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Abstract 

The left mid-ventral temporal cortex (lmVTC) plays a dynamic role in reading. In this study we 

investigated the neural interactions that influence lmVTC dynamics and the lexical information these 

interactions are dependent on. We monitored activity with either intracranial electroencephalography 

or magnetoencephalography while participants viewed real words, pseudowords, consonant strings, and 

false fonts. A coarse level representation in early lmVTC activity allowed for decoding of visually 

dissimilar real words, pseudowords, and false fonts. Functional interactions between anterior ventral 

temporal regions, possibly containing stored knowledge about words, and low-order visual regions 

occurred after this initial stage of processing and was followed by the individuation of orthographically 

similar real words in lmVTC, but not similar pseudowords, letter strings, or false fonts. These results 

suggest that the individuation of real word representations in lmVTC is catalyzed by stored knowledge 

about word forms that emerges from network-level interactions with anterior regions of the temporal 

lobe. 
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Introduction 

A region in the left mid-ventral temporal cortex (lmVTC), sometimes referred to as the “Visual Word Form 

Area (VWFA),” responds preferentially to words over other object categories1,2 and is thought to play a 

key role in reading1–6. It has been shown that damage to4,7–9 or stimulation of7,10 the lmVTC can cause pure 

alexia, and there is evidence that reading expertise shapes response properties of the lmVTC, including 

differential activation to real words versus pseudowords (pronounceable but meaningless letter strings)11–

17. However, there is still debate over the nature of orthographic representation in the lmVTC. Specifically, 

does the lmVTC encode whole-words16,18,19, sublexical features3,7,20–23, or purely visual statistics that are 

preferentially fed into higher-order language centers5,24? 

A recent intracranial electroencephalography (iEEG) study demonstrated that early activity in the lmVTC 

only allowed the decoding of words that were orthographically dissimilar (hint vs. dome). The activity then 

evolved in a way that also allowed orthographically similar real words (hint vs. lint) to be disambiguated 

after 200 ms7. These results suggest that representations in the lmVTC are initially coarse but evolve over 

time, eventually allowing for the disambiguation of orthographically similar word forms. However, the 

degree to which this process is specific to known printed words, which have learned semantic and 

phonological associations in addition to their visual properties, has not yet been determined. Further, it 

is unknown if word individuation is achieved solely through hierarchical visual processing18 or is instead 

driven by interactions between the lmVTC and other parts of the language network that underpin 

phonological and/or semantic knowledge about words17,25–27. 

The current study probes these questions by examining the lmVTC response to visually similar real words, 

pseudowords (pronounceable but meaningless letter strings), consonant strings (meaningless and 

unpronounceable letter strings), and false-fonts (orthographic stimuli of an unfamiliar alphabet) using 

source-localized magnetoencephalography (MEG) and iEEG. We hypothesized that if the disambiguation 

of orthographic representations in the lmVTC relies on learned semantic or phonological associations 

inherent to real words, then orthographically similar pseudowords and/or consonant strings would not 

be disambiguated by lmVTC activity. In contrast, if the refinement of lmVTC representation is independent 

of learned semantic or phonological knowledge, then we would expect to see a similar disambiguation for 

orthographically similar consonant strings and pseudowords. Additionally, we examined the functional 

connectivity between lmVTC and the rest of the cortex during the transition between coarse and 

individuated representations to assess the extent to which the disambiguation of orthographic 

representations is a network-level process. 

Our results demonstrate that lmVTC responses to real words, pseudowords, consonant strings and false 

fonts allowed for reliable decoding of orthographically dissimilar stimuli from one another. However, 

while orthographically similar real words could be discriminated from lmVTC activity from 200-350 ms, 

orthographically similar pseudowords, consonant strings, and false fonts could not. Functional 

connectivity analysis in MEG revealed increased phase-locking between the lmVTC and left anterior 

temporal lobe and early visual cortex during the transition from these coarse to individuated real-word 

representations. Taken together, these results support the idea of early, coarse lmVTC representations 
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that subsequently evolve through interactions with visual and semantic networks to allow for the 

disambiguation of orthographically similar real-words.  

 

Methods 

MEG data collection and preprocessing 

Participants 

16 participants gave written informed consent to participate in the MEG portion of the experiment 

consistent with protocol approved by the University of Pittsburgh’s Internal Review Board. One 

participant was removed from the analysis due to poor cortical surface reconstruction leaving 15 (5 males, 

ages 19-29) for the remaining analyses.  

