bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Hybrid Automata Library: A modular platform for .
efficient hybrid modeling with real-time visualization .
December 19, 2018 a

Rafael Bravo!?, Etienne Baratchart!, Jeffrey West!, Ryan O. Schenck?, Anna K. 5
Miller!, Jill Gallaher!, Chandler D. Gatenbee!, David Basanta', Mark Robertson-Tessi',

Alexander R. A. Anderson 14 7
1:Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, 33612, 8
USA 0
2:Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, 10
UK 11
3:rafael.bravo@moffitt.org,4:alexander.anderson@moffitt.org 12
Abstract 13

The Hybrid Automata Library (HAL) is a Java Library developed for use in 14
mathematical oncology modeling. It is made of simple, efficient, generic 15
components that can be used to model complex spatial systems. HAL’s 16
components can broadly be classified into: on- and off-lattice agent containers, 17

finite difference diffusion fields, a GUI building system, and additional tools and 18
utilities for computation and data collection. These components are designed to 19
operate independently and are standardized to make them easy to interface with 20

one another. As a demonstration of how modeling can be simplified using our 21
approach, we have included a complete example of a hybrid model (a spatial 22
model with interacting agent-based and PDE components). HAL is a useful asset 23

for researchers who wish to build efficient 1D, 2D and 3D hybrid models in Java, 24

while not starting entirely from scratch. It is available on github at 25
https://github.com/MathOnco/HAL under the MIT License. HAL requires at 26

least Java 8 or later to run, and the Java JDK version 1.8 or later to compile the 27
source code. 28

1 Author Summary 2

In this paper we introduce the Hybrid Automata Library (HAL) with the purpose of 30
simplifying the implementation and sharing of hybrid models for use in mathematical 31

oncology. Hybrid modeling is used in oncology to create spatial models of tissue, 32
typically by modeling cells using agent-based techniques, and by modeling diffusible 33
chemicals using partial differential equations (PDEs). HAL’s key components are 3a
designed to run agent-based models, PDEs, and visualization. The components are 35
standardized and are completely decoupled, so models can be built with any 36
combination of them. We first explore the philosophy behind HAL, then summarize the 7
components. Lastly we demonstrate how the components work together with an 38

example of a hybrid model, and a walk-through of the code used to construct it. HAL is 30
open-source and will produce identical results on any machine that supports Java 8 and 4o
above, making it highly portable. We recommend HAL to modelers interested in spatial s

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

dynamics, even those outside of mathematical oncology, as the components are general a2

enough to facilitate a variety of model types. A community page that provides a a3
download link and online documentation can be found at https://halloworld.org [1]. as
2 Introduction .

The Hybrid Automata Library (HAL) was created to assist the growing mathematical 4o
oncology community with a common framework for efficiently building and visualizing 47
hybrid models. Hybrid models in oncology usually represent cells (both of the tumor and s
of the surrounding tissue) using agent-based modeling (ABMs) and the concentrations — ae

of relevant chemicals (drugs, resources and signaling molecules) as continuous partial 50
differential equations (PDEs). These models can simulate local interactions between 51
cells with complex internal dynamics and decision-making processes while also allowing s2
cells to interact with the PDE concentration fields in their local environment. 53

Hybrid models have been widely adopted within the Mathematical Oncology 54
community to model many aspects of cancer [2H5]. A unique strength of the hybrid 55
modeling approach is that it allows for a mechanistic understanding of the ecological 56
feedback between the cancer cells and their tissue environment. Cancer cell agents can sz
be modeled as a part of the surrounding tissue, and interact with the systems that 58
normally maintain homeostasis. [6HL1] Drugs may be subsequently introduced to add 50
additional selective pressure to the model, and the long-term effects on the tumor 60

evolution observed. A better understanding of these selection dynamics can be used to e
help develop more effective drug sequences to prevent cancer resistance to therapy and ez

to develop evolutionary therapies to control cancers that cannot be cured with 63
maximum tolerated dose [12H14]. Further realism can be incorporated by initializing oa
spatial models with clinical or histological data |154(16]. o5

Whilst a number of agent-based modeling frameworks have been used for tissue 66
modeling, including MASON, Repast, Physicell, CompuCell3D, Chaste, and Netlogo, we 7
designed HAL to be simpler, more efficient, and more flexible. 68

Some of these frameworks facilitate model building under specific spatial interaction oo
assumptions like PhysiCell [17], which treats cells as spheres under Newtonian 70

adhesion-repulsion dynamics and is optimized for large cell populations, and CompuCell 71
3D [18|, which models cells as contiguous composites of lattice positions, allowing cell 72

deformation. HAL does not include the same depth in the domains specific to these 73
frameworks, but uses a broader approach to provide the capacity for a variety of 7a
approaches. 75

Some of the most popular frameworks that also take a broad approach are Chaste, 76
Repast, Mason, and Netlogo. Chaste uses an assumption based system for model 77
building, in which modular rules are composed to define behavior, and behaviors that 78
are not currently represented can be added as new modules [19]. This modular 79
approach allows for very rapid prototyping, and increases the reproducibility of results. so
Repast uses a hierarchical nesting approach to group agents into sets that will all 81
execute some action, and also features a highly customizable scheduling procedure to 82
sequence these actions [20]. MASON is probably the most architecturally similar to 83
HAL, as it also strives to be a modular agent-based modeling package, with built-in 8a

optional visualization tools and comparatively lax structure [21]. Netlogo uses a custom s
scripting language in order to simplify the coding process [22|. Netlogo also provides an ss

accessible model development environment, making it a great choice for new 87
modelers/coders. Each of these frameworks facilitates modeling under a different 88
centralized scheduling structure, as mentioned in Table 89

HAL shares many characteristics with these frameworks, but differentiates itself with eo
a minimal, decentralized design made up of independent building blocks that are o1

December 19, 2018 2

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

Name Language Scheduling Structure Spatial Representations
HAL Java For-Loop Iteration On/Off-lattice, Newtonian Physics
PhysiCell C++ Domain Specific Newtonian Physics
CompuCell 3D | Python/XML Domain Specific On Lattice Composites
Chaste CH++ Modular Behavior Based | On/Off-lattice, Newtonian Physics, Voronoi
Repast Java Group-Based Scheduler On/Off-lattice, Network
Mason Java Agent-Level-Scheduler On/Off-lattice
Netlogo Netlogo Go Loop On/Off-lattice, Spatial Networks

Table 1. Comparison of HAL with other agent-based Modeling Frameworks commonly
used in tissue modeling

thematically similar. There is no centralized controller or scheduler, so the modeler 02
designs the logical flow and the scheduling of interactions between model components. o3
This removes common presuppositions or requirements made by schedulers in other oa
frameworks (eg. when models should be visualized, when their step logic should run, o5

when models should be created or destroyed, etc.) and leaves these decisions up to the os
modeler. This cuts down on any unnecessary use of resources by the modeling system, o7
and increases model flexibility. These considerations have led to a lightweight o8
framework that is easy to use, highly flexible, and effective within the scope of hybrid oo
modeling, agent-based modeling, and the solving of reaction-diffusion PDEs using finite 1o0
differences. HAL was designed with mathematical oncology in mind, but is general 101
enough to facilitate modeling systems from many domains (eg. ecology [23)], 102
development, population dynamics, and network theory). |17]. While some familiarity 103
with the Java programming language is recommended for new users of HAL, we imagine 1oa
that its simplicity and explicit nature could make it a useful educational platform. 108

