
Hybrid Automata Library: A modular platform for 1

efficient hybrid modeling with real-time visualization 2

3

December 19, 2018 4

Rafael Bravo1,3, Etienne Baratchart1, Jeffrey West1, Ryan O. Schenck1,2, Anna K. 5

Miller1, Jill Gallaher1, Chandler D. Gatenbee1, David Basanta1, Mark Robertson-Tessi1, 6

Alexander R. A. Anderson 1,4
7

1:Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, 33612, 8

USA 9

2:Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, 10

UK 11

3:rafael.bravo@moffitt.org,4:alexander.anderson@moffitt.org 12

Abstract 13

The Hybrid Automata Library (HAL) is a Java Library developed for use in 14

mathematical oncology modeling. It is made of simple, efficient, generic 15

components that can be used to model complex spatial systems. HAL’s 16

components can broadly be classified into: on- and off-lattice agent containers, 17

finite difference diffusion fields, a GUI building system, and additional tools and 18

utilities for computation and data collection. These components are designed to 19

operate independently and are standardized to make them easy to interface with 20

one another. As a demonstration of how modeling can be simplified using our 21

approach, we have included a complete example of a hybrid model (a spatial 22

model with interacting agent-based and PDE components). HAL is a useful asset 23

for researchers who wish to build efficient 1D, 2D and 3D hybrid models in Java, 24

while not starting entirely from scratch. It is available on github at 25

https://github.com/MathOnco/HAL under the MIT License. HAL requires at 26

least Java 8 or later to run, and the Java JDK version 1.8 or later to compile the 27

source code. 28

1 Author Summary 29

In this paper we introduce the Hybrid Automata Library (HAL) with the purpose of 30

simplifying the implementation and sharing of hybrid models for use in mathematical 31

oncology. Hybrid modeling is used in oncology to create spatial models of tissue, 32

typically by modeling cells using agent-based techniques, and by modeling diffusible 33

chemicals using partial differential equations (PDEs). HAL’s key components are 34

designed to run agent-based models, PDEs, and visualization. The components are 35

standardized and are completely decoupled, so models can be built with any 36

combination of them. We first explore the philosophy behind HAL, then summarize the 37

components. Lastly we demonstrate how the components work together with an 38

example of a hybrid model, and a walk-through of the code used to construct it. HAL is 39

open-source and will produce identical results on any machine that supports Java 8 and 40

above, making it highly portable. We recommend HAL to modelers interested in spatial 41
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dynamics, even those outside of mathematical oncology, as the components are general 42

enough to facilitate a variety of model types. A community page that provides a 43

download link and online documentation can be found at https://halloworld.org [1]. 44

2 Introduction 45

The Hybrid Automata Library (HAL) was created to assist the growing mathematical 46

oncology community with a common framework for efficiently building and visualizing 47

hybrid models. Hybrid models in oncology usually represent cells (both of the tumor and 48

of the surrounding tissue) using agent-based modeling (ABMs) and the concentrations 49

of relevant chemicals (drugs, resources and signaling molecules) as continuous partial 50

differential equations (PDEs). These models can simulate local interactions between 51

cells with complex internal dynamics and decision-making processes while also allowing 52

cells to interact with the PDE concentration fields in their local environment. 53

Hybrid models have been widely adopted within the Mathematical Oncology 54

community to model many aspects of cancer [2–5]. A unique strength of the hybrid 55

modeling approach is that it allows for a mechanistic understanding of the ecological 56

feedback between the cancer cells and their tissue environment. Cancer cell agents can 57

be modeled as a part of the surrounding tissue, and interact with the systems that 58

normally maintain homeostasis. [6–11] Drugs may be subsequently introduced to add 59

additional selective pressure to the model, and the long-term effects on the tumor 60

evolution observed. A better understanding of these selection dynamics can be used to 61

help develop more effective drug sequences to prevent cancer resistance to therapy and 62

to develop evolutionary therapies to control cancers that cannot be cured with 63

maximum tolerated dose [12–14]. Further realism can be incorporated by initializing 64

spatial models with clinical or histological data [15,16]. 65

Whilst a number of agent-based modeling frameworks have been used for tissue 66

modeling, including MASON, Repast, Physicell, CompuCell3D, Chaste, and Netlogo, we 67

designed HAL to be simpler, more efficient, and more flexible. 68

Some of these frameworks facilitate model building under specific spatial interaction 69

assumptions like PhysiCell [17], which treats cells as spheres under Newtonian 70

adhesion-repulsion dynamics and is optimized for large cell populations, and CompuCell 71

3D [18], which models cells as contiguous composites of lattice positions, allowing cell 72

deformation. HAL does not include the same depth in the domains specific to these 73

frameworks, but uses a broader approach to provide the capacity for a variety of 74

approaches. 75

Some of the most popular frameworks that also take a broad approach are Chaste, 76

Repast, Mason, and Netlogo. Chaste uses an assumption based system for model 77

building, in which modular rules are composed to define behavior, and behaviors that 78

are not currently represented can be added as new modules [19]. This modular 79

approach allows for very rapid prototyping, and increases the reproducibility of results. 80

Repast uses a hierarchical nesting approach to group agents into sets that will all 81

execute some action, and also features a highly customizable scheduling procedure to 82

sequence these actions [20]. MASON is probably the most architecturally similar to 83

HAL, as it also strives to be a modular agent-based modeling package, with built-in 84

optional visualization tools and comparatively lax structure [21]. Netlogo uses a custom 85

scripting language in order to simplify the coding process [22]. Netlogo also provides an 86

accessible model development environment, making it a great choice for new 87

modelers/coders. Each of these frameworks facilitates modeling under a different 88

centralized scheduling structure, as mentioned in Table 1. 89

HAL shares many characteristics with these frameworks, but differentiates itself with 90

a minimal, decentralized design made up of independent building blocks that are 91
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Name Language Scheduling Structure Spatial Representations
HAL Java For-Loop Iteration On/Off-lattice, Newtonian Physics

PhysiCell C++ Domain Specific Newtonian Physics
CompuCell 3D Python/XML Domain Specific On Lattice Composites

Chaste C++ Modular Behavior Based On/Off-lattice, Newtonian Physics, Voronoi
Repast Java Group-Based Scheduler On/Off-lattice, Network
Mason Java Agent-Level-Scheduler On/Off-lattice
Netlogo Netlogo Go Loop On/Off-lattice, Spatial Networks

Table 1. Comparison of HAL with other agent-based Modeling Frameworks commonly
used in tissue modeling

thematically similar. There is no centralized controller or scheduler, so the modeler 92

designs the logical flow and the scheduling of interactions between model components. 93

This removes common presuppositions or requirements made by schedulers in other 94

frameworks (eg. when models should be visualized, when their step logic should run, 95

when models should be created or destroyed, etc.) and leaves these decisions up to the 96

modeler. This cuts down on any unnecessary use of resources by the modeling system, 97

and increases model flexibility. These considerations have led to a lightweight 98

framework that is easy to use, highly flexible, and effective within the scope of hybrid 99

modeling, agent-based modeling, and the solving of reaction-diffusion PDEs using finite 100

differences. HAL was designed with mathematical oncology in mind, but is general 101

enough to facilitate modeling systems from many domains (eg. ecology [23], 102

development, population dynamics, and network theory). [17]. While some familiarity 103

with the Java programming language is recommended for new users of HAL, we imagine 104

that its simplicity and explicit nature could make it a useful educational platform. 105

