

¹ Manuscript submitted to **Biophysical Journal**

² Article

³ Kinetic network model to explain gain-of-function ⁴ mutations in ERK2 enzymes

⁵ M. Misiura and A. B. Kolomeisky

⁶ ABSTRACT

⁷ ERK2 is a kinase protein that belongs to a Ras/Raf/MEK/ERK signalling pathway, which is activated in response to a range of
⁸ extracellular signals. Malfunctioning of this cascade leads to variety of serious diseases, including cancers. This is often caused
⁹ by mutations in proteins belonging to the cascade, frequently leading to abnormally high activity of the cascade even in the
¹⁰ absence of external signal. One such *gain-of-function* mutation in ERK2 protein, called a *sevenmaker* mutation (D319N), was
¹¹ discovered in 1994 in *Drosophila*. This mutation leads to disruption of interactions of other proteins with D-site of ERK2 and
¹² results, contrary to expectations, in increase of its activity *in vivo*. However, no molecular mechanism to explain this effect has
¹³ been presented so far. The difficulty is that this mutation should equally negatively affect interactions of ERK2 with *all* substrates,
¹⁴ activators and deactivators. In this paper, we present a quantitative kinetic network model that gives a possible explanation
¹⁵ of the increased activity of mutant ERK2 species. A simplified biochemical network for ERK2, viewed as a system of coupled
¹⁶ Michaelis-Menten processes, is presented. Its dynamic properties are calculated explicitly using the method of first-passage
¹⁷ processes. The effect of mutation is associated with changes in the strength of interaction energy between the enzyme and
¹⁸ the substrates. It is found that the dependence of kinetic properties of the protein on the interaction energy is non-monotonic,
¹⁹ suggesting that some mutations might lead to more efficient catalytic properties, despite weakening inter-molecular interactions.
²⁰ Our theoretical predictions agree with experimental observations for the *sevenmaker* mutation in ERK2. It is also argued that the
²¹ effect of mutations might depend on the concentrations of substrates.

²² INTRODUCTION

²³ Mitogen-activated protein (MAP) kinase ERK2 (Extra-
²⁴ cellular Signal-Regulated Kinase 2) is an enzyme that plays
²⁵ important role in a variety of biochemical processes. It is
²⁶ activated in response to several extracellular signals such as
²⁷ mitogen, interleukin, growth factors and cytokines (1, 2), op-
²⁸ erating as a part of a Ras/Raf/MEK/ERK signalling pathway,
²⁹ which is crucial for cell functioning (3–5). ERK2 a small 42
³⁰ kDa protein, consisting of C-terminal and N-terminal domains
³¹ (6–8). It's an ATP-dependent enzyme and the ATP-binding
³² site, as well as the catalytic site, are located in the region be-
³³ tween the main domains. Unlike many enzymes, ERK2 does
³⁴ not bind its substrates in the immediate vicinity of catalytic
³⁵ site, but instead it utilizes the so-called recruiting sites (dock-
³⁶ ing sites), which are located 15–20 Å away from the place
³⁷ where the catalysis occurs. These binding sites are usually
³⁸ referred to as D-recruiting site (DRS) and F-recruiting site
³⁹ (FRS), and they are responsible for recognition of multiple
⁴⁰ substrates with different structures (9–19).

⁴¹ To become catalytically active, ERK2 requires phospho-
⁴² rylation of two of its residues: Tyr185 and Thr183 (20).
⁴³ Phosphorylation leads to alteration of mutual orientation of
⁴⁴ domains and their dynamics (7, 21–25). Activation of ERK2
⁴⁵ is normally done by MAP/ERK kinases (MEK) (26). Ac-
⁴⁶ tive ERK2, in its turn, can be deactivated by a number of
⁴⁷ phosphatases (1, 20). Combination of these two processes -
⁴⁸ activation and deactivation - enables precise control of ERK2

⁴⁹ activity, providing a robust and efficient method to respond to
⁵⁰ external signals. Since ERK2 regulates many critically impor-
⁵¹ tant processes, including cell growth, cell differentiation and
⁵² cell proliferation, the alteration of its normal enzymatic activ-
⁵³ ity can lead to serious negative effects, such as uncontrollable
⁵⁴ tissue growth, which was shown to be linked to a variety of
⁵⁵ diseases, including cancers (27–30).

⁵⁶ An interesting example of ERK2 malfunctioning is the ex-
⁵⁷ istence of gain-of-function mutations inside the Ras/Raf/MEK/ERK
⁵⁸ signalling pathway. Such mutations can alter the structure of
⁵⁹ one of the kinases in a phosphorelay, thus preventing the ac-
⁶⁰ tivity of ERK2 from being regulated properly, and eventually
⁶¹ leading to disease (3, 30). The most known gain-of-function
⁶² mutation in ERK2 (D319N) is called *sevenmaker*, and was it
⁶³ discovered in *Drosophila* in 1994 as a result of genetic screen-
⁶⁴ ings for mutations that activate the sev signalling pathway in
⁶⁵ the absence of signal (31–34). The mutation is located in the
⁶⁶ DRS (docking site) of ERK2 in the common domain (CD)
⁶⁷ region (35).

⁶⁸ The fact that the *sevenmaker* mutation activates the en-
⁶⁹ zyme is rather surprising, because it is expected that this
⁷⁰ mutation should negatively influence interactions of ERK2
⁷¹ with *all* substrates, activators and deactivators in a similar
⁷² fashion. One would suggest then the mutation should lower
⁷³ the enzymatic activity. Indeed, there are experimental obser-
⁷⁴ vations (35, 36) suggesting that many substrates, activators
⁷⁵ (including MEK) and deactivators, use the DRS site and,

M Misiura and AB Kolomeisky

76 in particular, the CD domain to recognize the ERK2 pro-
77 tein. They interact using a so called kinase interaction motif
78 (KIM), which consists of 2-3 positively charged Lys and/or
79 Arg residues (19). Thus the *sevenmaker* mutation should dis-
80 rupt all ERK2-involving processes in the similar way, so it
81 is surprising that it can lead to apparent increase of ERK2
82 activity *in vivo* (31, 32). Despite the fundamental importance
83 of ERK2, molecular mechanisms of its gain-of-function mu-
84 tations (and specifically the *sevenmaker* mutation) remain not
85 well understood. One proposal to explain these observations
86 is based on the fact that there are only two ERK2 activators,
87 MEK1 and MEK2, while there are many deactivators. It was
88 suggested that some deactivators might be less affected by the
89 disrupted interaction with the CD domain (35). To support
90 this, there are experimental data showing that the mutation
91 D319N in the ERK2 is less sensitive to dephosphorylation
92 (37, 38). However, that does not resolve the problem entirely
93 since the ability of ERK2 to phosphorylate substrates should
94 be also reduced by comparable amount (35).

95 In this paper, we propose a theoretical model that quanti-
96 tatively explains the effect of the *sevenmaker* mutation. It is
97 based on the kinetic network description of the system with the
98 additional assumption that the mutation equally changes inter-
99 action energies between ERK2 and all substrates, activators
100 and deactivators. By analyzing a simplified regulation network
101 of ERK2, built as a system several coupled Michaelis-Menten
102 processes, the kinetic properties of ERK2 proteins are eval-
103 uated explicitly via a first-passage method. It is shown that the
104 effective chemical kinetic properties in these systems might
105 change non-monotonically as a function of the interactions.
106 This suggests that some mutations might lead to more efficient
107 catalytic properties of ERK2 protein variants, despite the
108 decrease of the interaction energies. It is argued that this is a
109 possible molecular mechanism of gain-of-function mutations
110 in ERK2, explaining the experimental observations on the
111 *sevenmaker* mutation.

