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Abstract

Grass pollen is the world’s most harmful outdoor aeroallergen and sensitivity varies between
species. Different species of grass flower at different times, but it is not known how airborne
communities of grass pollen change in time and space. Persistence and high mobility of grass
pollen could result in increasingly diverse seasonal pollen communities. Conversely, if grass
pollen does not persist for an extended time in the air, shifting pollen communities would be
predicted throughout the summer months. Here, using targeted high throughput sequencing,
we tracked the seasonal progression of airborne Poaceae pollen biodiversity across Britain,
throughout the grass allergy season. All grass genera displayed discrete, temporally restricted
peaks of pollen incidence which varied with latitude, revealing that the taxonomic composition
of grass pollen exposure changes substantially across the allergy season. By developing more
refined aeroallergen profiling, we predict that our findings will facilitate the exploration of links
between taxon-specific exposure of harmful grass pollen and disease, with concomitant socio-

economic benefits.
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Introduction

Allergens carried in airborne pollen are associated with both asthma [1] and allergic rhinitis
(hay fever), negatively affecting 400 million people worldwide [2]. Pollen from the grass
family (Poaceae) constitutes the most significant outdoor aeroallergen [3, 4], and more
people are sensitised to grass pollen than to any other pollen type [5]. However, despite the
harmful impact of grass pollen on human health, current observational studies and forecasts
categorize grass pollen at the family level [Poaceae; 6, 7] due to difficulties in differentiating
species and genera of grass pollen based on morphology [8]. Furthermore, we cannot predict
seasonal variation in airborne grass pollen from the phenology of local grasses at ground
level, since airborne pollen can be highly mobile [9, 10] and often does not directly correlate
to local flowering times [9]. Understanding the taxon-specific phenology of airborne pollen
would fill a significant knowledge gap in our understanding of allergen triggers, with

associated benefits to healthcare providers, pharmaceutical industries and the public.

Many species within the subfamilies Pooideae, Chloridoideae, and Panicoideae release
allergenic pollen into the atmosphere [5], including Phleum spp. (e.g. Timothy grasses),
Dactylis spp. (Cocksfoot grasses), Lolium spp. (Ryegrasses), Trisetum spp. (Oatgrasses),
Festuca spp. (Fescues), Poa spp. (Meadow-grasses and Bluegrasses), and Anthoxanthum spp.
(Vernal grasses). However, it is unknown whether particular grass species contribute more to
the prevalence of allergic symptoms and related diseases than others [11]. Whilst some
grasses have been identified as more allergenic than others in vitro (triggering higher levels
of Immunoglobulin E (IgE) antibody production), there is a high degree of cross-reactivity

between grass species [12]. In addition, the allergen profiles and the degree of sensitisation
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differ between grass species [12, 13] and the allergenicity of grass pollen varies across
seasons [14]. Family-level estimates of grass pollen concentrations cannot therefore be
considered a reliable proxy for either the concentration of pollen-derived aeroallergens or

pollen-induced public health outcomes.

The identification of biodiversity via the high-throughput analysis of taxonomy marker genes
(popularly termed metabarcoding) provides an emerging solution to semi-quantitatively
identify complex mixtures of airborne pollen grains [15-18]. Previous metabarcoding studies
of airborne pollen have been performed at very limited spatial and temporal scales [e.g. 15,
16]. Recent global DNA barcoding initiatives and co-ordinated regional efforts have now
resulted in near complete genetic databases of national native plants, including grasses in

Great Britain [19].

Here, using two complementary DNA barcode marker genes (rbcl and ITS2), we characterise
the spatial and temporal distribution of airborne grass pollen throughout the temperate
summer grass pollen season (May-August) across the latitudinal and longitudinal range of
Great Britain (S1 Fig). We hypothesise that (i) there will be discrete temporal incidences of
pollen from different grasses, linked to Poaceae terrestrial phenology, and (ii) the
composition of grass pollen will be homogenous across the UK due to the potential for long

distance transport of windborne pollen grains.

