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Abstract

The left mid-ventral temporal cortex (ImVTC) plays a dynamic role in reading. In this study we
investigated the neural interactions that influence ImMVTC dynamics and the lexical information these
interactions are dependent on. We monitored activity with either intracranial electroencephalography
or magnetoencephalography while participants viewed real words, pseudowords, consonant strings, and
false fonts. A coarse level representation in early ImVTC activity allowed for decoding of visually
dissimilar real words, pseudowords, and false fonts. Functional interactions between anterior ventral
temporal regions, possibly containing stored knowledge about words, and low-order visual regions
occurred after this initial stage of processing and was followed by the individuation of orthographically
similar real words in ImVTC, but not similar pseudowords, letter strings, or false fonts. These results
suggest that the individuation of real word representations in ImVTC is catalyzed by stored knowledge
about word forms that emerges from network-level interactions with anterior regions of the temporal
lobe.


https://doi.org/10.1101/411579
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411579; this version posted September 25, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Introduction

A region in the left mid-ventral temporal cortex (ImVTC), sometimes referred to as the “Visual Word Form
Area (VWFA),” responds preferentially to words over other object categories'? and is thought to play a

4779 or stimulation of”1° the ImVTC can cause pure

key role in reading®®. It has been shown that damage to
alexia, and there is evidence that reading expertise shapes response properties of the ImVTC, including
differential activation to real words versus pseudowords (pronounceable but meaningless letter strings)'!~
17 However, there is still debate over the nature of orthographic representation in the ImVTC. Specifically,
does the ImVTC encode whole-words®'®19, sublexical features®’?>-2%, or purely visual statistics that are

preferentially fed into higher-order language centers>?#?

A recent intracranial electroencephalography (iEEG) study demonstrated that early activity in the ImVTC
only allowed the decoding of words that were orthographically dissimilar (hint vs. dome). The activity then
evolved in a way that also allowed orthographically similar real words (hint vs. lint) to be disambiguated
after 200 ms’. These results suggest that representations in the ImVTC are initially coarse but evolve over
time, eventually allowing for the disambiguation of orthographically similar word forms. However, the
degree to which this process is specific to known printed words, which have learned semantic and
phonological associations in addition to their visual properties, has not yet been determined. Further, it
is unknown if word individuation is achieved solely through hierarchical visual processing® or is instead
driven by interactions between the ImVTC and other parts of the language network that underpin
phonological and/or semantic knowledge about words!’2>%7,

The current study probes these questions by examining the ImVTC response to visually similar real words,
pseudowords (pronounceable but meaningless letter strings), consonant strings (meaningless and
unpronounceable letter strings), and false-fonts (orthographic stimuli of an unfamiliar alphabet) using
source-localized magnetoencephalography (MEG) and iEEG. We hypothesized that if the disambiguation
of orthographic representations in the ImVTC relies on learned semantic or phonological associations
inherent to real words, then orthographically similar pseudowords and/or consonant strings would not
be disambiguated by ImVTC activity. In contrast, if the refinement of ImVTC representation is independent
of learned semantic or phonological knowledge, then we would expect to see a similar disambiguation for
orthographically similar consonant strings and pseudowords. Additionally, we examined the functional
connectivity between ImVTC and the rest of the cortex during the transition between coarse and
individuated representations to assess the extent to which the disambiguation of orthographic
representations is a network-level process.

Our results demonstrate that ImVTC responses to real words, pseudowords, consonant strings and false
fonts allowed for reliable decoding of orthographically dissimilar stimuli from one another. However,
while orthographically similar real words could be discriminated from ImVTC activity from 200-350 ms,
orthographically similar pseudowords, consonant strings, and false fonts could not. Functional
connectivity analysis in MEG revealed increased phase-locking between the ImVTC and left anterior
temporal lobe and early visual cortex during the transition from these coarse to individuated real-word
representations. Taken together, these results support the idea of early, coarse ImVTC representations
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that subsequently evolve through interactions with visual and semantic networks to allow for the
disambiguation of orthographically similar real-words.

Methods

MEG data collection and preprocessing

Participants

16 participants gave written informed consent to participate in the MEG portion of the experiment
consistent with protocol approved by the University of Pittsburgh’s Internal Review Board. One
participant was removed from the analysis due to poor cortical surface reconstruction leaving 15 (5 males,
ages 19-29) for the remaining analyses.

