

1 **Title: Temperate grass allergy season defined by spatio-temporal shifts in airborne**
2 **pollen communities**

3 **Authors:** Georgina L. Brennan^{1*}, Caitlin Potter², Natasha de Vere^{2,3}, Gareth W. Griffith²,
4 Carsten A. Skjøth⁴, Nicholas J. Osborne^{5,6}, Benedict W. Wheeler⁵, Rachel N. McInnes⁷,
5 Yolanda Clewlow⁷, Adam Barber⁷, Helen M. Hanlon⁷, Matthew Hegarty², Laura
6 Jones^{1,3}, Alexander Kurganskiy⁴, Francis M. Rowney⁵, Charlotte Armitage⁸, Beverley Adams-
7 Groom⁴, Col R. Ford³, Geoff M. Petch⁴, The PollerGEN Consortium, and Simon Creer^{1*}.

8

9 **Consortium** Angela Elliot⁹, Carl A. Frisk⁴, Roy Neilson¹⁰, Stephen Potter¹¹, Abdullah M. Rafiq¹,
10 David, B. Roy¹², Katherine Selby¹³, Natascha Steinberg⁹

11

12 **Affiliations:**

13 ¹Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor
14 University, Bangor, Gwynedd, Wales, UK

15 ²Aberystwyth University, Aberystwyth, Ceredigion, Wales, UK

16 ³National Botanic Garden of Wales, Llanarthne, Carmarthenshire, Wales, UK

17 ⁴University of Worcester, Worcester, Worcestershire, UK

18 ⁵University of Exeter, Truro, Cornwall, UK

19 ⁶University of New South Wales, Sydney, New South Wales, Australia

20 ⁷Met Office, Exeter, Devon, UK

21 ⁸The Woodland Trust, Kempton Way, Grantham, Lincolnshire, UK.

22 ⁹College of Life and Environmental Science, University of Exeter, Exeter, UK

23 ¹⁰Ecological Sciences, The James Hutton Institute, Dundee, Scotland, UK

24 ¹¹The David Hide Asthma & Allergy Research Centre, St Mary's Hospital, Newport, Isle of

25 Wight, UK

26 ¹²Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford, Oxfordshire, UK.

27 ¹³Environment Department, University of York, Heslington, York, UK

28

29 **Corresponding authors:** Simon Creer (s.creer@bangor.ac.uk) and Georgina L. Brennan

30 (g.l.b.doonan@gmail.com)

31

32 **Abstract**

33 Grass pollen is the world's most harmful outdoor aeroallergen and sensitivity varies between
34 species. Different species of grass flower at different times, but it is not known how airborne
35 communities of grass pollen change in time and space. Persistence and high mobility of grass
36 pollen could result in increasingly diverse seasonal pollen communities. Conversely, if grass
37 pollen does not persist for an extended time in the air, shifting pollen communities would be
38 predicted throughout the summer months. Here, using targeted high throughput sequencing,
39 we tracked the seasonal progression of airborne Poaceae pollen biodiversity across Britain,
40 throughout the grass allergy season. All grass genera displayed discrete, temporally restricted
41 peaks of pollen incidence which varied with latitude, revealing that the taxonomic composition
42 of grass pollen exposure changes substantially across the allergy season. By developing more
43 refined aeroallergen profiling, we predict that our findings will facilitate the exploration of links
44 between taxon-specific exposure of harmful grass pollen and disease, with concomitant socio-
45 economic benefits.

46
47

48 **Introduction**

49 Allergens carried in airborne pollen are associated with both asthma [1] and allergic rhinitis
50 (hay fever), negatively affecting 400 million people worldwide [2]. Pollen from the grass
51 family (Poaceae) constitutes the most significant outdoor aeroallergen [3, 4], and more
52 people are sensitised to grass pollen than to any other pollen type [5]. However, despite the
53 harmful impact of grass pollen on human health, current observational studies and forecasts
54 categorize grass pollen at the family level [Poaceae; 6, 7] due to difficulties in differentiating
55 species and genera of grass pollen based on morphology [8]. Furthermore, we cannot predict
56 seasonal variation in airborne grass pollen from the phenology of local grasses at ground
57 level, since airborne pollen can be highly mobile [9, 10] and often does not directly correlate
58 to local flowering times [9]. Understanding the taxon-specific phenology of airborne pollen
59 would fill a significant knowledge gap in our understanding of allergen triggers, with
60 associated benefits to healthcare providers, pharmaceutical industries and the public.

61

62 Many species within the subfamilies Pooideae, Chloridoideae, and Panicoideae release
63 allergenic pollen into the atmosphere [5], including *Phleum* spp. (e.g. Timothy grasses),
64 *Dactylis* spp. (Cocksfoot grasses), *Lolium* spp. (Ryegrasses), *Trisetum* spp. (Oatgrasses),
65 *Festuca* spp. (Fescues), *Poa* spp. (Meadow-grasses and Bluegrasses), and *Anthoxanthum* spp.
66 (Vernal grasses). However, it is unknown whether particular grass species contribute more to
67 the prevalence of allergic symptoms and related diseases than others [11]. Whilst some
68 grasses have been identified as more allergenic than others *in vitro* (triggering higher levels
69 of Immunoglobulin E (IgE) antibody production), there is a high degree of cross-reactivity
70 between grass species [12]. In addition, the allergen profiles and the degree of sensitisation

71 differ between grass species [12, 13] and the allergenicity of grass pollen varies across
72 seasons [14]. Family-level estimates of grass pollen concentrations cannot therefore be
73 considered a reliable proxy for either the concentration of pollen-derived aeroallergens or
74 pollen-induced public health outcomes.