Results and Discussion
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Grass pollen occupied distinct temporal windows across the grass allergy season in 2016
(May to August), thereby supporting our hypothesis (i) that species composition of airborne
grass pollen will change throughout the grass allergy season (Fig 1, Fig 2). Time, measured as
number of days after the first sample was collected, is a good predictor of airborne grass
pollen taxon composition using both markers (Fig 1-2; ITS2, LR1,74 = 128.8, P = 0.001; rbclL,
LRy, 71 =46.71, P=0.001). We found that month (coded as a factor in the models) improves
our ability to predict taxonomic composition across the pollen season (Fig 1-2; ITS2, LR1,70 =
319.7, P=0.001; rbcL, LRy 67 = 217.25, P = 0.001). In addition, community-level ordination

reveals that the community as a whole changed across the allergy season (S2 Fig).

Focusing on the more taxonomically specific ITS2 marker dataset, Alopecurus and Holcus
typically dominated the early grass pollen season (Fig 1), which coincides with typical peaks in
allergic rhinitis [20], but further research will be required to confirm this association. Lolium
featured prominently for the majority of the later grass season. The popularity of Lolium
species as forage crop means that many varieties have been bred with the potential to
mature at different times throughout the year [21]. While Lolium was the dominant species
in airborne grass pollen from July to the end of the sampling period, the total grass pollen
concentration declined in August, indicating that the absolute number of Lolium pollen grains

at this time is low (S3 Fig).

The top five genera contributing to airborne pollen, indicated by the relative abundance of
taxonomy marker genes, were Alopecurus, Festuca, Lolium, Holcus and Poa (Fig 1; S3 Fig).

Each of these genera are widespread in the UK and have been shown to provoke IgE-
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116  mediated responses in grass-sensitised patients [12], providing candidate species for links
117  with hay fever and asthma exacerbation. Conversely, less prevalent species in the dataset
118  could contribute disproportionately to the allergenic load. Species such as Phleum pratense
119  have been identified to be a major source of allergenic pollen [5, 22]. However, we found
120  that Phleum made up a very small proportion of metabarcoding reads (Fig 2), corresponding
121 with the results of an earlier phenological study [23]. Most genera, such as Phleum,

122 Anthoxanthum and Dactylis, show distinct and narrow temporal incidence (Fig 2), and could
123 allow researchers to identify grass species associated with allergenic windows with greater

124 accuracy.

125

126  Changes in species composition over time were localised. We found that peaks in abundance
127  of airborne pollen occurred at different times at each location during the summer (Fig 1-2).
128  For example, the relative abundance of airborne grass pollen from the genus Poa peaked in
129  mid-June in Worcester and Bangor but 6-8 weeks later in Invergowrie (Fig 1), probably due to
130 latitudinal effects on flowering time [7, 24]. This is supported by a significant interaction

131  between latitude and time of year for both markers (Fig 1-2; ITS2, LRes, 1= 46.4, P = 0.001;
132 rbcl,LRes, 1= 59.08, P = 0.001), and between longitude and time of year for the ITS2 dataset
133 (Fig 1-2; LRe7,1= 37.5, P = 0.001). Differences in species composition of airborne grass pollen
134 between the six sampling sites is supported by a significant effect of latitude (Fig 1-2; ITS2,
135 LR1,73=73.2, P=0.001; rbcL, LR1,70= 26.4, P = 0.025) and longitude (Fig 1-2; ITS2, LR1,69=
136  36.5, P=0.005; rbcL, LRy, 69=27.10 P = 0.018). These results do not support our hypothesis

137  (ii) that the composition of grass pollen will be homogenous across the UK, and instead
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suggest taxon-specific effects of regional geography and climate which have been

demonstrated for Poaceae pollen as a whole [7].