Experimental Paradigm

First, a category localizer consisting of words, hammers, houses and false-fonts was administered to
identify word-selective cortical sources and constrain the word-individuation analysis. Then, a word
individuation task was administered to probe the dynamics of word representation across different types
of orthographic stimuli. For both the category localizer and word-individuation tasks stimuli were
presented via custom scripted code in Psychtoolbox? on a screen one meter in front of the participants.
Stimuli occupied approximately 6 x 6° of visual angle and were shown for 300 ms with a variable inter-
stimulus interval of approximately 1.5 s. One-sixth of the time a stimulus would be repeated, to which the
participant responded with a button press. These trials were removed from the subsequent analyses.
Three blocks of 140 trials each were performed for the category localizer and 5 blocks of 264 trials each
were performed for the word individuation task. In total there were 90 trials per stimulus category in the
category localizer and 30 trials per stimulus in the word-individuation task, after removing repeated trials.

In the word-individuation task, word and word-like stimuli consisted of four pairs of real words,
pseudowords, false-fonts (Old Hungarian alphabet) and consonant-strings each differing from each other
in only one symbol or letter within pairs. All false-fonts and consonant-strings had five symbols or letters,
pseudowords had either four of five letters, and words had either three or four letters. Decoding analysis
within stimulus categories were only performed across stimuli with the same number of letters and
symbols to prevent length effects. Real word stimuli were selected to have similar log frequency, mean
bigram frequency and bigram frequency by position across similar and dissimilar word pairs (measured
using the English Lexicon Project?®). Pseudowords were selected to have similar orthographic
neighborhood size and bigram frequency by position across similar and dissimilar pseudoword pairs.

Structural MRI acquisition and preprocessing

T1 structural MRIs were used to constrain the cortical source estimates of the current study. Images were
acquired with a Siemens 3T Tim Trio system scanner using a magnetization-prepared rapid acquisition
with gradient echo sequence (TR = 2100 ms, T1 = 1050 ms, TE = 3.42 ms. 8° flip angle, 256x256x192
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acquisition matrices, FOV = 256 mm, and 1 mm isotropic voxels). Cortical surface reconstructions were
extracted via Freesurfer°,

MEG acquisition, preprocessing, and source localization

MEG data were collected on an Elekta Neuromag VectorView MEG system (Elekta Oy, Helsinki, Finland)
with 306 sensors (triplets of two orthogonal gradiometers and one magnetometer). Data were sampled
at 1000 Hz with simultaneous recording of head position, electrooculogram, and electrocardiogram which
were all corrected for off-line. The data were processed with temporal signal-space separation®, a 1-50
Hz bandpass filter, and down-sampled to 250 Hz for subsequent analyses.

Minimum norm estimate (MNE) software3? was used to project the sensor data onto Freesurfer cortical
reconstructions. Regions of interest were manually drawn around the left fusiform gyrus for each subject.
Single compartment boundary-element models were calculated from the Freesurfer segmentation and
used to compute forward solutions separately for each block, taking shifts in head position into account.
Noise covariance matrices were computed from the inter-stimulus interval period, 500 to 30 ms prior to
each stimulus presentation. Inverse operators were constructed using the computed noise covariance and
forward solutions to obtain source estimates for approximately 7,600 vertices on the cortical surface
reconstruction of each subject. Because magnetic sources originating from cortical neurons are typically
normal to the cortical surface, tangential source components were scaled by a factor of .4 during the
calculation of the inverse solution333%, This procedure resulted in activity of 50-150 ImVTC sources during
the category localizer and word-individuation tasks for each subject.

Identification of word-sensitive ImVTC sources

Sources in the ImVTC were screened for word selectivity using four-way support vector machines [SVM]
applied to 100 ms sliding time windows independently for each source. If the d’ sensitivity index, defined
as the inverse of the cumulative normal distribution for true positives for words minus the inverse of the
cumulative normal distribution for false positives for words, exceeded chance with p<.05 (uncorrected) a
particular source it was considered “word-selective” and belonging to the ImVTC. This yielded a mean +/-
standard deviation of 42.4 +/- 32.7 word-selective channels per subject. Only these sources were used for
word-individuation decoding. Figure 1 shows the location of these word-sensitive sources across the
group. Figure S1 shows the mean event-related field of these word-selective sources to the different
stimuli presented in the category localizer task.

