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Abstract

We previously published a method that infers chromosome conformation from images of fluorescently-tagged genomic
loci, for the case when there are many loci labeled with each distinguishable color. Here we build on our previous
work and improve the reconstruction algorithm to address previous limitations. We show that these improvements
1) increase the reconstruction accuracy and 2) allow the method to be used on large-scale problems involving several
hundred labeled loci. Simulations indicate that full-chromosome reconstructions at 1/2 Mb resolution are possible
using existing labeling and imaging technologies. The updated reconstruction code and the script files used for this
paper are available at: https://github.com/heltilda/align3d.

Measurement of in vivo chromosome conformation is a
major unsolved problem in structural biology despite its
known biological importance [1]. The present state-of-
art is either to obtain indirect information about confor-
mations using 3C-derived methods which measure DNA-
DNA contacts (typically in a cell-averaged population)
[2], or else to directly measure the cellular locations of
individual chromosomal loci in single cells by microscopy
[3]. The major limitation of direct localization is one of
throughput: only ∼ 3 − 5 labeled loci can be uniquely
identified ‘by color’ in a standard microscope image,
whereas a whole-chromosome reconstruction would in-
volve labeling and identifying hundreds or thousands of
loci. Several research efforts aim to remove this limitation
using either experimental or computational approaches.
The experimental approaches aim to allow an increased
number of labels that can be distinguished in an image
[4–6]. Alternatively, computational methods are being
developed to infer the identity of each label if it cannot be
uniquely identified in an image [7–9], by using the known
label positions along the DNA contour. Here we focus
on the computational inference method called align3d

Ref. [8], and present improvements to allow high-quality,
chromosome-scale conformational reconstructions.

First, we briefly describe the align3d algorithm. Using
a) the genomic locations and colors of labeled loci and b)
the spatial locations and colors of spots in a microscope
image, together with a relation tying the genomic distance
between two loci to their average spatial displacement,
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this method constructs a table of ‘mapping probabilities’
p(L → s) for a given labeled genomic locus L having
produced spot s in the microscope image. Each map-
ping probability p(L → s) is calculated by dividing the
summed statistical weights of conformations where locus
L maps to spot s, which we term a mapping partition
function and denote ZL→s, by the full partition function
Z that is the summed weight of all conformations. A
proper calculation of ZL→s and Z would consider all con-
formations having no more than one locus at any given
spot in the image1, similar to a traveling salesman tour
[10], but this exact calculation is intractable for large
problems. Instead, align3d counts all conformations for
which adjacent loci do not overlap at the same spot (see
Figure 1), using a variant of the forward-backward algo-
rithm [11] that can propagate between non-adjacent lay-
ers. This is a major source of error as the vast majority of
conformations contributing to the partition function over-
lap at non-adjacent loci, and one consequence is that the
normalization of mapping probabilities makes no sense
for a non-overlapping conformation, as

∑
L p(L→ s) can

exceed 100% for certain spots. To recover from this error,
align3d assigns a penalty to each spot and iteratively
adjusts these penalties until the spot normalization is
sensible. Although somewhat ad hoc, use of spot penal-
ties recovers significant information about medium-sized

1Depending on how the experiment is done, two spots of the
same color sufficiently close in the image may appear as a single
spot where the conformation self-overlaps. We prefer to treat this
scenario as a missing-spot measurement error rather than relax the
one-spot-per-locus rule. If the spots have been properly localized,
then the underlying conformation visits any given spot once at most.
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conformations (∼ 30 labeled loci), although larger simu-
lated experiments (∼ 300 loci) have convergence problems
due to the cost function plateauing at very small or large
values of the spot penalties.

 Legal conformation  Illegal (overlapping)
conformation

Figure 1. Canceling out overlapping
conformations. Schematic showing one legal and one
illegal conformation passing through spots A, B and C.
align3d counts both legal and overlapping
conformations in estimating the partition Z (although it
is able to prevent adjacent loci from overlapping).

The final step is to use the mapping probabilities to
construct the range of likely conformations compatible
with the microscope image. Uncertainty in the conforma-
tion results from inaccuracy or uncertainty in the map-
ping probabilities due to three factors: inaccuracy in the
DNA model (the relation between genomic and spatial
distance), error in estimating the partition functions, and
the inherent uncertainty in the data even with a per-
fect reconstruction algorithm. Improvements to the DNA
model will require direct measurements of in vivo confor-
mations, which have not yet been made. Here we focus
on improving the partition function estimate, using two
different strategies. First, we give an efficient method for
optimizing the spot penalties when there are hundreds
of spots in the image. Next, we provide formulas for
the partition functions which allow them to be estimated
to arbitrarily high accuracy (given enough computational
time), without using spot penalties or any optimization.
As we show using simulations, these two methods used
individually or in tandem permit confident, chromosome-
scale conformational reconstructions using existing exper-
iments.

Methods

First we provide a method for efficiently optimizing the
spot penalties regardless of the number of labeled loci.
This rule guarantees that a) the rate of missing spots is as
expected, and b) the mapping probabilities are properly

normalized. Let qs denote the penalty attached to spot
s; then the update rule for that spot penalty is:

q′s =

1
P (s)/N − 1

1
1−pfn(c) − 1

·
1

P (s)/N − 1

1
min(1,P (s))/N − 1

· qs (1)

where N is the number of loci, P (s) =
∑
L p(L → s) is

the total probability of mapping any locus to spot s, and
pfn(c) is the estimated rate of missing spots having color
c. The justification for this rule is given in Appendix 1.