112 METHODS

113 Kinetic Network Model

114 [Figure 1 about here; moved to end of manuscript by
115 `endfloat.`]

116 To clarify the molecular mechanisms of increased activity
117 for the *sevenmaker* mutation, one should analyze the kinetic
118 properties of the biochemical regulation pathway of ERK2.
119 Although it is known that ERK2 functioning involves many
120 biochemical states and transitions, we consider a minimal
121 simplified version of the regulation scheme as presented in
122 Figure 1. Our idea is to approximate the regulation network
123 as three coupled Michaelis-Menten processes that correspond
124 to main processes involving this enzyme: activation, inacti-
125 vation and ERK2-mediated phosphorylation (1). In the state
126 0 (labelled as ERK2) the enzyme molecule is inactive (not
127 phosphorylated) and it can bind MEK enzyme with a rate

128 constant u to reach the state 1 (labelled as ERK2·M): see
129 Figure 1. From the state 1, ERK2 can return back to the state
130 0 with a rate w by dissociating from the complex with MEK,
131 or it can be phosphorylated to reach the state 2 (ppERK2)
132 with a rate α . After that, ppERK2 can either be dephosphory-
133 lated through the formation of a complex with a phosphatase
134 (state 3, ERK2·D) with the rate constant u , or it can remain
135 active and phosphorylate its own substrates by forming the
136 substrate-enzyme complex with the rate constant u (state 4,
137 ppERK2·S), and producing the product (state 5, ppERK2·P)
138 with the rate α . To simplify calculations, in this model we
139 assume that the corresponding rate constants in all Michaelis-
140 Menten reactions for different processes are equal to each
141 other so that there are only three kinetic parameters in the
142 system: u , w and α . This assumption is based on the fact that
143 all enzymatic processes are taking place at the same location
144 and they involve chemical species that are not very dissimilar.
145 But it is also important to notice that the relaxing of this
146 condition (making all corresponding rates different) will not
147 qualitatively change the main theoretical predictions of this
148 work while it will make the mathematical calculations much
149 more complicated.

150 In evaluating the catalytic properties of this system, we
151 employ a method of first-passage processes that was success-
152 fully utilized for analyzing multiple processes in Chemistry,
153 Physics and Biology (39, 40). The idea is to introduce a first-
154 passage probability density function $F_n(t)$, which is defined
155 as a probability to complete the reaction (i.e., to reach the
156 final state 5) at time t if at $t = 0$ the system was in the state n .
157 Determining these functions will provide a full dynamic de-
158 scription of the catalytic process in this system. The temporal
159 evolution of first-passage probabilities is governed by a set
160 of the backward master equations (39, 40), which are closely
161 related to standard chemical kinetics equations:

$$\frac{dF_0(t)}{dt} = u_M F_1(t) - u_M F_0(t); \quad (1)$$

$$\frac{dF_1(t)}{dt} = \alpha F_2(t) + w F_0(t) - (w + \alpha) F_1(t); \quad (2)$$

$$\frac{dF_2(t)}{dt} = u_D F_3(t) + u_S F_4(t) - (u_D + u_S) F_2(t); \quad (3)$$

$$\frac{dF_3(t)}{dt} = \alpha F_0(t) + w F_2(t) - (w + \alpha) F_3(t); \quad (4)$$

$$\frac{dF_4(t)}{dt} = \alpha F_5(t) + w F_2(t) - (w + \alpha) F_4(t). \quad (5)$$

166 In these equations, we take into account the fact that the asso-
167 ciation transition rates are proportional to the concentrations
168 of participants, i.e.

$$u_X = u X, \quad (6)$$

169 where $X = M$, D or S are the concentrations of activator,
170 deactivator and substrate, respectively. In addition, the initial

171 condition requires that $F_5(t) = \delta(t)$, which means that if 198 the system starts in the state 5 the reaction is accomplished 199 immediately.

172 To calculate the first-passage probabilities, we utilize 175 Laplace transformations, $\int_0^\infty e^{-st} F_n(t) dt \equiv \tilde{F}_n(s)$. Then Eqs. 176 (1)-(5) can be rewritten as simpler algebraic expressions:

$$(s + u_M) \tilde{F}_0 = u_M \tilde{F}_1; \quad (7)$$

$$(s + \alpha + w) \tilde{F}_1 = \alpha \tilde{F}_2 + w \tilde{F}_0; \quad (8)$$

$$(s + u_S + u_D) \tilde{F}_2 = u_D \tilde{F}_3 + u_S \tilde{F}_4; \quad (9)$$

$$(s + \alpha + w) \tilde{F}_3 = \alpha \tilde{F}_0 + w \tilde{F}_2; \quad (10)$$

$$(s + \alpha + w) \tilde{F}_4 = \alpha \tilde{F}_5 + w \tilde{F}_2. \quad (11)$$

181 The initial condition also leads to $\tilde{F}_5(s) = 1$. This system of 182 equations can be easily solved. Specifically, for starting the 183 process in the state 0 we obtain,

$$\tilde{F}_0(s) = \frac{\alpha^2 u^2 M S}{A + B + \Gamma + \Delta}, \quad (12)$$

184 where new parameters are defined as

$$A = \alpha^2 [u s D + (u M + s)(s + u S)]; \quad (13)$$

$$B = s^2 (u M + s + w)(u D + s + u S + w); \quad (14)$$

$$\Gamma = \alpha s [2u^2 M S + 2s(s + w)]; \quad (15)$$

$$\Delta = u(2s + w)(M + S) + uD(2uM + 2s + w). \quad (16)$$

188 The explicit expressions for the first-passage probability 189 functions provide a direct way of describing all dynamic 190 properties in the system. For example, the average time to 191 reach the product state 5 starting from the state 0, which is 192 the same as the mean time for the catalytic reaction (turnover 193 time) is given by (39, 40)

$$T_0 \equiv -\frac{d\tilde{F}_0}{ds}(s=0), \quad (17)$$

194 from which using Eqs. 12-16 we get

$$T_0 = \frac{2uM(S + D) + (\alpha + w)(D + M + S)}{\alpha u M S}. \quad (18)$$

195 This result can be better understood if we rewrite it in the 196 Michaelis-Menten-like form with respect to the substrate S 197 transformation ($T_0 = 1/k_{cat} + K_M/k_{cat} * 1/S$) as follows,

$$T_0 = \frac{2uM + \alpha + w}{\alpha u M} + \frac{(M + D)(\alpha + w) + 2uMD}{\alpha u M} \frac{1}{S}, \quad (19)$$

198 from which the overall effective Michaelis-Menten parameters 199 for the kinetic network are determined in terms of the 200 microscopic transition rates:

$$K_M = \frac{(\alpha + w)(M + D) + 2uMD}{\alpha + w + 2uM}, \quad (20)$$

$$k_{cat} = \frac{\alpha u M}{\alpha + w + 2uM}; \quad (21)$$

$$\frac{k_{cat}}{K_M} = \frac{\alpha u M}{(\alpha + w)(M + D) + 2uMD}. \quad (22)$$

201 and 202 To quantitatively analyze the effect of mutations, we assume 203 that mutations change the strength of the interactions 204 in the ERK2 complexes with activators, deactivators or 205 substrates, respectively. We define a binding energy ϵ as a measure 206 of strength of such interaction. The sign is chosen so that more 207 negative values of ϵ correspond to stronger binding. Then 208 the detailed balance-like arguments allow us to estimate the 209 relations between the rate constants and the binding energy:

$$\frac{u}{w} = \frac{u_0}{w_0} e^{-\beta\epsilon}; \quad (23)$$

$$\alpha = \alpha_0 e^{\beta\epsilon}. \quad (24)$$

211 Here the rates with superscript 0 correspond to transition rates 212 for the hypothetical situations when the interactions energies 213 are equal to zero. These equations can be understood in the 214 following way. The stronger the binding interactions, the faster 215

216 the system will go into the states with the complex formation 217 (states 1, 3 and 4), and the slower it will leave these states.