75

76 The identification of biodiversity via the high-throughput analysis of taxonomy marker genes
77 (popularly termed metabarcoding) provides an emerging solution to semi-quantitatively
78 identify complex mixtures of airborne pollen grains [15-18]. Previous metabarcoding studies
79 of airborne pollen have been performed at very limited spatial and temporal scales [e.g. 15,
80 16]. Recent global DNA barcoding initiatives and co-ordinated regional efforts have now
81 resulted in near complete genetic databases of national native plants, including grasses in
82 Great Britain [19].

83

84 Here, using two complementary DNA barcode marker genes (*rbcL* and *ITS2*), we characterise
85 the spatial and temporal distribution of airborne grass pollen throughout the temperate
86 summer grass pollen season (May-August) across the latitudinal and longitudinal range of
87 Great Britain (S1 Fig). We hypothesise that (i) there will be discrete temporal incidences of
88 pollen from different grasses, linked to Poaceae terrestrial phenology, and (ii) the
89 composition of grass pollen will be homogenous across the UK due to the potential for long
90 distance transport of windborne pollen grains.

91

92 **Results and Discussion**

93 Grass pollen occupied distinct temporal windows across the grass allergy season in 2016
94 (May to August), thereby supporting our hypothesis (i) that species composition of airborne
95 grass pollen will change throughout the grass allergy season (Fig 1, Fig 2). Time, measured as
96 number of days after the first sample was collected, is a good predictor of airborne grass
97 pollen taxon composition using both markers (Fig 1-2; *ITS2*, $LR_{1,74} = 128.8$, $P = 0.001$; *rbcL*,
98 $LR_{1,71} = 46.71$, $P = 0.001$). We found that month (coded as a factor in the models) improves
99 our ability to predict taxonomic composition across the pollen season (Fig 1-2; *ITS2*, $LR_{1,70} =$
100 319.7 , $P = 0.001$; *rbcL*, $LR_{1,67} = 217.25$, $P = 0.001$). In addition, community-level ordination
101 reveals that the community as a whole changed across the allergy season (S2 Fig).

102

103 Focusing on the more taxonomically specific *ITS2* marker dataset, *Alopecurus* and *Holcus*
104 typically dominated the early grass pollen season (Fig 1), which coincides with typical peaks in
105 allergic rhinitis [20], but further research will be required to confirm this association. *Lolium*
106 featured prominently for the majority of the later grass season. The popularity of *Lolium*
107 species as forage crop means that many varieties have been bred with the potential to
108 mature at different times throughout the year [21]. While *Lolium* was the dominant species
109 in airborne grass pollen from July to the end of the sampling period, the total grass pollen
110 concentration declined in August, indicating that the absolute number of *Lolium* pollen grains
111 at this time is low (S3 Fig).

112

113 The top five genera contributing to airborne pollen, indicated by the relative abundance of
114 taxonomy marker genes, were *Alopecurus*, *Festuca*, *Lolium*, *Holcus* and *Poa* (Fig 1; S3 Fig).
115 Each of these genera are widespread in the UK and have been shown to provoke IgE-

116 mediated responses in grass-sensitised patients [12], providing candidate species for links
117 with hay fever and asthma exacerbation. Conversely, less prevalent species in the dataset
118 could contribute disproportionately to the allergenic load. Species such as *Phleum pratense*
119 have been identified to be a major source of allergenic pollen [5, 22]. However, we found
120 that *Phleum* made up a very small proportion of metabarcoding reads (Fig 2), corresponding
121 with the results of an earlier phenological study [23]. Most genera, such as *Phleum*,
122 *Anthoxanthum* and *Dactylis*, show distinct and narrow temporal incidence (Fig 2), and could
123 allow researchers to identify grass species associated with allergenic windows with greater
124 accuracy.

125
126 Changes in species composition over time were localised. We found that peaks in abundance
127 of airborne pollen occurred at different times at each location during the summer (Fig 1-2).
128 For example, the relative abundance of airborne grass pollen from the genus *Poa* peaked in
129 mid-June in Worcester and Bangor but 6-8 weeks later in Invergowrie (Fig 1), probably due to
130 latitudinal effects on flowering time [7, 24]. This is supported by a significant interaction
131 between latitude and time of year for both markers (Fig 1-2; *ITS2*, $LR_{68,1} = 46.4$, $P = 0.001$;
132 *rbcL*, $LR_{66,1} = 59.08$, $P = 0.001$), and between longitude and time of year for the *ITS2* dataset
133 (Fig 1-2; $LR_{67,1} = 37.5$, $P = 0.001$). Differences in species composition of airborne grass pollen
134 between the six sampling sites is supported by a significant effect of latitude (Fig 1-2; *ITS2*, $LR_{1,73} =$
135 73.2 , $P = 0.001$; *rbcL*, $LR_{1,70} = 26.4$, $P = 0.025$) and longitude (Fig 1-2; *ITS2*, $LR_{1,69} =$
136 36.5 , $P = 0.005$; *rbcL*, $LR_{1,69} = 27.10$, $P = 0.018$). These results do not support our hypothesis
137 (ii) that the composition of grass pollen will be homogenous across the UK, and instead

138 suggest taxon-specific effects of regional geography and climate which have been
139 demonstrated for Poaceae pollen as a whole [7].

140

141 Observations of first flowering dates from a citizen science project (UKPN;
142 www.naturescalendar.org.uk) and metabarcoding data show similar sequences of seasonal
143 progression (Fig 3). First flowering dates of each genus started almost 3-4 weeks prior to the
144 observation of peaks of grass pollen in the metabarcoding data (Fig 3). Pollen release
145 (anthesis) occurs approximately 2-3 weeks after the production of flowering heads (heading)
146 [25], and this is reflected in the metabarcoding data suggesting that local flowering data are
147 informative for predicting the composition of airborne pollen. Continuing this study over
148 multiple years would allow us to track long-term, phenological changes in airborne pollen
149 communities and improve our ability to forecast the seasonal progression of airborne pollen
150 [26].

