

1

2

3

4

5 **Structural ensembles based on NMR**

6 **parameters suggest a complex pathway of**

7 **ligand binding in human gastrotropin**

8

9

10 Zita Harmat¹, András L. Szabó¹, Orsolya Tóke², Zoltán Gáspári^{1*}

11

12

13 ¹ Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest,

14 Hungary

15 ² Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary

16

17

18 *Corresponding author

19 E-mail: gaspari.zoltan@itk.ppke.hu (ZG)

20

21

22 Abstract

23 Gastrotropin, the intracellular carrier of bile salts in the small intestine, binds two ligand
24 molecules simultaneously in its internal cavity. The molecular rearrangements required for
25 ligand entry are not yet fully clear. To improve our understanding of the binding process we
26 combined molecular dynamics simulations with available structural and dynamic NMR
27 parameters. The resulting ensembles reveal two distinct modes of barrel opening with one
28 corresponding to the transition between the *apo* and *holo* states, whereas the other affecting
29 different protein regions in both ligation states. Comparison of the calculated structures with
30 NMR-derived parameters reporting on slow conformational exchange processes suggests that
31 the protein undergoes partial unfolding along a path related to the second mode of the
32 identified barrel opening motion.

33 Introduction

34 Gastrotropin (also known as ileal bile acid-binding protein (I-BABP) or fatty acid-binding
35 protein 6 (FABP6)) [1] is involved in the enterohepatic circulation of bile salts from the liver to
36 the small intestine and back to the liver. This recirculation process ensures that only a small
37 amount of bile salts needs to be synthesised *de novo*. The protein is located in the epithelial
38 cells of the distal small intestine [2-3] and has an important role in cholesterol homeostasis
39 [1,4].

40 Gastrotropin belongs to the family of intracellular lipid-binding proteins (iLBPs), a group of
41 small, approximately 15-kDa proteins that bind fatty acids, retinoids, cholesterol, and bile
42 salts [5]. Additionally, iLBPs have been shown to have a role in the stimulation of the
43 transcriptional activity of nuclear hormone receptors [6-8]. Among the four main groups of
44 the iLBP family, the subfamily of gastrotropin is unique in the sense that it has the capability
45 of binding two [9-10] or possibly even three [11-12] ligands simultaneously. NMR solution
46 structure of the *apo* form of human gastrotropin (PDB ID: 1O1U) was determined along with

47 the cholytaurine bound form (PDB ID: 1O1V) [13]. More recently, the structure of the
48 heterotypic doubly-ligated complex of human gastrotropin with glycocholate and
49 glycochenodeoxycholate has been determined [14]. Similarly to other members of the iLBP
50 family, the structure of human I-BABP is composed of a β -barrel formed by ten antiparallel β -
51 strands (A-J) and two α -helices (I-II). The binding cavity of \sim 1000 \AA^3 is located inside of the
52 β -barrel [15]. Ligand binding in human gastrotropin exhibits positive cooperativity [9], which
53 has been shown to be governed by the hydroxylation pattern of the bound bile salts [16].
54 Accordingly, hydrogen bonding networks have been shown to have a key mediatory role in
55 positive binding cooperativity [17]. Besides the observed communication between the two
56 binding sites, di- and trihydroxy bile salts display a site preference upon binding in each
57 other's presence [18]. As it is apparent from the comparison of *apo* and *holo* human
58 gastrotropin structures (Fig 1), bile salt binding is accompanied by large conformational
59 changes in the E-F and G-H protein regions as well as in the C/D-turn and the proximate
60 helical cap [2,11]. Importantly, NMR relaxation measurements suggest that in the *apo* form,
61 the ground state is in slow exchange with a low-populated 'invisible' conformer resembling
62 some structural features of the the ligand-bound form [19]. Intriguingly, residues undergoing
63 a conformational fluctuation on the μ s-ms time scale can be grouped into a 'slower' and a
64 'faster' cluster, which appear to be spatially separated. Specifically, while the 'slower' cluster
65 involves part of the helical region, the C/D-turn, and the proximate B and D β -strands in the
66 N-terminal half, the 'faster' cluster comprises segments of the EFGH protein region in the C-
67 terminal half [19].

68

69 **Fig. 1. Ribbon representation highlighting the differences between the *apo* (PDB ID:
70 1O1U model 7) and the *holo* (PDB ID: 2MM3 model 1) form of human gastrotropin.** The
71 figure was prepared with UCSF Chimera [45]

72

73 As the binding site of gastrotropin is located in the interior of the protein, the mechanism of
74 ligand entry is an important issue to be investigated. The most widely accepted scenario for

75 the protein family is formulated in the ‘portal hypothesis’, stating that access of ligands to the
76 protein interior is governed by the C/D and E/F-turn regions together with the C-terminal part
77 of helix II [20-22]. Based on NMR structural and dynamic studies, a conformational selection
78 mechanism of ligand binding involving an equilibrium between a closed and a more open
79 protein state has been suggested for both the human ileal [14] and the chicken liver BAPB
80 analogues [23]. In line with the NMR spectroscopic analysis of internal motions, molecular
81 dynamics simulations show evidence of correlated motions in human gastrin-releasing peptide and in the
82 absence of ligands indicate a partial unfolding of the E-F protein region [24].
83 To improve our understanding of the mediatory role of internal motions in human
84 gastrin-releasing peptide-bile salt interaction, we generated conformational ensembles consistent with
85 experimentally obtained NMR structural and dynamic data [25] and performed ligand
86 docking to obtain an atomic-level insight into the binding mechanism. Our results reveal
87 different conformational rearrangements in the protein that are suggested to correspond to
88 motions characteristic of different time scales indicating a complex mechanism of bile salt
89 entry.