The main components of HAL consist of n-dimensional (0D,1D,2D,3D) Grids that 106
hold Agents, 1D,2D, and 3D finite difference PDE fields, 2D and 3D visualization tools, 1oz

and methods for sampling distributions and data recording. In this paper we will 108
discuss the philosophy behind these components, then look at their design and 100
capabilities in more detail. See the manual for a complete reference on how to use these 110
components [24]. 111
3 Design And Implementation
3.1 Design Philosophy 113
In the next section, we discuss some of the design decisions that have driven the 114
architecture of HAL. 115
3.1.1 Language Choice 116
In designing HAL we have tried to balance an adherence to speed, memory 117
management, simplicity, stability, modularity and extensibility. The Java language itself 11s
balances these considerations very well, making it a suitable basis for HAL. High 110
performance languages such as C, C++, and Fortran, can be coded to run at speeds 120
comparable to or faster than Java, however these languages require more low-level 121
management. Moreover, they do not have the same security guarantees as they permit 122
out-of-bounds memory accesses and memory leaks. Higher level languages, such as 123
Python, while more flexible and syntactically intuitive than Java, are typically 124
significantly slower. Java is also one of the most commonly used and taught 125
programming languages today, which helps facilitate the adoption of HAL by new users. 1ze
The fact that Java is cross-platform is also ideal. 127

December 19, 2018

328

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

3.1.2 Modularity and Extensibility 128
HAL’s components can each function independently. This permits any number of 129
components to be used in a single model, with the use of spatial queries to combine 130
components, as seen in Fig[I] This modularity also allows modelers to choose only the s
components of HAL that are of interest for their project. These components can be 132
easily mixed and matched with other software, such as using the AgentGrids with a 133

different PDE solver, or using the GUI and Visualization components with a different 1sa
modeling system. Modularity also makes adding new components more manageable and 1ss
easier to test without adding bulk or heavy modifications to the core of the platform. 1se

On-Lattice Agent Grid

A AR A A
Off-Lattice Agent Grid /Z.// //

N
N
N

PDE Grids =

Figure 1. The modular design of HAL helps build complex models out of simple
components. The highlighted on-lattice agent in the topmost grid searches for local
overlaps with several other grids and PDEs. These overlaps can be used in a model to
generate spatial interactions.

Given the incremental nature of many scientific endeavors, we also wanted to allow 137

models and components to be extended and modified. Java’s extension architecture 138
provides an excellent environment for layered development. As an example of the 130
extensibility of HAL, the built-in Spherical Agent types (SphericalAgent2D, 140
SphericalAgent3D) extend the Point Agent types (AgentPT2D, AgentPT3D). By 141

default, Point Agents have no radius and will not collide with each other. This behavior ia
can be useful for modeling phenomena such as the Brownian motion of small particles, 1as
as visualized in Fig Spherical Agents extend Point Agents by adding an additional 14a

radius variable and velocity component variables. These properties combined with 145
added functions for summing force vectors in response to overlap allow for a Newtonian 1ae
adhesion-repulsion spherical model of spatial agents. This behavior can be useful for 147
modeling tissue formation, as visualized in Fig [2b] 148

December 19, 2018 4

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Figure 2. Off-lattice agent examples. Each example contains 1000 agents. (A)
Example of 2D Point Agents modeling Brownian motion. The Point Agents move freely
and cannot collide. (B) Example of 2D Spherical Agents modeling growing tissue. The
agents will push apart from each other to a uniform density. Agent radii are shown as
gray circles around their centers. Examples Displayed unsing the OpenGL2DWindow

object.

It is also possible to extend completed models using the same approach. For 149
example, grids and agents from published models can be used as a scaffold on which to 1so
do additional studies. This allows for followup studies to focus on implementing 151
whatever additional assumptions and functionality they need, while leaving intact the 1s2
base model code with all of its published assumptions. 153
3.1.3 Simplicity and Stability 154
An important design principle was to make HAL simple to use without sacrificing 155
performance. Simplicity makes HAL easy to learn and forces the components to be 156

more generic, meaning that the same components can be applied to a greater variety of 1s7
modeling problems. There is also a consistency to each framework component, such that 1ss
learning to use some components is often sufficient to grasp the others, and makes using 1so

them in combination intuitive. 160
Another key design principle is stability, which is achieved in three ways: 161
Encapsulation By providing safe interaction functions and preventing direct interaction with 162

component internals. For example, modelers are not permitted to directly modify 1es
the position properties of agents. Instead, they must call the provided movement ies
functions that also update the grid position of the agents for future spatial queries. 1es

Defensive Programming By including checks in functions for invalid inputs. The program halts and throws 1ee
an error message immediately when one of these problematic inputs occurs. This 1er
allows the user to see what caused the problem, rather than seeing its effects later ies

down the line. 169
Unit Tests By testing HAL’s components. HAL is very shallow by design, leaving little 170
complexity for bugs to hide in. The more complex algorithms are tested in a series 17
of small test programs. These tests help ensure confidence in the mathematics 172
while also serving as simple tutorials. 173

December 19, 2018 5

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

3.1.4 Speed and Memory Management 174

Much of the performance capability of HAL comes directly from its decentralized design. s
Having no built-in scheduler/underlying structure means that there is comparatively 176
little work that the program does that the modeler is unaware of. This combined with 177
the modular components and utilities allows modelers the flexibility to incorporate the 1i7s
functionality that they need, without the software sacrificing performance by implicitly 17e

doing unnecessary tasks. 180

HAL also prioritizes performance in its algorithmic implementation. HAL includes 1is:
efficient PDE solving algorithms, such as the ADI (alternating direction implicit) 182
method, and uses efficient distribution samplers rather than naive approaches. The 183
integrated visualization tools are also highly efficient, using Swing BufferedImages for 1sa
lattice-based visualization, and Iwjgl OpenGL for 2D and 3D polygon graphics. 185
Whenever possible, primitives and arrays are used to store data rather than classes, 186
which takes advantage of Java’s optimization for these simpler data types. Java is also 1s7
an inherently fast language, which helps efficiently execute agent behavioral logic. 188

There is a memory footprint consideration with most of HAL’s assets. A common 1se
criticism of Java applications is that they tend to use a lot of memory and are slowed 1e0
down by Java’s “garbage collector” which deletes objects that are no longer being used. 1e:
To sidestep these memory issues, most of the objects generated internally by HAL are 102
recycled rather than discarded. This reuse also has a performance benefit: if a function 1es

using the same object is called many times sequentially, the object will be faster to 104
access in the computer’s memory because it was already cached from the earlier calls. 1es

A key example of this reuse: when agents die and are removed from the model 106
during a simulation run, the removed agents are kept internally and will be returned 107

again for re-initialization when a new agent is requested. Agent recycling ensures that 1es
the number of agents that the model creates over a complete model run is capped to the 100
maximum population that exists in the model at one time. 200

3.2 Component Overview 201

We now move from the abstract discussion of the unifying principles behind HAL to a 202
look at its core components in more detail. Although it may seem that learning how to o3
use these components would be a difficult task given their number and variety, all 204
components were designed with a consistent API (Application Programming Interface), 2os
which makes changing between agent /grid types and learning their methods much easier. 206

3.2.1 AgentGrids 207
AgentGrids are used as spatial containers for agents. They come in 1D, 2D, 3D, and 208
non-spatial types. An example usage of a 3D AgentGrid is shown in Fig[3] These 200
objects hold populations of agents that exist either bound to a lattice, or are free to 210
move continuously. Internally, AgentGrids are composed of two data-structures: an 211
agent list for agent iteration, and an agent lattice for spatial queries (even off-lattice 212
agents are stored on a lattice for quick access). The agent list can be shuffled at every 213
iteration to randomize iteration order, and the list holds onto removed agents to 214
facilitate object recycling. 215
3.2.2 Agents 216
There are 10 base types of agent, introduced in Table[2] The SQ and PT suffixes refer i
to whether the agents are imagined to exist as lattice bound squares/voxels, or as 218
non-volumetric points in space. 210

December 19, 2018 6

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Name Spatial Dimension | Lattice Bound | Stackable

AgentOD 0 N/A N/A
AgentSQ1D 1 yes yes
AgentSQ1Dunstackable 1 yes no
AgentPT1D 1 no yes
AgentSQ2D 2 yes yes
AgentSQ2Dunstackable 2 yes no
AgentPT2D 2 no yes
AgentSQ3D 3 yes yes
AgentSQ3Dunstackable 3 yes no
AgentPT3D 3 no yes

Table 2. The 10 base agent types in HAL. The differences between them are displayed
in each column. Stackable refers to whether multiple agents can exist on the same
lattice position

Agent objects are always bound to a grid. In their base class form, agents keep track 220
of their position on the grid and their age. Newly created agents are not included in the 221

same iteration loop in which they are created, to prevent infinite loops of “runaway 222
proliferation.” The base agent classes can be extended to include additional state 223
properties and methods as needed. 224

Figure 3. An example of a 3D on-lattice hybrid model of tumor cells spreading
through tissue. The red vertical lines represent vessels, and the blue dots represent
tumor cells. The cell color goes from pink to blue depending on how much oxygen is
locally available. Displayed using the OpenGL3DWindow object.