151

152 Enabled by contemporary molecular biodiversity analytical approaches and mature, curated
153 DNA barcoding databases, here we provide a comprehensive taxonomic overview of airborne
154 grass pollen distribution, throughout an entire allergy season and across large geographic
155 scales. The grass pollen season is defined by discrete temporal windows of different grass
156 species, with some grass species displaying geographical variation. Temporal pollen
157 distributions in metabarcoding data follow observed flowering times. The data provide an
158 important step towards developing species-level grass pollen forecasting. Additionally, the
159 research presented here leads the way for future studies facilitating understanding of the
160 relationships between grass pollen and disease, which have significant global public health
161 relevance and socioeconomic importance.

162

163 **Methods**

164 **Sampling and Experimental Design**

165 We collected aerial samples from six sites across the UK (S3 Table; S1 Fig) using Burkard

166 Automatic Multi-Vial Cyclone Samplers (Burkard Manufacturing Co. Ltd. Rickmansworth, UK).

167 The volumetric aerial sampler uses a turbine to draw in air (16.5 litres/min) and aerial

168 particles are collected, using mini-cyclone technology into 1.5 ml sterile microcentrifuge

169 tubes located on a carousel (S5 Fig). Each sampling unit was mounted alongside a seven-day

170 volumetric trap (Burkard Manufacturing Co. Ltd. Rickmansworth, UK) belonging to the Met

171 Office UK Pollen Monitoring Network, which provided daily pollen count data. In the seven-

172 day volumetric trap, aerial particles are collected onto an adhesive coated tape supported on

173 a clockwork-driven drum. The tape is cut into 24 h sections and pollen are identified and

174 counted under a microscope [7]. Bangor was the only sampling site which was not part of the

175 pollen monitoring network, but we deployed the same methodology at the Bangor site.

176

177 Sampling began in late May 2016 (S4 Table) and during alternate weeks, aerial samples were

178 collected for seven days for a total of seven weeks between 25th May and 28th August. Exact

179 sampling dates varied slightly between sites (S4 Table) and a total of 279 aerial samples were

180 collected.

181

182 **DNA Extraction, PCR and Sequencing**

183 From the 279 daily aerial samples, 231 were selected for downstream molecular analysis, as

184 described below. Within each sampling week, two series of three consecutive days were

185 pooled. Pooled samples were selected based on grass pollen counts obtained by microscopy.

186 The final, unselected, day was not used in downstream molecular analysis. In total, seventy-
187 seven pools of DNA were created. In one instance, three consecutive days of pollen samples
188 were unavailable (Invergowrie, week 2, pool 2) due to trap errors. For this sample, the next
189 sampling day was selected for pooling (S4 Table). DNA was extracted from daily samples
190 using a DNeasy Plant Mini kits (Qiagen, Valencia, CA, USA), with some modifications to the
191 standard protocol as described by [27]. DNA from daily samples was pooled and eluted into
192 60 µl of elution buffer at the binding stage of the DNeasy Plant Mini kit.

193

194 Illumina MiSeq paired end indexed amplicon libraries were prepared following a two-step
195 protocol as recommended by the manufacturer [28]. Two marker genes were amplified with
196 universal primer pairs *rbcLaf* and *rbcLr506* [19, 29], and ITS2 and ITS3 [14] (S6 Table). A 5'
197 universal tail was added to the forward and reverse primers and a 6N sequence was added
198 between the forward universal tail and the template-specific primer, which is known to
199 improve clustering and cluster detection on MiSeq sequencing platforms [30] (Integrated
200 DNA Technologies, Coralville, USA). Round 1 PCR was carried out in a final volume of 25 µL,
201 including forward and reverse primers (0.2 µM), 1X Q5 HS High-Fidelity Master Mix (New
202 England Biolabs) and 1 µL of template DNA. Thermal cycling conditions were an initial
203 denaturation step at 98 °C for 30s; 35 cycles of 98 °C for 10s, 50 °C for 30s, 72 °C for 30s; and
204 a final annealing step of 72 °C for 5 minutes. Products from the first PCR were purified using
205 Agencourt AMPure XP beads (Beckman Coulter) with a 1:0.6 ratio of product to AMPure XP
206 beads.

207

208 The second round PCR added the unique identical i5 and i7 indexes and the P5 and P7
209 Illumina adaptors, along with universal tails complementary to the universal tails used in

210 round 1 PCR (S4 Table, S5 Table) (Ultramer, by IDT, Integrated DNA Technologies). Round 2
211 PCR was carried out in a final volume of 25 µL, including forward and reverse index primers
212 (0.2 µM), 1X Q5 HS High-Fidelity Master Mix (New England Biolabs) and 5 µL of purified PCR
213 product. Thermal cycling conditions were: 98 °C for 3 min; 98 °C for 30 s, 55 °C for 30 s, 72 °C
214 for 30 s (10 cycles); 72 °C for 5 min, 4 °C for 10 min. Both PCRs were run in triplicate. The
215 same set of unique indices were added to the triplicates which were then pooled following
216 visual inspection on an agarose gel (1.5%) to ensure that indices were added successfully.
217 Pooled metabarcoding libraries were cleaned a second time using Agencourt AMPure
218 magnetic bead purification, run on an agarose gel (1.5%) and quantified using the Qubit high
219 sensitivity kit (Thermo Fisher Scientific, Massachusetts, USA). Positive and negative controls
220 were amplified in triplicate with both primer pairs and sequenced alongside airborne plant
221 community DNA samples using the MiSeq. Sequence data, including metadata, are available
222 at the Sequence Read Archive (SRA) using the project accession number SUB4136142.