218 Correspondingly, weaker interactions stimulate the system to 219 preferentially break these complexes faster than to form them.

220 Determining the enzymatic properties of the system requires 221 explicit expressions for rates that include the effect of 222 the interactions. Then we can rewrite the expressions for the 223 transition rates as (40):

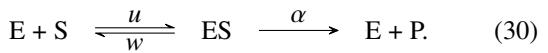
$$u = u_0 e^{-\beta\theta\epsilon}; \quad (25)$$

$$w = w_0 e^{\beta(1-\theta)\epsilon}, \quad (26)$$

224 and 225 with $\beta = 1/k_B T$. The parameter $0 \leq \theta \leq 1$ specifies how 226 the interaction energy is distributed between forward and 227 backward transitions to form or to break the complex state 228 (40). For simplicity, in the following expressions we omit the 229 subscript 0, so that u , w and α now replace u_0 , w_0 and α_0 , 230 respectively. With these assumptions, our final equations for 231 the kinetic parameters are given by:

$$K_M = \frac{(\alpha e^{\beta\epsilon} + w e^{\beta(1-\theta)\epsilon})(M + D) + 2u e^{-\beta\theta\epsilon} M D}{\alpha e^{\beta\epsilon} + w e^{\beta(1-\theta)\epsilon} + 2u e^{-\beta\theta\epsilon} M}; \quad (27)$$

$$k_{cat} = \frac{\alpha u e^{\beta(1-\theta)\epsilon} M}{\alpha e^{\beta\epsilon} + w e^{\beta(1-\theta)\epsilon} + 2u e^{-\beta\theta\epsilon} M}; \quad (28)$$


233

$$\frac{k_{cat}}{K_M} = \frac{\alpha u e^{\beta(1-\theta)\epsilon} M}{(\alpha e^{\beta\epsilon} + w e^{\beta(1-\theta)\epsilon})(M + D) + 2u e^{-\beta\theta\epsilon} M D}. \quad (29)$$

234 The main advantage of this theoretical approach is that
 235 now the effect of mutations can be investigated quantita-
 236 tively because in our language it corresponds to varying the
 237 interaction energy ϵ .

238 **Analysis for Michaelis-Menten Model**

239 To understand better the mechanisms of the ERK2 reg-
 240 ulation that couple together several enzymatic processes, it
 241 should be compared with the simplest situation that involve
 242 only a single enzymatic process. For this purpose, we present
 243 here a brief derivation of catalytic properties for a classical
 244 Michaelis-Menten kinetic scheme:

245 The derivation follows exactly the same steps as was described
 246 for the model in Figure 1 above, and only main steps are
 247 presented. We assume here that $E + S$ corresponds to the
 248 state 0, ES describes the state 1, and $E + P$ is the final state
 249 2. The temporal evolution of the corresponding first-passage
 250 probability functions follows from

$$\frac{dF_0(t)}{dt} = u_S F_1(t) - u_S F_0(t); \quad (31)$$

251 and

$$\frac{dF_1(t)}{dt} = \alpha F_2(t) + w F_0(t) - (w + \alpha) F_1(t). \quad (32)$$

252 After the Laplace transformation, these equations can be
 253 rewritten as follows:

$$(s + u_S) \tilde{F}_0 = u_S \tilde{F}_1; \quad (33)$$

$$(s + \alpha + w) \tilde{F}_1 = \alpha \tilde{F}_2 + w \tilde{F}_0. \quad (34)$$

254 Solving this system of equations, yields the following expres-
 255 sion for the turnover time T_0 :

$$T_0 = \frac{1}{\alpha} + \frac{w + \alpha}{u\alpha} \frac{1}{S}. \quad (35)$$

257 Finally, the Michaelis-Menten parameters are given by

$$K_M = \frac{\alpha + w}{u}; \quad (36)$$

$$k_{cat} = \alpha; \quad (37)$$

259 and

$$\frac{k_{cat}}{K_M} = \frac{\alpha u}{\alpha + w}, \quad (38)$$

260 where u , w and α depend on the substrate binding energy
 261 exactly as described above [see Equations 24 - 26].

262 Unless stated otherwise, the following parameters are
 263 utilized for calculations in the Results and Discussion section:
 264 $\theta = 0.5$, $\alpha = w = 100 s^{-1}$, $k = 10,000 s^{-1} M^{-1}$, $D = M =$
 265 $S = 0.001 M$. These parameters are chosen just to illustrate
 266 our theoretical method.

RESULTS AND DISCUSSION

267 [Figure 2 about here; moved to end of manuscript by
 268 `endfloat`.]

270 [Figure 3 about here; moved to end of manuscript by
 271 `endfloat`.]

272 Our main idea is that the mutations modify the interaction
 273 energy between the enzyme and the substrate molecules, and
 274 this leads to changes in the chemical kinetic properties of the
 275 system. Using explicit expressions derived in the previous
 276 section, we can analyze how the enzymatic parameters for
 277 ERK2 and simple Michaelis-Menten (MM) schemes vary with
 278 the binding energy. The results are presented in Figures 2 and 3.
 279 One can see that the enzymatic properties of ERK2 regulation
 280 network differ significantly from the classical MM scheme.
 281 Lowering the strength of binding interactions (making ϵ more
 282 positive) strongly increases the catalytic rate k_{cat} in the MM
 283 system, while the dependence of k_{cat} on ϵ is non-monotonic
 284 for the ERK2 system (see Figure 2). It can be shown also that
 285 in this case the highest value of k_{cat} is achieved for

$$\frac{\epsilon_{max}}{k_B T} = -\frac{\ln[\frac{\alpha \cdot \theta}{2 \cdot u \cdot M}]}{(1 + \theta)}. \quad (39)$$

286 Varying the interaction energy also leads to different
 287 curves for the Michaelis constant for the simple MM and for the
 288 ERK2 regulation network (Figure 3). K_M strongly increases
 289 with ϵ in the MM case, while for the ERK2 system K_M is
 290 slowly changing between two limiting behaviors. For very
 291 strong attractive interactions ($\epsilon \rightarrow -\infty$), we have $K_M \approx D$,
 292 while for strong repulsive interactions ($\epsilon \rightarrow +\infty$) $K_M \approx$
 293 $D + M$.

294 To quantify better the enzymatic efficiency of ERK2 pro-
 295 teins, it is more useful to consider a ratio k_{cat}/K_M , which is
 296 known as a specificity constant. The larger this parameter, the
 297 more efficient is enzymatic process. Figure 4 presents speci-
 298 ficity constants as functions of the binding energies for both
 299 schemes, and again the classical MM behavior is strikingly
 300 different from the predictions for the ERK2 regulation system.
 301 The specificity constant for the MM process decreases mono-
 302 tonically with the interaction energy, while the non-monotonic
 303 dependence is observed for the ERK2 case. The position of
 304 the maximum here is

$$\frac{\epsilon_{max}}{k_B T} = -\frac{\ln[\frac{(D+M)\alpha \cdot \theta}{2 \cdot k \cdot D \cdot M}]}{(1 + \theta)} \quad (40)$$

305 This result has a very important consequence for explain-
306 ing the appearance of gain-of-function mutations in the ERK2
307 system. If one assumes that the binding energy in the WT
308 enzyme (ϵ_{WT}) is negative and it does not correspond to ϵ_{max}
309 ($\epsilon_{WT} < \epsilon_{max}$), then mutations that change the interaction
310 energies to the range between ϵ_{WT} and ϵ_{max} will increase
311 the activity of enzyme: the region between two vertical lines
312 on Figure 4. In this situation, the mutation that weakens the
313 interactions with the substrate will effectively make the ERK2
314 regulation network more efficient in comparison with the wild
315 type case. This might be a possible molecular mechanism of
316 how the *sevenmaker* mutation operates in the ERK2 system.
317 It is also important to note that since ERK2 is a regulatory
318 enzyme it is likely to operate *in vivo* at low concentrations in
319 the regime where the specificity constant is the main property
320 that determines the catalytic efficacy.