Experimental Paradigm 

First, a category localizer consisting of words, hammers, houses and false-fonts was administered to 

identify word-selective cortical sources and constrain the word-individuation analysis. Then, a word 

individuation task was administered to probe the dynamics of word representation across different types 

of orthographic stimuli. For both the category localizer and word-individuation tasks stimuli were 

presented via custom scripted code in Psychtoolbox28 on a screen one meter in front of the participants. 

Stimuli occupied approximately 6 x 6° of visual angle and were shown for 300 ms with a variable inter-

stimulus interval of approximately 1.5 s. One-sixth of the time a stimulus would be repeated, to which the 

participant responded with a button press. These trials were removed from the subsequent analyses. 

Three blocks of 140 trials each were performed for the category localizer and 5 blocks of 264 trials each 

were performed for the word individuation task. In total there were 90 trials per stimulus category in the 

category localizer and 30 trials per stimulus in the word-individuation task, after removing repeated trials. 

In the word-individuation task, word and word-like stimuli consisted of four pairs of real words, 

pseudowords, false-fonts (Old Hungarian alphabet) and consonant-strings each differing from each other 

in only one symbol or letter within pairs. All false-fonts and consonant-strings had five symbols or letters, 

pseudowords had either four of five letters, and words had either three or four letters. Decoding analysis 

within stimulus categories were only performed across stimuli with the same number of letters and 

symbols to prevent length effects. Real word stimuli were selected to have similar log frequency, mean 

bigram frequency and bigram frequency by position across similar and dissimilar word pairs (measured 

using the English Lexicon Project29). Pseudowords were selected to have similar orthographic 

neighborhood size and bigram frequency by position across similar and dissimilar pseudoword pairs.  

Structural MRI acquisition and preprocessing 

T1 structural MRIs were used to constrain the cortical source estimates of the current study. Images were 

acquired with a Siemens 3T Tim Trio system scanner using a magnetization-prepared rapid acquisition 

with gradient echo sequence (TR = 2100 ms, T1 = 1050 ms, TE = 3.42 ms. 8° flip angle, 256x256x192 
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acquisition matrices, FOV = 256 mm, and 1 mm isotropic voxels). Cortical surface reconstructions were 

extracted via Freesurfer30. 

MEG acquisition, preprocessing, and source localization 

MEG data were collected on an Elekta Neuromag VectorView MEG system (Elekta Oy, Helsinki, Finland) 

with 306 sensors (triplets of two orthogonal gradiometers and one magnetometer). Data were sampled 

at 1000 Hz with simultaneous recording of head position, electrooculogram, and electrocardiogram which 

were all corrected for off-line. The data were processed with temporal signal-space separation31, a 1-50 

Hz bandpass filter, and down-sampled to 250 Hz for subsequent analyses.  

Minimum norm estimate (MNE) software32 was used to project the sensor data onto Freesurfer cortical 

reconstructions. Regions of interest were manually drawn around the left fusiform gyrus for each subject. 

Single compartment boundary-element models were calculated from the Freesurfer segmentation and 

used to compute forward solutions separately for each block, taking shifts in head position into account. 

Noise covariance matrices were computed from the inter-stimulus interval period, 500 to 30 ms prior to 

each stimulus presentation. Inverse operators were constructed using the computed noise covariance and 

forward solutions to obtain source estimates for approximately 7,600 vertices on the cortical surface 

reconstruction of each subject. Because magnetic sources originating from cortical neurons are typically 

normal to the cortical surface, tangential source components were scaled by a factor of .4 during the 

calculation of the inverse solution33,34. This procedure resulted in activity of 50-150 lmVTC sources during 

the category localizer and word-individuation tasks for each subject. 

Identification of word-sensitive lmVTC sources 

Sources in the lmVTC were screened for word selectivity using four-way support vector machines [SVM] 

applied to 100 ms sliding time windows independently for each source. If the d’ sensitivity index, defined 

as the inverse of the cumulative normal distribution for true positives for words minus the inverse of the 

cumulative normal distribution for false positives for words, exceeded chance with p<.05 (uncorrected) a 

particular source it was considered “word-selective” and belonging to the lmVTC. This yielded a mean +/- 

standard deviation of 42.4 +/- 32.7 word-selective channels per subject. Only these sources were used for 

word-individuation decoding. Figure 1 shows the location of these word-sensitive sources across the 

group. Figure S1 shows the mean event-related field of these word-selective sources to the different 

stimuli presented in the category localizer task. 