The main components of HAL consist of n-dimensional (0D,1D,2D,3D) Grids that 106

hold Agents, 1D,2D, and 3D finite difference PDE fields, 2D and 3D visualization tools, 107

and methods for sampling distributions and data recording. In this paper we will 108

discuss the philosophy behind these components, then look at their design and 109

capabilities in more detail. See the manual for a complete reference on how to use these 110

components [24]. 111

3 Design And Implementation 112

3.1 Design Philosophy 113

In the next section, we discuss some of the design decisions that have driven the 114

architecture of HAL. 115

3.1.1 Language Choice 116

In designing HAL we have tried to balance an adherence to speed, memory 117

management, simplicity, stability, modularity and extensibility. The Java language itself 118

balances these considerations very well, making it a suitable basis for HAL. High 119

performance languages such as C, C++, and Fortran, can be coded to run at speeds 120

comparable to or faster than Java, however these languages require more low-level 121

management. Moreover, they do not have the same security guarantees as they permit 122

out-of-bounds memory accesses and memory leaks. Higher level languages, such as 123

Python, while more flexible and syntactically intuitive than Java, are typically 124

significantly slower. Java is also one of the most commonly used and taught 125

programming languages today, which helps facilitate the adoption of HAL by new users. 126

The fact that Java is cross-platform is also ideal. 127
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3.1.2 Modularity and Extensibility 128

HAL’s components can each function independently. This permits any number of 129

components to be used in a single model, with the use of spatial queries to combine 130

components, as seen in Fig 1. This modularity also allows modelers to choose only the 131

components of HAL that are of interest for their project. These components can be 132

easily mixed and matched with other software, such as using the AgentGrids with a 133

different PDE solver, or using the GUI and Visualization components with a different 134

modeling system. Modularity also makes adding new components more manageable and 135

easier to test without adding bulk or heavy modifications to the core of the platform. 136

On-Lattice Agent Grid

Off-Lattice Agent Grid

PDE Grids

Figure 1. The modular design of HAL helps build complex models out of simple
components. The highlighted on-lattice agent in the topmost grid searches for local
overlaps with several other grids and PDEs. These overlaps can be used in a model to
generate spatial interactions.

Given the incremental nature of many scientific endeavors, we also wanted to allow 137

models and components to be extended and modified. Java’s extension architecture 138

provides an excellent environment for layered development. As an example of the 139

extensibility of HAL, the built-in Spherical Agent types (SphericalAgent2D, 140

SphericalAgent3D) extend the Point Agent types (AgentPT2D, AgentPT3D). By 141

default, Point Agents have no radius and will not collide with each other. This behavior 142

can be useful for modeling phenomena such as the Brownian motion of small particles, 143

as visualized in Fig 2a. Spherical Agents extend Point Agents by adding an additional 144

radius variable and velocity component variables. These properties combined with 145

added functions for summing force vectors in response to overlap allow for a Newtonian 146

adhesion-repulsion spherical model of spatial agents. This behavior can be useful for 147

modeling tissue formation, as visualized in Fig 2b. 148
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A B

Figure 2. Off-lattice agent examples. Each example contains 1000 agents. (A)
Example of 2D Point Agents modeling Brownian motion. The Point Agents move freely
and cannot collide. (B) Example of 2D Spherical Agents modeling growing tissue. The
agents will push apart from each other to a uniform density. Agent radii are shown as
gray circles around their centers. Examples Displayed unsing the OpenGL2DWindow
object.

It is also possible to extend completed models using the same approach. For 149

example, grids and agents from published models can be used as a scaffold on which to 150

do additional studies. This allows for followup studies to focus on implementing 151

whatever additional assumptions and functionality they need, while leaving intact the 152

base model code with all of its published assumptions. 153

3.1.3 Simplicity and Stability 154

An important design principle was to make HAL simple to use without sacrificing 155

performance. Simplicity makes HAL easy to learn and forces the components to be 156

more generic, meaning that the same components can be applied to a greater variety of 157

modeling problems. There is also a consistency to each framework component, such that 158

learning to use some components is often sufficient to grasp the others, and makes using 159

them in combination intuitive. 160

Another key design principle is stability, which is achieved in three ways: 161

Encapsulation By providing safe interaction functions and preventing direct interaction with 162

component internals. For example, modelers are not permitted to directly modify 163

the position properties of agents. Instead, they must call the provided movement 164

functions that also update the grid position of the agents for future spatial queries. 165

Defensive Programming By including checks in functions for invalid inputs. The program halts and throws 166

an error message immediately when one of these problematic inputs occurs. This 167

allows the user to see what caused the problem, rather than seeing its effects later 168

down the line. 169

Unit Tests By testing HAL’s components. HAL is very shallow by design, leaving little 170

complexity for bugs to hide in. The more complex algorithms are tested in a series 171

of small test programs. These tests help ensure confidence in the mathematics 172

while also serving as simple tutorials. 173
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3.1.4 Speed and Memory Management 174

Much of the performance capability of HAL comes directly from its decentralized design. 175

Having no built-in scheduler/underlying structure means that there is comparatively 176

little work that the program does that the modeler is unaware of. This combined with 177

the modular components and utilities allows modelers the flexibility to incorporate the 178

functionality that they need, without the software sacrificing performance by implicitly 179

doing unnecessary tasks. 180

HAL also prioritizes performance in its algorithmic implementation. HAL includes 181

efficient PDE solving algorithms, such as the ADI (alternating direction implicit) 182

method, and uses efficient distribution samplers rather than naive approaches. The 183

integrated visualization tools are also highly efficient, using Swing BufferedImages for 184

lattice-based visualization, and lwjgl OpenGL for 2D and 3D polygon graphics. 185

Whenever possible, primitives and arrays are used to store data rather than classes, 186

which takes advantage of Java’s optimization for these simpler data types. Java is also 187

an inherently fast language, which helps efficiently execute agent behavioral logic. 188

There is a memory footprint consideration with most of HAL’s assets. A common 189

criticism of Java applications is that they tend to use a lot of memory and are slowed 190

down by Java’s “garbage collector” which deletes objects that are no longer being used. 191

To sidestep these memory issues, most of the objects generated internally by HAL are 192

recycled rather than discarded. This reuse also has a performance benefit: if a function 193

using the same object is called many times sequentially, the object will be faster to 194

access in the computer’s memory because it was already cached from the earlier calls. 195