Intracranial EEG data collection and preprocessing

Participants

Three right-handed patients (2 females, ages 38-64) with intractable epilepsy were included in the study.
Inclusion was based on iEEG coverage in left mid-ventral temporal cortex that demonstrated selectivity
to words over the other stimulus categories, as defined by the broadband gamma response, event-related
potential amplitude, and d’ sensitivity index in an independent category localizer containing words, faces,
bodies, houses, hammers, and phase-scrambled objects. Figure S2 shows the d’ sensitivity of each word-
selective electrode. Figure S3 shows the event related potential or broadband response of each word-
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selective electrode to words and other object categories presented during the category localizer task.
Figure 2 shows the average d’ sensitivity of the seven word-sensitive electrodes identified across the three
subjects. These electrodes were localized using either post-operative T1 structural MRI’s or CT scans.
Figure 1 illustrates the location of the word-sensitive electrodes in Montreal Neurological Institute (MNI)
stereotaxic-space. Figure S4 illustrates the location of each electrode on the individual patient’s anatomy.
None of the electrodes presented here demonstrated ictal activity during the recording sessions, nor were
they near the patient’s seizure onset zone. One of the three patients (P1) was included in a previous study’;
however, data from non-word orthographic stimuli in P1 were not previously reported. The other two
participants from that previous study were not shown non-word stimuli, and therefore are not reported
here. All patients gave written informed consent under protocols approved by the University of Pittsburgh
Medical Center’s Internal Review Board.

Experimental Paradigm

The experimental paradigm for intracranial subjects was the same as that of the MEG participants besides
the following differences: The intracranial category localizer consisted of words, bodies, faces, hammers,
houses, and phase scrambled objects. Stimulus on-times for both the category localizer and word-
individuation task were increased to 900 ms with 1.8 s mean inter-stimulus interval. The word-
individuation task contained the same stimuli as the MEG version; however, to maximize the number of
trials per remaining stimuli, consonant-strings were dropped from the stimulus set. Overall, there were
approximately 25, 45, and 30 trials per word-individuation stimulus for P1, P2 and P3 respectively--varying
according to number of blocks of the task completed.

iEEG acquisition and preprocessing

Local field potentials were collected using a Grapevine Neural Interface Processor (Ripple, LLC) at 1000 Hz.
Data was bandpass filtered offline from 0.2-115 Hz and notch filtered to exclude 60 Hz line noise using a
fourth-order Butterworth filter implemented with FieldTrip®. In addition to this, broadband gamma
amplitude, defined as the average increase in power from 40-100 Hz, was extracted and normalized to
baseline (from 300-50 ms prior to stimulus presentation). Trials with peak amplitudes exceeding 5
standard deviations above or below the mean or exceeding 350 microvolts were eliminated to reduce
potential artifacts.

Multivariate Temporal Pattern Analysis

Data from MEG sources and iEEG electrodes identified as word-selective in the category-localizer task
were used for all possible pairwise decoding of the word-individuation stimuli. For example, all word-
selective sources in one subject were used as features to a two-class, 3-fold cross-validated SVM
classification problem applied to two independent time windows to determine whether the participant
was seeing stimulus A or B. Time windows were chosen based on the results from our previous study’:
50-200 ms and 200-350 ms for early and late stages of ImVTC processing. LIBLINEAR® was used to
implement the SVMs. This resulted in classification accuracy and d’ sensitivity for each pairwise
classification problem (44 x 43 / 2) across both time windows. We choose to report d’ sensitivity here
because it is normally distributed, unlike classification accuracy, which allows for parametric statistical
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testing across subjects. Additionally, d’ sensitivity captures effect sizes on the same scale as Cohen’s d,
making it easily interpretable. Pairwise d’ sensitivities in the early and late time windows are averaged
according the contrast of interest. For example, when determining the classifier sensitivity to real words
versus false fonts, all possible pairwise d’ sensitivities between word and false font stimuli were averaged
to create one average d’ sensitivity per subject per time window.