321 The effect of gain-of-function mutations can be also ex-
322 plained using the fluxes along the different branches of the
323 regulation scheme presented in Figure 1. The flux that starts
324 in the state 0 reaches the state 2 via the activation branch (J_a),
325 where it divides into the flux that goes to the final product
326 via the phosphorylation branch (J_p) and the flux that returns
327 back to the state 0 via the deactivation branch (J_d). In the
328 stationary state, the flux balance requires that

$$J_a = J_d + J_p. \quad (41)$$

329 The overall enzymatic activity can be correlated with the prod-
330 uct formation flux J_p . Then our theoretical picture suggests
331 that the *sevenmaker* mutation lowers both J_a and J_d fluxes,
332 but it decreases the deactivation flux more so that the product
333 formation flux J_p in the case of mutation is larger in compari-
334 son with the WT ERK2 molecule, i.e., $J_p(\text{mutant}) > J_p(\text{WT})$.
335 The results presented in Figure 5, where the effect of varying
336 the deactivation flux is investigated, support these arguments.
337 Lowering the concentration of deactivator (D) decreases the
338 possibility for the system to go into the deactivation branch.
339 For low D the enzymatic properties of the ERK2 regulation
340 pathway, as expected, approach the simple MM scheme, and
341 the non-monotonic behavior as well as the ability to increase
342 the enzyme's activity by mutation disappear. Only when there
343 are significant fluxes via the deactivation path the gain-of-
344 function mutations might appear in such systems. Thus, the
345 gain-of-function mutation in the ERK2 regulation network
346 is the result of coupling of several enzymatic processes that
347 work in opposite directions.

348 Theoretical calculations presented in Figure 5 also lead to
349 a surprising prediction that the sign of the mutation effect
350 (positive gain-of-function, or negative loss-of-function) can
351 be reversed by changing the concentrations of the network
352 components (activators, deactivators and substrates). If one
353 assumes that the *sevenmaker* mutation operates in the range of
354 interaction strengths as given in Figure 4 (between two vertical
355 lines), then for very low concentrations of deactivators this
356 mutation will no longer be increasing the enzymatic activity.

357 Because ERK2 has multiple substrates, we speculate that this
358 ability of the network to selectively affect the efficiency of
359 enzymatic processes might be an additional level of regulation
360 that can benefit cellular functioning.

361 [Figure 4 about here; moved to end of manuscript by
362 `endfloat`.]

363 Our theoretical views can be further supported by an-
364 alyzing the turnover times as a function of the interaction
365 energies, as illustrated in the Figure 6. One can see that the
366 effective overall catalytic rate (inverse turnover times) shows
367 the non-monotonic behavior for both the simple MM and the
368 ERK2 regulation pathways. But there is a range of interaction
369 energies where the increase in the binding energy lowers
370 the rate of the MM process, while the process in the ERK2
371 regulation network can go faster. This is an addition argument
372 to explain the existence of the gain-of-function mutations and
373 specifically effect of the *sevenmaker* mutation in ERK2. Even
374 if the mutation lowers the rate along each enzymatic pathway,
375 it might effectively increase the overall rate in the complex
376 ERK2 scheme that combines all of them.

377 [Figure 5 about here; moved to end of manuscript by
378 `endfloat`.]

379 [Figure 6 about here; moved to end of manuscript by
380 `endfloat`.]

381 Because our theoretical approach makes quantitative pre-
382 dictions, it is important to compare them with experimental
383 observations. However, experimental data on *sevenmaker* mu-
384 tation are pretty scarce, mostly qualitative and obtained using
385 very different techniques and under different experimental con-
386 ditions. This prevents us from explicitly including them into
387 our analysis. But we notice that Camps et al. (41) found that
388 about one order of magnitude higher concentrations of MKP-3
389 are needed in order to deactivate the mutated $ERK2^{D319N}$
390 protein variant as compared with the wild type $ERK2$. In
391 addition, the decrease of deactivation activity by other phos-
392 phatases (PAC1, MKP-1 and MKP-2, approximately from 3
393 to 7 times lower) for mutated ERK2 species was reported by
394 Y. Chu et al. (37). All these observations are consistent with
395 our theoretical flux arguments. Furthermore, experimental
396 data by T. Tanoue et al. (35) show that the activation of ERK2
397 by MEK1 is less sensitive to *sevenmaker* mutation: MEK1-
398 facilitated activation activity of mutated $ERK2$ is only 0.88
399 of that for WT $ERK2$. However phosphorylation activity of
400 $ERK2$ towards substrate MNK1 is strongly affected by the mu-
401 tation: phosphorylation activity of mutant $ERK2$ is estimated
402 of being 0.11 of that of the WT enzyme. This suggests that
403 all the processes involving ERK2 can be negatively affected
404 by *sevenmaker* mutation to a different degree. It also means
405 that the overall balance of these effects *in vivo* is difficult
406 to explicitly estimate since there are many known activators,
407 deactivators and substrates of ERK2 (35), and likely many
408 more will be discovered in the future.

M Misiura and AB Kolomeisky

409 CONCLUSIONS

410 Here we developed a kinetic network model to explain
411 the observations of the increased enzymatic activity in the
412 enzymes with the *sevenmaker* mutation and for other simi-
413 lar gain-of-function mutations in the ERK2 enzymes. Our
414 approach presents a comprehensive *quantitative* description
415 of the enzymatic properties of the wild-type and mutated
416 ERK2 regulation systems. First, we constructed a simplified
417 regulation network for ERK2 by arguing that it can be viewed
418 as three coupled Michaelis-Menten processes that describe
419 three main enzymatic processes: activation, deactivation and
420 the phosphorylation. The corresponding kinetic scheme is
421 analyzed then explicitly using the method of first-passage pro-
422 cesses to evaluate the enzymatic properties of the system in
423 terms of the individual transition rates and the binding energy
424 between the enzyme and the substrates. The obtained ana-
425 lytical results are also compared with the predictions for the
426 simple Michaelis-Menten scheme. It is argued that mutations
427 modify the interaction energies, and this leads to changes
428 in the enzymatic features of the mutant ERK2 molecules.
429 Our calculations show that the catalytic properties of ERK2
430 differ significantly from the results for the simplest Michaelis-
431 Menten process. We found a non-monotonic dependence of
432 the specificity constant, which is a quantitative measure of
433 the enzymatic efficiency, as a function of the interaction en-
434 ergy. This suggests that some mutations might increase the
435 activity of the enzyme by changing the interaction energies
436 to the values closer to the observed maximum. The proposed
437 mechanism is also discussed in terms of the fluxes via dif-
438 ferent branches of the regulation network, and theoretical
439 calculations generally support it. Thus, our main conclusion
440 is that the *sevenmaker* mutation modifies the binding inter-
441 action energy in such way that the deactivation process is
442 affected less than the activation processes, leading to the
443 effective increase in the overall catalytic activity. While the
444 mutation lower the rate for each enzymatic branch for some
445 interactions energies, the overall turnover time might at the
446 same time decrease, making them catalytically more active.
447 These theoretical predictions agree with known experimental
448 observations. In addition, it was suggested that the effect of
449 mutation (positive or negative) might depend on the concen-
450 tration of activator, deactivator and substrate molecules that
451 participate in the ERK2 regulation network.