A key example of this reuse: when agents die and are removed from the model 196

during a simulation run, the removed agents are kept internally and will be returned 197

again for re-initialization when a new agent is requested. Agent recycling ensures that 198

the number of agents that the model creates over a complete model run is capped to the 199

maximum population that exists in the model at one time. 200

3.2 Component Overview 201

We now move from the abstract discussion of the unifying principles behind HAL to a 202

look at its core components in more detail. Although it may seem that learning how to 203

use these components would be a difficult task given their number and variety, all 204

components were designed with a consistent API (Application Programming Interface), 205

which makes changing between agent/grid types and learning their methods much easier. 206

3.2.1 AgentGrids 207

AgentGrids are used as spatial containers for agents. They come in 1D, 2D, 3D, and 208

non-spatial types. An example usage of a 3D AgentGrid is shown in Fig 3. These 209

objects hold populations of agents that exist either bound to a lattice, or are free to 210

move continuously. Internally, AgentGrids are composed of two data-structures: an 211

agent list for agent iteration, and an agent lattice for spatial queries (even off-lattice 212

agents are stored on a lattice for quick access). The agent list can be shuffled at every 213

iteration to randomize iteration order, and the list holds onto removed agents to 214

facilitate object recycling. 215

3.2.2 Agents 216

There are 10 base types of agent, introduced in Table 2. The SQ and PT suffixes refer 217

to whether the agents are imagined to exist as lattice bound squares/voxels, or as 218

non-volumetric points in space. 219

December 19, 2018 6/28

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


Name Spatial Dimension Lattice Bound Stackable
Agent0D 0 N/A N/A

AgentSQ1D 1 yes yes
AgentSQ1Dunstackable 1 yes no

AgentPT1D 1 no yes
AgentSQ2D 2 yes yes

AgentSQ2Dunstackable 2 yes no
AgentPT2D 2 no yes
AgentSQ3D 3 yes yes

AgentSQ3Dunstackable 3 yes no
AgentPT3D 3 no yes

Table 2. The 10 base agent types in HAL. The differences between them are displayed
in each column. Stackable refers to whether multiple agents can exist on the same
lattice position

Agent objects are always bound to a grid. In their base class form, agents keep track 220

of their position on the grid and their age. Newly created agents are not included in the 221

same iteration loop in which they are created, to prevent infinite loops of “runaway 222

proliferation.” The base agent classes can be extended to include additional state 223

properties and methods as needed. 224

Figure 3. An example of a 3D on-lattice hybrid model of tumor cells spreading
through tissue. The red vertical lines represent vessels, and the blue dots represent
tumor cells. The cell color goes from pink to blue depending on how much oxygen is
locally available. Displayed using the OpenGL3DWindow object.

3.2.3 PDEGrids 225

The PDE Grids consist of either a 1D, 2D, or 3D lattice of concentrations. PDE grids 226

contain functions that will solve reaction-diffusion equations. PDE function operations 227

are accumulated on a separate lattice so they can be applied all at once in a 228

simultaneous update. Currently implemented PDE solution methods include: 229

• Forward difference in time and 2nd order central difference in space diffusion 230

• ADI Diffusion [25] 231

• 1st order upwind finite difference advection for incompressible flows [26] 232

• 1st order finite volume upwind advection for compressible flows 233
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• Modification of values at single lattice positions to facilitate reaction with agents 234

or other sources/sinks. 235

Most of these methods are flexible, allowing for spatially heterogeneous diffusion rates 236

and advection velocities as well as different boundary conditions such as periodic, 237

Dirichlet, and zero-flux Neumann. 238

3.2.4 Graphical User Interface (GUI) 239

The GUI building system consists of the following components: 240

• UIWindow: a window that displays GUI sub-components which are added in 241

columns. the UIWindow will automatically scale to the appropriate size to fit all 242

sub-components. The following five sub-components can be added: 243

– UIGrid: a grid of pixels whose values are set individually. These are typically 244

used to plot agent positions and diffusible concentrations, and can be easily 245

output in GIF or PNG formats. 246

– UIPlot: an extension of the UIGrid, the UIPlot is used to create real-time 247

plots. The UIPlot will automatically resize to fit points that fall out of its 248

bounds. 249

– UILabel: a label that presents modifiable text. 250

– UIButton: a button that executes a function when clicked 251

– UIInputFields: various fields that accept bounded input of Integers, Doubles, 252

Strings, Booleans, File Creation/Selection, and Combo boxes 253

• Window2DOpenGL/Window3DOpenGL: visualization windows that use OpenGL 254

to efficiently render polygon graphics. 255

• GridWindow: A shortcut to generate a UIWindow with a single UIGrid 256

component embedded. This simple component is used in the results section 257

example. 258

• GifMaker: An object that can turn UIGrid visualization snapshots into gifs 259

(Original source code created by Patrick Meister [27]). 260

An example GUI that uses the UIWindow with embedded UIButtons, InputFields, 261

UILabels, and a UIGrid is shown in Fig 4. 262
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Figure 4. An example UIWindow GUI. When the "Run" UIButton (bottom left) is
clicked, the UIGrid component (right) displays a running model that is parameterized
with the given UIInputField settings (left). In this example model based on [28], the red
cells are stem cells, and the blue cells are differentiated cells. Differentiated cells have a
limited number of divisions and therefore can only spread a limited distance from the
stem cells. UILabels (top) show the current timestep and population size.

3.2.5 Utilities 263

The Util and Rand classes are used with almost every project. The Util class consists of 264

a collection of standalone functions that solve common problems such as: Generating 265

colors for use with the visualization tools, array manipulation, generating coordinate 266

neighborhoods (eg. VonNeumann, Moore, Hex, Triangular), spatial mathematical 267

operations, multicore parallelization, functions to save and load model states, etc. The 268

Rand class is used for generating random numbers and for sampling distributions (eg. 269

Gaussian, Poisson, Binomial, Multinomial - created using code adapted from the Colt 270

and Numpy open source libraries [29,30]) See the manual for more information [24]. 271

3.2.6 Tools 272

A set of miscellaneous tool objects are included to help with specific modeling tasks, 273

these include: 274

• A FileIO object that is used to read input files and output results. 275

• A GenomeTracker object that internally stores phylogeny information in a 276

searchable tree structure, and can be used to model branching processes. 277
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• An ODESolver object that can solve ODEs numerically using Euler, Runge-Kutta 278

4, and Runge-Kutta Fehlberg 4,5 integration. 279

• A Multi-Well Experiment object that uses multi-threading to run and display 280

many models simultaneously. The modeler simply creates an array of initialized 281

models, defines an update and draw step, and can then feed many models into the 282

Multi-Well experiment object and observe divergences in dynamics. This allows 283

modelers to intuitively seed different models or replicates of the same conditions 284

and observe differences in their behavior over time, see Fig 5 285

Figure 5. Example of a 10x10 Multi-Well experiment where evolutionary competition
of two phenotypes (red,green) shows divergent results with different random seeds.
models are separated with red lines.