We can also update a penalty q̄c that is associated with
missing spots of color c. This gives a faster way to en-
force a desired missing spot rate because there are fewer q̄
penalties than q penalties. An update to q̄c is equivalent
to a reverse update to all qs for spots s of color c, so the
update rule is:

q̄′c =

1
1−pfn(c) − 1

1
P (s)/N − 1

· q̄c. (2)

Typically, we first optimize the q̄ parameters to achieve
a target missing spot rate, then optimize the q parameters
to enforce P (s) ≤ 1 while maintaining the missing spot
rate. In either case, we apply Eq. 1 or 2 to bring the
q or q̄ parameters close to their final values. When the
cost function stops improving, we switch to the steepest-
descent algorithms used in Ref. [8] to polish q or q̄.

Next, we give two exact formulas for the partition func-
tions ZL→s and the full partition function Z that deter-
mine our locus-to-spot mapping probabilities. We focus
on the full partition function Z since the formulas for
ZL→s are identical. The largest term in each formula,
which we denote Z̃0 (or Z̃opt0 when spot penalty opti-
mization is used), is the original estimate from Ref. [8]
calculated using a variant of the forward-backward algo-
rithm [11]. Additional terms are computed in the same
way, except that certain loci are constrained to map to
certain spots. All of the constraints we will apply are ille-
gal constraints, in that they force multiple loci to overlap
at some spot in the image; therefore these terms only
count illegal conformations that we would like to remove
from the baseline calculation. By computing these terms
and subtracting them from Z̃0 we eliminate the overlap-
ping conformations and improve the calculation. It turns
out that this process erroneously subtracts conformations
with multiple overlaps more than once and thus we have
to add back in higher-order corrections (i.e. partition
functions having multiple constrained spots). Repeat-
ing this logic leads to exact formulas for Z taking the
form of series expansions, which are dominated by the
lowest-order terms as those have the fewest restrictions on
conformational overlaps. Figure 2A illustrates an exam-
ple of such a series expansion, where each parenthetical
subscript (XY . . . )s on a term label denotes an illegal
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constraint forcing loci X,Y, . . . to overlap at spot s when
that term is calculated. We use this notation throughout.

There are two ways we might remove conformations
containing overlapping loci, leading us to two different
series expansions for the true partition function Z. Sup-
pose that we are calculating the term Z̃(AC... )s whose
single illegal constraint forces loci A,C, . . . to overlap at
spot s. One option is to forbid any of the other uncon-
strained loci from also mapping to spot s, since spot s
is already overused. This leads to series expansion 1.
Alternatively, allowing further overlaps with spot s from
the unconstrained loci gives us series expansion 2. Figure
2B illustrates the differences between the two series.

Each of the two series expansions is a weighted sum
over all possible illegally-constrained terms having two
properties: 1) each locus and each spot appear at most
once in the indices, and 2) two or more loci map to each
constrained spot. To be formal, we use Ω to represent
the set of all possible illegal constraints: each element
of Ω consists of a set of two or more non-adjacent loci
and a single spot where they are forced to overlap. Each
expansion thus takes the form

Z =
∑
φ⊆Ω

wφZ̃φ

where Zφ is zero if any two constraints share a locus or
spot. We will choose the integer weights wφ so as to
cancel out the overlapping conformations. By symmetry
arguments, the weighting factor should not depend on the
identities of the loci or spots, but rather only by the num-
ber of constrained spots nφ, and the number of loci nφk in-
volved in each kth constraint. For example, w(ACE)s(BD)t

is determined by nφ = 2, nφ1 = 3 and nφ2 = 2.
Here we specify each series expansion by giving a for-

mula for the weights wφ in terms of nφ and the various nφi .
We also explain how to select an appropriate set of terms
ψ when there are too many terms to evaluate. Our selec-
tion prohibits any legal or overlapping conformation from
contributing a negative weight to the partition function
estimate, thereby guaranteeing positive mapping prob-
abilities and allowing use of the reconstruction-quality
metrics given in Ref. [8]. Derivations of the coefficient
formulas and the term-selection criteria for each series
expansion appear in Appendix 2.

Series expansion 1 For series expansion 1, we do not
allow the unconstrained loci to map to spots that were
used in constraints. Then the weights wφ are given by:

wφ = (−1)nφ (3)

To select terms for a series approximation, we first choose
a set of illegal constraints ψ to disallow, then include all

ACE
FH

s t
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s t

t

Z = Z0 – Z(AC)s 
– Z(BD)t 

+ Z(AB)s(BD)t

~ ~ ~ ~

s

t

s
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A
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s

