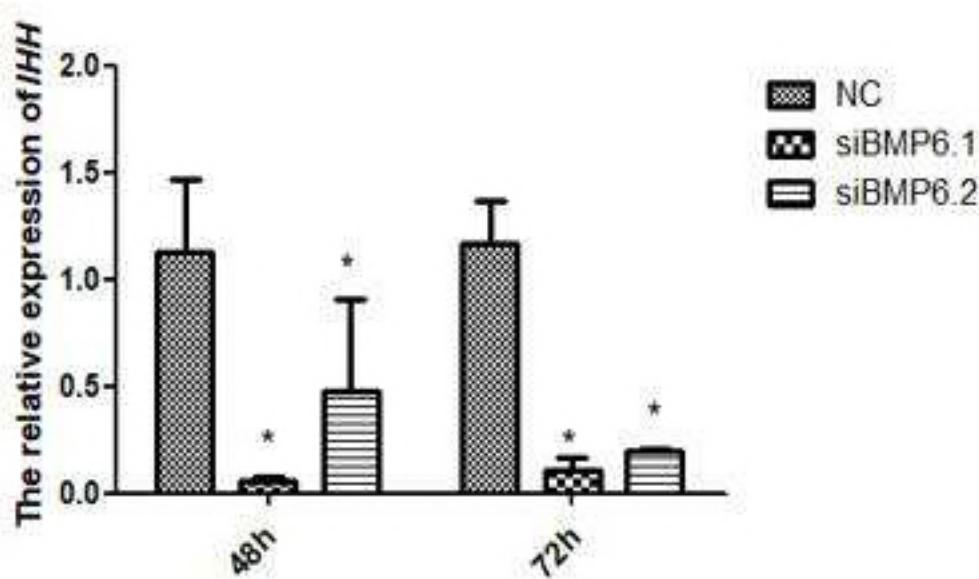

Flu



Figure



F

Fi

Fig

Figure