• An InteractiveModel object that embeds models in a graphical user interface from 286

which the modeler can schedule modifications to parameters, such as treatment 287

application, and interact with their model in real time. Modelers may also rewind 288

execution to adjust settings, helping them to more quickly understand their model 289

dynamics, and identify useful drug combinations and schedules. This tool 290

exemplifies the power of modular design, and uses a UIPlot object for the timeline, 291

as well as several UIGrids and UIButtons for other interactive components. This 292

tool was used as part of the development of the Cancer Crusade game [31] to test 293
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the effects of therapy on a model by Tessi et al. [12], see Fig 6. 294

Figure 6. Example usage of the InteractiveModel object, allowing the modeler to
experiment with treatment strategies using a model of the by Tessi et al. [12]. (A) A
spatial visualization of the current model state. (B) A control panel of UIButtons
allows the user to quickly restart the model, pause execution, clear all treatments, and
undo previous changes. Hotkeys for these controls are in brackets. (C) A Speed Control
option allows the user to easily adjust the execution speed of the model to range from
evaluating as fast as possible to taking a second between time-steps, allowing for careful
observation of model dynamics. (D) A timeline that will plot timestep information so
that the user may observe aggregate changes over time in response to treatment. The
user may also click anywhere in the timeline to backtrack to a previous timepoint and
replay the model from there. The timeline will also automatically backtrack to
recalculate any necessary frames when a treatment schedule change is made. (E) A set
of sliders that allow the user to select different treatment intensities for each drug. (F)
Each horizontal bar parallels the simulation timeline and displays the schedule of a
different treatment. Modelers can click on regions within these bars to change regions to
a new treatment intensity selected in (E). Modelers may also use the hotkeys presented
in (E) to apply the selected intensities in real time as the model runs.

4 Results: Competitive Release Model 295

To demonstrate how the aforementioned principles and components of HAL are applied, 296

we consider a simple but complete example of hybrid modeling. We implement the 297
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model of pulsed therapy based on a recent publication by Gallaher et al. [14]. We also 298

showcase the flexibility that the modular component approach brings by displaying 299

three different parameterizations of the same model side by side. 300

4.1 Competitive Release Introduction 301

The model in [14] describes two competing tumor-cell phenotypes: a rapidly dividing, 302

drug-sensitive phenotype and a slower dividing, drug-resistant phenotype. There is also 303

a diffusible drug that enters the system through the domain boundaries and is 304

consumed by the tumor cells over time. 305

Every timestep ("tick") each cell has a probability of death and a probability of 306

division. The division probability depends on phenotype (resistant cells divide less 307

frequently) and the availability of space (cells will divide only if there is an open space 308

in the nearest eight grid square neighborhood or moore neighborhood). Sensitive cells 309

have a death rate that increases when the cells are exposed to drug, while resistant cells 310

have a constant death rate. 311

The modular design of HAL allows us to test 3 different treatment conditions, each 312

with an identical starting tumor (no drug, constant drug, and pulsed drug). An 313

interesting outcome of the experiment is that pulsed therapy is better at managing the 314

tumor than constant therapy. Under pulsed therapy the sensitive population is kept in 315

check, while still competing spatially with the resistant phenotype and preventing its 316

expansion. The rest of the section describes in detail how this abstract model is 317

generated. 318

Fig 7 provides a high level look at the structure of the code. Red font indicates 319

where a section of the coding example is called. Table 3 provides a quick reference for 320

the built-in HAL functions used in this example. Any functions that are used by the 321

example but do not exist in the table are defined within the example itself and 322

explained in detail below the code. Those fluent in Java may be able to understand the 323

example just by reading the code and using Table 3. Built-in HAL functions and classes 324

are highlighted in red in the following source code to make identifying HAL’s 325

components easier. 326
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Figure 7. (A) Example program flow diagram. Red font indicates where coding
example sections are first called. (B) CellStep function flow diagram.
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Function Object Action
NewAgentSQ(INDEX) AgentGrid2D Returns a new agent, placed at the center of the square at the

provided position INDEX.
ShuffleAgents(RNG) AgentGrid2D Usually called after every timestep to shuffle the order of agent

iteration.
GetTick() AgentGrid2D Returns the current grid timestep.

ItoX(INDEX),
ItoY(INDEX)

AgentGrid2D Converts from a grid position INDEX into the x and y compo-
nents that point to the same grid position.

MapHood( NEIGH-
BORHOOD,X,Y)

AgentGrid2D Finds all position indices in the provided neighborhood, centered
around X,Y that don’t fall out of bounds of the AgentGrid2D.
Writes these indices into the NEIGHBORHOOD argument, and
returns the number that were found.

MapEmptyHood(
NEIGHBORHOOD)

AgentSQ2D Finds all position indices in the provided neighborhood, centered
around the agent, that do not have an agent occupying them.
Writes these indices into the NEIGHBORHOOD argument, and
returns the number that were found.

G AgentSQ2D Gets the grid that the agent occupies.
Isq() AgentSQ2D Gets the position index of the grid square that the agent occupies.

Dispose() AgentSQ2D Removes the agent from the grid and from iteration.
Get(INDEX) PDEGrid2D Returns the concentration of the PDE field at the given index.

Mul(INDEX, VALUE) PDEGrid2D Multiplies the concentration at the given INDEX by VALUE
and adds the result to the current concentration when Update()
is called

DiffusionADI( RATE) PDEGrid2D Applies diffusion using the ADI method with the rate constant
provided. A reflective boundary is assumed. The result is applied
when Update() is called.

DiffusionADI(
RATE,

BOUNDARY_COND)

PDEGrid2D Applies diffusion using the ADI method with the RATE constant
provided. The BOUNDARY_COND value diffuses from the grid
borders. The result is applied when Update() is called.

Update() PDEGrid2D Applies all state changes simultaneously to the PDEGrid
SetPix(INDEX,

COLOR)
GridWindow Sets the color of a pixel.

TickPause(
MILLISECONDS)

GridWindow Pauses the program between calls to TickPause. The function
automatically subtracts the time between calls from MILLISEC-
ONDS to ensure a consistent timestep rate for visualization.

ToPNG(FILENAME) GridWindow Writes out the current state of the UIWindow to a PNG image
file.

Close() GridWindow Closes the GridWindow.
RGB(RED, GREEN,

BLUE)
Util Returns an integer with the requested color in RGB format. This

value can be used for visualization.
HeatMapRGB(VALUE) Util Maps the VALUE argument (assumed to be between 0 and 1)

to a color in the heat colormap.
CircleHood(

INCLUDE_ORIGIN,
RADIUS)

Util Returns a set of coordinate pairs that define the neighborhood of
all squares whose centers are within the RADIUS distance of the
center (0, 0) origin square. The INCLUDE_ORIGIN argument
specifies whether to include the origin in this set of coordinates.

MooreHood(
INCLUDE_ORIGIN)

Util Returns a set of coordinate pairs that define a Moore neighbor-
hood around the (0, 0) origin square. The INCLUDE_ORIGIN
boolean specifies whether we intend to include the origin in this
set of coordinates.

Write(STRING) FileIO Writes the STRING to the output file.
Close() FileIO Closes the output file.