Figure 2. Series expansions. A. Schematic showing
terms in a series expansion, in a case where series 1 and
series 2 have the same terms. The full series gives the
exact partition function for the 4-locus experiment
shown where only 2 spots appeared in the image (due to
a high rate of missing spots). Cartoons show only the
constrained loci for each term (so for example each term
includes the illegal conformation visiting spots
s � t � s � t). B. An illegal conformation for which loci
A, C and E overlap at spots s, and loci F and H overlap
at spot t. Series expansion 1 includes this conformation
in terms Z̃0, Z̃(ACE)s , Z̃(FH)t , and Z̃(ACE)s(FH)t . Series
expansion 2 includes this conformation in the same
terms with the addition of Z̃(AC)s , Z̃(AE)s , Z̃(CE)s ,

Z̃(AC)s(FH)t , Z̃(AE)s(FH)t , and Z̃(CE)s(FH)t .

series terms Zφ containing only those constraints: i.e.
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φ ⊆ ψ. This guarantees non-negative mapping proba-
bilities. In order to efficiently evaluate the largest terms,
we recommend selecting the Nψ constraints having the
highest product of mapping probabilities in the baseline
calculation Z̃0 (or Z̃opt0 if spot penalties will be used). For
example, we would include (AC)s if p(A→ s) · p(C → s)
is sufficiently large.

Series expansion 2 For series expansion 2, the uncon-
strained loci are allowed to map to spots that were used
in constraints. Then the weights wφ are given by:

wφ =

nφ∏
k=1

(−1)n
φ
k−1(nφk − 1). (4)

To select terms for a series approximation, we first choose
a set of Nψ single-locus-to-spot mappings Ψ, then include
all terms Zφ whose illegal constraints use only mappings
in Ψ. For example, the constraint (AC)s would be in-
cluded if Ψ ⊆ {A → s, C → s}. In order to select the
largest terms, we recommend building Ψ from the Nψ
largest mapping probabilities calculated from Z̃0 or Z̃opt0 .

Results

We tested the improved align3d method by generat-
ing random chromosome conformations and simulating
the process of error-prone labeling, imaging and finally
producing the locus-to-spot mapping probabilities. We
considered three scenarios for our simulations. 1) The
‘Toy’ scenario involves 10 genomic loci, where each locus
is labeled using one of 3 colors. For these simple prob-
lems the partition function can be calculated exactly. 2)
Our simulated Experiment 1 uses standard DNA labeling
methods and traditional 3-color microscopy to label 30
loci with 3 colors, thus interrogating a significant fraction
of a chromosome contour. 3) Our simulated Experiment 2
labels 300 loci across a chromosome-length contour. The
reconstruction of Experiment 2 is made possible by us-
ing the Oligopaints labeling technique [4] to label in 20
different colors.

For each scenario, we randomly generated 100 confor-
mations using a wormlike chain model (packing density
= 0.3 kb/nm, persistence length = 300 kb, as suggested
by the measurements of Ref. [12]); applied a random
labeling at a mean density of 1 locus per megabase; and
simulated experimental error: 100/200-nm Gaussian lo-
calization error in xy/z, a 10% rate of missing labels,
and a 10% rate of nonspecifically-bound labels. A typical
simulated experiment from the Toy scenario is shown in
Figure 3A.

For each simulated conformation, we fed the label po-
sitions and colors together with the simulated 3D images
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Figure 3. Example reconstruction. A. Randomly
generated and labeled chromosome contour with
simulated experimental error: localization error (lines
offsetting spots from the labeled genomic loci) and
missing labels (open circles). This example lacks
nonspecifically-bound labels (floating spots). B. Spot
mapping probabilities calculated using both the largest
series term Z̃0 (grey circles), and the exact Z that can
be computed using 2210 series terms (blue circles). The
dotted red line connects the true locus-to-spot
mappings, which are used to calculate the unrecovered
information. I(Z̃0) = 0.835 bits/locus and I(Z) = 0.54
bits/locus. C. Unrecovered information I and entropy S
(left panel) and logZ (right panel) versus the number of
terms used in the series expansions.

into the align3d algorithm to produce locus-to-spot map-
ping probabilities. For example, the experiment shown
in Figure 3A produced the mapping probabilities shown
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graphically in Figure 3B using circles, where the size of
each circle indicates probability magnitude. Here grey
circles show the mapping probabilities computed from Z̃0

with no use of spot penalties, and blue circles show those
same probabilities computed using the exact Z. This
example shows how excluding high-weight and heavily-
overlapping conformations reduces and improves the par-
tition function estimate (see Figure 3C) and concentrates
the probability mass into the ‘true’ locus-to-spot map-
pings (shown connected by the dotted red line in Figure
3B).

Our reconstruction quality metric is the amount of un-
recovered information from the mapping probabilities, de-
fined as I = −〈log p(Li → si)〉i where the average 〈·〉 is
taken over the set of true locus-to-spot mappings (Li, si).
The ideal case of I → 0 implies a perfect reconstruc-
tion with no mistakes and zero uncertainty, but in prac-
tice I is always positive. In a real experiment where
the true mappings are not known, we use a proxy for
unrecovered information that we term entropy, defined
as S = −〈p(Li → sj) log p(Li → sj)〉ij whose average is
taken over all locus-to-spot mappings, not just the correct
mappings. The goal is to have S ≈ I so that a real experi-
ment will have an accurate estimate of the reconstruction
performance. The left-hand panel of Figure 3C shows
how I and S depend on the accuracy of the calculation
for the simple example shown, using either of the two
series expansions and varying the number of terms from
1 (simply Z̃0) to 2210 which is the full set of terms for
either series and thus computes Z exactly. Entropy gen-
erally overestimates the amount of unrecovered informa-
tion (see Supplementary Figures S1 and S2), because the
large mapping probabilities should be even larger, and the
small ones even smaller, than their assigned values (see
Supplementary Figure S3). We believe this miscalibration
is mostly caused by align3d overestimating the missing
spot rate.