Observations of first flowering dates from a citizen science project (UKPN;

www.naturescalendar.org.uk) and metabarcoding data show similar sequences of seasonal

progression (Fig 3). First flowering dates of each genus started almost 3-4 weeks prior to the
observation of peaks of grass pollen in the metabarcoding data (Fig 3). Pollen release
(anthesis) occurs approximately 2-3 weeks after the production of flowering heads (heading)
[25], and this is reflected in the metabarcoding data suggesting that local flowering data are
informative for predicting the composition of airborne pollen. Continuing this study over
multiple years would allow us to track long-term, phenological changes in airborne pollen
communities and improve our ability to forecast the seasonal progression of airborne pollen

[26].

Enabled by contemporary molecular biodiversity analytical approaches and mature, curated
DNA barcoding databases, here we provide a comprehensive taxonomic overview of airborne
grass pollen distribution, throughout an entire allergy season and across large geographic
scales. The grass pollen season is defined by discrete temporal windows of different grass
species, with some grass species displaying geographical variation. Temporal pollen
distributions in metabarcoding data follow observed flowering times. The data provide an
important step towards developing species-level grass pollen forecasting. Additionally, the
research presented here leads the way for future studies facilitating understanding of the
relationships between grass pollen and disease, which have significant global public health

relevance and socioeconomic importance.


http://www.naturescalendar.org.uk/
https://doi.org/10.1101/410829
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/410829; this version posted September 19, 2018. The copyright holder for this preprint (which

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Methods

Sampling and Experimental Design

We collected aerial samples from six sites across the UK (S3 Table; S1 Fig) using Burkard
Automatic Multi-Vial Cyclone Samplers (Burkard Manufacturing Co. Ltd. Rickmansworth, UK).
The volumetric aerial sampler uses a turbine to draw in air (16.5 litres/min) and aerial
particles are collected, using mini-cyclone technology into 1.5 ml sterile microcentrifuge
tubes located on a carousel (S5 Fig). Each sampling unit was mounted alongside a seven-day
volumetric trap (Burkard Manufacturing Co. Ltd. Rickmansworth, UK) belonging to the Met
Office UK Pollen Monitoring Network, which provided daily pollen count data. In the seven-
day volumetric trap, aerial particles are collected onto an adhesive coated tape supported on
a clockwork-driven drum. The tape is cut into 24 h sections and pollen are identified and
counted under a microscope [7]. Bangor was the only sampling site which was not part of the

pollen monitoring network, but we deployed the same methodology at the Bangor site.

Sampling began in late May 2016 (S4 Table) and during alternate weeks, aerial samples were
collected for seven days for a total of seven weeks between 25" May and 28" August. Exact
sampling dates varied slightly between sites (S4 Table) and a total of 279 aerial samples were

collected.

DNA Extraction, PCR and Sequencing
From the 279 daily aerial samples, 231 were selected for downstream molecular analysis, as
described below. Within each sampling week, two series of three consecutive days were

pooled. Pooled samples were selected based on grass pollen counts obtained by microscopy.
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The final, unselected, day was not used in downstream molecular analysis. In total, seventy-
seven pools of DNA were created. In one instance, three consecutive days of pollen samples
were unavailable (Invergowrie, week 2, pool 2) due to trap errors. For this sample, the next
sampling day was selected for pooling (S4 Table). DNA was extracted from daily samples
using a DNeasy Plant Mini kits (Qiagen, Valencia, CA, USA), with some modifications to the
standard protocol as described by [27]. DNA from daily samples was pooled and eluted into

60 ul of elution buffer at the binding stage of the DNeasy Plant Mini kit.