Double() Rand Generates a random double value in the range [0− 1)

Table 3. HAL functions used in the example. Each function is a method of a
particular object, meaning that when the function is called it may use properties that
pertain to the object that it is called from.
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4.2 Main Function 327

We first examine the ‘main’ function for a bird’s-eye view of how the program is 328

structured. Source code elements highlighted in red are built-in HAL functions and 329

objects, and can be referenced in Table 3. 330

331
1 p u b l i c s t a t i c vo i d main ( S t r i n g [ ] a r g s ) { 332

2 // s e t t i n g up s t a r t i n g c on s t a n t s and data c o l l e c t i o n 333

3 i n t x = 100 , y = 100 , v i s S c a l e = 5 , tumorRad = 10 , msPause = 5 ; 334

4 doub l e r e s i s t a n t P r o b = 0 . 5 ; 335

5 GridWindow win = new GridWindow ( " Compe t i t i v e Re l e a s e " , x ∗ 3 , y , 336

v i s S c a l e ) ; 337

6 F i l e IO popsOut = new F i l e IO ( " p opu l a t i o n s . c s v " , "w" ) ; 338

7 // s e t t i n g up models 339

8 ExampleModel [ ] models = new ExampleModel [ 3 ] ; 340

9 f o r ( i n t i = 0 ; i < models . l e n g t h ; i++) { 341

10 models [ i ] = new ExampleModel ( x , y , new Rand ( ) ) ; 342

11 models [ i ] . In i tTumor ( tumorRad , r e s i s t a n t P r o b ) ; 343

12 } 344

13 models [ 0 ] .DRUG_DURATION = 0 ; //no drug 345

14 models [ 1 ] .DRUG_DURATION = 200 ; // con s t an t drug 346

15 //Main run loop 347

16 f o r ( i n t t i c k = 0 ; t i c k < 10000 ; t i c k++) { 348

17 win . TickPause ( msPause ) ; 349

18 f o r ( i n t i = 0 ; i < models . l e n g t h ; i++) { 350

19 models [ i ] . ModelStep ( t i c k ) ; 351

20 models [ i ] . DrawModel ( win , i ) ; 352

21 } 353

22 // data r e c o r d i n g 354

23 popsOut . Wr i te ( models [ 0 ] . Pop ( ) + " , " + models [ 1 ] . Pop ( ) + " , " + 355

models [ 2 ] . Pop ( ) + "\n" ) ; 356

24 i f ( ( t i c k ) % 100 == 0) { 357

25 win .ToPNG( "ModelsTick " + t i c k + " . png" ) ; 358

26 } 359

27 } 360

28 // c l o s i n g data c o l l e c t i o n 361

29 popsOut . C l o s e ( ) ; 362

30 win . C l o s e ( ) ; 363

31 } 364365

Lines 3-4: Defines all of the constants that will be needed to setup the model and 366

display. 367

5: Creates a GridWindow of RGB pixels for visualization and for generating timestep 368

PNG images. x*3, y define the dimensions of the pixel grid. the x variable is 369

multiplied by 3 so that 3 models can be visualized side by side in the same 370

window. The last argument is a scaling factor that specifies that each pixel on the 371

grid will be viewed as a 5x5 square of pixels on the screen. 372

6: Creates a file output object that will write to a file called populations.csv. 373

8: Creates an array with 3 entries that will be populated with models. 374

9-12: Fills the model list with models that are initialized identically. Each model will 375

hold and update its own cells and diffusible drug. See the Grid Definition and 376

Constructor section and the InitTumor Function section for more details. 377

13-14: Setting the DRUG_DURATION constant creates the only difference in the 3 378

models being compared. In models[0] no drug will be administered. In models[1] 379

drug administration will be constant (DRUG_DURATION is set equal to 380

DRUG_CYCLE). In models[2] drug will be administered periodically (the default 381
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value of DRUG_DURATION is 40). See the ExampleModel Constructor and 382

Properties section for the default model initialization. 383

16: Executes the main loop for 10000 timesteps. 384

17: Requires every iteration of the loop to take a minimum number of milliseconds. 385

This slows down the execution and display of the model and makes it easier for 386

the viewer to follow. 387

18: Loops over all models to update them. 388

19: Advances the state of the agents and diffusibles in each model by one timestep. See 389

the Model Step Function for more details. 390

20: Draws the current state of each model to the window. See the Draw Model 391

Function for more details. 392

23: Writes the population sizes of each model every timestep to allow the models to be 393

compared. 394

24: Every 100 timesteps, writes the state of the model as captured by the GridWindow 395

to a PNG file. 396

29-30: After the main for loop has finished, the FileIO object and the visualization 397

window are closed, and the program ends. 398

4.3 ExampleModel Constructor and Properties 399

This section explains how the grid is defined and instantiated. 400

401
1 p u b l i c c l a s s ExampleModel e x t end s AgentGrid2D<ExampleCe l l> { 402

2 //model c on s t a n t s 403

3 p u b l i c f i n a l s t a t i c i n t RESISTANT = RGB(0 , 1 , 0) , SENSITIVE = RGB(0 , 404

0 , 1) ; 405

4 p u b l i c doub l e DIV_PROB_SEN = 0.025 , DIV_PROB_RES = 0 .01 , 406

5 DEATH_PROB = 0.001 , DRUG_DIFF_RATE = 2 , DRUG_UPTAKE = −0.09 , 407

6 DRUG_TOXICITY = 0 .2 , DRUG_BOUNDARY_VAL = 1 . 0 ; 408

7 p u b l i c i n t DRUG_START = 400 , DRUG_CYCLE = 200 , DRUG_DURATION = 40 ; 409

8 // i n t e r n a l model o b j e c t s 410

9 p u b l i c PDEGrid2D drug ; 411

10 p u b l i c Rand rng ; 412

11 p u b l i c i n t [ ] divHood = MooreHood ( f a l s e ) ; 413

12 414

13 p u b l i c ExampleModel ( i n t x , i n t y , Rand g en e r a t o r ) { 415

14 supe r ( x , y , Examp leCe l l . c l a s s ) ; 416

15 rng = gen e r a t o r ; 417

16 drug = new PDEGrid2D ( x , y ) ; 418

17 } 419420

1: The ExampleModel class, which is user defined and specific to this example, is built 421

by extending the generic AgentGrid2D class. The extended grid class requires an 422

agent type parameter, which specifies the type of agent that will live on the grid. 423

To meet this requirement, the <ExampleCell> type parameter is added to the 424

declaration. 425

3: Defines RESISTANT and SENSITIVE constants, which are created by the Util RGB 426

function. These constants serve as both colors for drawing and as labels for the 427

different cell types. 428
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4-7: Defines all constants that will be needed during the model run. These values can 429

be reassigned after model creation to test different parameter settings. In the 430

main function, the DRUG_DURATION variable is modified for the 431

Constant-Drug, and Pulsed Therapy experiment cases. 432

9: Declares that the model will contain a PDEGrid2D, which will hold the drug 433

concentrations. The PDEGrid2D can only be initialized when the x and y 434

dimensions of the model are known, which is why we do not assign their values 435

until the constructor function is called. 436

10: Declares that the Grid will contain a Random number generator (the Rand object), 437

but takes it in as a constructor argument to allow the modeler to seed the 438

generator if desired for consistent output. 439

11: Creates a neighborhood using the MooreHood function. The MooreHood function 440

generates a set of coordinates that define the Moore Neighborhood (the 8 closest 441

coordinates to a central origin), centered around (0, 0). The false argument 442

declares that we do not want to include the origin in the neighborhood, just the 8 443

coordinates around that position. The neighborhood is stored in the format 444

[0102, ..., 0n, x1, y1, x2, y2, ..., xn, yn] . The leading zeros are written to when 445