Validation of Equations 1-4. We first validated each
of the two series expansions by comparing them against
exact partition function calculations for the simulated
Toy experiments. In all cases, both series expansions,
when taken to their maximum number of terms, exactly
reproduced the partition function calculations obtained
by direct enumeration over all possible non-overlapping
conformations. This test validates Equations 3 and 4. We
also verified that both series expansions could be used in
conjunction with spot penalty optimization (Equations 1
and 2), both by numerically validating the cost function
gradient calculation and by testing for convergence on
these small problems.

Improved optimization allows large-scale recon-
structions. First, we tested whether the iterative spot-
penalty optimization rules given by Eqs. 1 and 2 could

work on large-scale problems such as those of Experiment
2, where the old gradient descent optimizer in align3d

had difficulty [8]. The results are shown in Figure 4, which
compares the number of iterative steps required to con-
verge the q̄ (missing-spot penalty) and q (spot penalty)
parameters without/with use of our improved optimiza-
tion rules (labeled ‘old’/‘new’ respectively in the legend).
Since the spot penalties q are optimized for probability
normalization only after q̄ parameters have been opti-
mized to achieve a desired missing spot frequency, we
only attempted to optimize the q parameters for simula-
tions where q̄ converged. There were two results from this
experiment. First, more attempts to optimize the q̄ and
q parameters successfully converged when using the new
optimization rules in conjunction with gradient descent,
as indicated by the greater volume of the ‘new’ histogram
and the correspondingly larger numbers shown in the leg-
ends. Secondly, of the trials that did converge, our new
method required significantly fewer iterations and thus
less computation time than the old method, as indicated
by the relative skews of the distributions.

0 50 100 150
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q optimization

old
(31 / 100)

new
(100 / 100)

0 50 100 150
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0

20

60
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(17 / 31)
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(91 / 100)

Figure 4. Comparison of old and new
optimization methods. Each panel compares the
number of iterations required to achieve convergence
using the old (purple) versus new (yellow) optimization
methods. Only trials that successfully converged are
counted, so the histograms are not normalized relative
to each other. The first number in parentheses of each
legend entry shows the number of converged trials, and
the second number shows the total number of trials.
Note that the second numbers in the right-hand panel
equal the first numbers in the left-hand panel, since we
required convergence in q̄ in order to attempt
optimization of the q parameters.

Use of more colors dramatically improves recon-
structions. Our most striking result is that simulations
of the ambitious Experiment 2 produce far better results
than even the Toy scenario, despite the fact that these
simulations have more loci per color than either the Toy
scenario or Experiment 1. This can be seen in the amount
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Figure 5. Comparison of the convergence rates of series expansion 1 and series expansion 2. A.
Median unrecovered information I as a function of the number of terms used in each series expansion, without
using spot penalty optimization (solid lines) versus with optimization (dotted lines), and over the three simulation
scenarios (panels left-to-right). Each curve was derived from the 100 individual curves corresponding to the 100
simulations in each scenario using a simple point-by-point median average. B. Percentile distribution of the
difference between the unrecovered information using series 2 minus the unrecovered information using series 1; the
fact that this difference quickly drops below zero in nearly all individual simulations shows that series 2 recovers
more information in the first few terms than does series 1.

of unrecovered information I shown in the simulation-
averaged plots of Fig. 5A. Thus a push to 20-color label-
ing could prove critical for genomic reconstruction at the
chromosome scale and beyond. At the end of this section
we revisit Experiment 2, in order to assess the reconstruc-
tion quality when analyzing more realistic DNA contours
having tighter confinement.

Series expansion 2 outperforms series expansion
1. Next, we compared the convergence properties of our
two expansions on the three scenarios of simulated ex-
periments. Figure 5A gives a sense of how the amount
of unrecovered information varies with the number of
terms taken in each series, without (solid lines) and with
(dotted lines) the use of spot penalties. Each of the 3
panels summarizes all 100 simulated experiments of that
scenario, and each experiment in that scenario shows
a unique relationship between information recovery and

number of series terms computed. Representative curves
of individual experiments in each scenario are shown in
Supplementary Figure S1. In order to summarize these
very dissimilar curves, Figure 5A shows a median average
of all 100 individual experimental curves taken at each
data point. Note that this averaging process does not
necessarily preserve the shape of the curves from typical
individual simulations.