223

224 **Bioinformatic Analysis**

225 Initial sequence processing was carried out following a modified version of the workflow
226 described by de Vere *et al.* [27]. Briefly, raw sequences were trimmed using Trimmomatic
227 v0.33 (42) to remove short reads (<200bp), adaptors and low quality regions. Reads were
228 merged using FLASH v 1.2.11 [27, 31], and merged reads shorter than 450bp were excluded.
229 Identical reads were merged using fastx-toolkit (v0.0.14), and reads were split into ITS2 and
230 *rbcL* based on primer sequences.

231

232 To prevent spurious BLAST hits, custom reference databases containing *rbcL* and ITS2
233 sequences from UK plant species were generated. While all native species of the UK have

234 been DNA barcoded [19], a list of all species found in the UK was generated in order to gain
235 coverage of non-native species. A list of UK plant species was generated by combining lists of
236 native and alien species [32] with a list of cultivated plants obtained from Botanic Gardens
237 Conservation International (BGCI) which represented horticultural species. All available *rbcL*
238 and ITS2 records were downloaded from NCBI Genbank, and sequences belonging to UK
239 species were extracted using the script '[creatingselectedfastadatabase.py](#)', archived on
240 GitHub.

241

242 Metabarcoding data was searched against the relevant sequence database using blastn [33],
243 via the script 'blast_with_ncbi.py'. The top twenty blast hits were tabulated
244 ('blast_summary.py'), then manually filtered to limit results to species currently present in
245 Great Britain. Reads occurring fewer than four times were excluded from further analysis.
246 All scripts used are archived on GitHub: <https://doi.org/10.5281/zenodo.1305767>.

247

248 **Statistical Analysis**

249 To understand how the grass pollen composition changed with space and time, the effect of
250 time (measured as the number of days after the first sampling date), latitude and longitude
251 of sampling location were included in a two-tailed generalized linear model using the
252 'manyglm' function in the package 'mvabund' [34]. The proportion of sequences was set as
253 the response variable; proportion data was used as this has been shown to be an effective
254 way of controlling for differences in read numbers [35]. The effect of time, latitude,
255 longitude, month (coded as a factor), and the interaction between time and latitude were
256 included as explanatory variables in the models. In addition to these explanatory variables,

257 the interaction between time and longitude was included in a model to analyse the ITS2 data
258 (S6 Table).

259

260 The data best fit a negative binomial distribution, most likely due to the large number of
261 zeros (zeros indicate that a grass genus is absent from a sampling location), resulting in a
262 strong mean-variance relationship in the data (S6 Fig). The proportion of sequences was
263 scaled by 1000 and values were converted to integers so that a generalized linear model with
264 a negative binomial distribution could be used. Model selection was based by Akaike
265 Information Criterion (AIC) (S6 Table) and visual inspection of the residuals against predicted
266 values from the models (S7 Fig).

267

268 In order to compare the metabarcoding data with flowering time data, we used phenological
269 records of first flowering collected in 2016 by citizen scientists from the UK's Nature's
270 Calendar (www.naturescalendar.org.uk). First flowering time was compared to genus-level
271 ITS2 metabarcoding data for three species: *Alopecurus pratensis*, *Dactylis glomerata* and
272 *Holcus lanatus*. As grass pollen could only be reliably identified to genus level in the
273 metabarcoding data, the taxa compared may not have been exactly equivalent since both
274 *Alopecurus* and *Holcus* contain other widespread species within the UK. However, *Alopecurus*
275 *pratensis* and *Holcus lanatus* are the most abundant species within their respective genera.

276 The comparison was only carried out for ITS2 data because two of the three genera were not
277 identified by the *rbcL* marker.

278

279 NMDS ordination was carried out using package 'VEGAN' in R [36], based on the proportion
280 of total high-quality reads contributed by each grass genus, using Bray-Curtis dissimilarity (S2

281 Fig). Ordination is used to reduce multivariate datasets (e.g. abundances of many species)
282 into fewer variables that reflect overall similarities between samples. A linear model was
283 carried out using the 'lm' function within the 'stats' package in R, in order to investigate the
284 relationship between the number of reads obtained for each genus using the rbcL and ITS2
285 marker.

286

287 **References**

- 288 1. Blackley CH. Experimental Researches on the Causes and Nature of Catarrhus *Aestivus*
289 (hay-fever Or Hay-asthma)1873 1873. 202 p.
- 290 2. Marks G, Pearce N, Strachan D, Asher I. Global Burden of Disease Due to Asthma. The
291 Global Asthma Report 2014. Auckland, New Zealand: The Global Asthma Network; 2014. p.
292 16-21.
- 293 3. Bauchau V. Prevalence and rate of diagnosis of allergic rhinitis in Europe. *Eur Respir J.*
294 2004;24(5):758-64. doi: 10.1183/09031936.04.00013904.
- 295 4. Bousquet PJ, Chinn S, Janson C, Kogevinas M, Burney P, Jarvis D, et al. Geographical
296 variation in the prevalence of positive skin tests to environmental aeroallergens in the
297 European Community Respiratory Health Survey I. *Allergy.* 2007;62(3):301-9. doi:
298 10.1111/j.1398-9995.2006.01293.x.
- 299 5. García-Mozo H. Poaceae pollen as the leading aeroallergen worldwide: A review.
300 *Allergy.* 2017;72(12):1849-58. doi: 10.1111/all.13210.
- 301 6. Emberlin J, Jaeger S, Dominguez-Vilches E, Soldevilla CG, Hodal L, Mandrioli P, et al.
302 Temporal and geographical variations in grass pollen seasons in areas of western Europe: an
303 analysis of season dates at sites of the European pollen information system. *Aerobiologia.*
304 2000;16(3-4):373-9.
- 305 7. Emberlin J, Jones S, Bailey J, Caulton E, Corden J, Dubbels S, et al. Variation in the start
306 of the grass pollen season at selected sites in the United Kingdom 1987–1992. *Grana.*
307 1994;33(2):94-9.
- 308 8. Mander L, Li M, Mio W, Fowlkes CC, Punyasena SW. Classification of grass pollen
309 through the quantitative analysis of surface ornamentation and texture. *Proc Biol Sci.*
310 2013;280(1770):20131905. doi: 10.1098/rspb.2013.1905.
- 311 9. Estrella N, Menzel A, Krämer U, Behrendt H. Integration of flowering dates in
312 phenology and pollen counts in aerobiology: analysis of their spatial and temporal coherence
313 in Germany (1992–1999). *Int J Biometeorol.* 2006;51(1):49-59. doi: 10.1007/s00484-006-
314 0038-7.
- 315 10. Skjøth CA, Sommer J, Stach A, Smith M, Brandt J. The long range transport of birch
316 (Betula) pollen from Poland and Germany causes significant pre-season concentrations in
317 Denmark. *Clinical & Experimental Allergy.* 2008;37(8):1204-12.
- 318 11. McInnes RN, Hemming D, Burgess P, Lyndsay D, Osborne NJ, Skjøth CA, et al. Mapping
319 allergenic pollen vegetation in UK to study environmental exposure and human health. *Sci
320 Total Environ.* 2017;599-600:483-99. doi: 10.1016/j.scitotenv.2017.04.136.