MapHood is called, and will store the position indices that the neighborhood 446

maps to. See the CellStep function for more information, and the InitTumor 447

Function Line 3 for another example of the use of neighborhoods 448

13: Defines the model constructor, which takes as arguments the x and y dimensions of 449

the model and a random number generator (a Rand object). 450

14: Calls the AgentGrid2D constructor with super, passing it the x and y dimensions of 451

the model, and the ExampleCell Class. This Class is used by the Grid to generate 452

a new cell when the NewAgentSQ function is called. 453

15-16: The Rand argument is assigned and the drug PDEGrid2D is defined with 454

matching dimensions. 455

4.4 InitTumor Function 456

The next segment of code is a function from the ExampleModel class that defines how 457

the tumor is first seeded after the ExampleModel is created. 458

459
1 p u b l i c vo i d In i tTumor ( doub l e r ad i u s , doub l e r e s i s t a n t P r o b ) { 460

2 // get a l i s t o f i n d i c e s t ha t f i l l a c i r c l e a t the c e n t e r o f the 461

g r i d 462

3 i n t [ ] tumorNeighborhood = Ci r c l eHood ( t rue , r a d i u s ) ; 463

4 i n t hoodS ize = MapHood( tumorNeighborhood , xDim / 2 , yDim / 2) ; 464

5 f o r ( i n t i = 0 ; i < hoodS ize ; i++) { 465

6 i f ( rng . Double ( ) < r e s i s t a n t P r o b ) { 466

7 NewAgentSQ( tumorNeighborhood [ i ] ) . t ype = RESISTANT ; 467

8 } e l s e { 468

9 NewAgentSQ( tumorNeighborhood [ i ] ) . t ype = SENSITIVE ; 469

10 } 470

11 } 471

12 } 472473

1: The arguments passed to the InitTumor function are the approximate radius of the 474

circular tumor being created and the probability that each created cell will be of 475

the resistant phenotype. 476
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3: Sets the tumorNeighborhood array using the CircleHood function, which stores 477

coordinates in the form [01, 02, ..., 0n, x1, y1, x2, y2, ...xn, yn]. The x,y coordinate 478

pairs define a neighborhood of all squares whose centers are within the radius 479

distance of the center (0, 0) origin square. The leading 0s are used by the 480

MapHood function to store the mapped indices. The boolean argument specifies 481

that the origin will be included in this set of squares, thus making a completely 482

filled circle of squares. 483

4: Uses the MapHood function to map the neighborhood defined above to be centered 484

around xDim/2,yDim/2 (the dimensions of the AgentGrid). The results of the 485

mapping are written as position indices to the beginning of the 486

tumorNeighborhood array. MapHood returns the number of valid indices found, 487

and this will be the size of the starting population. 488

5: Loops from 0 to hoodSize, allowing access to each mapped position index in the 489

tumorNeighborhood. 490

6: Samples a random number in the range [0− 1) and compares to the resistantProb 491

argument to set whether the cell should have the resistant phenotype or the 492

sensitive phenotype. 493

7-9: Uses the NewAgentSQ function to place a new cell at each tumorNeighborhood 494

position. In the same line we also specify that the phenotype should be either 495

resistant or sensitive, depending on the result of the rng.Double() call. 496

4.5 ModelStep Function 497

This section looks at the model’s step function which is executed once per timestep by 498

each Model. 499

500
1 p u b l i c vo i d ModelStep ( i n t t i c k ) { 501

2 Shu f f l eAg en t s ( rng ) ; 502

3 f o r ( Examp leCe l l c e l l : t h i s ) { 503

4 c e l l . C e l l S t e p ( ) ; 504

5 } 505

6 i n t p e r i o dT i c k = ( t i c k − DRUG_START) % DRUG_CYCLE; 506

7 i f ( p e r i o dT i c k > 0 && pe r i o dT i c k < DRUG_DURATION) { 507

8 // drug w i l l e n t e r th rough bounda r i e s 508

9 drug . D i f f u s i o nAD I (DRUG_DIFF_RATE, DRUG_BOUNDARY_VAL) ; 509

10 } e l s e { 510

11 // drug w i l l not e n t e r th rough bounda r i e s 511

12 drug . D i f f u s i o nAD I (DRUG_DIFF_RATE) ; 512

13 } 513

14 drug . Update ( ) 514

15 } 515516

2: The ShuffleAgents function randomizes the order of iteration so that the agents are 517

always looped through in random order. 518

3-4: Iterates over every cell on the grid, and calls the CellStep function on every cell. 519

6-7: The periodTick variable stores at what point in the drug delivery cycle the tick is, 520

and the If statement checks whether the tick is in the right part of the drug cycle 521

to apply drug, (See the Grid Definition and Constructor section for the values of 522

the constants involved, the DRUG_DURATION variable is set differently for each 523

model in the Main Function) 524
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9: If it is time to add drug to the model, the DiffusionADI function is called. 525

DiffusionADI uses the ADI method which is more stable than 2D Euler and allows 526

us to take larger steps. The additional argument to the DiffusionADI function 527

specifies the boundary condition value DRUG_BOUNDARY_VAL. This causes 528

the drug to diffuse into the PDEGrid2D from the boundary. Here we assume that 529

drug is only delivered from the boundaries of the domain 530

12: Without the second argument the DiffusionADI function assumes a zero-flux 531

boundary, meaning that drug concentration cannot escape or enter through the 532

sides of the model. Therefore the only way for the drug concentration to decrease 533

is via uptake by the Cells. See the CellStep function section, line 6, for more 534

information. 535

14: Update is called to apply the reaction and diffusion changes to the PDEGrid. 536

4.6 CellStep Function and Cell Properties 537

We next look at how the ExampleCell Agent is defined and at the CellStep function 538

that runs once per Cell per timestep. The G property that is referenced many times in 539

this section is a built-in agent property that gives access to the ExampleGrid object 540

that the cell lives on. 541

542
1 c l a s s Examp leCe l l e x t end s AgentSQ2Dunstackable<ExampleModel> { 543

2 p u b l i c i n t type ; 544

3 545

4 p u b l i c vo i d C e l l S t e p ( ) { 546

5 // uptake o f Drug 547

6 G. drug . Mul ( I s q ( ) , G .DRUG_UPTAKE) ; 548

7 doub l e deathProb , d i vProb ; 549

8 //Chance o f Death , depends on r e s i s t a n c e and drug c o n c e n t r a t i o n 550