In order to directly compare the two series expansions,
we plotted their difference in unrecovered information
I2 − I1 versus the number of series terms in Figure 5B.
In this case, we plotted the full distribution showing the
median (50th percentile) as well as the 10th, 25th, 75th
and 90th percentile curves. These plots show directly
that series 2 almost always outperforms series 1 when
only a few terms can be evaluated. The reason is that
the terms in series 2 are larger in magnitude owing to
their looser constraints, and thus remove the extraneous
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Figure 6. Optimization in conjunction with series expansions. A. Comparison of unrecovered information
using series expansions without iteration, denoted I, to the unrecovered information obtained by optimizing spot
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indicate the median number of series terms computable with the same computational time as was required to
obtain Iopt0 . For Experiments 1 and 2 the difference I − Iopt0 is typically positive at the intersection of the dotted
line, indicating that spot penalty optimization method is the more efficient way of recovering information. B.
Comparison of unrecovered information using spot-penalty optimization in conjunction with multiple series terms
versus optimization over Z̃0, showing the added benefit of including more terms in the series.

part of the partition function more quickly than the terms
of series 1 (see Supplementary Figures S1 and S4). Based
on these results, we recommend using series expansion 2
in all situations where the partition function cannot be
evaluated exactly.

Spot penalty optimization is the most efficient
way to recover information. Spot penalty optimiza-
tion is an iterative process where each iterative step re-
quires the evaluation of some number of series terms. An
optimization requiring t iterations thus multiplies com-
putation time by a factor of t relative to the simple eval-
uation of the series. Alternatively, one could spend the
extra computation time on taking the series to a higher
order without spot penalty optimization. Figure 6A plots
the unrecovered information when a) taking series 2 to a
certain order without optimization, versus b) using spot
penalty optimization on only the first term yielding Z̃opt0 .

The dotted line in each panel shows the median number
of terms requiring the same computation time as Z̃opt0 .
The Toy scenario shows that, if the series expansion is
carried deep enough, it becomes more accurate than Z̃opt0 :
in other words the difference I − Iopt0 becomes negative.
However, for the practical scenarios of Experiments 1 and
2 this crossover point requires taking more terms than
would be needed to match the computational cost of cal-
culating Z̃opt0 (the dotted line). Based on these results, we
recommend always performing spot penalty optimization,
especially for larger reconstructions.

Series expansions can improve optimization infor-
mation recovery. Although spot penalty optimization
is the most efficient way to recover information, that
process alone can only extract a certain fraction of the
recoverable information: once the cost function is zero,
optimization can proceed no further despite the problem
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not having been solved exactly. At this point, the only
way forward is to go higher in the order of series terms
used; we can still apply spot penalties to this sum of
terms and iteratively optimize them as before using Eqs
1 and 2. Figure 6B plots the difference in unrecovered
information when applying spot penalty optimization be-
tween a) a variable number of terms in series expansion 2,
and b) only Z̃0 (the first series term). This figure shows
that including additional series terms in the optimization
improves the information recovery, albeit at a slow rate
(especially for large problems).

20-color labeling leads to near-perfect reconstruc-
tions. As shown in Figure 5A, the unrecovered infor-
mation for the whole-chromosome Experiment 2 averages
around 0.2 bits per locus, implying near perfect mapping
probabilities. However, because these results were based
on randomly-generated unconfined conformations, they
do not establish whether such good information recov-
ery is possible with real chromosomes which are likely
to be more compact. To test Experiment 2 on realistic
chromosome conformations, we generated four plausible
conformations of human chromosome 4 by running the
GEM software package [13] on the smoothed human Hi-
C data set provided by Ref. [14] and using a 3D spline
interpolation to increase the resolution from 1 Mb to 100
kb. These conformations were then virtually labeled at
300 randomly-selected loci with simulated experimental
error as before (100/200 nm localization error in xy/z,
10% missing- and extra-spot rates). Mapping proba-
bilites were reconstructed by taking series expansion 2
to the lowest order that included at least 1000 terms,
then applying and optimizing spot penalties. Compared
with the random-walk conformations used to test the Ex-
periment 2 scenario, these reconstructions did somewhat
worse (∼ 0.25 versus ∼ 0.2 bits of unrecovered informa-
tion per locus) owing to fact that physical confinement of
chromosomes increases the density of competing spots in
the image.

Despite the drop in performance, 0.25 bits of un-
recovered information per locus is still an extremely
strong reconstruction, implying that the correct locus-
to-spot mappings are assigned p-values averaging around
2−0.25 ≈ 84%. Starting from such accurate and confident
mapping probabilities, one can infer a reasonable con-
formation simply by assigning each locus to the spot to
which it maps with the highest probability (or calling a
missing spot if 1−

∑′
s pL→s′ > any pL→s), and drawing

a line in the image that connects these spots in genomic
order. The conformations produced by this simple rule
are shown in Figure 7: the correct conformation is shown
with a blue line and errors in the inferred conformation
are shown in red. The reconstructed conformations are
∼ 90% accurate as determined by an alignment between
the true and inferred spot sequences traveling along the

conformation 1
0.26 / 4.05 bits

DNA contour

reconstruction errors
ideal reconstruction

conformation 2
0.40 / 3.99 bits

conformation 3
0.22 / 4.01 bits

conformation 4
0.21 / 4.03 bits

Figure 7. Simulated reconstructions of 4
plausible conformations of human chromosome 4.
Grey shaded lines indicate the underlying DNA
contours; blue lines trace the ideal reconstructed
contours given the simulated labeling (shown in small
panels at upper right); red lines show our reconstructed
contours where they deviate from the ideal contours.
Captions indicate the amount of unrecovered
information per locus after/before the reconstruction
process.