3.2.3 PDEGrids 225

The PDE Grids consist of either a 1D, 2D, or 3D lattice of concentrations. PDE grids 226
contain functions that will solve reaction-diffusion equations. PDE function operations 227

are accumulated on a separate lattice so they can be applied all at once in a 228
simultaneous update. Currently implemented PDE solution methods include: 220
e Forward difference in time and 2nd order central difference in space diffusion 230
e ADI Diffusion [25] 231
e 1st order upwind finite difference advection for incompressible flows 26| 232
e 1st order finite volume upwind advection for compressible flows 233

December 19, 2018 7

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

e Modification of values at single lattice positions to facilitate reaction with agents 23a
or other sources/sinks. 235

Most of these methods are flexible, allowing for spatially heterogeneous diffusion rates 23s

and advection velocities as well as different boundary conditions such as periodic, 237
Dirichlet, and zero-flux Neumann. 238
3.2.4 Graphical User Interface (GUI) 230
The GUI building system consists of the following components: 240
e UIWindow: a window that displays GUI sub-components which are added in 241
columns. the UIWindow will automatically scale to the appropriate size to fit all 242
sub-components. The following five sub-components can be added: 243

— UIGrid: a grid of pixels whose values are set individually. These are typically 2sa
used to plot agent positions and diffusible concentrations, and can be easily 2as
output in GIF or PNG formats. 246

— UIPlot: an extension of the UIGrid, the UIPlot is used to create real-time 247
plots. The UIPlot will automatically resize to fit points that fall out of its 248

bounds. 249
— UlLabel: a label that presents modifiable text. 250
— UIButton: a button that executes a function when clicked 251

— UlInputFields: various fields that accept bounded input of Integers, Doubles, 252
Strings, Booleans, File Creation/Selection, and Combo boxes 253

e Window2DOpenGL/Window3DOpenGL: visualization windows that use OpenGL 254

to efficiently render polygon graphics. 255

e GridWindow: A shortcut to generate a UIWindow with a single UIGrid 256
component embedded. This simple component is used in the results section 257
example. 258

e GifMaker: An object that can turn UIGrid visualization snapshots into gifs 250
(Original source code created by Patrick Meister [27]). 260

An example GUI that uses the UIWindow with embedded UIButtons, InputFields, 261
UlLabels, and a UIGrid is shown in Fig [4 262

December 19, 2018 8

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

n StemCellCA menu
OUTPUT FILE Timestep 14862 Population 20025
data.csv
DIV PROB
0.0
DEATH PROB
01

[=]
=

7
_|
M
=
=
=
T
=
2
™

MAX _DIVS

=]

=]
=

RUN _TICKS
20000
TICK PAUSE

Record

I

Figure 4. An example UIWindow GUI. When the "Run" UIButton (bottom left) is
clicked, the UIGrid component (right) displays a running model that is parameterized
with the given UllnputField settings (left). In this example model based on |28], the red
cells are stem cells, and the blue cells are differentiated cells. Differentiated cells have a
limited number of divisions and therefore can only spread a limited distance from the
stem cells. UlLabels (top) show the current timestep and population size.

3.2.5 Utilities 263

The Util and Rand classes are used with almost every project. The Util class consists of 2es
a collection of standalone functions that solve common problems such as: Generating zes
colors for use with the visualization tools, array manipulation, generating coordinate 266
neighborhoods (eg. VonNeumann, Moore, Hex, Triangular), spatial mathematical 267
operations, multicore parallelization, functions to save and load model states, etc. The zes
Rand class is used for generating random numbers and for sampling distributions (eg. 2ee
Gaussian, Poisson, Binomial, Multinomial - created using code adapted from the Colt 270

and Numpy open source libraries [29,[30]) See the manual for more information [24]. 271
3.2.6 Tools 272
A set of miscellaneous tool objects are included to help with specific modeling tasks, 273
these include: 274
e A FileIO object that is used to read input files and output results. 275

o A GenomeTracker object that internally stores phylogeny information in a 276
searchable tree structure, and can be used to model branching processes. 277

December 19, 2018 9

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

e An ODESolver object that can solve ODEs numerically using Euler, Runge-Kutta 27s
4, and Runge-Kutta Fehlberg 4,5 integration. 279

o A Multi-Well Experiment object that uses multi-threading to run and display 280
many models simultaneously. The modeler simply creates an array of initialized 2s1
models, defines an update and draw step, and can then feed many models into the 2.
Multi-Well experiment object and observe divergences in dynamics. This allows 2es
modelers to intuitively seed different models or replicates of the same conditions zss
and observe differences in their behavior over time, see Fig 285

Figure 5. Example of a 10x10 Multi-Well experiment where evolutionary competition
of two phenotypes (red,green) shows divergent results with different random seeds.
models are separated with red lines.

e An InteractiveModel object that embeds models in a graphical user interface from zse
which the modeler can schedule modifications to parameters, such as treatment 2s7
application, and interact with their model in real time. Modelers may also rewind 2ss
execution to adjust settings, helping them to more quickly understand their model 280
dynamics, and identify useful drug combinations and schedules. This tool 200
exemplifies the power of modular design, and uses a UIPlot object for the timeline, 2e1
as well as several UIGrids and UIButtons for other interactive components. This 2e2
tool was used as part of the development of the Cancer Crusade game [31] to test =

©
w

December 19, 2018 10

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

the effects of therapy on a model by Tessi et al. 7 see Fig@ 204

Restart [R]

Pause [space]

Clear [C]

Figure 6. Example usage of the InteractiveModel object, allowing the modeler to
experiment with treatment strategies using a model of the by Tessi et al. [12]. (A) A
spatial visualization of the current model state. (B) A control panel of UIButtons
allows the user to quickly restart the model, pause execution, clear all treatments, and
undo previous changes. Hotkeys for these controls are in brackets. (C) A Speed Control
option allows the user to easily adjust the execution speed of the model to range from
evaluating as fast as possible to taking a second between time-steps, allowing for careful
observation of model dynamics. (D) A timeline that will plot timestep information so
that the user may observe aggregate changes over time in response to treatment. The
user may also click anywhere in the timeline to backtrack to a previous timepoint and
replay the model from there. The timeline will also automatically backtrack to
recalculate any necessary frames when a treatment schedule change is made. (E) A set
of sliders that allow the user to select different treatment intensities for each drug. (F)
Each horizontal bar parallels the simulation timeline and displays the schedule of a
different treatment. Modelers can click on regions within these bars to change regions to
a new treatment intensity selected in (E). Modelers may also use the hotkeys presented
in (E) to apply the selected intensities in real time as the model runs.