Statistical significance of classification accuracy was determined via non-parametric permutation tests.
Specifically, category labels were permuted randomly across each pairwise comparison then the two-class
SVM was trained on data from the randomly permuted class labels. Classification accuracy for both time
windows were computed for 1000 random permutations on the iEEG data and MEG data then averaged
over the contrast of interest. Maximum classification accuracy across both time windows was used to
construct the null-distribution of classification accuracy and then compared with the corresponding real-
label time course. For the MEG data, to obtain the statistical significance of group-wise average
classification accuracy, the permuted time courses were also averaged across subject before calculating
the maximum accuracy for each of the 1000 random permutations.

Functional connectivity analysis

Functional connectivity analysis was carried out on the MEG data to evaluate the connectivity dynamics
of the ImVTC to the rest of cortex that facilitates real word individuation. Specifically, activity of word-
selective sources in ImVTC were averaged and phase-locking values (PLV)*” were calculated between this
activity and all other cortical sources during the word-individuation task. PLVs were normalized by taking
their square root and standardizing relative to a baseline period from 500 to O ms prior to stimulus
presentation®,

Numerous previous non-invasive EEG studies have demonstrated functional connectivity differences in
the delta, theta, alpha, and beta frequency bands related to various aspects of reading®>=*. Therefore, we
hypothesized communication between the ImVTC and rest of the language network would be most likely
to occur in this frequency range. However, when calculating the phase of low frequency oscillations (i.e.
delta and theta bands) using wavelets, these calculations have less temporal resolution than the higher
frequency alpha and beta components. Therefore, transformed PLVs were averaged over only the
canonical alpha and beta frequency bands (8-30 Hz) then co-registered to the MNI common brain.

To determine spatiotemporal clusters of sources whose PLV to the ImVTC was significantly greater than
baseline during the transition from course to fine representations (which occurred at approximately 175-
225 ms post-stimulus presentation), cluster statistics were determined via a within-subjects permutation
test. Specifically, t-statistics were computed for each source and clustered based on adjacency in time and
cortical space. The sum of t-values within each cluster was then compared with the maximum cluster t-
value of 10,000 randomly generated sign flipped matrices. This procedure has been shown to effectively
correct for multiple spatiotemporal comparisons®2.
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Results

Decoding real words from other orthographic stimuli

A support vector machine was trained to discriminate between pairs of word versus other orthographic
stimuli using both word sensitive MEG sources and word sensitive iEEG electrodes in ImVTC. Real-words
could be discriminated from false fonts, consonant-strings and pseudowords from MEG source activity
during both the early (50-200 ms) and late (200-350 ms) time windows (p < .001). Comparable results
were seen for word selective iEEG electrodes in the ImVTC besides null results for words versus
pseudowords in both windows for patient 3 (Table 1).

Table 1. Decoding real words from other stimuli (mean pairwise d’ sensitivity)
False fonts vs real words Pseudowords vs real words

50-200 ms 200-350 ms 50-200 ms 200-350 ms
P1 0.80*** 1.5 *¥** P1 0.40*** 1.1%**
P2 0.72 *** 11,8 w P2 0.36*** 0.54 ***
P3 0.13%** 0.11** P3 0.046 -0.034
MEG 0.26*** 0.40*** MEG 0.051** 0.16%**
Consonant-strings vs real words

50-200 ms 200-350 ms
MEG 0.17*** 0.28***

*p<.05 **p<.01 ***p<.001

A one-way ANOVA indicated a significant difference between mean MEG d’ sensitivity for false
fonts, consonant strings, and pseudowords versus real words in the early time window (F = 5.29, p <.01).
A post-hoc t-test demonstrated that false fonts versus real words displayed higher d’ sensitivity than
pseudowords versus real words across MEG participants in the early time window(p < .01, Bonferroni
corrected). Sensitivity for consonant strings versus real words was not significantly different than either
false fonts versus real words (p > .2, Bonferroni corrected) or pseudowords versus real words (p >.5) in
the early time window. A one-way ANOVA on the late time window also revealed a significant difference
between mean MEG d’ sensitivity for false-fonts, consonant strings, and pseudowords versus real words
(F =3.47, p < .05). A post-hoc t-test demonstrated that false fonts versus real words displayed higher d’
sensitivity than pseudowords versus real words across MEG participants during the late time window (p
< .05, Bonferroni corrected). However, there was no significant difference between the decoding accuracy
of consonant strings versus real words and false-fonts versus real words (p > .5, Bonferroni corrected) or
pseudowords versus real words (p > .6, Bonferroni corrected) in the late time window.