DNA contour (40, 33, 26, 33 mismatches + indels for the 4
respective experiments). Most mistakes are of a sort that
does not change the large-scale structure. For example,
one common error is to erroneously skip one or more spots
in the image (since at present align3d overestimates the
missing-spot rate), thus ‘looping out’ a small part of the
conformation and effectively lowering the resolution.
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Discussion

We have developed and evaluated two improvements
to the align3d method for reconstructing chromosome
structure. Both of these improve the partition function
estimates that determine the locus-to-spot mapping prob-
abilities, which can provide the basis for (probabilistic)
reconstructed conformations. The first improvement is a
more robust spot-penalty optimizer that allows for large-
scale reconstructions involving hundreds of labeled loci,
such as will be needed to uncover whole-chromosome con-
formations. The second improvement is two series ex-
pansion formulas for the partition functions, which in
principle allow the mapping probabilities to be solved to
arbitrary accuracy within the limitations of the experi-
ment and the underlying DNA model. In practice, the
series approach is difficult for two reasons: 1) there are
a huge number of terms in each series expansion, and
2) the lowest-order approximation Z̃0 overestimates Z by
many orders of magnitude, unlike other series expansions
where the initial approximation is close to the final an-
swer. Despite the difficulties, the series formulas that we
give offer some way forward to improve on the original
estimate Z̃opt0 . Of the two formulas, we recommend using
series expansion 2, which has the larger-magnitude terms
and thus recovers the most information when only a few
terms can be evaluated.

Our problem of finding likely (i.e. low-free-energy)
DNA conformations passing through a set of imaged spots
is similar to the well-known traveling salesman problem
(TSP), in which a salesman must find the shortest route
connecting a set of cities. Somewhat more closely related
is a generalization of the TSP called the time-dependent
traveling salesman problem (TDTSP) [10], where the in-
tercity distances change every step on the tour; this is
analogous to our situation where the free energy needed
to thread DNA between two spots depends not only on
their separation but also on the length of DNA used to
connect them. In our case, the presence of missing and
extra spots generalizes our problem still further: in the
TDTSP analogy the salesman would be allowed to skip
stops and cities for a penalty. Our main finding is that
the partition function of this generalized TDTSP (which
encompasses traditional TSP and TDTSP problems) can
be expressed as a sum of terms computable using a (mod-
ified) forward-backward algorithm. This result should
also apply to other route-finding applications, and might
provide a fresh approach since research has historically
focused on estimating the single optimal solution rather
than the partition function.

From a genomic standpoint, our most exciting result
is that the combination of our computational improve-
ments together with 20-color labeling technology gives al-
most perfectly-accurate reconstructions. Out of ∼ 4 bits
per locus of uncertainty inherent in the reconstruction

problem, our method recovers about 3.75 bits, despite
somewhat overestimating the missing-spot rate in these
simulations. Such confident mapping probabilities allow
for the direct construction of individual conformations
that are about 90% accurate. We want to emphasize
that our reconstructions used model parameters that were
correctly calibrated, but not necessarily ‘correct’ in terms
of details that an experimenter would not know. For ex-
ample, because the conformations were generated using
a wormlike chain DNA model but align3d assumes a
Gaussian chain model, the underlying DNA model used
in the reconstruction is wrong in a sense, just as it will be
using in vivo data where the underlying DNA model is un-
known. However, we did set the Gaussian decay constant
to correctly match the persistence length as that can be
measured experimentally. Additionally, the correct aver-
age rates of missing and extra spots over all experiments
were provided to the analysis, but using those align3d

still had to estimate the actual number of missing spots
per color in each experiment. The robustness of the
analysis to experimental unknowns gives evidence that
reconstructions using real-world experimental data will
be of similar quality to those in our simulations, and if so
then direct measurement of chromosome conformations is
possible today with current technology.

Acknowledgments

The authors want to thank Rani Powers and Jenny Mae
Samson for helping review the manuscript. This work
is supported by the Boettcher Foundation (J.C.C.), NIH
grant 2T15LM009451 (B.C.R.), and a Cancer League of
Colorado grant.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/409847doi: bioRxiv preprint 

https://doi.org/10.1101/409847
http://creativecommons.org/licenses/by/4.0/


REFERENCES 10

References

[1] Job Dekker et al. “The 4D nucleome project”. Na-
ture 549.7671 (2017), p. 219.

[2] Maxim V Imakaev, Geoffrey Fudenberg, and
Leonid A Mirny. “Modeling chromosomes: beyond
pretty pictures”. FEBS letters 589.20PartA (2015),
pp. 3031–3036.

[3] Silvia Kocanova, Isabelle Goiffon, and Kerstin
Bystricky. “3D FISH to analyse gene domain-
specific chromatin re-modeling in human cancer cell
lines”. Methods (2018).

[4] Siyuan Wang et al. “Spatial organization of chro-
matin domains and compartments in single chro-
mosomes”. Science 353.6299 (2016), pp. 598–602.

[5] Yodai Takei et al. “Multiplexed dynamic imaging
of genomic loci by combined CRISPR imaging and
DNA sequential FISH”. Biophysical journal 112.9
(2017), pp. 1773–1776.