4 Results: Competitive Release Model 208

To demonstrate how the aforementioned principles and components of HAL are applied, 296
we consider a simple but complete example of hybrid modeling. We implement the 207

December 19, 2018 11

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

model of pulsed therapy based on a recent publication by Gallaher et al. [14]. We also 208

showcase the flexibility that the modular component approach brings by displaying 200
three different parameterizations of the same model side by side. 300
4.1 Competitive Release Introduction 301

The model in [14] describes two competing tumor-cell phenotypes: a rapidly dividing, so2
drug-sensitive phenotype and a slower dividing, drug-resistant phenotype. There is also 303

a diffusible drug that enters the system through the domain boundaries and is 304
consumed by the tumor cells over time. 305

Every timestep ("tick") each cell has a probability of death and a probability of 306
division. The division probability depends on phenotype (resistant cells divide less 307

frequently) and the availability of space (cells will divide only if there is an open space sos
in the nearest eight grid square neighborhood or moore neighborhood). Sensitive cells 300
have a death rate that increases when the cells are exposed to drug, while resistant cells 3o

have a constant death rate. 311
The modular design of HAL allows us to test 3 different treatment conditions, each 312
with an identical starting tumor (no drug, constant drug, and pulsed drug). An 313

interesting outcome of the experiment is that pulsed therapy is better at managing the sia
tumor than constant therapy. Under pulsed therapy the sensitive population is kept in s1s
check, while still competing spatially with the resistant phenotype and preventing its s

expansion. The rest of the section describes in detail how this abstract model is 317
generated. 318
Fig[7] provides a high level look at the structure of the code. Red font indicates 310

where a section of the coding example is called. Table [3]| provides a quick reference for 320
the built-in HAL functions used in this example. Any functions that are used by the 321
example but do not exist in the table are defined within the example itself and 322
explained in detail below the code. Those fluent in Java may be able to understand the 323
example just by reading the code and using Table [3] Built-in HAL functions and classes sz
are highlighted in red in the following source code to make identifying HAL’s 325
components easier. 326

December 19, 2018 12

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

A B
Program Start
Y CellStep
Main Consume
Setup constants, Drug
visualization, l
and file output Yes Dispose
- Die? | cel
For each Model: lNo
a Yes
Grid Constructor Divide? Create
§ Daughter
v
InitTumor
¥

Make models unique

T
v

For each Timestep:

For each Model:

ModelStep

For each Cell:

CellStep

T
v

Drug Diffusion

v
Shuffle Agents

!
DrawModel

v
Record populations
and visualization

’

Close visualization
and file output

v

Program End

Figure 7. (A) Example program flow diagram. Red font indicates where coding
example sections are first called. (B) CellStep function flow diagram.

December 19, 2018 13

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

Function Object Action
NewAgentSQ(INDEX) | AgentGrid2D | Returns a new agent, placed at the center of the square at the
provided position INDEX.
ShuffleAgents(RNG) AgentGrid2D | Usually called after every timestep to shuffle the order of agent
iteration.
GetTick() AgentGrid2D | Returns the current grid timestep.
ItoX(INDEX), AgentGrid2D | Converts from a grid position INDEX into the x and y compo-
ItoY(INDEX) nents that point to the same grid position.
MapHood(NEIGH- AgentGrid2D | Finds all position indices in the provided neighborhood, centered
BORHOOD,X,Y) around X,Y that don’t fall out of bounds of the AgentGrid2D.
Writes these indices into the NEIGHBORHOOD argument, and
returns the number that were found.
MapEmptyHood(AgentSQ2D | Finds all position indices in the provided neighborhood, centered
NEIGHBORHOOD) around the agent, that do not have an agent occupying them.
Writes these indices into the NEIGHBORHOOD argument, and
returns the number that were found.
G AgentSQ2D | Gets the grid that the agent occupies.
Isq() AgentSQ2D | Gets the position index of the grid square that the agent occupies.
Dispose() AgentSQ2D | Removes the agent from the grid and from iteration.
Get(INDEX) PDEGrid2D | Returns the concentration of the PDE field at the given index.
Mul(INDEX, VALUE) | PDEGrid2D | Multiplies the concentration at the given INDEX by VALUE
and adds the result to the current concentration when Update()
is called
DiffusionADI(RATE) | PDEGrid2D | Applies diffusion using the ADI method with the rate constant
provided. A reflective boundary is assumed. The result is applied
when Update() is called.
Diffusion ADI(PDEGrid2D | Applies diffusion using the ADI method with the RATE constant
RATE, provided. The BOUNDARY COND value diffuses from the grid
BOUNDARY COND) borders. The result is applied when Update() is called.
Update() PDEGrid2D | Applies all state changes simultaneously to the PDEGrid
SetPix(INDEX, GridWindow | Sets the color of a pixel.
COLOR)
TickPause(GridWindow | Pauses the program between calls to TickPause. The function
MILLISECONDS) automatically subtracts the time between calls from MILLISEC-
ONDS to ensure a consistent timestep rate for visualization.
ToPNG(FILENAME) | GridWindow | Writes out the current state of the UIWindow to a PNG image
file.
Close() GridWindow | Closes the GridWindow.
RGB(RED, GREEN, Util Returns an integer with the requested color in RGB format. This
BLUE) value can be used for visualization.
HeatMapRGB(VALUE) Util Maps the VALUE argument (assumed to be between 0 and 1)
to a color in the heat colormap.
CircleHood(Util Returns a set of coordinate pairs that define the neighborhood of
INCLUDE _ORIGIN, all squares whose centers are within the RADIUS distance of the
RADIUS) center (0,0) origin square. The INCLUDE ORIGIN argument
specifies whether to include the origin in this set of coordinates.
MooreHood(Util Returns a set of coordinate pairs that define a Moore neighbor-
INCLUDE _ORIGIN) hood around the (0, 0) origin square. The INCLUDE ORIGIN
boolean specifies whether we intend to include the origin in this
set of coordinates.
Write(STRING) FileIO Writes the STRING to the output file.
Close() FileIO Closes the output file.
Double() Rand Generates a random double value in the range [0 — 1)

Table 3. HAL functions used in the example. Each function is a method of a
particular object, meaning that when the function is called it may use properties that
pertain to the object that it is called from.

December 19, 2018

1428

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

4.2 Main Function 327
We first examine the ‘main’ function for a bird’s-eye view of how the program is 328
structured. Source code elements highlighted in red are built-in HAL functions and 320
objects, and can be referenced in Table [3] 330

1 public static void main(String[] args) { bSS
2 //setting up starting constants and data collection 333
3 int x =100, y = 100, visScale = 5, tumorRad = 10, msPause = 5; 334
4 double resistantProb = 0.5; 335
5 GridWindow win = new GridWindow("”Competitive Release”, x % 3, vy, 336
visScale); 337

6 FilelO popsOut = new FilelO("populations.csv", "w"); 338
7 //setting up models 339
8 ExampleModel [] models = new ExampleModel [3]; 340
9 for (int i = 0; i < models.length; i++) { 341
10 models[i] = new ExampleModel(x, y, new Rand()); 342
11 models[i]. InitTumor (tumorRad, resistantProb); 343
12 } 344
13 models [0] . DRUG_DURATION = 0;//no drug 345
14 models [1].DRUG_DURATION = 200;//constant drug 346
15 //Main run loop 347
16 for (int tick = 0; tick < 10000; tick++) { 348
17 win . TickPause (msPause); 349
18 for (int i = 0; i < models.length; i++) { 350
19 models[i]. ModelStep(tick); 351
20 models[i]. DrawModel (win, i); 352
21 353
22 //data recording 354
23 popsOut. Write(models[0].Pop() + ","” 4+ models[1].Pop() + "," + 355
models[2].Pop() + "\n"); 356

24 if ((tick) % 100 = 0) { 357
25 win . ToPNG("ModelsTick" + tick + ".png"); 358
26 } 359
27 360
28 //closing data collection 361
29 popsOut. Close () ; 362
30 win . Close () ; 363
31 } 38
Lines 3-4: Defines all of the constants that will be needed to setup the model and 366
display. 367

5: Creates a GridWindow of RGB pixels for visualization and for generating timestep ses
PNG images. x*3, y define the dimensions of the pixel grid. the x variable is 360
multiplied by 3 so that 3 models can be visualized side by side in the same 370

window. The last argument is a scaling factor that specifies that each pixel on the sz

grid will be viewed as a 5x5 square of pixels on the screen. 372

6: Creates a file output object that will write to a file called populations.csv. 373

8: Creates an array with 3 entries that will be populated with models. 374

9-12: Fills the model list with models that are initialized identically. Each model will 375
hold and update its own cells and diffusible drug. See the Grid Definition and 376
Constructor section and the InitTumor Function section for more details. 377