Decoding orthographically similar and dissimilar stimuli

First we determined if we could replicate our previous iEEG results regarding the dynamics of similar and
dissimilar individual word decoding’ using source localized MEG. Using activity evoked from word-
selective MEG sources in ImVTC, orthographically dissimilar real words could be decoded from one
another in the early and late time windows (p < 0.001 in both windows, see Table 2). However,
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orthographically similar real words could not be significantly decoded from each other until the late time
window from 200-350 ms (p < .05). A similar pattern was seen in 4 of the 5 iEEG subjects (2/3 reported
here and 3/3 reported previously’, with one subject shared between the two studies, see Methods). This
pattern is consistent with our previous iEEG results regarding the dynamics of similar and dissimilar
individual word decoding’.

Like real words, orthographically dissimilar pseudowords (p<.01 early, p<.001 late), consonant-
strings (p<.001 only in the late time window), and false fonts (p<.001 in both windows) could be
significantly discriminated within ImVTC activity using MEG and in most iEEG cases, particularly in the late
time window (Table 2). In contrast to real words, orthographically similar consonant-strings, pseudowords
and false fonts could not be consistently decoded with MEG or iEEG at either time window (Table 2).

Table 2. Decoding orthographically similar and dissimilar stimuli (mean pairwise d’ sensitivity)

Orthographically similar real words Orthographically dissimilar real words
50-200 ms 200-350 ms 50-200 ms 200-350 ms

P1 -0.0006 0.56** P1 0.41%** 0.96%**

P2 -0.075 0.85%** P2 0.62*** 0.60***

P3 -0.13 -0.26 P3 -0.12 -0.028

MEG -.048 0.10* MEG 0.091*** 0.14%**

Orthographically similar pseudowords Orthographically dissimilar pseudowords
50-200 ms 200-350 ms 50-200 ms 200-350 ms

P1 -0.049 0.040 P1 0.29** 0.72%**

P2 -0.041 0.089 P2 0.17 0.19*

P3 -0.0002 0.061 P3 0.48054 0.016

MEG 0.087 0.040 MEG 0.090** 0.13**x

Orthographically similar consonant-strings Orthographically dissimilar consonant-strings
50-200 ms 200-350 ms 50-200 ms 200-350 ms

MEG ONLY -0.079 0.048 MEG ONLY | 0.040 0.13%**

Orthographically similar false fonts Orthographically dissimilar false fonts
50-200 ms 200-350 ms 50-200 ms 200-350 ms

P1 0.029 0.43* P1 0.13* 0.70***

P2 0.47%* -0.092 P2 0.11 0.35%**

P3 -0.049 -0.083 P3 -0.018 0.19*

MEG 0.017 0.069 MEG 0.10*** 0.18***

*p<.05 **p<.01 ***p<.001
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Functional connectivity between the ImVTC and rest of the brain during the disambiguation of real word

stimuli

An open question is whether the individuation of real word stimuli is achieved locally within ImVTC or
involves a network level process that ImVTC contributes to. To determine functional interactions that
occur during the transition from coarse to fine orthographic representations in the ImVTC, phase locking
values (PLVs) were calculated between the average activity of word-selective sources localized to ImVTC
and the rest of the cortical sources from 175-225 ms post stimulus presentation. Normalizing these PLVs
with respect to baseline and averaging over canonical alpha and beta frequency bands (see Methods)
gave two clusters of sources that demonstrated above chance connectivity relative to pre-stimulus
baseline at the cluster-level (p<.05). Figure 3 illustrates the spatial locus of these clusters, which includes
one that extends from right early visual cortex to right lateral occipital cortex and one encompassing a
region anterior to the left fusiform gyrus, extending from the parahippocampal gyrus to the inferior
temporal sulcus. No significant clusters were seen when directly contrasting the PLVs evoked by real
words to those evoked by pseudowords, consonant strings, or false-fonts.