9 i f ( t h i s . t ype == RESISTANT) { 551

10 deathProb = G.DEATH_PROB; 552

11 } e l s e { 553

12 deathProb = G.DEATH_PROB + G. drug . Get ( I s q ( ) ) ∗ 554

G.DRUG_TOXICITY ; 555

13 } 556

14 i f (G . rng . Double ( ) < deathProb ) { 557

15 Dispose ( ) ; 558

16 r e t u r n ; 559

17 } 560

18 //Chance o f D i v i s i o n , depends on r e s i s t a n c e 561

19 i f ( t h i s . t ype == RESISTANT) { 562

20 d ivProb = G.DIV_PROB_RES; 563

21 } e l s e { 564

22 d ivProb = G.DIV_PROB_SEN; 565

23 } 566

24 i f (G . rng . Double ( ) < d ivProb ) { 567

25 i n t o p t i o n s = MapEmptyHood (G . divHood ) ; 568

26 i f ( o p t i o n s > 0) { 569

27 G. NewAgentSQ(G. divHood [G . rng . I n t ( o p t i o n s ) ] ) . t ype = 570

t h i s . t ype ; 571

28 } 572

29 } 573

30 } 574

31 } 575576

1: The ExampleCell class is built by extending the generic AgentSQ2Dunstackable 577

class. The extended Agent class requires the ExampleModel class as a type 578

argument, which is the type of Grid that the Agent will live on. To meet this 579

requirement, we add the <ExampleModel> type parameter to the extension. 580
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2: Defines a cell property called "type". Each Cell holds a value for this field. If the 581

value is RESISTANT, the Cell is of the resistant phenotype, if the value is 582

SENSITIVE, the cell is of the sensitive phenotype. The RESISTANT and 583

SENSITIVE values are defined in the ExampleGrid as constants (See the 584

ExampleModel Constructor and Properties, line 3). 585

6: The G property is used to access the ExampleGrid object that the Cell lives on. G is 586

used often with agent functions as the AgentGrid is expected to contain any 587

information that is not local to the individual agent. Here it is used to get the 588

drug PDEGrid2D. The drug concentration at the index that the Cell is currently 589

occupying (Isq()) is then multiplied by the drug uptake constant, thus modeling 590

local drug uptake by the Cell. 591

7: Defines deathProb and divProb variables, these will be assigned different values 592

depending on whether the ExampleCell is RESISTANT or SENSITIVE. 593

9-12: If the cell is resistant, the deathProb variable is set to the DEATH_PROB value 594

alone, if the cell is sensitive, an additional term is added to account for the 595

probability of the cell dying from drug exposure, using the concentration of drug 596

at the cell’s position (Isq()) 597

14-16: Samples a random number in the range [0− 1) and compares to deathProb to 598

determine whether the cell will die. If so, the built-in agent Dispose() function is 599

called, which removes the agent from the grid, and then return is called so that 600

the dead cell will not divide. 601

19-22: Sets the divProb variable to either DIV_PROB_RES for resistant cells, or 602

DIV_PROB_SEN for sensitive cells. 603

24: Samples a random number in the range [0− 1) and compares to divProb to 604

determine whether the cell will divide. 605

25: If the cell divides, the MapEmptyHood function is used, which checks the positions 606

in the divHood (the Moore neighborhood as defined in the ExampleModel 607

Constructor and Properties section, line 11) around the Cell, and writes the 608

position indices that do not contain any agents into the divHood. 609

MapEmptyHood returns the number of valid empty positions found. 610

26-27: If there are one or more valid division options, a new daughter cell is created 611

using the NewAgentSQ function and its starting location is chosen by randomly 612

sampling the divHood array to pull out one if its valid locations. The other 613

daughter is assumed to occupy the same location as the mother cell. Finally with 614

the .type=this.type statement, the phenotype of the newly placed daughter cell is 615

inherited from the mother cell. 616

4.7 DrawModel Function 617

We next look at the DrawModel Function, which is used to display a summary of the 618

model state on a GridWindow object. In this program, DrawModel is called once for 619

each model per timestep; see the main function section for more information. 620

621
1 p u b l i c vo i d DrawModel ( GridWindow v i s , i n t iMode l ) { 622

2 f o r ( i n t x = 0 ; x < xDim ; x++) { 623

3 f o r ( i n t y = 0 ; y < yDim ; y++) { 624

4 Examp leCe l l drawMe = GetAgent ( x , y ) ; 625

5 i f ( drawMe != n u l l ) { 626

6 v i s . Se tP i x ( x + iMode l ∗ xDim , y , drawMe . type ) ; 627
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7 } e l s e { 628

8 v i s . Se tP i x ( x + iMode l ∗ xDim , y , 629

HeatMapRGB( drug . Get ( x , y ) ) ) ; 630

9 } 631

10 } 632

11 } 633

12 } 634635

2-3: Loops over every lattice position of the grid being drawn, xDim and yDim refer to 636

the dimensions of the model. 637

4: Uses the GetAgent function to get the Cell that is at the x,y position. 638

5-6: If a cell exists at the requested position, the corresponding pixel on the 639

GridWindow is set to the cell’s phenotype color. To draw the models side by side, 640

the pixel being drawn is displaced to the right by the model index. 641

7-8: If there is no cell to draw, then the pixel color is set based on the drug 642

concentration at the same index, using the built-in heat colormap. 643

4.8 Imports 644

The final code snippet looks at the imports that are needed. Any modern Java IDE 645

should generate import statements automatically. 646

647
1 package Examples . _6Compet i t i v eRe l ea se ; 648

2 impor t Framework . Gr idsAndAgents . AgentGrid2D ; 649

3 impor t Framework . Gr idsAndAgents . PDEGrid2D ; 650

4 impor t Framework . Gui . GridWindow ; 651

5 impor t Framework . Gr idsAndAgents . AgentSQ2Dunstackable ; 652

6 impor t Framework . Too l s . F i l e IO ; 653

7 impor t Framework . Rand ; 654

8 impor t s t a t i c Examples . _6Compet i t i v eRe l ea se . ExampleModel . ∗ ; 655

9 impor t s t a t i c Framework . U t i l . ∗ ; 656657

1: The package statement specifies where the file exists in the larger project structure 658

2-7: Imports all of the classes that we will need for the program. 659

8: Imports the static fields of the model so that we can use the type names defined 660

there in the Agent class. 661

9: Imports the static functions of the Util file, which adds all of the Util functions to 662

the current namespace, so we can natively call them. Statically importing Util is 663

recommended for every project. 664

4.9 Model Results 665

Table 4 displays the model visualization at timestep 0, timestep 400, timestep 1100, 666

timestep 5500, and timestep 10,000 recorded from the GridWindow ToPNG function. 667

The caption explores the notable trends visible in each image. Fig 8 displays the 668

population sizes as recorded by the FileIO Write function at the end of every timestep. 669
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Figure 8. FileIO population output. This plot summarizes the changes in tumor
burden over time for each model. This plot was constructed in python using data
accumulated in the program output CSV file. Displayed using Seaborn with Python.