13-14: Setting the DRUG DURATION constant creates the only difference in the 3 7
models being compared. In models[0] no drug will be administered. In models[1] s
drug administration will be constant (DRUG _DURATION is set equal to 380
DRUG_CYCLE). In models[2] drug will be administered periodically (the default e

December 19, 2018 15

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

value of DRUG _DURATION is 40). See the ExampleModel Constructor and 382

Properties section for the default model initialization. 383
16: Executes the main loop for 10000 timesteps. 384
17: Requires every iteration of the loop to take a minimum number of milliseconds. 385
This slows down the execution and display of the model and makes it easier for sse
the viewer to follow. 387
18: Loops over all models to update them. 388

19: Advances the state of the agents and diffusibles in each model by one timestep. See sse

the Model Step Function for more details. 300
20: Draws the current state of each model to the window. See the Draw Model 301
Function for more details. 302

23: Writes the population sizes of each model every timestep to allow the models to be 303
compared. 304

24: Every 100 timesteps, writes the state of the model as captured by the GridWindow ses

to a PNG file. 396

29-30: After the main for loop has finished, the FileIO object and the visualization 307
window are closed, and the program ends. 308

4.3 ExampleModel Constructor and Properties 399
This section explains how the grid is defined and instantiated. 400

1 public class ExampleModel extends AgentGrid2D<ExampleCell> { :g:
2 //model constants 403
3 public final static int RESISTANT = RGB(0, 1, 0), SENSITIVE = RGB(0, 404
0, 1); 405

4 public double DIV.PROB SEN = 0.025, DIV PROB RES = 0.01, 406
5 DEATH PROB = 0.001, DRUG DIFF RATE = 2, DRUG UPTAKE = -0.09, 407
6 DRUG TOXICITY = 0.2, DRUG BOUNDARY VAL = 1.0; 408
7 public int DRUG_START = 400, DRUG CYCLE = 200, DRUG DURATION = 40; 409
8 //internal model objects 410
9 public PDEGrid2D drug; 411
10 public Rand rng; 412
11 public int[] divHood = MooreHood(false); 213
12 414
13 public ExampleModel(int x, int y, Rand generator) { 415
14 super(x, y, ExampleCell.class); a1e
15 rng = generator; 417
16 drug = new PDEGrid2D(x, y); 418
17 } 43

1: The ExampleModel class, which is user defined and specific to this example, is built 421
by extending the generic AgentGrid2D class. The extended grid class requires an a2z
agent type parameter, which specifies the type of agent that will live on the grid. as
To meet this requirement, the <ExampleCell> type parameter is added to the 424
declaration. 425

3: Defines RESISTANT and SENSITIVE constants, which are created by the Util RGB 426
function. These constants serve as both colors for drawing and as labels for the 427
different cell types. 428

December 19, 2018 16

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

4-T7: Defines all constants that will be needed during the model run. These values can a2o

be reassigned after model creation to test different parameter settings. In the 430
main function, the DRUG_DURATION variable is modified for the 431
Constant-Drug, and Pulsed Therapy experiment cases. 432
9: Declares that the model will contain a PDEGrid2D, which will hold the drug 433
concentrations. The PDEGrid2D can only be initialized when the x and y 434
dimensions of the model are known, which is why we do not assign their values 435
until the constructor function is called. 436

10: Declares that the Grid will contain a Random number generator (the Rand object), as
but takes it in as a constructor argument to allow the modeler to seed the 438
generator if desired for consistent output. 430

11: Creates a neighborhood using the MooreHood function. The MooreHood function a0
generates a set of coordinates that define the Moore Neighborhood (the 8 closest s

coordinates to a central origin), centered around (0,0). The false argument 442
declares that we do not want to include the origin in the neighborhood, just the 8 aas
coordinates around that position. The neighborhood is stored in the format 4aa
[0102, ..., 0py 1, Y1, T2, Y2, ey Tny Y] - The leading zeros are written to when a5
MapHood is called, and will store the position indices that the neighborhood 46
maps to. See the CellStep function for more information, and the InitTumor 47
Function Line 3 for another example of the use of neighborhoods 448

13: Defines the model constructor, which takes as arguments the x and y dimensions of ase
the model and a random number generator (a Rand object). 450

14: Calls the AgentGrid2D constructor with super, passing it the x and y dimensions of s
the model, and the ExampleCell Class. This Class is used by the Grid to generate as2

a new cell when the NewAgentSQ function is called. 453

15-16: The Rand argument is assigned and the drug PDEGrid2D is defined with 454
matching dimensions. as5

4.4 InitTumor Function ass
The next segment of code is a function from the ExampleModel class that defines how as7

the tumor is first seeded after the ExampleModel is created. as8

1 public void InitTumor(double radius, double resistantProb) { P
2 //get a list of indices that fill a circle at the center of the 261
grid 462

3 int[] tumorNeighborhood = CircleHood (true, radius); 463
4 int hoodSize = MapHood(tumorNeighborhood , xDim / 2, yDim / 2); pro
5 for (int i = 0; i < hoodSize; i++) { 465
6 if (rng.Double() < resistantProb) { 466
7 NewAgentSQ (tumorNeighborhood[i]).type = RESISTANT; 267
8 } else { 468
9 NewAgentSQ(tumorNeighborhood [i]) .type = SENSITIVE; 469
10 } 470
11 3 471
12 } 473

1: The arguments passed to the InitTumor function are the approximate radius of the aza
circular tumor being created and the probability that each created cell will be of 475
the resistant phenotype. 476

December 19, 2018 17

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

3: Sets the tumorNeighborhood array using the CircleHood function, which stores a77
coordinates in the form [0, 02, ..., 0y, 21, Y1, T2, Y2, .--Zn, Yn]. The X,y coordinate a7s
pairs define a neighborhood of all squares whose centers are within the radius 470
distance of the center (0,0) origin square. The leading Os are used by the 480

MapHood function to store the mapped indices. The boolean argument specifies s
that the origin will be included in this set of squares, thus making a completely sz
filled circle of squares. 483

4: Uses the MapHood function to map the neighborhood defined above to be centered asa
around xDim/2,yDim/2 (the dimensions of the AgentGrid). The results of the ass

mapping are written as position indices to the beginning of the 486
tumorNeighborhood array. MapHood returns the number of valid indices found, sz
and this will be the size of the starting population. ass
5: Loops from 0 to hoodSize, allowing access to each mapped position index in the aso
tumorNeighborhood. 490
6: Samples a random number in the range [0 — 1) and compares to the resistantProb e
argument to set whether the cell should have the resistant phenotype or the 492
sensitive phenotype. 403

7-9: Uses the NewAgentSQ function to place a new cell at each tumorNeighborhood — sea

position. In the same line we also specify that the phenotype should be either 495

resistant or sensitive, depending on the result of the rng.Double() call. 496

4.5 ModelStep Function a07
This section looks at the model’s step function which is executed once per timestep by aes
each Model. 499

1 public void ModelStep(int tick) { 201
2 ShuffleAgents(rng); 502
3 for (ExampleCell cell : this) { 503
4 cell.CellStep(); 504
5 3 505
6 int periodTick = (tick — DRUG_START) % DRUG_CYCLE; 506
7 if (periodTick > 0 && periodTick < DRUG_DURATION) { 507
8 //drug will enter through boundaries 508
9 drug. DiffusionADI (DRUG_DIFF_RATE, DRUG_ BOUNDARY VAL); 500
10 } else { 510
11 //drug will not enter through boundaries 511
12 drug.DiffusionADI (DRUG_DIFF_RATE); 512
13 513
14 drug . Update () 514
15 } 518

2: The ShuffleAgents function randomizes the order of iteration so that the agents are sz
always looped through in random order. 518

3-4: Tterates over every cell on the grid, and calls the CellStep function on every cell. s

6-7: The periodTick variable stores at what point in the drug delivery cycle the tick is, szo
and the If statement checks whether the tick is in the right part of the drug cycle s21
to apply drug, (See the Grid Definition and Constructor section for the values of s22
the constants involved, the DRUG DURATION variable is set differently for each s23
model in the Main Function) 524