[6] Hanhui Ma et al. “Multiplexed labeling of ge-
nomic loci with dCas9 and engineered sgRNAs
using CRISPRainbow”. Nature biotechnology 34.5
(2016), p. 528.

[7] Michael G Lowenstein, Thomas D Goddard, and
John W Sedat. “Long-range interphase chromo-
some organization in Drosophila: a study using
color barcoded fluorescence in situ hybridization
and structural clustering analysis”. Molecular biol-
ogy of the cell 15.12 (2004), pp. 5678–5692.

[8] Brian C Ross and Paul A Wiggins. “Measuring
chromosome conformation with degenerate labels”.
Physical Review E 86.1 (2012), p. 011918.

[9] Carl Barton et al. “ChromoTrace: Reconstruc-
tion of 3D Chromosome Configurations by Super-
Resolution Microscopy”. bioRxiv (2017), p. 115436.

[10] Luis Gouveia and Stefan Voß. “A classification
of formulations for the (time-dependent) traveling
salesman problem”. European Journal of Opera-
tional Research 83.1 (1995), pp. 69–82.

[11] Leonard Baum. “An inequality and associated max-
imization technique in statistical estimation of
probabilistic functions of a Markov process”. In-
equalities 3 (1972), pp. 1–8.

[12] Barbara Trask, Dan Pinkel, and Ger van den Engh.
“The proximity of DNA sequences in interphase cell
nuclei is correlated to genomic distance and permits
ordering of cosmids spanning 250 kilobase pairs”.
Genomics 5.4 (1989), pp. 710–717.

[13] Guangxiang Zhu et al. “Reconstructing spatial
organizations of chromosomes through manifold
learning”. Nucleic acids research 46.8 (2018), e50–
e50.

[14] Eitan Yaffe and Amos Tanay. “Probabilistic mod-
eling of Hi-C contact maps eliminates systematic
biases to characterize global chromosomal architec-
ture”. Nature genetics 43.11 (2011), p. 1059.

[15] Milton Abramowitz and Irene A Stegun. Handbook
of mathematical functions: with formulas, graphs,
and mathematical tables. Vol. 55. Courier Corpora-
tion, 1964.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/409847doi: bioRxiv preprint 

https://doi.org/10.1101/409847
http://creativecommons.org/licenses/by/4.0/


REFERENCES

Appendices

Appendix 1: justification for gradient-free
weight update rule

The optimization of the spot penalties uses a cost function
that is entirely determined by the total probability P (s)
of mapping a locus to a given spot s in the image:

P (s) =
∑
L

pL→s

=
1

Z

∑
L

ZL→s.

Both ZL→s and Z sum terms that are products of the
spot penalties qs, owing to the fact that a direct influence
on any one mapping probability indirectly influences all
other mapping probabilities. However, when the penalty
on some spot s is far away from its proper value, any
mapping probability pL→s to that spot tends to be satu-
rated very close to either 0 or 1. In this case we make the
approximation that a given penalty factor qs only affects
any given pL→s directly as a multiplying factor, and does
not affect the mapping probabilities to other spots, since
the indirect influences are small until the mapping prob-
ability is out of saturation. Under this approximation
ZL→s ≈ fs · as, and NZ =

∑
L

∑
s ZL→s ≈ fs · as + bs,

so

P (s) ≈
∑
L

fsN

fs + (bs/as)
. (5)

Since our objective is to find an updated q′s causing the
sum of mapping probabilities to be some target P ′(s), we
also write:

P ′(s) ≈
∑
L

f ′sN

fs + (bs/as)
. (6)

Solving Eqs 5 and 6 together to eliminate the unknown
bs/as gives us the update rule:

f ′s ≈
1

P (s)/N − 1

1
P ′(s)/N − 1

· fs.

The cost function contains two terms: 1) a penalty for
the overall difference between the expected rate of missing
spots pfn versus that inferred from the summed P (s); and
2) a penalty on P (s) if it exceeds 1, which would indicate a
> 100% likelihood of a locus mapping to that spot. Our
current implementation simply makes two updates, one
pushing P (s) → pfn and the second pushing P (s) → 1
for spots violating normalization. Doing so leads to the
update rule given by Eq. 1.

Appendix 2: series expansion derivations

Here we prove a) each series converges to the true parti-
tion function when all terms are counted, and that b) a
given truncation of each series using our recommended se-
lection of series terms counts every possible legal or over-
lapping conformation zero or more times (despite many
series terms having negative coefficients), and therefore
produces positive mapping probabilities. Notice that
both expansions count all legal (non-overlapping) confor-
mations once from Z̃0, and the goal of considering higher-
order series terms is thus to minimize the weight of the
illegal overlapping conformations without their weights
ever becoming negative. We note that conformations
overlapping at adjacent loci are automatically eliminated
from all terms in the calculation, so the individual confor-
mations we consider here are assumed to overlap them-
selves only between non-adjacent loci.

For our proofs we will define an illegal overlap as a set
of loci in an illegal conformation mapping to a given spot
in the image. Illegal overlaps are to illegal conformations
as illegal constraints are to higher-order series terms, and
we use the same set notation for overlaps as we do for
constraints.