321 12. van Ree R, van Leeuwen WA, Aalberse RC. How far can we simplify in vitro diagnostics
322 for grass pollen allergy?: A study with 17 whole pollen extracts and purified natural and
323 recombinant major allergens. *J Allergy Clin Immunol.* 1998;102(2):184-90.

324 13. Moingeon P, Peltre G, Bergmann KC. Rationale for a five-grass pollen vaccine. *Clin Exp
325 Allergy Rev.* 2008;8(1):12-4. doi: 10.1111/j.1472-9733.2008.00124.x.

326 14. de Weger LA, Beerthuizen T, Gast-Strookman JM, van der Plas DT, Terreehorst I,
327 Hiemstra PS, et al. Difference in symptom severity between early and late grass pollen season
328 in patients with seasonal allergic rhinitis. *Clin Transl Allergy.* 2011;1(1):18. doi: 10.1186/2045-
329 7022-1-18.

330 15. Kraaijeveld K, de Weger LA, García MV, Buermans H, Frank J, Hiemstra PS, et al.
331 Efficient and sensitive identification and quantification of airborne pollen using next-
332 generation DNA sequencing. *Mol Ecol Resour.* 2014;15(1):8-16. doi: 10.1111/1755-
333 0998.12288.

334 16. Korpelainen H, Pietiläinen M. Biodiversity of pollen in indoor air samples as revealed
335 by DNA metabarcoding. *Nord J Bot.* 2017;35(5):602-8. doi: 10.1111/njb.01623.

336 17. Deiner K, Bik H, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, et al.
337 Environmental DNA metabarcoding: Transforming how we survey animal and plant
338 communities. *Molecular Ecology.* 2017;26(21):5872-95.

339 18. Creer S, Deiner K, Frey S, Porazinska D, Taberlet P, Kelley Thomas W, et al. The
340 ecologist's field guide to sequence-based identification of biodiversity. *Methods in Ecology
341 and Evolution.* 2016;7(9):1008-18.

342 19. de Vere N, Rich TCG, Ford CR, Trinder SA, Long C, Moore CW, et al. DNA barcoding the
343 native flowering plants and conifers of Wales. *PLoS One.* 2012;7(6):e37945. doi:
344 10.1371/journal.pone.0037945.

345 20. England PH. GP in-hours consultations bulletin: 25 August 2016 week 33. Birmingham,
346 UK: PHE Real-time Syndromic Surveillance Team, 2016.

347 21. RGCL. Recommended Grass and Clover Lists. In: Society BG, editor.
348 [http://wwwbritishgrasslandcom/system/files/uploads/RGCL%20Handbook%202017%206%20
349 WEBpdf](http://wwwbritishgrasslandcom/system/files/uploads/RGCL%20Handbook%202017%206%20WEBpdf). Cheshire, UK: British Grassland Society; 2017.

350 22. D'Amato G, Vitale C, Sanduzzi A, Molino A, Varella A, D'Amato M. Allergenic Pollen
351 and Pollen Allergy in Europe. *Allergy.* 2007;62(9):976-90.

352 23. Kmenta M, Bastl K, Berger U, Kramer MF, Heath MD, Pätsi S, et al. The grass pollen
353 season 2015: a proof of concept multi-approach study in three different European cities.
354 *World Allergy Organ J.* 2017;10(1):31. doi: 10.1186/s40413-017-0163-2.

355 24. Chapman D. Greater phenological sensitivity to temperature on higher Scottish
356 mountains: new insights from remote sensing. *Global Change Biology.* 2013;19:3463–71.

357 25. Emecz TI. The effect of meteorological conditions on anthesis in agricultural grasses.
358 *Annals of Botany.* 1962;26(102):159-72.

359 26. Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS, Burthe S, et al.
360 Phenological sensitivity to climate across taxa and trophic levels. *Nature.*
361 2016;535(7611):241-5.

362 27. Hawkins J, de Vere N, Griffith A, Ford CR, Allainguillaume J, Hegarty MJ, et al. Using
363 DNA Metabarcoding to Identify the Floral Composition of Honey: A New Tool for Investigating
364 Honey Bee Foraging Preferences. *PLoS One.* 2015;10(8):e0134735. doi:
365 10.1371/journal.pone.0134735.

366 28. Illumina. 16S Metagenomic Library Preparation. San Diego, California, USA: Illumina,
367 2013.