December 19, 2018 18

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

9: If it is time to add drug to the model, the DiffusionADI function is called. 525
DiffusionADI uses the ADI method which is more stable than 2D Euler and allows sze
us to take larger steps. The additional argument to the DiffusionADI function 527

specifies the boundary condition value DRUG BOUNDARY VAL. This causes sz
the drug to diffuse into the PDEGrid2D from the boundary. Here we assume that s2e
drug is only delivered from the boundaries of the domain 530

12: Without the second argument the DiffusionADI function assumes a zero-flux 531
boundary, meaning that drug concentration cannot escape or enter through the =32
sides of the model. Therefore the only way for the drug concentration to decrease sss

is via uptake by the Cells. See the CellStep function section, line 6, for more 534
information. 535
14: Update is called to apply the reaction and diffusion changes to the PDEGrid. 536
4.6 CellStep Function and Cell Properties 537

We next look at how the ExampleCell Agent is defined and at the CellStep function 538
that runs once per Cell per timestep. The G property that is referenced many times in sse

this section is a built-in agent property that gives access to the ExampleGrid object 540
that the cell lives on. sa1

1 class ExampleCell extends AgentSQ2Dunstackable<ExampleModel> { ::i
2 public int type; 544
3 545
4 public void CellStep () { 546
5 //uptake of Drug 547
6 G.drug.Mul(lsq (), G.DRUG_UPTAKE) ; 548
7 double deathProb, divProb; 549
8 //Chance of Death, depends on resistance and drug concentration 550
9 if (this.type == RESISTANT) { s51
10 deathProb = G.DEATH PROB; 552
11 } else { 553
12 deathProb = G.DEATH PROB + G.drug.Get(Isq()) * 554
G.DRUG_TOXICITY; 555

13 } 556
14 if (G.rng.Double() < deathProb) { 557
15 Dispose () 558
16 return; 559
17 560
18 //Chance of Division, depends on resistance 561
19 if (this.type = RESISTANT) { 562
20 divProb = G.DIV_PROB_RES; 563
21 } else { 564
22 divProb = G.DIV_PROB_SEN; 565
23 3 566
24 if (G.rng.Double() < divProb) { 567
25 int options = MapEmptyHood(G. divHood); 568
26 if (options > 0) { 569
27 G.NewAgentSQ(G.divHood [G.rng. Int(options)]) .type = 570
this.type; 571

28 } 572
29 3 573
30 } 574
31} 578
1: The ExampleCell class is built by extending the generic AgentSQ2Dunstackable 577
class. The extended Agent class requires the ExampleModel class as a type 578
argument, which is the type of Grid that the Agent will live on. To meet this 579
requirement, we add the <ExampleModel> type parameter to the extension. 580

December 19, 2018 19

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

2: Defines a cell property called "type". Each Cell holds a value for this field. If the 581

value is RESISTANT, the Cell is of the resistant phenotype, if the value is 582
SENSITIVE, the cell is of the sensitive phenotype. The RESISTANT and 583
SENSITIVE values are defined in the ExampleGrid as constants (See the 584
ExampleModel Constructor and Properties, line 3). 585

6: The G property is used to access the ExampleGrid object that the Cell lives on. G is sse
used often with agent functions as the AgentGrid is expected to contain any 587
information that is not local to the individual agent. Here it is used to get the 588
drug PDEGrid2D. The drug concentration at the index that the Cell is currently seo
occupying (Isq()) is then multiplied by the drug uptake constant, thus modeling seo

local drug uptake by the Cell. 501
7: Defines deathProb and divProb variables, these will be assigned different values 502
depending on whether the ExampleCell is RESISTANT or SENSITIVE. 503
9-12: If the cell is resistant, the deathProb variable is set to the DEATH PROB value sos
alone, if the cell is sensitive, an additional term is added to account for the 505
probability of the cell dying from drug exposure, using the concentration of drug see
at the cell’s position (Isq()) 507

14-16: Samples a random number in the range [0 — 1) and compares to deathProb to ses
determine whether the cell will die. If so, the built-in agent Dispose() function is ses
called, which removes the agent from the grid, and then return is called so that eco

the dead cell will not divide. 601
19-22: Sets the divProb variable to either DIV._PROB_RES for resistant cells, or 602
DIV_PROB_SEN for sensitive cells. 603
24: Samples a random number in the range [0 — 1) and compares to divProb to 604
determine whether the cell will divide. 605

25: If the cell divides, the MapEmptyHood function is used, which checks the positions ece

in the divHood (the Moore neighborhood as defined in the ExampleModel 607
Constructor and Properties section, line 11) around the Cell, and writes the 608
position indices that do not contain any agents into the divHood. 609
MapEmptyHood returns the number of valid empty positions found. 610

26-27: If there are one or more valid division options, a new daughter cell is created 611
using the NewAgentSQ function and its starting location is chosen by randomly e12
sampling the divHood array to pull out one if its valid locations. The other 613
daughter is assumed to occupy the same location as the mother cell. Finally with e1a
the .type=this.type statement, the phenotype of the newly placed daughter cell is 615
inherited from the mother cell. 616

4.7 DrawModel Function 017

We next look at the DrawModel Function, which is used to display a summary of the e
model state on a GridWindow object. In this program, DrawModel is called once for e

each model per timestep; see the main function section for more information. 620
1 public void DrawModel (GridWindow vis, int iModel) { ooz
2 for (int x = 0; x < xDim; x++) { 623
3 for (int y = 0; y < yDim; y++4) { 624
4 ExampleCell drawMe = GetAgent(x, y); 625
5 if (drawMe != null) { 626
6 vis.SetPix(x + iModel % xDim, y, drawMe.type); 627

December 19, 2018 20

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

7 } else { 628
8 vis.SetPix(x + iModel % xDim, vy, 629

HeatMapRGB (drug . Get(x, y))); 630
9 } 631
10 } 632
11 } 633
12 } 838

2-3: Loops over every lattice position of the grid being drawn, xDim and yDim refer to ese

the dimensions of the model. 637

4: Uses the GetAgent function to get the Cell that is at the x,y position. 638
5-6: If a cell exists at the requested position, the corresponding pixel on the 630
GridWindow is set to the cell’s phenotype color. To draw the models side by side, 40

the pixel being drawn is displaced to the right by the model index. 6a1

7-8: If there is no cell to draw, then the pixel color is set based on the drug 642
concentration at the same index, using the built-in heat colormap. 643

4.8 Imports caa
The final code snippet looks at the imports that are needed. Any modern Java IDE 6as
should generate import statements automatically. 646

1 package Examples. 6CompetitiveRelease; ::;
2 import Framework.GridsAndAgents.AgentGrid2D ; 649
3 import Framework.GridsAndAgents.PDEGrid2D; 650
4 import Framework. Gui.GridWindow ; 651
5 import Framework.GridsAndAgents.AgentSQ2Dunstackable; 652
6 import Framework. Tools.FilelO; 653
7 import Framework.Rand; 654
8 import static Examples. 6CompetitiveRelease.ExampleModel . *; 655
9 import static Framework. Util .x*; g9
1: The package statement specifies where the file exists in the larger project structure ess
2-7: Imports all of the classes that we will need for the program. 659

8: Imports the static fields of the model so that we can use the type names defined 660
there in the Agent class. 661

9: Imports the static functions of the Util file, which adds all of the Util functions to eez
the current namespace, so we can natively call them. Statically importing Util is ees
recommended for every project. 664

4.9 Model Results o6s
Table [displays the model visualization at timestep 0, timestep 400, timestep 1100, 666
timestep 5500, and timestep 10,000 recorded from the GridWindow ToPNG function. eer
The caption explores the notable trends visible in each image. Fig 8| displays the 668

population sizes as recorded by the FilelO Write function at the end of every timestep. ees

December 19, 2018 21

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Tumor Burden Under Different Treatment Schedules

10000
8000
e
i)
=
2 6000
)
o
o)
O
5 4000
E
=}
=
2000 Treatment
—— No Drug
—— Constant Drug
—— Pulsed Drug
0
0 2000 4000 6000 8000 10000

timesteps

Figure 8. FilelO population output. This plot summarizes the changes in tumor
burden over time for each model. This plot was constructed in python using data
accumulated in the program output CSV file. Displayed using Seaborn with Python.