452 Our theoretical model provides a consistent chemical de-
453 scription on the possible mechanisms for the gain-of-function
454 mutations in ERK2, giving a fully quantitative measure of
455 mutations, which can be in principle experimentally mea-
456 sured. However, it is important to discuss the limitations of
457 the proposed theoretical method. A weak side of our approach
458 is that a very complex biochemical network with multiple
459 states and transitions, which controls the activities of ERK2
460 enzymes, is simplified into a network with only three coupled
461 Michaelis-Menten processes. It is also assumed that the reac-
462 tion constants for activation, deactivation and phosphorylation

463 are the same while they might differ significantly. In addition,
464 current experiments give only very qualitative measurements
465 of the increase enzymatic activities of the mutant ERK2
466 molecules. But our hope is that the presented quantitative
467 model will stimulate experimental and theoretical studies that
468 will test our ideas, thus advancing our understanding on the
469 mechanisms of functioning of the ERK2 as well as other
470 regulating enzymatic systems.

471 AUTHOR CONTRIBUTIONS

472 A.B.K. designed the research. A.B.K. and M.M. carried
473 out the research, analyzed the data and wrote the paper.

474 ACKNOWLEDGMENTS

475 This work is supported by Center for Theoretical Biologi-
476 cal Physics NSF Grant PHY-1427654. A.B.K. also acknowl-
477 edges the support from Welch Foundation (Grant C-1559)
478 and from the NSF (Grant CHE-1664218).

479 REFERENCES

1. Futran, A. S., A. J. Link, R. Seger, and S. Y. Shvartsman, 2013. ERK as a model for systems biology of enzyme kinetics in cells. *Curr. Biol.* 23:R972–R979.
2. Lavoie, H., and M. Therrien, 2015. Regulation of RAF protein kinases in ERK signalling. *Nat. Rev. Mol. Cell Biol.* 16:281–298.
3. McCubrey, J. A., L. S. Steelman, W. H. Chappell, S. L. Abrams, G. Montalvo, M. Cervello, F. Nicoletti, P. Fagone, G. Malaponte, M. C. Mazzarino, S. Candido, M. Libra, J. Bäsecke, S. Mijatovic, D. Maksimovic-Ivanic, M. Milella, A. Tafuri, L. Cocco, C. Evangelisti, F. Chiarini, and A. M. Martelli, 2012. Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. *Oncotarget* 3:954.
4. Cobb, M. H., and E. J. Goldsmith, 1995. How MAP kinases are regulated. *J. Biol. Chem.* 270:14843–14846.
5. Kim, Y., Z. Paroush, K. Nairz, E. Hafen, G. Jiménez, and S. Y. Shvartsman, 2011. Substrate-dependent control of MAPK phosphorylation in vivo. *Mol. Syst. Biol.* 7:467.
6. Zhang, F., A. Strand, D. Robbins, M. H. Cobb, and E. J. Goldsmith, 1994. Atomic structure of the MAP kinase ERK2 at 2.3 Å resolution. *Nature* 367:704.
7. Canagarajah, B. J., A. Khokhlatchev, M. H. Cobb, and E. J. Goldsmith, 1997. 1 mechanism of the MAP kinase ERK2 by dual phosphorylation. *Cell* 90:859–869.
8. Zhang, J., P. Shapiro, and E. Pozharski, 2012. Structure of extracellular signal-regulated kinase 2 in complex with ATP and ADP. *Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun.* 68:1434–1439.

509 9. Seidel, J. J., and B. J. Graves, 2001. An ERK2 docking 558 21. Lee, T., A. N. Hoofnagle, K. A. Resing, and N. G. Ahn, 510 site in the Pointed domain distinguishes a subset of ETS 559 2005. Hydrogen exchange solvent protection by an ATP 511 transcription factors. *Genes Dev.* 16:127–137. 560 561

512 10. Garai, Á., A. Zeke, G. Gógl, I. Törő, F. Fördős, 562 22. Sours, K. M., S. C. Kwok, T. Rachidi, T. Lee, A. Ring, 513 H. Blankenburg, T. Bárkai, J. Varga, A. Alexa, D. Emig, 563 A. N. Hoofnagle, K. A. Resing, and N. G. Ahn, 2008. 514 M. Albrecht, and A. Reményi, 2012. Specificity of linear 564 Hydrogen-exchange mass spectrometry reveals activation- 515 motifs that bind to a common mitogen-activated protein 565 induced changes in the conformational mobility of p38 α 516 kinase docking groove. *Sci. Signal.* 5:ra74–ra74. 566

517 11. Sheridan, D. L., Y. Kong, S. A. Parker, K. N. Dalby, 567 23. Zhang, J., F. Zhang, D. Ebert, M. H. Cobb, and E. J. 518 and B. E. Turk, 2008. Substrate discrimination among 568 Goldsmith, 1995. Activity of the MAP kinase ERK2 is 519 mitogen-activated protein kinases through distinct dock- 569 controlled by a flexible surface loop. *Structure* 3:299–307. 520 ing sequence motifs. *J. Biol. Chem.* 283:19511–19520.

521 12. Jacobs, D., D. Glossip, H. Xing, A. J. Muslin, and K. 570 24. Sours, K. M., Y. Xiao, and N. G. Ahn, 2014. Extracellular- 522 Kornfeld, 1999. Multiple docking sites on substrate proteins 571 regulated kinase 2 is activated by the enhancement of 523 form a modular system that mediates recognition by ERK 572 hinge flexibility. *J. Mol. Biol.* 426:1925–1935.

524 MAP kinase. *Genes & development* 13:163–175.

525 13. Lee, S., M. Warthaka, C. Yan, T. S. Kaoud, P. Ren, and 573 25. Xiao, Y., T. Lee, M. P. Latham, L. R. Warner, A. Tanimoto, 526 K. N. Dalby, 2011. Examining docking interactions on 574 A. Pardi, and N. G. Ahn, 2014. Phosphorylation releases 527 ERK2 with modular peptide substrates. *Biochemistry* 575 constraints to domain motion in ERK2. *Proc. Natl. Acad. 528 50:9500–9510.* 576

529 14. Abramczyk, O., M. A. Rainey, R. Barnes, L. Martin, 577 26. Robinson, M. J., M. Cheng, A. Khokhlatchev, D. Ebert, 530 and K. N. Dalby, 2007. Expanding the repertoire of an 578 N. Ahn, K.-L. Guan, B. Stein, E. Goldsmith, and M. H. 531 ERK2 recruitment site: cysteine footprinting identifies 579 Cobb, 1996. Contributions of the mitogen-activated 532 the D-recruitment site as a mediator of Ets-1 binding. 580 protein (MAP) kinase backbone and phosphorylation 533 *Biochemistry* 46:9174–9186. 581 loop to MEK specificity. *J. Biol. Chem.* 271:29734– 582

534 15. Slupsky, C. M., L. N. Gentile, L. W. Donaldson, C. D. 583 27. Mansour, S. J., W. T. Matten, A. S. Hermann, J. M. Candia, 535 Mackereth, J. J. Seidel, B. J. Graves, and L. P. McIntosh, 584 S. Rong, K. Fukasawa, G. V. Woude, and N. G. Ahn, 1994. 536 1998. Structure of the Ets-1 pointed domain and mitogen- 585 Transformation of mammalian cells by constitutively 537 activated protein kinase phosphorylation site. *Proc. Natl. 586 active MAP kinase kinase. *Science* 265:966–970.* 538 Acad. Sci. U. S. A.

539 16. Sharrocks, A. D., S.-H. Yang, and A. Galanis, 2000. 587 28. Colucci-D'Amato, L., C. Perrone-Capano, and U. di 540 Docking domains and substrate-specificity determination 588 Porzio, 2003. Chronic activation of ERK and 541 for MAP kinases. *Trends Biochem. Sci.* 25:448–453. 589 neurodegenerative diseases. *Bioessays* 25:1085–1095.