Discussion

We found that ImVTC representations of real words, pseudowords, consonant strings and false fonts were
all initially coarse, allowing only for decoding of visually dissimilar stimuli from each other. Real word
representations in the ImVTC became disambiguated over time, allowing for reliable decoding of
orthographically similar real words from ImVTC activity after 200 ms post-stimulus presentation. However,
decoding of visually similar pseudowords, letter strings and false fonts from ImVTC activity did not rise
above chance during either the early or late time window. Finally, in the transition period between coarse
and individuated representations of real words, we observed significant functional connectivity between
the ImVTC and early visual cortex and between the ImVTC and more anterior regions of the left temporal
lobe.

Our decoding analyses for orthographically similar versus dissimilar real words replicate a
previous finding from our group: real word representations in the ImVTC are initially coarse but
disambiguate with time to allow for the reliable representation of orthographically similar real words’.
This replication, in addition to the high correspondence between the MEG and iEEG results presented
here, provide an important cross-validation of iEEG and source-localized MEG. Specifically, these results
demonstrate the sensitivity of MEG to subtle stimulus-induced changes in neural activity and source-
localization’s ability to approximately identify the neuroanatomical origins of those neural signatures.
Furthermore, the correspondence between source-localized MEG and iEEG validate iEEG results using
data from a healthy population with larger sample size. Additionally, MEG supplements sensitive iEEG
data with full brain coverage, facilitating analyses that require broader coverage, like the functional
connectivity analysis presented here. Thus, combining iEEG and MEG with similar experiments is a
potentially powerful paradigm to cross-validate, replicate, and extend findings by leveraging the
respective strengths of these two recording techniques.
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By combining MEG and iEEG in the current study, we were able to demonstrate that early, coarse
coding in the ImVTC exists not only for real words, but also false fonts, consonant-strings and
pseudowords. This early representation may support rapid disambiguation of orthographically dissimilar
stimuli. However, our data suggests that these coarse ImVTC representations are subsequently
disambiguated through interactions between visual and semantic networks, which allows the reliable
individuation of orthographically similar real words. Given that we were only able to decode visually
similar real words from late ImVTC activity, and not visually similar stimuli from other orthographic
categories, this suggests that ImVTC representations of learned word forms are individuated to a greater
degree than unfamiliar orthographic entities.

This conclusion is supported by previous studies observing decreases in ImVTC BOLD responses
for learned relative to unfamiliar orthographic entities'®!®, which may reflect more individuated ImVTC
representations for learned word forms in the later stages of processing. Further, the time-course of real
word individuation in the ImVTC is supported by scalp EEG evidence demonstrating lexical-semantic
influences on visual word recognition that are observed approximately 250 ms post-stimulus presentation,
as shown by studies involving transposed letter®® and morphological primes*’. However, the current study
cannot rule out the possibility that the ImVTC has the capacity to individuate unfamiliar orthographically
stimuli, either through purely bottom-up visual mechanisms or interactions with phonological processing
networks, since care must be taken when interpreting null results. With that in mind, the results reported
here do suggest that these stimuli are likely represented less robustly than known word forms.

Our results, which support early, coarse orthographic coding in the ImVTC, contrasts with previous
results obtained from rapid adaptation functional magnetic resonance imaging (fMRI) studies. Glezer et
al. 20098 reported no effect of orthographic similarity on the on the adaptation of BOLD response to
successively presented real words. Based on these results, the authors suggested that ImVTC
representations of real words are not coarse, but rather based on individuated whole word templates,
hierarchically assembled from rapid, bottom-up visual information processing®®. The results reported here
show that the early response of ImVTC is coarse, potentially reflecting an orthographic similarity space®.
It has been suggested that the early response of an area reflects its intrinsic coding, since later activity is
more susceptible to top-down and network-level influences®. Thus, these results suggest that ImVTC’s
intrinsic code does not reflect individuated whole word templates. A potential explanation for the
conflicting results is the difference in temporal resolution afforded by fMRI relative to MEG and iEEG. The
sluggish hemodynamic response measured by fMRI may be disproportionately sensitive to the late stage
of ImVTC processing, when visually similar real words can be disambiguated from each other. Our results
suggest that the early representations in the ImVTC, which potentially arise from bottom-up visual
processing, are consistent with coarse orthographic coding. Whole word representations emerge in the
ImVTC over time, however they likely require network interactions with semantic and visual regions to
reliably disambiguate orthographically similar real words?.