This example illustrates the power of HAL’s approach to model building. Writing 670

relatively little complex code, we setup a three model experiment with nontrivial 671

dynamics along with methods to collect data and visualize the models. We now briefly 672

review the model results. 673

As can be seen in Table 4, at timestep 0 and timestep 400 (right before drug 674

application starts), all 3 models are identical. At timestep 1100 the differences in 675

treatment application show different effects: when no drug is applied, the rapidly 676

dividing sensitive cells quickly fill the domain, while when drug is applied constantly, 677

the resistant cells overtake the sensitive population. Pulsed drug kills some sensitive 678

cells, but leaves enough alive to prevent growth of the resistant cells. At timestep 5500, 679

the resistant cells have begun to emerge from the center of the pulsed drug model. At 680

timestep 10000, all domains are filled. Interestingly, in the models with drug 681

application, the sensitive cells are able to survive in the center of the domain because 682

drug is consumed by cells on the outside. This creates a drug-free zone in which the 683

sensitive cells out-compete the resistant cells even when drug is applied constantly. 684

As can be seen in Fig 8, the pulsed therapy is the most effective at preventing tumor 685

growth, however the resistant cells ultimately succeed in breaking out of the tumor 686

center and out-competing the sensitive cells on the fringes of the tumor. It may be 687

possible to contain a population of sensitive and resistant cells for longer by using a 688

different pulsing schedule or by modifying the treatment schedule in response to the 689

tumor growth (adaptive therapy). As the presented model is primarily an example, we 690

do not explore how to improve treatment further. For a more detailed exploration of the 691
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potential of adaptive therapy for prolonging competitive release, see [14]. 692

Timestep No Drug / Constant Drug / Pulsed Drug

0

400

1100

5500

10000
Table 4. Selected model visualization PNGs. Blue cells are drug sensitive, Green cells
are drug resistant, background heatmap colors show drug concentration.
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5 Availability And Future Directions 693

5.1 How to Download and Contribute 694

HAL is publicly available on GitHub, at https://github.com/MathOnco/HAL. A manual is 695

included that walks the user through installation and serves as a coding reference. For 696

those interested in using HAL, downloading and setting up the project is a good first 697

start. From there running and examining the included examples is recommended, as 698

they do a good job of summarizing HAL’s capabilities. Modelers can contribute tools 699

that they develop by making pull requests to the repository. 700

5.2 Future Directions 701

5.2.1 Additional agent-based Modeling Paradigms 702

Currently the only paradigm implemented on top of the base agent types are the 703

SphericalAgent2D/3D extension classes, which facilitate modeling cells as 704

circles/spheres with Newtonian physics. In the future we hope to incorporate additional 705

modeling paradigms that are commonly used in agent-based modeling of cells. A 706

potential addition is a Delaunay Agent type, which would use Delaunay tessellation [32] 707

to find the cell’s nearest neighbors and determine cell volume. We are also considering 708

including modeling paradigms that construct cells out of smaller subunits, such as 709

Deformable Ellipsoid Cell Modeling [33], as this would allow us to model the mechanics 710

of tissue formation and cell migration in more detail. 711

5.2.2 Cross Model Validation 712

Having many different paradigms to choose from adds several complications to 713

modeling: It can take significant effort to build a model from scratch under one 714

paradigm, and then significant additional effort to migrate the model to a different 715

paradigm. By adding more modeling approaches with a consistent interface, HAL will 716

lower the model migration barrier and allow modelers to test the merits of many 717

paradigms in their investigation, and to validate their results by seeing whether they 718

hold true across paradigms. Note that our goal is not to recreate all of the functionality 719

of the pre-existing frameworks that support these paradigms, it is to provide their core 720

algorithms so that users can easily choose from and compare them. 721

5.2.3 Bridging Spatial Scales 722

We also hope to explore the possibility of adjusting spatial scales for both our PDEs 723

and Agents. For PDEs, this is a readily understood problem, and we intend to add 724

scalable PDEGrids to HAL soon. However, for agent-based modeling the process of 725

changing scales while preserving dynamics is not so well defined, though we imagine 726

that it may be possible under certain assumptions. This would be useful for helping us 727

bridge the divide between cell level and tissue/organ/tumor level dynamics, as the 728

number of cells involved at these scales are orders of magnitude greater than what 729

desktop machines can tractably model. 730

5.2.4 Assumption Modules 731

A common modeling task is exploring how combinations of different assumptions 732

influence model behavior. The included ModuleSetManager object helps design models 733

specifically with this in mind. The design entails providing code “hooks” so that code 734

can be added to influence specific agent decisions and model events, (eg. whether an 735
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agent will reproduce). Modelers can then write assumption modules that will influence 736

these events (eg. by altering the probability of reproduction based on an environmental 737

factor that would otherwise be ignored). 738

This approach allows modelers to combine and remove assumption modules without 739

having to worry about breaking the model. This facilitates easy exploration of the space 740

of assumptions until ones suitable for understanding biological phenomena are found. 741

We are very excited about the potential of this approach for collaborative projects and 742

for building increasingly complex models by encapsulating the complexity into 743

manageable parts, and hope to improve on the tools for this paradigm as we explore its 744

potential. 745

5.2.5 Advanced Scheduling 746

Taking inspiration from Repast, SWARM, and MASON, another expected extension is 747

the inclusion of optional schedulers to facilitate more complex methods of iterating 748

through agents than simply looping over each grid. This is not intended to replace the 749

simple grid iteration approach, but instead should augment it with optional complex 750

methods. An AgentList object is currently included to begin to address this. It allows 751

modelers to make selective lists of agents for more flexible iteration. 752

5.2.6 Building a Community 753

HAL has already seen adoption within the labs at the Integrated Mathematical 754

Oncology department of Moffitt Cancer Center and beyond. We certainly hope that 755

more outside users will be interested in its potential. As the user-base for HAL grows, 756

we plan to extend the base of resources around the platform. The current set of 757

resources that exist for new users to get started are the manual 6, a website with an 758

online version of the manual [1] and a playlist of YouTube videos [34]. We intend to 759

increase HAL’s online presence by including a website with a code repository to make 760

sharing models and tools easier. 761

6 Conclusion 762

Cancer is a complex and heterogeneous disease whose mathematical study is still being 763

developed. To make better progress in this endeavor, it is helpful to have a set of highly 764

generic tools that encapsulate the key components of spatial modeling so that 765

researchers can produce efficient models quickly without being constrained in their 766

approach, nor in the complexity of the systems that they can produce. HAL is our 767

attempt to achieve this. 768

HAL was made easily extensible so that researchers can build models and more 769

specific tools on top of HAL’s generic base. The hope is that by this process HAL will 770

grow into a powerful toolset that will help standardize and coordinate hybrid modeling 771

in mathematical oncology. 772

We recommend HAL to anyone building spatial models for oncology, as the tools 773

presented are primarily geared toward this end. However, given the amount of overlap 774

and cross talk between the approaches used in different modeling applications, we hope 775

that modelers outside of mathematical oncology will also take interest and contribute, 776

to our mutual benefit. 777

Supporting information
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S1 Fig. HAL (Hybrid Automata Library) Manual. Includes setup
instructions, implementation details, and a function glossary.
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