Intracranial EEG data collection and preprocessing 

Participants 

Three right-handed patients (2 females, ages 38-64) with intractable epilepsy were included in the study. 

Inclusion was based on iEEG coverage in left mid-ventral temporal cortex that demonstrated selectivity 

to words over the other stimulus categories, as defined by the broadband gamma response, event-related 

potential amplitude, and d’ sensitivity index in an independent category localizer containing words, faces, 

bodies, houses, hammers, and phase-scrambled objects. Figure S2 shows the d’ sensitivity of each word-

selective electrode. Figure S3 shows the event related potential or broadband response of each word-
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selective electrode to words and other object categories presented during the category localizer task. 

Figure 2 shows the average d’ sensitivity of the seven word-sensitive electrodes identified across the three 

subjects. These electrodes were localized using either post-operative T1 structural MRI’s or CT scans. 

Figure 1 illustrates the location of the word-sensitive electrodes in Montreal Neurological Institute (MNI) 

stereotaxic-space. Figure S4 illustrates the location of each electrode on the individual patient’s anatomy. 

None of the electrodes presented here demonstrated ictal activity during the recording sessions, nor were 

they near the patient’s seizure onset zone. One of the three patients (P1) was included in a previous study7; 

however, data from non-word orthographic stimuli in P1 were not previously reported. The other two 

participants from that previous study were not shown non-word stimuli, and therefore are not reported 

here. All patients gave written informed consent under protocols approved by the University of Pittsburgh 

Medical Center’s Internal Review Board.  

Experimental Paradigm 

The experimental paradigm for intracranial subjects was the same as that of the MEG participants besides 

the following differences: The intracranial category localizer consisted of words, bodies, faces, hammers, 

houses, and phase scrambled objects. Stimulus on-times for both the category localizer and word-

individuation task were increased to 900 ms with 1.8 s mean inter-stimulus interval. The word-

individuation task contained the same stimuli as the MEG version; however, to maximize the number of 

trials per remaining stimuli, consonant-strings were dropped from the stimulus set. Overall, there were 

approximately 25, 45, and 30 trials per word-individuation stimulus for P1, P2 and P3 respectively--varying 

according to number of blocks of the task completed.  

iEEG acquisition and preprocessing 

Local field potentials were collected using a Grapevine Neural Interface Processor (Ripple, LLC) at 1000 Hz. 

Data was bandpass filtered offline from 0.2-115 Hz and notch filtered to exclude 60 Hz line noise using a 

fourth-order Butterworth filter implemented with FieldTrip35. In addition to this, broadband gamma 

amplitude, defined as the average increase in power from 40-100 Hz, was extracted and normalized to 

baseline (from 300-50 ms prior to stimulus presentation). Trials with peak amplitudes exceeding 5 

standard deviations above or below the mean or exceeding 350 microvolts were eliminated to reduce 

potential artifacts.  

Multivariate Temporal Pattern Analysis 

Data from MEG sources and iEEG electrodes identified as word-selective in the category-localizer task 

were used for all possible pairwise decoding of the word-individuation stimuli. For example, all word-

selective sources in one subject were used as features to a two-class, 3-fold cross-validated SVM 

classification problem applied to two independent time windows to determine whether the participant 

was seeing stimulus A or B. Time windows were chosen based on the results from our previous study7: 

50-200 ms and 200-350 ms for early and late stages of lmVTC processing. LIBLINEAR36 was used to 

implement the SVMs. This resulted in classification accuracy and d’ sensitivity for each pairwise 

classification problem (44 x 43 / 2) across both time windows. We choose to report d’ sensitivity here 

because it is normally distributed, unlike classification accuracy, which allows for parametric statistical 
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testing across subjects. Additionally, d’ sensitivity captures effect sizes on the same scale as Cohen’s d, 

making it easily interpretable. Pairwise d’ sensitivities in the early and late time windows are averaged 

according the contrast of interest. For example, when determining the classifier sensitivity to real words 

versus false fonts, all possible pairwise d’ sensitivities between word and false font stimuli were averaged 

to create one average d’ sensitivity per subject per time window.  

Statistical significance of classification accuracy was determined via non-parametric permutation tests. 