[llumina MiSeq paired end indexed amplicon libraries were prepared following a two-step
protocol as recommended by the manufacturer [28]. Two marker genes were amplified with
universal primer pairs rbclaf and rbclr506 [19, 29], and ITS2 and ITS3 [14] (S6 Table). A 5’
universal tail was added to the forward and reverse primers and a 6N sequence was added
between the forward universal tail and the template-specific primer, which is known to
improve clustering and cluster detection on MiSeq sequencing platforms [30] (Integrated
DNA Technologies, Coralville, USA). Round 1 PCR was carried out in a final volume of 25 plL,
including forward and reverse primers (0.2 uM), 1X Q5 HS High-Fidelity Master Mix (New
England Biolabs) and 1 pL of template DNA. Thermal cycling conditions were an initial
denaturation step at 98 °C for 30s; 35 cycles of 98 °C for 10s, 50 °C for 30s, 72 °C for 30s; and
a final annealing step of 72 °C for 5 minutes. Products from the first PCR were purified using
Agencourt AMPure XP beads (Beckman Coulter) with a 1:0.6 ratio of product to AMPure XP

beads.

The second round PCR added the unique identical i5 and i7 indexes and the P5 and P7

[llumina adaptors, along with universal tails complementary to the universal tails used in

10
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round 1 PCR (S4 Table, S5 Table) (Ultramer, by IDT, Integrated DNA Technologies). Round 2
PCR was carried out in a final volume of 25 pL, including forward and reverse index primers
(0.2 uM), 1X Q5 HS High-Fidelity Master Mix (New England Biolabs) and 5 uL of purified PCR
product. Thermal cycling conditions were: 98 °C for 3 min; 98 °C for 305, 55 °C for 30's, 72 °C
for 30 s (10 cycles); 72 °C for 5 min, 4 °C for 10 min. Both PCRs were run in triplicate. The
same set of unique indices were added to the triplicates which were then pooled following
visual inspection on an agarose gel (1.5%) to ensure that indices were added successfully.
Pooled metabarcoding libraries were cleaned a second time using Agencourt AMPure
magnetic bead purification, run on an agarose gel (1.5%) and quantified using the Qubit high
sensitivity kit (Thermo Fisher Scientific, Massachusetts, USA). Positive and negative controls
were amplified in triplicate with both primer pairs and sequenced alongside airborne plant
community DNA samples using the MiSeq. Sequence data, including metadata, are available

at the Sequence Read Archive (SRA) using the project accession number SUB4136142.

Bioinformatic Analysis

Initial sequence processing was carried out following a modified version of the workflow
described by de Vere et al. [27]. Briefly, raw sequences were trimmed using Trimmomatic
v0.33 (42) to remove short reads (<200bp), adaptors and low quality regions. Reads were
merged using FLASH v 1.2.11 [27, 31], and merged reads shorter than 450bp were excluded.
Identical reads were merged using fastx-toolkit (v0.0.14), and reads were split into ITS2 and

rbcl based on primer sequences.

To prevent spurious BLAST hits, custom reference databases containing rbcl and ITS2

sequences from UK plant species were generated. While all native species of the UK have

11
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been DNA barcoded [19], a list of all species found in the UK was generated in order to gain
coverage of non-native species. A list of UK plant species was generated by combining lists of
native and alien species [32] with a list of cultivated plants obtained from Botanic Gardens
Conservation International (BGCI) which represented horticultural species. All available rbcL
and ITS2 records were downloaded from NCBI Genbank, and sequences belonging to UK

species were extracted using the script ‘creatingselectedfastadatabase.py’, archived on

GitHub.

Metabarcoding data was searched against the relevant sequence database using blastn [33],
via the script ‘blast_with_ncbi.py’. The top twenty blast hits were tabulated
(‘blast_summary.py’), then manually filtered to limit results to species currently present in
Great Britain. Reads occurring fewer than four times were excluded from further analysis.

All scripts used are archived on GitHub: https://doi.org/10.5281/zenodo0.1305767.