This example illustrates the power of HAL’s approach to model building. Writing ez

relatively little complex code, we setup a three model experiment with nontrivial 671
dynamics along with methods to collect data and visualize the models. We now briefly o7z
review the model results. 673

As can be seen in Table [4] at timestep 0 and timestep 400 (right before drug 674
application starts), all 3 models are identical. At timestep 1100 the differences in 675
treatment application show different effects: when no drug is applied, the rapidly 676
dividing sensitive cells quickly fill the domain, while when drug is applied constantly, 677
the resistant cells overtake the sensitive population. Pulsed drug kills some sensitive 678

cells, but leaves enough alive to prevent growth of the resistant cells. At timestep 5500, e7o
the resistant cells have begun to emerge from the center of the pulsed drug model. At eso

timestep 10000, all domains are filled. Interestingly, in the models with drug 681
application, the sensitive cells are able to survive in the center of the domain because sz
drug is consumed by cells on the outside. This creates a drug-free zone in which the 683
sensitive cells out-compete the resistant cells even when drug is applied constantly. 684

As can be seen in Fig|8] the pulsed therapy is the most effective at preventing tumor ess
growth, however the resistant cells ultimately succeed in breaking out of the tumor 686
center and out-competing the sensitive cells on the fringes of the tumor. It may be 687
possible to contain a population of sensitive and resistant cells for longer by using a 688
different pulsing schedule or by modifying the treatment schedule in response to the 689

tumor growth (adaptive therapy). As the presented model is primarily an example, we es0
do not explore how to improve treatment further. For a more detailed exploration of the eo1

December 19, 2018 22

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

potential of adaptive therapy for prolonging competitive release, see |14]. 602

Timestep No Drug / Constant Drug / Pulsed Drug

400

1100

5500

10000
Table 4. Selected model visualization PNGs. Blue cells are drug sensitive, Green cells
are drug resistant, background heatmap colors show drug concentration.

December 19, 2018 23/28]

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

5 Availability And Future Directions o0

5.1 How to Download and Contribute ava

HAL is publicly available on GitHub, at https://github.com/MathOnco/HAL. A manual is ees
included that walks the user through installation and serves as a coding reference. For eee
those interested in using HAL, downloading and setting up the project is a good first ee7

start. From there running and examining the included examples is recommended, as 608
they do a good job of summarizing HAL’s capabilities. Modelers can contribute tools eee
that they develop by making pull requests to the repository. 700
5.2 Future Directions 701
5.2.1 Additional agent-based Modeling Paradigms 702
Currently the only paradigm implemented on top of the base agent types are the 703
SphericalAgent2D /3D extension classes, which facilitate modeling cells as 704
circles/spheres with Newtonian physics. In the future we hope to incorporate additional 7os
modeling paradigms that are commonly used in agent-based modeling of cells. A 706

potential addition is a Delaunay Agent type, which would use Delaunay tessellation [32] 7o7
to find the cell’s nearest neighbors and determine cell volume. We are also considering 7os

including modeling paradigms that construct cells out of smaller subunits, such as 700
Deformable Ellipsoid Cell Modeling 33|, as this would allow us to model the mechanics 710
of tissue formation and cell migration in more detail. 711
5.2.2 Cross Model Validation 712
Having many different paradigms to choose from adds several complications to 713
modeling: It can take significant effort to build a model from scratch under one 714
paradigm, and then significant additional effort to migrate the model to a different 715
paradigm. By adding more modeling approaches with a consistent interface, HAL will 716
lower the model migration barrier and allow modelers to test the merits of many 77

paradigms in their investigation, and to validate their results by seeing whether they 718
hold true across paradigms. Note that our goal is not to recreate all of the functionality 710
of the pre-existing frameworks that support these paradigms, it is to provide their core 720

algorithms so that users can easily choose from and compare them. 721
5.2.3 Bridging Spatial Scales 722
We also hope to explore the possibility of adjusting spatial scales for both our PDEs 723
and Agents. For PDEs, this is a readily understood problem, and we intend to add 724
scalable PDEGrids to HAL soon. However, for agent-based modeling the process of 725
changing scales while preserving dynamics is not so well defined, though we imagine 726
that it may be possible under certain assumptions. This would be useful for helping us 727
bridge the divide between cell level and tissue/organ/tumor level dynamics, as the 728
number of cells involved at these scales are orders of magnitude greater than what 720
desktop machines can tractably model. 730
5.2.4 Assumption Modules 731
A common modeling task is exploring how combinations of different assumptions 732

influence model behavior. The included ModuleSetManager object helps design models 733
specifically with this in mind. The design entails providing code “hooks” so that code 734
can be added to influence specific agent decisions and model events, (eg. whether an 735

December 19, 2018 24

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

agent will reproduce). Modelers can then write assumption modules that will influence 736
these events (eg. by altering the probability of reproduction based on an environmental 737
factor that would otherwise be ignored). 738

This approach allows modelers to combine and remove assumption modules without 730
having to worry about breaking the model. This facilitates easy exploration of the space 7a0

of assumptions until ones suitable for understanding biological phenomena are found. 7a1
We are very excited about the potential of this approach for collaborative projects and a2
for building increasingly complex models by encapsulating the complexity into 743
manageable parts, and hope to improve on the tools for this paradigm as we explore its 7aa
potential. 745
5.2.5 Advanced Scheduling 746

Taking inspiration from Repast, SWARM, and MASON, another expected extension is 7a7
the inclusion of optional schedulers to facilitate more complex methods of iterating 748
through agents than simply looping over each grid. This is not intended to replace the 7ao
simple grid iteration approach, but instead should augment it with optional complex 750
methods. An AgentList object is currently included to begin to address this. It allows s

modelers to make selective lists of agents for more flexible iteration. 752
5.2.6 Building a Community 753
HAL has already seen adoption within the labs at the Integrated Mathematical 754

Oncology department of Moffitt Cancer Center and beyond. We certainly hope that 755
more outside users will be interested in its potential. As the user-base for HAL grows, 7se

we plan to extend the base of resources around the platform. The current set of 757
resources that exist for new users to get started are the manual [} a website with an 758
online version of the manual |1] and a playlist of YouTube videos [34]. We intend to 750
increase HAL’s online presence by including a website with a code repository to make zeo
sharing models and tools easier. 761
6 Conclusion

Cancer is a complex and heterogeneous disease whose mathematical study is still being 7es
developed. To make better progress in this endeavor, it is helpful to have a set of highly 7zes

generic tools that encapsulate the key components of spatial modeling so that 765
researchers can produce efficient models quickly without being constrained in their 766
approach, nor in the complexity of the systems that they can produce. HAL is our 767
attempt to achieve this. 768

HAL was made easily extensible so that researchers can build models and more 769

specific tools on top of HAL’s generic base. The hope is that by this process HAL will 770
grow into a powerful toolset that will help standardize and coordinate hybrid modeling 771
in mathematical oncology. 772

We recommend HAL to anyone building spatial models for oncology, as the tools 773
presented are primarily geared toward this end. However, given the amount of overlap 774
and cross talk between the approaches used in different modeling applications, we hope 77s
that modelers outside of mathematical oncology will also take interest and contribute, 776
to our mutual benefit. 777

Supporting information

December 19, 2018 25

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

S1 Fig. HAL (Hybrid Automata Library) Manual. Includes setup
instructions, implementation details, and a function glossary.

References

1.

10.

11.

12.

13.

14.

Jeffrey West RB. Hybrid Automata Library; 2018. Available from:
https://halloworld.orgl

. Rejniak KA, Anderson AR. Hybrid models of tumor growth. Wiley

Interdisciplinary Reviews: Systems Biology and Medicine. 2011;3(1):115-125.