Specifically, category labels were permuted randomly across each pairwise comparison then the two-class 

SVM was trained on data from the randomly permuted class labels. Classification accuracy for both time 

windows were computed for 1000 random permutations on the iEEG data and MEG data then averaged 

over the contrast of interest. Maximum classification accuracy across both time windows was used to 

construct the null-distribution of classification accuracy and then compared with the corresponding real-

label time course. For the MEG data, to obtain the statistical significance of group-wise average 

classification accuracy, the permuted time courses were also averaged across subject before calculating 

the maximum accuracy for each of the 1000 random permutations. 

Functional connectivity analysis 

Functional connectivity analysis was carried out on the MEG data to evaluate the connectivity dynamics 

of the lmVTC to the rest of cortex that facilitates real word individuation. Specifically, activity of word-

selective sources in lmVTC were averaged and phase-locking values (PLV)37 were calculated between this 

activity and all other cortical sources during the word-individuation task. PLVs were normalized by taking 

their square root and standardizing relative to a baseline period from 500 to 0 ms prior to stimulus 

presentation38.  

Numerous previous non-invasive EEG studies have demonstrated functional connectivity differences in 

the delta, theta, alpha, and beta frequency bands related to various aspects of reading39–41. Therefore, we 

hypothesized communication between the lmVTC and rest of the language network would be most likely 

to occur in this frequency range. However, when calculating the phase of low frequency oscillations (i.e. 

delta and theta bands) using wavelets, these calculations have less temporal resolution than the higher 

frequency alpha and beta components. Therefore, transformed PLVs were averaged over only the 

canonical alpha and beta frequency bands (8-30 Hz) then co-registered to the MNI common brain.  

To determine spatiotemporal clusters of sources whose PLV to the lmVTC was significantly greater than 

baseline during the transition from course to fine representations (which occurred at approximately 175-

225 ms post-stimulus presentation), cluster statistics were determined via a within-subjects permutation 

test. Specifically, t-statistics were computed for each source and clustered based on adjacency in time and 

cortical space. The sum of t-values within each cluster was then compared with the maximum cluster t-

value of 10,000 randomly generated sign flipped matrices. This procedure has been shown to effectively 

correct for multiple spatiotemporal comparisons42.  
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Results 

Decoding real words from other orthographic stimuli 

A support vector machine was trained to discriminate between pairs of word versus other orthographic 

stimuli using both word sensitive MEG sources and word sensitive iEEG electrodes in lmVTC. Real-words 

could be discriminated from false fonts, consonant-strings and pseudowords from MEG source activity 

during both the early (50-200 ms) and late (200-350 ms) time windows (p < .001). Comparable  results 

were seen for word selective iEEG electrodes in the lmVTC besides null results for words versus 

pseudowords in both windows for patient 3 (Table 1).  

       *p<.05 **p<.01 ***p<.001 

  A one-way ANOVA indicated a significant difference between mean MEG d’ sensitivity for false 

fonts, consonant strings, and pseudowords versus real words in the early time window (F = 5.29, p < .01). 

A post-hoc t-test demonstrated that false fonts versus real words displayed higher d’ sensitivity than 

pseudowords versus real words across MEG participants in the early time window(p < .01, Bonferroni 

corrected). Sensitivity for consonant strings versus real words was not significantly different than either 

false fonts versus real words (p > .2, Bonferroni corrected) or pseudowords versus real words (p > .5) in 

the early time window. A one-way ANOVA on the late time window also revealed a significant difference 

between mean MEG d’ sensitivity for false-fonts, consonant strings, and pseudowords versus real words 

(F = 3.47, p < .05). A post-hoc t-test demonstrated that false fonts versus real words displayed higher d’ 

sensitivity than pseudowords versus real words across MEG participants during the late time window (p 

< .05, Bonferroni corrected). However, there was no significant difference between the decoding accuracy 

of consonant strings versus real words and false-fonts versus real words (p > .5, Bonferroni corrected) or 

pseudowords versus real words (p > .6, Bonferroni corrected) in the late time window. 