Statistical Analysis

To understand how the grass pollen composition changed with space and time, the effect of
time (measured as the number of days after the first sampling date), latitude and longitude
of sampling location were included in a two-tailed generalized linear model using the
‘manyglm’ function in the package ‘mvabund’ [34]. The proportion of sequences was set as
the response variable; proportion data was used as this has been shown to be an effective
way of controlling for differences in read numbers [35]. The effect of time, latitude,
longitude, month (coded as a factor), and the interaction between time and latitude were

included as explanatory variables in the models. In addition to these explanatory variables,

12
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the interaction between time and longitude was included in a model to analyse the ITS2 data

(S6 Table).

The data best fit a negative binomial distribution, most likely due to the large number of
zeros (zeros indicate that a grass genus is absent from a sampling location), resulting in a
strong mean-variance relationship in the data (S6 Fig). The proportion of sequences was
scaled by 1000 and values were converted to integers so that a generalized linear model with
a negative binomial distribution could be used. Model selection was based by Akaike
Information Criterion (AIC) (S6 Table) and visual inspection of the residuals against predicted

values from the models (S7 Fig).

In order to compare the metabarcoding data with flowering time data, we used phenological
records of first flowering collected in 2016 by citizen scientists from the UK’s Nature’s

Calendar (www.naturescalendar.org.uk). First flowering time was compared to genus-level

ITS2 metabarcoding data for three species: Alopecurus pratensis, Dactylis glomerata and
Holcus lanatus. As grass pollen could only be reliably identified to genus level in the
metabarcoding data, the taxa compared may not have been exactly equivalent since both
Alopecurus and Holcus contain other widespread species within the UK. However, Alopecurus
pratensis and Holcus lanatus are the most abundant species within their respective genera.
The comparison was only carried out for ITS2 data because two of the three genera were not

identified by the rbcl marker.

NMDS ordination was carried out using package ‘VEGAN’ in R [36], based on the proportion

of total high-quality reads contributed by each grass genus, using Bray-Curtis dissimilarity (S2

13
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Fig). Ordination is used to reduce multivariate datasets (e.g. abundances of many species)
into fewer variables that reflect overall similarities between samples. A linear model was
carried out using the ‘Im’ function within the ‘stats’ package in R, in order to investigate the

relationship between the number of reads obtained for each genus using the rbclL and ITS2

marker.
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Figure Legends

Fig 1. Abundance of the most common airborne grass pollen taxa throughout the grass allergy
season. The five most abundant grasses (expressed as proportion of total reads), depicted
alongside the total proportion of reads assigned to family Poaceae. Markers used to identify
grass pollen are stated in the top panel label. Due to errors in sampling equipment, only 4
weeks of samples were collected at the York sampling site. Sampling sites are indicated in the
right panel label abbreviated as follows: BNG = Bangor; EXE = Exeter; ING = Invergowrie; IOW
= Isle of Wight; WOR = Worcester; YORK = York. A map of sampling locations can be found in

s1 Fig.

Fig 2. Abundance of airborne grass pollen taxa throughout the grass allergy season.
Abundance of rare grasses (expressed as proportion of total reads). Sampling sites are
indicated in the top panel, followed by the marker used to identify grass pollen. Due to errors
in sampling equipment, only 4 weeks of samples were collected at the York sampling site.

Note that the y axes differ between panels. Refer to Fig 1 for site name abbreviations.

Fig 3. Airborne grass pollen observed 3-4 weeks after first flowering dates. Comparison of
genus incidence in metabarcoding data with records of first flowering dates in 2016 from the

citizen science project Nature’s Calendar (www.naturescalendar.org.uk) for (A) Alopecurus

pratensis, (B) Dactylis glomerata and (C) Holcus lanatus. Each grey point represents the
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452  earliest time of flower heading as observed by a participant in the project. Coloured points
453  represent metabarcoding samples, with the size of the point representing the proportion of
454 total reads assigned to the relevant genus. Yellow shaded areas represent the expected
455  flowering period as described in [37], with darker shades showing the ‘main’ flowering

456  period.

457
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