368 29. Kress WJ, Erickson DL. A two-locus global DNA barcode for land plants: the coding
369 *rbcL* gene complements the non-coding *trnH-psbA* spacer region. PLoS One. 2007;2(6):e508.
370 doi: 10.1371/journal.pone.0000508.

371 30. Miya M, Sato Y, Fukunaga T, Sado T, Poulsen JY, Sato K, et al. MiFish, a set of universal
372 PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230
373 subtropical marine species. Royal Society open science. 2015;2(7):150088.

374 31. Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve
375 genome assemblies. Bioinformatics. 2011;27(21):2957-63. doi:
376 10.1093/bioinformatics/btr507.

377 32. Stace C. New flora of the British Isles. Cambridge, UK: Cambridge University Press;
378 2010.

379 33. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+:
380 architecture and applications. BMC Bioinformatics. 2008;10:421.

381 34. Wang YI, Naumann U, Wright ST, Warton DI. mvabund—an R package for model-based
382 analysis of multivariate abundance data. Methods in Ecology and Evolution. 2012;3(3):471-4.

383 35. McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is
384 inadmissible. PLoS Computational Biology. 2014;10(4):e1003531.

385 36. Dixon P. VEGAN, a package of R functions for community ecology. Journal of
386 Vegetation Science. 2003;14(6):927-30.

387 37. Cope C, Gray A. Grasses of the British Isles. 13 ed. London, UK: Botanical Society of
388 the British Isles; 2009.

389

390 List of Supplementary Materials

391 Supplementary text
392 References
393 S1 – S7 Figs
394 S1 List
395 S1 – S6 Tables
396

397 Acknowledgements

398 We thank John Kenny, Pia Koldkjær, Richard Gregory, and Anita Lucaci of the Liverpool
399 Centre for Genomic Research for sequencing support. We acknowledge the computational
400 services & support of the Supercomputing Wales project, which is part-funded by the
401 European Regional Development Fund (ERDF) via Welsh Government. We thank the Botanic
402 Gardens Conservation International (BGCI) for access to the list of plant collections in the
403 National Gardens in the UK and Ireland. We thank the Met Office network for providing

404 additional observational grass pollen count data and Jonathan Winn, UK Met Office for
405 ArcGIS assistance on S1 Fig. We are grateful to the Woodland Trust and Centre for Ecology &
406 Hydrology for supplying the UK Phenology Network data and to the citizen scientists who
407 have contributed to the latter scheme. Final thanks to Wendy Grail and technical support
408 staff at Bangor University.

409

410 **Author Contributions:** S.C., N.dV., G.W.G., R.N.M., N.J.O., C.A.S., Y.C. and G.L.B. conceived and
411 designed the study; B.A-G., G.L.B., G.P., A.E., R.N., S.P., K.S., and N.S. collected samples and
412 counted pollen; G.L.B. performed laboratory work, supported by S.C.; N.dV., C.R.F., L.J. and
413 S.C. contributed methods; C.P. and G.L.B. analysed the data and G.L.B., C.P. and S.C.
414 produced the first draft of the manuscript. All authors contributed substantially to the final
415 submitted manuscript.

416

417 **Funding:** This work was supported by the Natural Environment Research Council
418 (<https://nerc.ukri.org/>), awarded to SC (NE/N003756/1), CS (NE/N002431/1), NO
419 (NE/N002105/1) and NdV and GG (NE/N001710/1). The funders had no role in study design,
420 data collection and analysis, decision to publish, or preparation of the manuscript.

421

422 **Competing interests:** The authors are not aware of any competing interests.

423

424 **Data and materials availability:** All sequence data (including metadata) are available at the
425 Sequence Read Archive (SRA) using the project accession number SUB4136142. Archived
426 sequence data was used to generate Fig 1 to 3 (including S2-S4 and S6-S7 Figs). First
427 flowering data used in Fig 3 was obtained from Nature's Calendar, Woodland Trust and is

428 available upon request. The sequence analysis pipeline is available at

429 <https://github.com/colford/nbgw-plant-illumina-pipeline>.

430

431 **Figure Legends**

432

433 **Fig 1. Abundance of the most common airborne grass pollen taxa throughout the grass allergy**

434 **season.** The five most abundant grasses (expressed as proportion of total reads), depicted

435 alongside the total proportion of reads assigned to family Poaceae. Markers used to identify

436 grass pollen are stated in the top panel label. Due to errors in sampling equipment, only 4

437 weeks of samples were collected at the York sampling site. Sampling sites are indicated in the

438 right panel label abbreviated as follows: BNG = Bangor; EXE = Exeter; ING = Invergowrie; IOW

439 = Isle of Wight; WOR = Worcester; YORK = York. A map of sampling locations can be found in

440 S1 Fig.

441

442 **Fig 2. Abundance of airborne grass pollen taxa throughout the grass allergy season.**