Decoding orthographically similar and dissimilar stimuli 

First we determined if we could replicate our previous iEEG results regarding the dynamics of similar and 

dissimilar individual word decoding7 using source localized MEG. Using activity evoked from word-

selective MEG sources in lmVTC, orthographically dissimilar real words could be decoded from one 

another in the early and late time windows (p < 0.001 in both windows, see Table 2). However, 

Table 1. Decoding real words from other stimuli (mean pairwise d’ sensitivity)  

False fonts vs real words Pseudowords vs real words 

 50-200 ms 200-350 ms   50-200 ms 200-350 ms 

P1 0.80*** 1.5 ***  P1 0.40***  1.1*** 

P2 0.72 *** 1.3 ***  P2 0.36***  0.54 *** 

P3 0.13*** 0.11**  P3 0.046 -0.034 

MEG 0.26*** 0.40***  MEG 0.051**  0.16*** 

Consonant-strings vs real words 
   

  

 50-200 ms 200-350 ms    
  

MEG 0.17***  0.28***         
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orthographically similar real words could not be significantly decoded from each other until the late time 

window from 200-350 ms (p < .05). A similar pattern was seen in 4 of the 5 iEEG subjects (2/3 reported 

here and 3/3 reported previously7, with one subject shared between the two studies, see Methods). This 

pattern is consistent with our previous iEEG results regarding the dynamics of similar and dissimilar 

individual word decoding7.  

Like real words, orthographically dissimilar pseudowords (p<.01 early, p<.001 late), consonant-

strings (p<.001 only in the late time window), and false fonts (p<.001 in both windows) could be 

significantly discriminated within lmVTC activity using MEG and in most iEEG cases, particularly in the late 

time window (Table 2). In contrast to real words, orthographically similar consonant-strings, pseudowords 

and false fonts could not be consistently decoded with MEG or iEEG at either time window (Table 2).  

 

*p<.05 **p<.01 ***p<.001 

 

 

Table 2. Decoding orthographically similar and dissimilar stimuli (mean pairwise d’ sensitivity) 

Orthographically similar real words 
 

Orthographically dissimilar real words 

 50-200 ms 200-350 ms   50-200 ms 200-350 ms 

P1 -0.0006  0.56**  P1  0.41***  0.96*** 

P2 -0.075  0.85***  P2  0.62***  0.60*** 

P3 -0.13 -0.26  P3 -0.12 -0.028 

MEG -.048  0.10*  MEG  0.091***  0.14*** 

Orthographically similar pseudowords 
 

Orthographically dissimilar pseudowords 

 50-200 ms 200-350 ms   50-200 ms 200-350 ms 

P1 -0.049 0.040  P1 0.29** 0.72*** 

P2 -0.041 0.089  P2 0.17 0.19* 

P3 -0.0002 0.061  P3 0.48054 0.016 

MEG  0.087 0.040  MEG 0.090** 0.13*** 

Orthographically similar consonant-strings  Orthographically dissimilar consonant-strings 

  50-200 ms 200-350 ms    50-200 ms 200-350 ms 

MEG ONLY -0.079      0.048  MEG ONLY 0.040     0.13*** 

Orthographically similar false fonts 
 

Orthographically dissimilar false fonts 

 50-200 ms 200-350 ms   50-200 ms 200-350 ms 

P1  0.029   0.43*  P1 0.13* 0.70*** 

P2  0.47* -0.092  P2 0.11 0.35*** 

P3 -0.049 -0.083  P3 -0.018 0.19* 

MEG 0.017 0.069  MEG 0.10*** 0.18*** 
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Functional connectivity between the lmVTC and rest of the brain during the disambiguation of real word 

stimuli 

An open question is whether the individuation of real word stimuli is achieved locally within lmVTC or 

involves a network level process that lmVTC contributes to. To determine functional interactions that 

occur during the transition from coarse to fine orthographic representations in the lmVTC, phase locking 

values (PLVs) were calculated between the average activity of word-selective sources localized to lmVTC 

and the rest of the cortical sources from 175-225 ms post stimulus presentation. Normalizing these PLVs 

with respect to baseline and averaging over canonical alpha and beta frequency bands (see Methods) 

gave two clusters of sources that demonstrated above chance connectivity relative to pre-stimulus 

baseline at the cluster-level (p<.05). Figure 3 illustrates the spatial locus of these clusters, which includes 

one that extends from right early visual cortex to right lateral occipital cortex and one encompassing a 

region anterior to the left fusiform gyrus, extending from the parahippocampal gyrus to the inferior 

temporal sulcus. No significant clusters were seen when directly contrasting the PLVs evoked by real 

words to those evoked by pseudowords, consonant strings, or false-fonts.  