Our derivations make repeated use of the following
identity, taken from Eq. 3.1.7 in Ref. [15].

a∑
b=0

(
a

b

)
(−1)b = 0 for a > 0 (7)

This relation follows from the fact that the left-hand side
is a series expansion for (1− 1)a.

Series expansion 1 A given conformation bearing a
set of illegal overlaps θ is counted by each constrained
partition function whose set of illegal constraints (indices)
are a subset of θ. Thus the weightWθ of this conformation
in the full partition function Z is:

Wθ =
∑
φ⊆θ

wφ

=

nθ∑
nφ=0

(
nθ
nφ

)
(−1)

nφ

=

{
1 for nθ = 0
0 otherwise

where we have used Eq. 7 in the final step. This result
shows that series expansion 1 counts only conformations
having no overlaps, i.e. for which nθ = 0.

Suppose that one follows our prescription for evaluating
a subset of terms, namely all terms that are a subset of
overlaps ψ. Then using the same formula, we reason that
a conformation with overlaps θ will be given the following
weight:
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W
(ψ)
θ =

∑
φ⊆(θ∩ψ)

wφ

=

{
1 for θ ∩ φ = ∅
0 otherwise.

Thus our selection of series terms for expansion 1 elimi-
nates all conformations from the partition function having
any overlaps contained in our set ψ.

Series expansion 2 Expansion 2 allows unconstrained
loci to revisit spots that already have constrained loci. In
this case, a conformation whose set of nonadjacent over-
laps is denoted θ will be counted by a partition function
having overlaps φ if each individual overlap φi is contained
in an individual overlap θi, in the sense that φi maps any
subset of nφi > 1 loci in θi to the same spot as θi. Then
the weight of this conformation in the expansion is

Wθ =
∑

φ={φi⊆θi}

wφ

=

nθ∏
k=1

1 +

nθk∑
nφk=2

(
nθk
nφk

)
(−1)n

φ
k−1(nφk − 1)


=

nθ∏
k=1

nθk∑
nφk=0

(
nθk
nφk

)
(−1)n

φ
k−1(nφk − 1)

=

nθ∏
k=1

nθk∑
nφk=1

nθk

(
nθk − 1

nφk − 1

)
(−1)n

φ
k−1

where the fact that nθk > 0 allowed Eq. 7 to eliminate a

term in the last line. Defining mφ
k = nφk − 1 gives us:

Wθ =

nθ∏
k=1

nθk

nθk−1∑
mφk=0

(
nθk − 1

mφ
k

)
(−1)m

φ
k

=

{
1 for nθ = 0
0 otherwise.

again using Eq. 7. Therefore the complete series counts
only non-overlapping conformations.

Our prescription for choosing series terms is to select
a set of single-locus-to-spot mappings Ψ, and generate
all series terms whose illegal overlaps are built only from
mappings in Ψ. To be formal, we will compile all locus-
to-spot-s-mappings in Ψ for each given spot s (assum-
ing there are 2 or more) into a single overlap, and use
ψ to denote the set of these overlaps: then the series
order Nψ is the sum of the number of loci over all el-
ements ψi. Our rule is to include all series terms φ

whose illegal overlaps are built entirely from subsets of
ψ, in the sense that a given overlap to spot s contains
a subset of the loci in the element ψi that maps to spot
s. For example if ψ contains the element (ACE)s then
φ ⊇ {(AC)s, (CE)s, (AE)s, (ACE)s}. Using these rules,
a given conformation having illegal overlaps θ will be
given the following weight in the expansion:

W
(ψ)
θ =

∑
φ={φi⊆(θi∩ψi)}

wφ

=

nθ∩ψ∏
k=1

nθ∩ψk∑
nφk=0

(
nθ∩ψk

nφk

)
(−1)n

φ
k−1(nφk − 1)

=

{
1 if all nθ∩ψk < 2
0 otherwise.

Thus series 2 eliminates all conformations having any
overlap (L1, L2, . . . ) → s where L1 → s and L2 → s
are contained in Ψ.
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Appendix 3: Supplementary figures
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Figure S1. Information recovery from individual simulations. Conformation #1 of each series is shown at
far left. Panels to the right show unrecovered information (I), entropy (S) and logZ as a function of the number of
series terms included. Dot-dashed lines show the unrecovered information of Z̃opt0 using optimized spot penalties on
top of the given number of the series terms.
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Figure S2. Accuracy of entropy as a proxy for unrecovered information. Distributions showing the
difference between entropy S, which is a blind estimate of unrecovered information, and actual unrecovered
information I in each of the 3 simulation scenarios considered, as a function of number of series terms. No spot
penalties were used for these results. Each distribution shown encompasses the S − I curves of all 100 simulated
reconstructions in one scenario.
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Figure S3. Accuracy of mapping probabilities. Binned mapping probabilities (x axis) versus the fraction of
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experimental scenario. Grey shaded regions show the 3σ range of uncertainty due to counting error.
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Figure S4. Partition function Z versus number of series terms. A. Relationship between logZ and the
number of series terms for each simulated scenario, calculated as a median average of the relationships found in
each of the 100 individual simulations in each scenario. B. Distributions of the difference between logZ calculated
using series 2 and series 1. The fact that this quantity is generally negative when some but not all series terms are
included shows that series 2 recovers information (i.e. removes unrecovered information I) faster than series 1.
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