443 Abundance of rare grasses (expressed as proportion of total reads). Sampling sites are

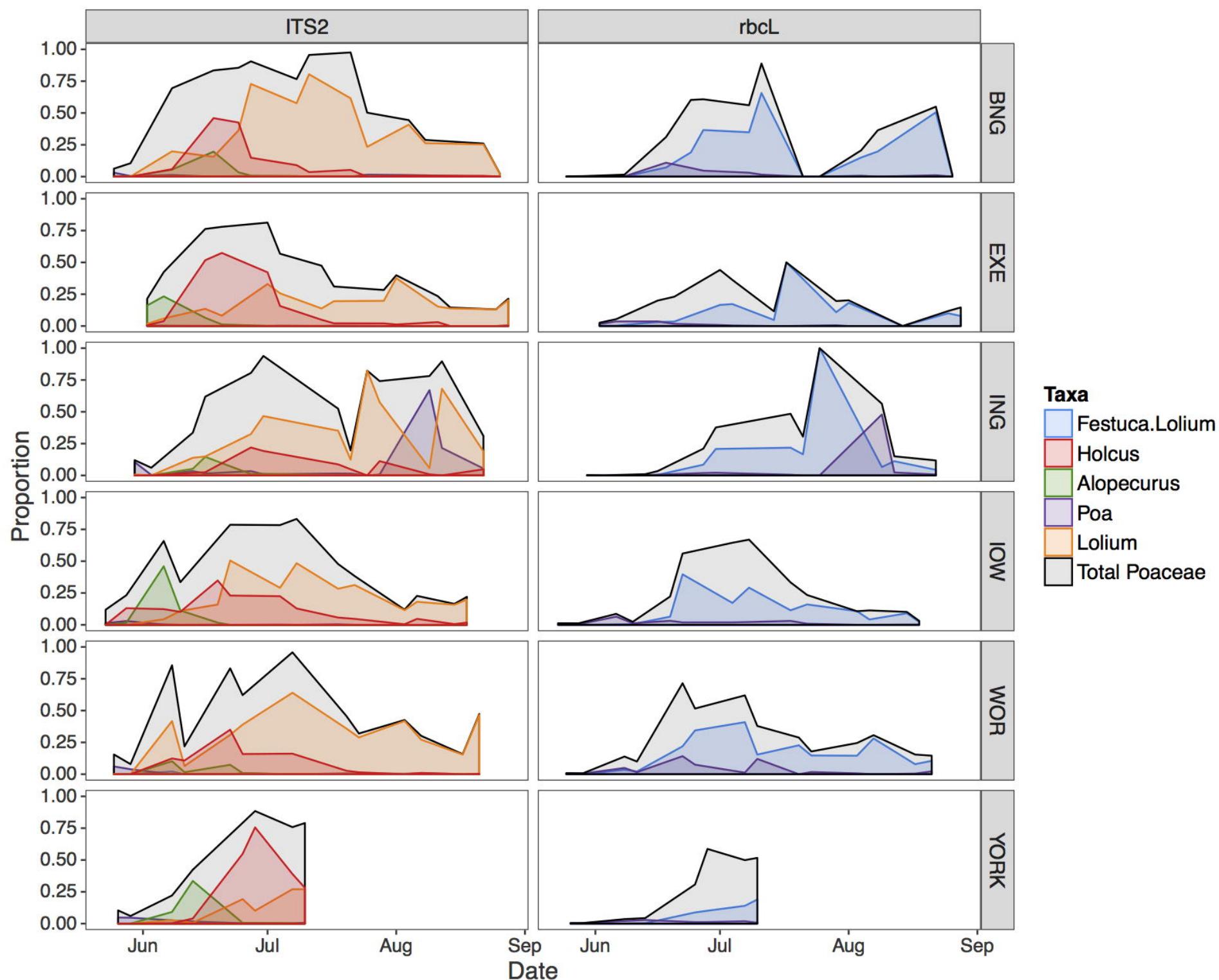
444 indicated in the top panel, followed by the marker used to identify grass pollen. Due to errors

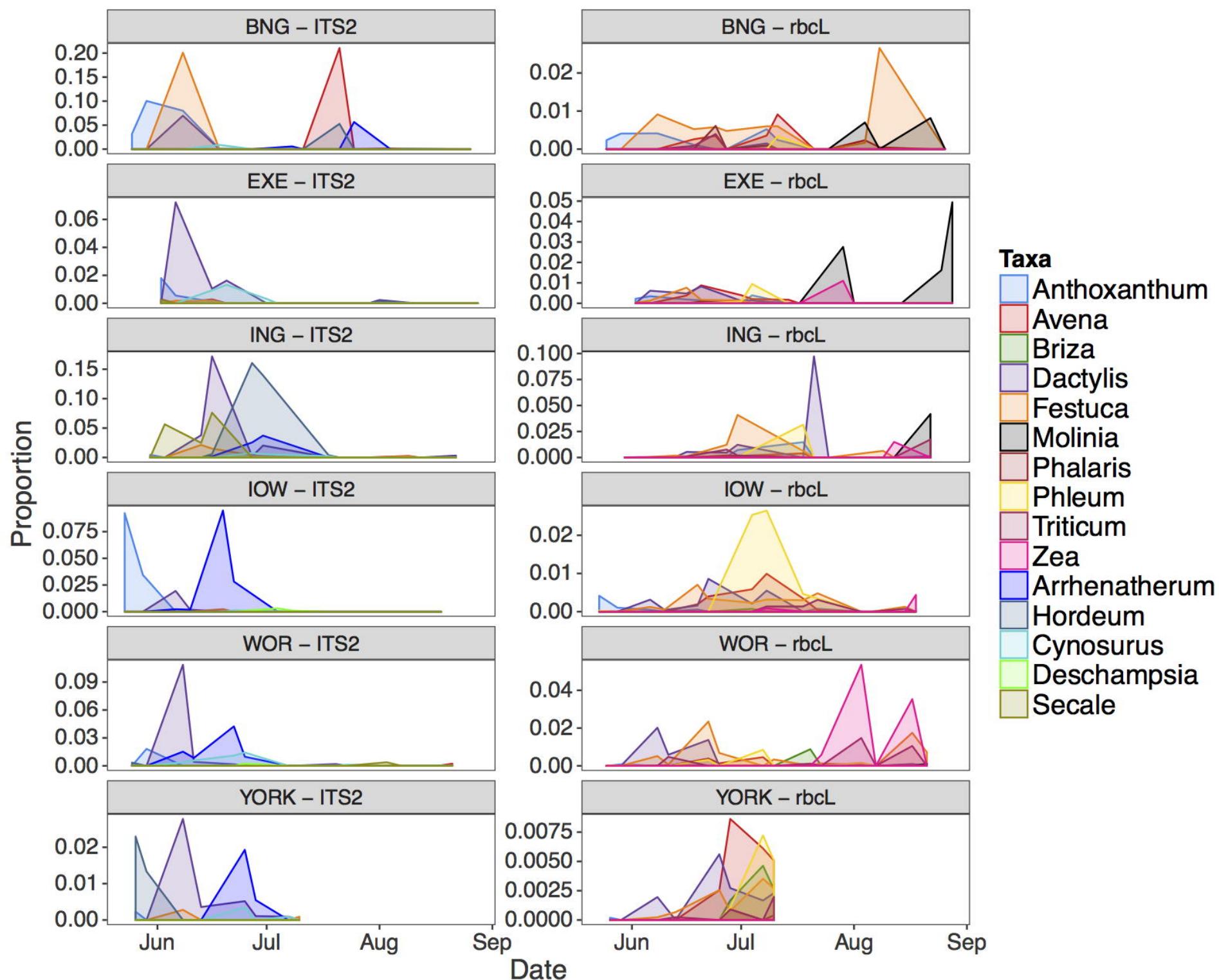
445 in sampling equipment, only 4 weeks of samples were collected at the York sampling site.