Anderson AR, Chaplain M. Continuous and discrete mathematical models of
tumor-induced angiogenesis. Bulletin of mathematical biology.
1998;60(5):857-899.

Gerlee P, Anderson AR. An evolutionary hybrid cellular automaton model of
solid tumour growth. Journal of theoretical biology. 2007;246(4):583-603.

Nichol D, Robertson-Tessi M, Jeavons P, Anderson AR. Stochasticity in the
genotype-phenotype map: implications for the robustness and persistence of
bet-hedging. Genetics. 2016; p. genetics—116.

Basanta D, Anderson A. Homeostasis Back and Forth: An Ecoevolutionary
Perspective of Cancer. Cold Spring Harbor perspectives in medicine. 2017;7(9).

Basanta D, Strand DW, Lukner RB, Franco OE, Cliffel DE, Ayala GE, et al. The
Role of Transforming Growth Factor-g-Mediated Tumor-Stroma Interactions in
Prostate Cancer Progression: An Integrative Approach. Cancer research.
2009;69(17):7111-7120.

Kim E, Rebecca V, Fedorenko IV, Messina JL, Mathew R, Maria-Engler SS, et al.
Senescent fibroblasts in melanoma initiation and progression: an integrated
theoretical, experimental, and clinical approach. Cancer research. 2013;.

Anderson AR, Weaver AM, Cummings PT, Quaranta V. Tumor morphology and
phenotypic evolution driven by selective pressure from the microenvironment.
Cell. 2006;127(5):905-915.

Araujo A, Cook LM, Lynch CC, Basanta D. An integrated computational model
of the bone microenvironment in bone-metastatic prostate cancer. Cancer
research. 2014;74(9):2391-2401.

Scianna M, Bell C, Preziosi L. A review of mathematical models for the
formation of vascular networks. Journal of theoretical biology. 2013;333:174—2009.

Robertson-Tessi M, Gillies RJ, Gatenby RA, Anderson AR. Impact of metabolic
heterogeneity on tumor growth, invasion, and treatment outcomes. Cancer
research. 2015;75(8):1567-1579.

Zhang J, Cunningham JJ, Brown JS, Gatenby RA. Integrating evolutionary
dynamics into treatment of metastatic castrate-resistant prostate cancer. Nature
communications. 2017;8(1):1816.

Gallaher JA, Enriquez-Navas PM, Luddy KA, Gatenby RA, Anderson AR.
Adaptive vs continuous cancer therapy: Exploiting space and trade-offs in drug
scheduling. bioRxiv. 2017;.

December 19,

2018 26

https://halloworld.org
https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

under aCC-BY-NC-ND 4.0 International license.

Karolak A, Rejniak KA. Micropharmacology: an in silico approach for assessing
drug efficacy within a tumor tissue. Bulletin of mathematical biology. 2018; p.
1-19.

Alfonso J, Talkenberger K, Seifert M, Klink B, Hawkins-Daarud A, Swanson K,
et al. The biology and mathematical modelling of glioma invasion: a review.
Journal of the Royal Society Interface. 2017;14(136):20170490.

Ghaffarizadeh A, Heiland R, Friedman SH, Mumenthaler SM, Macklin P.
PhysiCell: an open source physics-based cell simulator for 3-D multicellular
systems. PLoS Comput Biol. 2018;14(2):e1005991.
doi:10.1371/journal.pcbi.1005991.

Swat MH, Thomas GL, Belmonte JM, Shirinifard A, Hmeljak D, Glazier JA.
Multi-scale modeling of tissues using CompuCell3D. Methods in cell biology.
2012;110:325.

Mirams GR, Arthurs CJ, Bernabeu MO, Bordas R, Cooper J, Corrias A, et al.
Chaste: an open source C++ library for computational physiology and biology.
PLoS computational biology. 2013;9(3):e1002970.

Collier N. Repast: An extensible framework for agent simulation. The University
of Chicagos Social Science Research. 2003;36:2003.

Luke S, Cioffi-Revilla C, Panait L, Sullivan K. Mason: A new multi-agent
simulation toolkit. In: Proceedings of the 2004 swarmfest workshop. vol. 8.
Department of Computer Science and Center for Social Complexity, George
Mason University Fairfax, VA; 2004. p. 316-327. Available from:
http://cobweb.cs.uga.edu/"maria/pads/papers/mason-SwarmFest04.pdfl

Tisue S, Wilensky U. Netlogo: A simple environment for modeling complexity.
In: International conference on complex systems. vol. 21. Boston, MA; 2004. p.
16-21. Available from:
https://ccl.northwestern.edu/papers/netlogo-iccs2004.pdfl

Anderson A, Sleeman B, Young I, Griffiths B. Nematode movement along a
chemical gradient in a structurally heterogeneous environment: 2. Theory.
Fundamental and applied nematology. 1997;20(2):165-172.

Bravo R. HAL Manual; 2018. Available from:
https://github.com/MathOnco/HAL/blob/master/manual. pdfl

Peaceman DW, Rachford HH Jr. The numerical solution of parabolic and elliptic
differential equations. Journal of the Society for industrial and Applied
Mathematics. 1955;3(1):28-41.

Courant R, Isaacson E, Rees M. On the solution of nonlinear hyperbolic
differential equations by finite differences. Communications on Pure and Applied
Mathematics. 1952;5(3):243-255.

Meister P. gifAnimation processing library; 2015. Available from:
https://github.com/extrapixel/gif-animation.

Poleszczuk J, Macklin P, Enderling H. Agent-based modeling of cancer stem cell
driven solid tumor growth. In: Stem Cell Heterogeneity. Springer; 2016. p.
335-346.

Oliphant TE. A guide to NumPy. vol. 1. Trelgol Publishing USA; 2006.

December 19,

2018 27

http://cobweb.cs.uga.edu/~maria/pads/papers/mason-SwarmFest04.pdf
https://ccl.northwestern.edu/papers/netlogo-iccs2004.pdf
https://github.com/MathOnco/HAL/blob/master/manual.pdf
https://github.com/extrapixel/gif-animation
https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/411538; this version posted December 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

30. CERN. Colt; 2004. Available from: http://dst.1lbl.gov/ACSSoftware/colt/.

31. Bravo R, Robertson-Tessi M, West J, Anderson AR. Cancer Crusade; 2018.
Available from: https://cancercrusadegame. com.

32. Bock M, Tyagi AK, Kreft JU, Alt W. Generalized voronoi tessellation as a model
of two-dimensional cell tissue dynamics. Bulletin of mathematical biology.
2010;72(7):1696-1731.

33. Alexander Anderson KR Mark A J Chaplain. Single-Cell-Based Models in
Biology and Medicine. illustrated ed. Springer Science & Business Media; 2007.

34. Bravo R. HAL Tutorial 1: Setup; 2018. Available from:
https://www.youtube.com/watch?v=yjTmH3qORFQ&t=43s.

Acknowelgements

This work was possible through the generous support of NIH funding, Anderson and
Robertson-Tessi acknowledge NCI U54CA193489, Anderson and Bravo acknowledge
NCI UH2CA203781.

December 19, 2018 28

http://dst.lbl.gov/ACSSoftware/colt/
https://cancercrusadegame.com
https://www.youtube.com/watch?v=yjTmH3qORFQ&t=43s
https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Author Summary
	Introduction
	Design And Implementation
	Design Philosophy
	Language Choice
	Modularity and Extensibility
	Simplicity and Stability
	Speed and Memory Management

	Component Overview
	AgentGrids
	Agents
	PDEGrids
	Graphical User Interface (GUI)
	Utilities
	Tools

	Results: Competitive Release Model
	Competitive Release Introduction
	Main Function
	ExampleModel Constructor and Properties
	InitTumor Function
	ModelStep Function
	CellStep Function and Cell Properties
	DrawModel Function
	Imports
	Model Results

	Availability And Future Directions
	How to Download and Contribute
	Future Directions
	Additional agent-based Modeling Paradigms
	Cross Model Validation
	Bridging Spatial Scales
	Assumption Modules
	Advanced Scheduling
	Building a Community

	Conclusion