542 17. Carlson, S. M., C. R. Chouinard, A. Labadorf, C. J. 590 29. Lawrence, M. C., A. Jivan, C. Shao, L. Duan, D. Goad, 543 Lam, K. Schmelzle, E. Fraenkel, and F. M. White, 2011. 591 E. Zaganjor, J. Osborne, K. McGlynn, S. Stippec, 544 Large-scale discovery of ERK2 substrates identifies ERK- 592 S. Earnest, W. Chen, and M. H. Cobb, 2008. The roles 545 mediated transcriptional regulation by ETV3. *Sci. Signal.* 593 of MAPKs in disease. *Cell Res.* 18:436.

546 4:rs11–rs11.

547 18. Yoon, S., and R. Seger, 2006. The extracellular signal- 594 30. Plotnikov, A., E. Zehorai, S. Procaccia, and R. Seger, 2011. 548 regulated kinase: multiple substrates regulate diverse 595 The MAPK cascades: signaling components, nuclear 549 cellular functions. *Growth factors* 24:21–44. 596 roles and mechanisms of nuclear translocation. *Biochim. 597* 598

550 19. Zhou, B., L. Wu, K. Shen, J. Zhang, D. S. Lawrence, and 599 31. Brunner, D., N. Oellers, J. Szabad, W. H. Biggs III, 551 Z.-Y. Zhang, 2001. Multiple regions of MAP kinase phos- 600 S. L. Zipursky, and E. Hafen, 1994. A gain-of-function 552 phatase 3 are involved in its recognition and activation 601 mutation in Drosophila MAP kinase activates multiple 553 by ERK2. *J. Biol. Chem.* 276:6506–6515. 602 receptor tyrosine kinase signaling pathways. *Cell* 76:875– 603

554 20. Anderson, N. G., J. L. Maller, N. K. Tonks, and T. W. 603 888.

555 Sturgill, 1990. Requirement for integration of signals 604 32. Bott, C. M., S. G. Thorneycroft, and C. J. Marshall, 556 from two distinct phosphorylation pathways for activation 605 1994. The sevenmaker gain-of-function mutation in p42 557 of MAP kinase. *Nature* 343:651. 606 MAP kinase leads to enhanced signalling and reduced

M Misiura and AB Kolomeisky

606 sensitivity to dual specificity phosphatase action. *FEBS*
607 *Lett.* 352:201–205.

608 33. Oellers, N., and E. Hafen, 1996. Biochemical character-
609 ization of *Rolled^{Sem}*, an activated form of *Drosophila*
610 mitogen-activated protein kinase. *J. Biol. Chem.*
611 271:24939–24944.

612 34. Karim, F. D., and G. M. Rubin, 1999. PTP-ER, a novel
613 tyrosine phosphatase, functions downstream of Ras1
614 to downregulate MAP kinase during *Drosophila* eye
615 development. *Mol. Cell* 3:741–750.

616 35. Tanoue, T., M. Adachi, T. Moriguchi, and E. Nishida,
617 2000. A conserved docking motif in MAP kinases com-
618 mon to substrates, activators and regulators. *Nat. Cell*
619 *Biol.* 2:110.

620 36. Zhang, J., B. Zhou, C.-F. Zheng, and Z.-Y. Zhang, 2003. A
621 bipartite mechanism for ERK2 recognition by its cognate
622 regulators and substrates. *J. Biol. Chem.* 278:29901–
623 29912.

624 37. Chu, Y., P. A. Solski, R. Khosravi-Far, C. J. Der, and
625 K. Kelly, 1996. The mitogen-activated protein kinase
626 phosphatases PAC1, MKP-1, and MKP-2 have unique
627 substrate specificities and reduced activity in vivo toward
628 the ERK2 sevenmaker mutation. *J. Biol. Chem.* 271:6497–
629 6501.

630 38. Bott, C. M., S. G. Thorneycroft, and C. J. Marshall,
631 1994. The sevenmaker gain-of-function mutation in p42
632 MAP kinase leads to enhanced signalling and reduced
633 sensitivity to dual specificity phosphatase action. *FEBS*
634 *Lett.* 352:201–205.

635 39. Van Kampen, N. G., 2007. Stochastic processes in physics
636 and chemistry (3rd ed.). North Holland.

637 40. Kolomeisky, A. B., 2015. Motor Proteins and Molecular
638 Motors. CRC Press.

639 41. Camps, M., A. Nichols, C. Gillieron, B. Antonsson,
640 M. Muda, C. Chabert, U. Boschert, and S. Arkinstall,
641 1998. Catalytic activation of the phosphatase MKP-3
642 by ERK2 mitogen-activated protein kinase. *Science*
643 280:1262–1265.

644 **LIST OF FIGURES**

645	1	A simplified biochemical regulation scheme for ERK 2 considered in this work. ERK2 first must be phosphory- 646 lated by MEK (denoted as M) to become an active enzyme and to phosphorylate its substrates (denoted as S). At 647 the same time, the phosphatase (denoted as D) can dephosphorylate ERK2 to return it to the inactive state. 648 More details are in the text.	10
649	2	Catalytic constants as functions of the binding energies for Michaelis-Menten (MM, blue) and ERK2 schemes. 650 Negative energies correspond to stronger binding. For MM scheme a monotonic behavior is observed: the 651 stronger the interaction, the lower k_{cat} ; while for ERK2 scheme the dependence is non-monotonic: there is an 652 optimal value of binding energy that produces the highest k_{cat}	11
653	3	Michaelis constants as functions of the binding energies for Michaelis-Menten scheme (MM, blue) and 654 ERK2 scheme (black). Negative energies correspond to stronger binding. For MM scheme the dependence is 655 monotonic, and the stronger the binding, the lower the Michaelis constant. For ERK2 scheme the dependence is 656 also monotonic, but K_m changes between two limits.	12
657	4	Specificity constants (k_{cat}/K_m) as a functions of the binding energy for the Michaelis-Menten scheme (MM, 658 blue) and for the ERK2 scheme (ERK2, black). Negative energies correspond to stronger binding. In the region 659 between two vertical lines for the ERK2 scheme the decrease of strength of interactions will lead to higher 660 values of specificity.	13
661	5	The specificity constant as the function of the interaction energy for varying contributions from the deactivation 662 process. Numbers in the legend show the concentrations of the deactivator D in units of <i>moles/l</i> . Dashed line 663 shows the position of the maximum of the specificity constant.	14
664	6	Inverse catalytic turnover times, or the effective overall reaction rates for the product formation, as a function 665 of the interaction energy for the Michaelis-Menten scheme (MM, blue) and for the ERK2 scheme (black). 666 Concentration of substrate is $S=10^{-5}$. In the region between two vertical lines decrease of interaction energies 667 leads to decrease of the reaction rate for MM scheme, but for the ERK2 scheme it leads to the increased turnover 668 rate.	15