 

Discussion 

We found that lmVTC representations of real words, pseudowords, consonant strings and false fonts were 

all initially coarse, allowing only for decoding of visually dissimilar stimuli from each other. Real word 

representations in the lmVTC became disambiguated over time, allowing for reliable decoding of 

orthographically similar real words from lmVTC activity after 200 ms post-stimulus presentation. However, 

decoding of visually similar pseudowords, letter strings and false fonts from lmVTC activity did not rise 

above chance during either the early or late time window. Finally, in the transition period between coarse 

and individuated representations of real words, we observed significant functional connectivity between 

the lmVTC and early visual cortex and between the lmVTC and more anterior regions of the left temporal 

lobe. 

Our decoding analyses for orthographically similar versus dissimilar real words replicate a 

previous finding from our group: real word representations in the lmVTC are initially coarse but 

disambiguate with time to allow for the reliable representation of orthographically similar real words7. 

This replication, in addition to the high correspondence between the MEG and iEEG results presented 

here, provide an important cross-validation of iEEG and source-localized MEG. Specifically, these results 

demonstrate the sensitivity of MEG to subtle stimulus-induced changes in neural activity and source-

localization’s ability to approximately identify the neuroanatomical origins of those neural signatures. 

Furthermore, the correspondence between source-localized MEG and iEEG validate iEEG results using 

data from a healthy population with larger sample size. Additionally, MEG supplements sensitive iEEG 

data with full brain coverage, facilitating analyses that require broader coverage, like the functional 

connectivity analysis presented here. Thus, combining iEEG and MEG with similar experiments is a 

potentially powerful paradigm to cross-validate, replicate, and extend findings by leveraging the 

respective strengths of these two recording techniques. 
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By combining MEG and iEEG in the current study, we were able to demonstrate that early, coarse 

coding in the lmVTC exists not only for real words, but also false fonts, consonant-strings and 

pseudowords. This early representation may support rapid disambiguation of orthographically dissimilar 

stimuli. However, our data suggests that these coarse lmVTC representations are subsequently 

disambiguated through interactions between visual and semantic networks, which allows the reliable 

individuation of orthographically similar real words. Given that we were only able to decode visually 

similar real words from late lmVTC activity, and not visually similar stimuli from other orthographic 

categories, this suggests that  lmVTC representations of learned word forms are individuated to a greater 

degree than unfamiliar orthographic entities.  

This conclusion is supported by previous studies observing decreases in lmVTC BOLD responses 

for learned relative to unfamiliar orthographic entities16,19, which may reflect more individuated lmVTC 

representations for learned word forms in the later stages of processing. Further, the time-course of real 

word individuation in the lmVTC is supported by scalp EEG evidence demonstrating lexical-semantic 

influences on visual word recognition that are observed approximately 250 ms post-stimulus presentation, 

as shown by studies involving transposed letter43 and morphological primes44. However, the current study 

cannot rule out the possibility that the lmVTC has the capacity to individuate unfamiliar orthographically 

stimuli, either through purely bottom-up visual mechanisms or interactions with phonological processing 

networks, since care must be taken when interpreting null results. With that in mind, the results reported 

here do suggest that these stimuli are likely represented less robustly than known word forms. 

Our results, which support early, coarse orthographic coding in the lmVTC, contrasts with previous 

results obtained from rapid adaptation functional magnetic resonance imaging (fMRI) studies. Glezer et 

al. 200918 reported no effect of orthographic similarity on the on the adaptation of BOLD response to 

successively presented real words. Based on these results, the authors suggested that lmVTC 

representations of real words are not coarse, but rather based on individuated whole word templates, 

hierarchically assembled from rapid, bottom-up visual information processing18. The results reported here 

show that the early response of lmVTC is coarse, potentially reflecting an orthographic similarity space45. 

It has been suggested that the early response of an area reflects its intrinsic coding, since later activity is 

more susceptible to top-down and network-level influences3. Thus, these results suggest that lmVTC’s 

intrinsic code does not reflect individuated whole word templates. A potential explanation for the 

conflicting results is the difference in temporal resolution afforded by fMRI relative to MEG and iEEG. The 

sluggish hemodynamic response measured by fMRI may be disproportionately sensitive to the late stage 

of lmVTC processing, when visually similar real words can be disambiguated from each other. Our results 

suggest that the early representations in the lmVTC, which potentially arise from bottom-up visual 

processing, are consistent with coarse orthographic coding. Whole word representations emerge in the 

lmVTC over time, however they likely require network interactions with semantic and visual regions to 

reliably disambiguate orthographically similar real words25. 