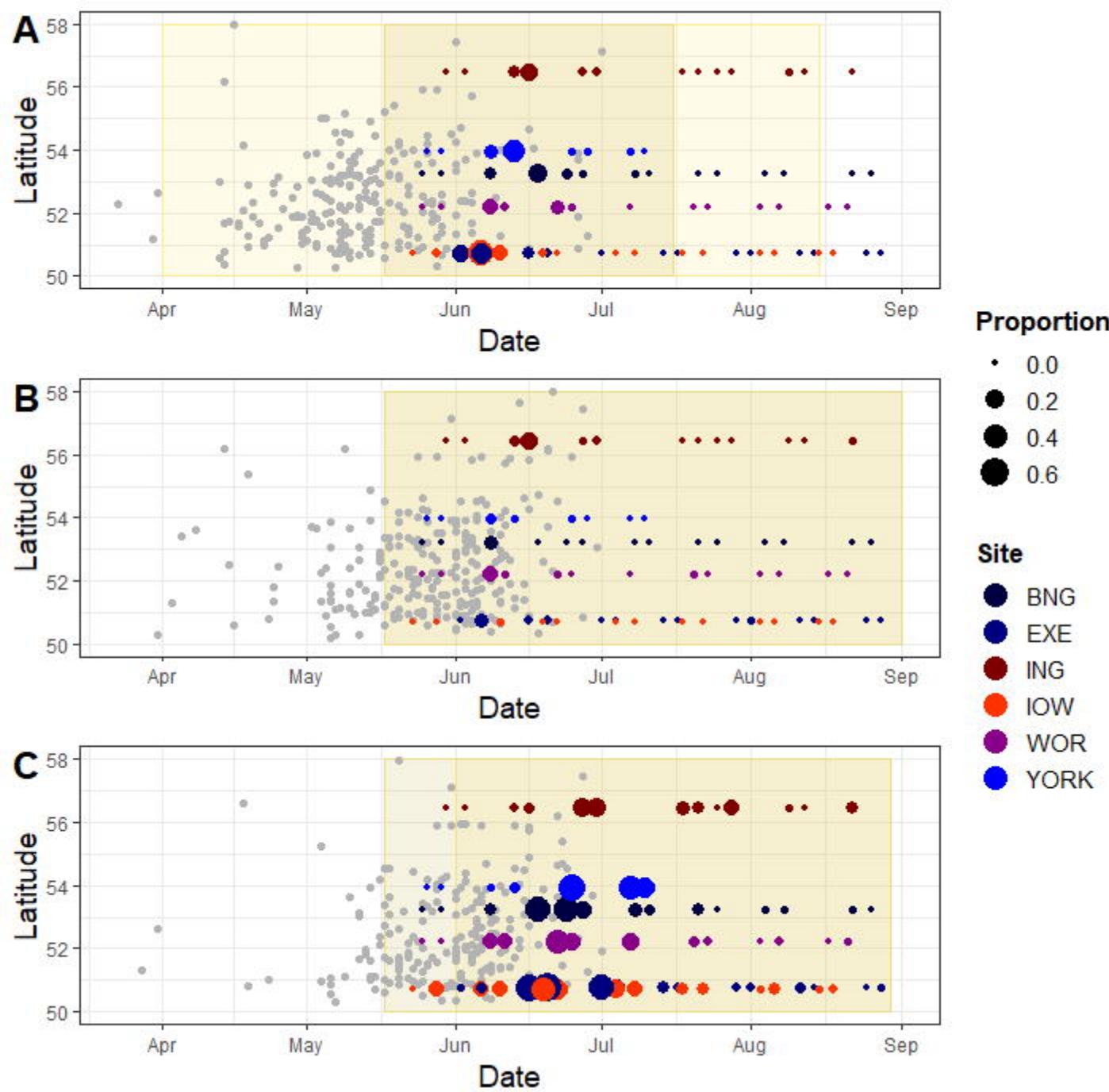
446 Note that the y axes differ between panels. Refer to Fig 1 for site name abbreviations.

447

448 **Fig 3. Airborne grass pollen observed 3-4 weeks after first flowering dates.** Comparison of


449 genus incidence in metabarcoding data with records of first flowering dates in 2016 from the


450 citizen science project Nature's Calendar (www.naturescalendar.org.uk) for (A) *Alopecurus*


451 *pratensis*, (B) *Dactylis glomerata* and (C) *Holcus lanatus*. Each grey point represents the

452 earliest time of flower heading as observed by a participant in the project. Coloured points
453 represent metabarcoding samples, with the size of the point representing the proportion of
454 total reads assigned to the relevant genus. Yellow shaded areas represent the expected
455 flowering period as described in [37], with darker shades showing the 'main' flowering
456 period.

457