M Misiura and AB Kolomeisky

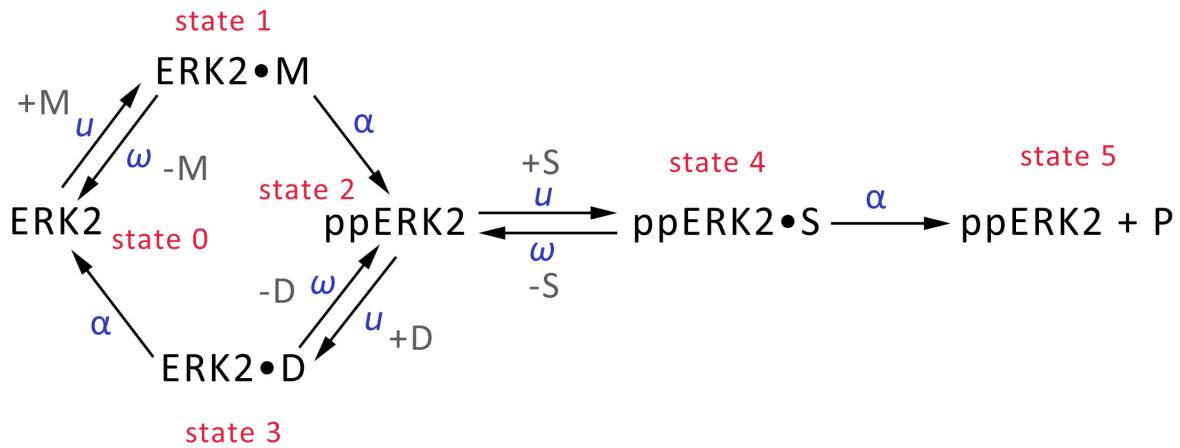


Figure 1: A simplified biochemical regulation scheme for ERK 2 considered in this work. ERK2 first must be phosphorylated by MEK (denoted as M) to become an active enzyme and to phosphorylate its substrates (denoted as S). At the same time, the phosphatase (denoted as D) can dephosphorylate ERK2 to return it to the inactive state. More details are in the text.

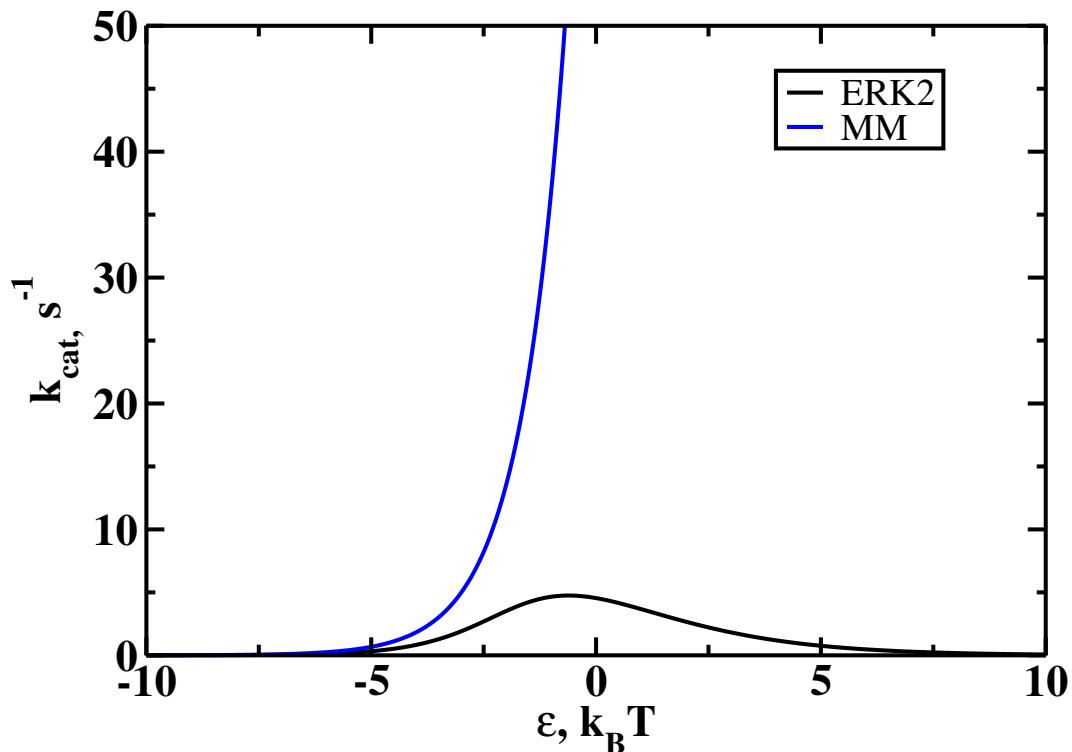


Figure 2: Catalytic constants as functions of the binding energies for Michaelis-Menten (MM, blue) and ERK2 schemes. Negative energies correspond to stronger binding. For MM scheme a monotonic behavior is observed: the stronger the interaction, the lower k_{cat} ; while for ERK2 scheme the dependence is non-monotonic: there is an optimal value of binding energy that produces the highest k_{cat} .

M Misiura and AB Kolomeisky

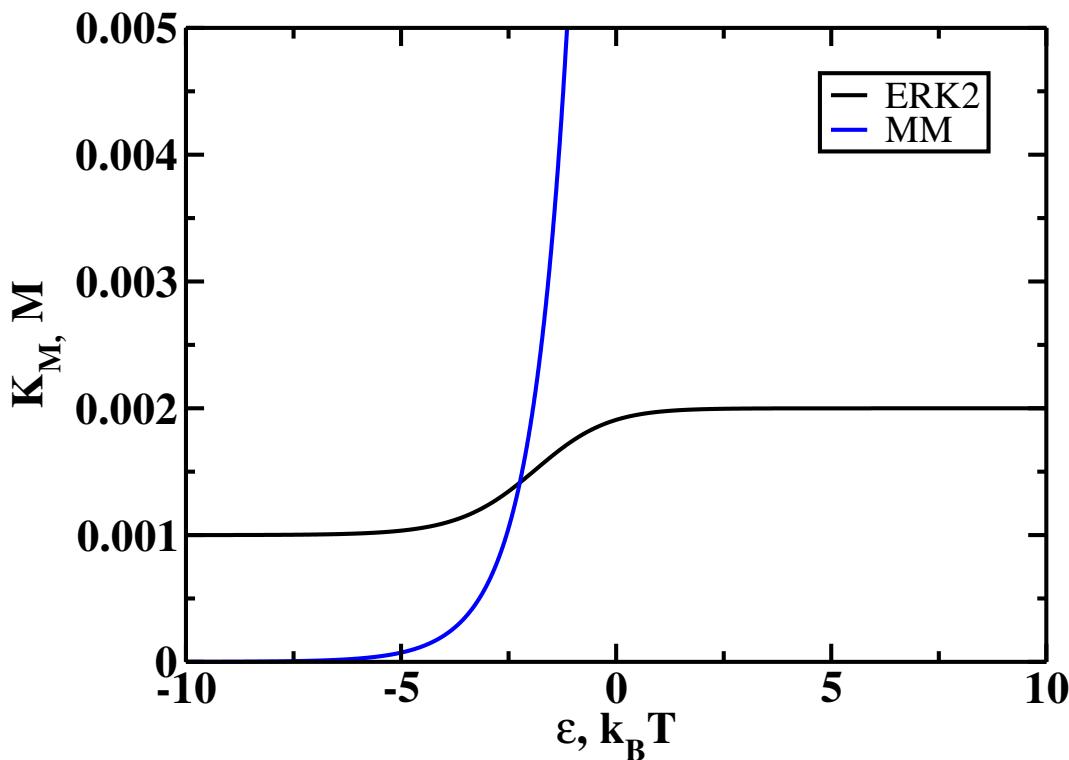
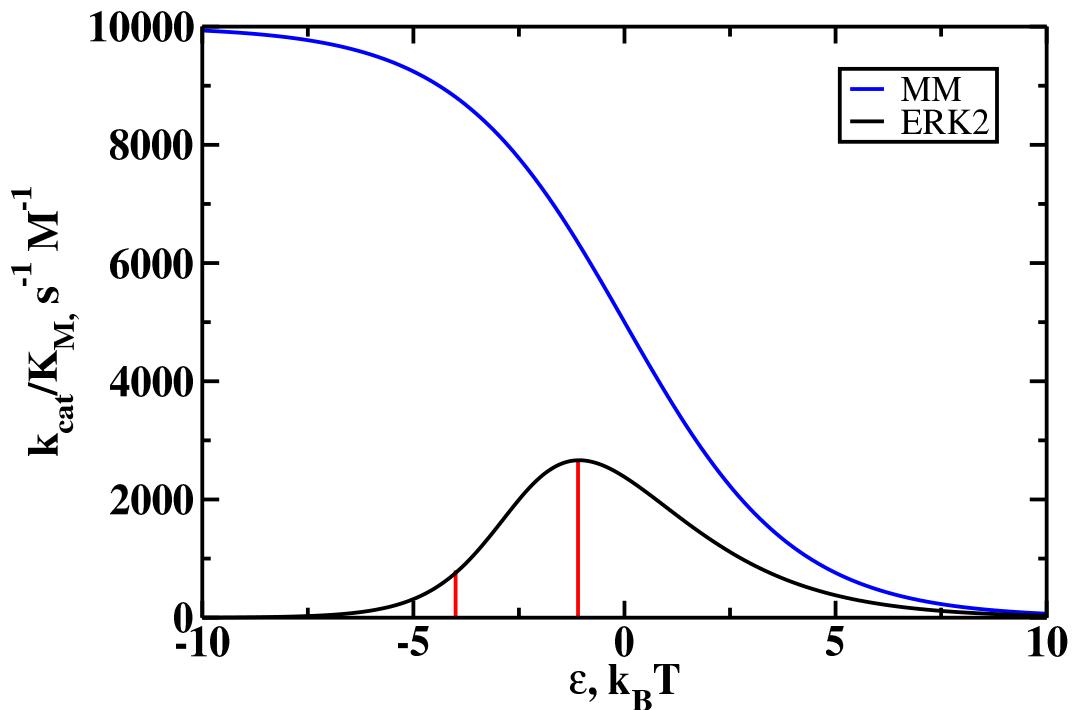