Functional connectivity analyses presented also support this conclusion. During real word trials,
differences in phase-locking between two spatially distinct clusters, one centered on early visual areas
(early visual cortex and right lateral occipital cortex) and the other on the left anterior temporal lobe,
were present during the 50 ms transition from early to late decoding windows. This suggests that the
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individuation of real word representations in the ImVTC takes place through recurrent interactions
between regions both earlier in the ventral visual hierarchy and higher-level processing regions.
Interactions with occipital regions may reflect continued accumulation of visual information over time,
while anterior temporal regions may contribute learned information about real words that support the
disambiguation of word forms through semantic properties which are largely orthogonal to the
orthographic properties of printed words®. This role for the anterior temporal cortex in reading is
supported by studies demonstrating increased BOLD activation of this regions to pseudowords trained to
have semantic associations*® and studies of sentence comprehension®.

However, no clusters of ImVTC functional connectivity were found to be significantly different
between real words and the other word-like stimuli at the group level. Thus, it may be that neural
communication is shared among a similar set of regions regardless of the stimuli, but only supports
individuated representations in the ImVTC if there is useful stored information in a given node of the
network. Notably, these functional connectivity results suggest that individuated representations are an
emergent property of network interactions, with multiple nodes of the network contributing to and
reflecting individuated representations. Thus, individuation of real words in the ImVTC is unlikely to be a
result of solely visual processing occurring in this region, but rather a local reflection of a network-level
computation. A similar timing pattern has been reported for face individuation in the fusiform gyrus,
where early activity in response to faces is coarse and later activity is individuated*® and may also reflect
network-level interactions®. This suggests that a similar dynamic process is conserved between both word
and face stimuli and may reflect a general principle of visual processing for other visual stimuli as well.

Taken together, our results support the idea of an early, coarse code in the ImVTC that is
sharpened through recurrent interactions between occipital and anterior temporal regions. First, a coarse
level representation in the ImVTC, built through bottom-up visual processing, allows for decoding of
visually dissimilar stimuli within 200 ms of stimulus presentation. Next, interactions between anterior
ventral temporal regions, possibly containing stored knowledge about words, and low-order visual regions
assist in disambiguating real word representations over time. This information ultimately allows the
individuation of visually similar real words. Further work investigating to what degree this process is
sensitive to word context (i.e. when a word is presented in a meaningful sentence) and whether
individuated word representations are conveyed throughout the language network is necessary to better
understand the computations which facilitate expert reading.
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Figure 1. Word selective MEG sources and iEEG electrodes in ImVTC
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Figure 1. Word selective electrodes and sources in Montreal Neurological Institute common space. Dots are electrodes from
the three iEEG patients (P1-green, P2-dark blue, P3-light blue). Number of MEG subjects with word-selective sources
localized to a given region of the fusiform represented by color intensity. All sources are constrained to the left fusiform

gyrus of the individual’s anatomy.
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Figure 2. Average d’ sensitivity of word-selective iEEG electrodes and MEG sources
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Figure 2. Sensitivity of word-selective electrodes and sources. A) Average sensitivity (norminv(true positive for words) —
norminv(false positive for words)) of word-selective electrodes in a six-way SVM classifier across all three iEEG participants.
Grey represents standard error from the mean across all electrodes. B) Average sensitivity across word-selective MEG sources

in ImVTC in a four-way SVM classifier. Grey represents standard error across all subjects.
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Figure 3. Significant clusters of phase-locking between the ImVTC and rest of cortex 175-225
ms after real-word presentation
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Figure 3. Spatiotemporal clusters of significant phase-locking values (PLV) to the word-selective sources in ImVTC during
the individuation of real-word representations (175-225 ms). Color intensity illustrates the duration each source had
elevated PLV (p<.01, uncorrected) during real word trials versus baseline with 50 ms being the maximum possible
duration. Significant clusters include one in right early visual cortex and in the left anterior temporal lobe.
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