Functional connectivity analyses presented also support this conclusion. During real word trials, 

differences in phase-locking between two spatially distinct clusters, one centered on early visual areas 

(early visual cortex and right lateral occipital cortex) and the other on the left anterior temporal lobe, 

were present during the 50 ms transition from early to late decoding windows. This suggests that the 
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individuation of real word representations in the lmVTC takes place through recurrent interactions 

between regions both earlier in the ventral visual hierarchy and higher-level processing regions. 

Interactions with occipital regions may reflect continued accumulation of visual information over time, 

while anterior temporal regions may contribute learned information about real words that support the 

disambiguation of word forms through semantic properties which are largely orthogonal to the 

orthographic properties of printed words25. This role for the anterior temporal cortex in reading is 

supported by studies demonstrating increased BOLD activation of this regions to pseudowords trained to 

have semantic associations46 and studies of sentence comprehension47.  

However, no clusters of lmVTC functional connectivity were found to be significantly different 

between real words and the other word-like stimuli at the group level. Thus, it may be that neural 

communication is shared among a similar set of regions regardless of the stimuli, but only supports 

individuated representations in the lmVTC if there is useful stored information in a given node of the 

network. Notably, these functional connectivity results suggest that individuated representations are an 

emergent property of network interactions, with multiple nodes of the network contributing to and 

reflecting individuated representations. Thus, individuation of real words in the lmVTC is unlikely to be a 

result of solely visual processing occurring in this region, but rather a local reflection of a network-level 

computation. A similar timing pattern has been reported for face individuation in the fusiform gyrus, 

where early activity in response to faces is coarse and later activity is individuated48 and may also reflect 

network-level interactions49. This suggests that a similar dynamic process is conserved between both word 

and face stimuli and may reflect a general principle of visual processing for other visual stimuli as well.  

 Taken together, our results support the idea of an early, coarse code in the lmVTC that is 

sharpened through recurrent interactions between occipital and anterior temporal regions. First, a coarse 

level representation in the lmVTC, built through bottom-up visual processing, allows for decoding of 

visually dissimilar stimuli within 200 ms of stimulus presentation. Next, interactions between anterior 

ventral temporal regions, possibly containing stored knowledge about words, and low-order visual regions 

assist in disambiguating real word representations over time. This information ultimately allows the 

individuation of visually similar real words. Further work investigating to what degree this process is 

sensitive to word context (i.e. when a word is presented in a meaningful sentence) and whether 

individuated word representations are conveyed throughout the language network is necessary to better 

understand the computations which facilitate expert reading. 
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Figure 1. Word selective electrodes and sources in Montreal Neurological Institute common space. Dots are electrodes from 
the three iEEG patients (P1-green, P2-dark blue, P3-light blue). Number of MEG subjects with word-selective sources 
localized to a given region of the fusiform represented by color intensity. All sources are constrained to the left fusiform 
gyrus of the individual’s anatomy. 

Number of subjects with word selective source in region 

Figure 1. Word selective MEG sources and iEEG electrodes in lmVTC 
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Figure 2. Average d’ sensitivity of word-selective iEEG electrodes and MEG sources 
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Figure 2. Sensitivity of word-selective electrodes and sources. A) Average sensitivity (norminv(true positive for words) – 
norminv(false positive for words)) of word-selective electrodes in a six-way SVM classifier across all three iEEG participants. 
Grey represents standard error from the mean across all electrodes. B) Average sensitivity across word-selective MEG sources 
in lmVTC in a four-way SVM classifier. Grey represents standard error across all subjects. 
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Figure 3. Spatiotemporal clusters of significant phase-locking values (PLV) to the word-selective sources in lmVTC during 

the individuation of real-word representations (175-225 ms). Color intensity illustrates the duration each source had 

elevated PLV (p<.01, uncorrected) during real word trials versus baseline with 50 ms being the maximum possible 

duration. Significant clusters include one in right early visual cortex and in the left anterior temporal lobe. 

 

Figure 3. Significant clusters of phase-locking between the lmVTC and rest of cortex 175-225 

ms after real-word presentation 
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