Figure 3: Michaelis constants as functions of the binding energies for Michaelis-Menten scheme (MM, blue) and ERK2 scheme (black). Negative energies correspond to stronger binding. For MM scheme the dependence is monotonic, and the stronger the binding, the lower the Michaelis constant. For ERK2 scheme the dependence is also monotonic, but K_m changes between two limits.

M Misiura and AB Kolomeisky

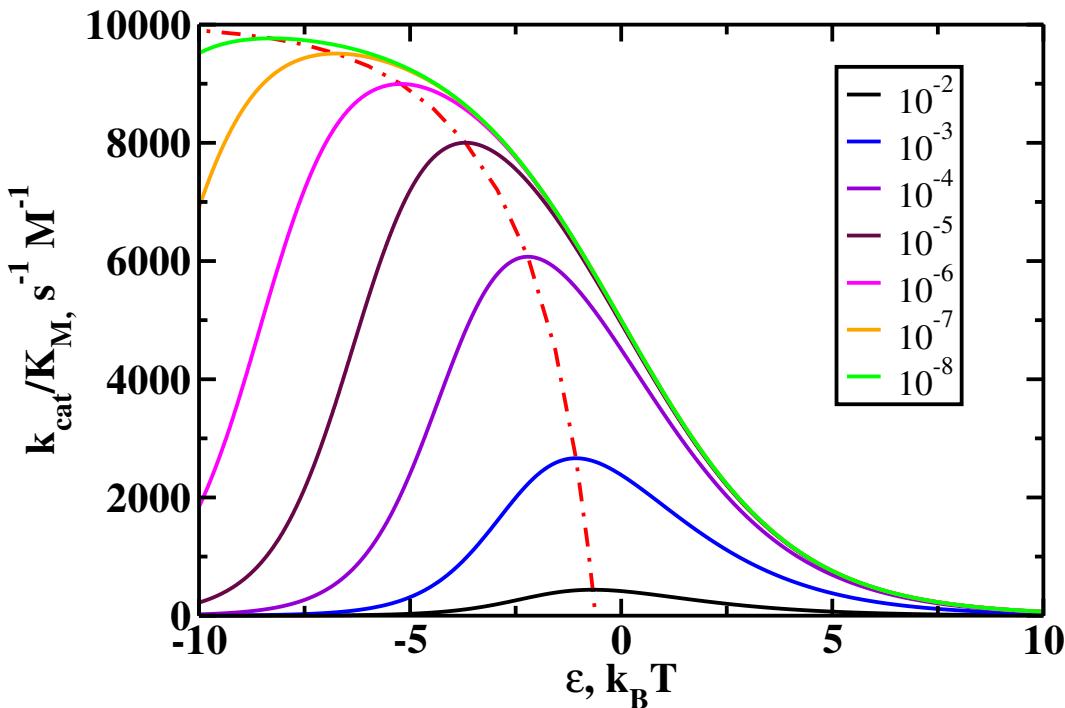


Figure 5: The specificity constant as the function of the interaction energy for varying contributions from the deactivation process. Numbers in the legend show the concentrations of the deactivator D in units of *moles/l*. Dashed line shows the position of the maximum of the specificity constant.

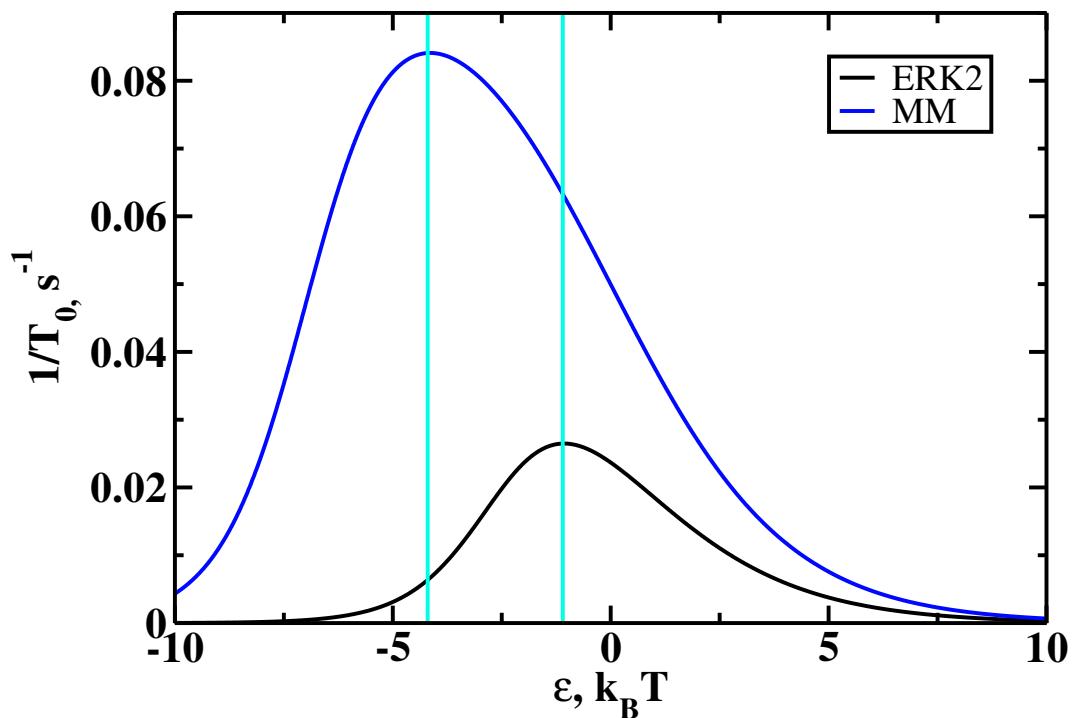


Figure 6: Inverse catalytic turnover times, or the effective overall reaction rates for the product formation, as a function of the interaction energy for the Michaelis-Menten scheme (MM, blue) and for the ERK2 scheme (black). Concentration of substrate is $S=10^{-5}$. In the region between two vertical lines decrease of interaction energies leads to decrease of the reaction rate for MM scheme, but for the ERK2 scheme it leads to the increased turnover rate.