90 **Materials and Methods**

91 **Ensemble molecular dynamics simulations with NMR 92 restraints**

93 Molecular dynamics calculations were performed using GROMACS version 4.5.5. [26-27]
94 modified to handle S^2 order parameters as well as pairwise averaging of NOE distance
95 restraints over replicas [28], as proposed for the MUMO (Minimal Under-restraining Minimal
96 Over-restraining) approach [29]. The OPLS-AA force field [30] and the TIP3P water model
97 [31] was used for all molecular dynamics simulations described below.
98 For modeling the *apo* structure of gastrin-releasing peptide, we chose model 7 of PDB entry 1O1U [13]
99 based on its highest PRIDE-NMR score [32] among the deposited models. As an initial
100 model of the *holo* structure we used model 1 of the PDB entry 2MM3. Ligand topologies for

101 glycocholic acid (GCA, PDB ligand ID: GCH) and glycochenodeoxycholic acid (GCDA, PDB
102 ligand ID: CHO) were generated with the TopolGen script and corrected manually for atom
103 types where necessary as well as with an in-house Perl script to reassign hydrogen atoms to
104 the charge groups defined by the heavy atoms they are connected to.

105 NOE restraints were only available for the *holo* protein (PDB ID: 2MM3). For the *apo* form,
106 we used restraints from the 2MM3 list that were unviolated in the deposited 1O1U structure
107 as checked with the CoNSEnsX server. Restraints were modified by the removal of
108 stereospecificity and rounding the restrained distance up to the next integer Å, creating 1 Å
109 wide ‘bins’ from 4 to 10 Å.

110 Chemical shifts for the *apo* structure were obtained from BMRB (BMRB ID: 19843) and for
111 the *holo* structure directly from the authors. S^2 values for the *apo* and *holo* structures
112 measured at 283, 291, 298, and 313 K were taken from [19].

113 After generating a topology using the OPLS-AA force field and TIP3P water model, the
114 molecule was put into a cubic box, followed by energy minimization with conjugate gradient
115 method for 5000 number of steps with 0.001 ps step length. The maximum force was set to
116 200. In the next step, the molecule was solvated and then one of the water molecules was
117 replaced by a Na^+ ion to ensure the neutrality of the system. After that, another energy
118 minimization was performed using the same parameters, but including the water molecules.

119 In the last step, a short MD simulation was performed using position restraints of 1000 kJ
120 $\text{mol}^{-1} \text{nm}^{-2}$ on the heavy atoms of the protein for 2500 steps with 0.002 ps step size using the
121 LINCS algorithm [33].

122 For the production runs, eight replicas were simulated in parallel with the OpenMPI
123 environment [34]. Backbone S^2 order parameter restraints were applied on the full ensemble
124 and NOE distance restraints were averaged between neighboring replicas, similar to the
125 MUMO (Minimal Under-restraining, Minimal Over-restraining) protocol [29]. The simulations
126 were performed at four temperatures: 283 K, 291 K, 298 K, and 313 K using S^2 restraints
127 measured at the corresponding temperatures. With LINCS constraining on bond lengths, a
128 timestep of 2 fs was used to generate runs of 2 ns and 6 ns, totaling 16 and 48 ns for the 8

129 replicas combined, respectively. Control simulations with the same parametrization but
130 without restraints were also performed. Topology files for the restrained simulations are
131 included in the supplementary material as (File S1) - (File S8).

132 In order to generate a larger pool of possible conformations in order to further explore the
133 conformational space, molecular dynamics simulations with only one type of restraint, NOE
134 or S^2 , or without any restraints were also performed. Accelerated Molecular Dynamics and
135 short (500 ps) Targeted Molecular Dynamics simulations were also performed on the *apo*
136 structure using the chemical shifts of the *holo* structure and vice versa in order to achieve
137 transition from one form to the other.

138 **Docking Simulations**

139 Docking calculations were performed on selected structures with the ligands GCA and
140 GCDA using Schrödinger Glide [35]. The binding sites were defined using the ternary
141 complex structure 2MM3. After importing the structure, it was split to separate molecules. As
142 a next step, either GCA or GCDA was merged with the protein and a mesh grid around the
143 ligand was generated with the 'Receptor Grid Generation Tool' using default settings.
144 Docking of the respective ligands was performed using the 'Ligand docking' tool with default
145 settings except requiring the inclusion of per-residue interaction scores in the output. To
146 dock the second ligand into the binary complex obtained, the docking result most similar to
147 the pose in the initial 2MM3 structure was merged with the second ligand and used to define
148 the second binding site with the grid generation tool. For each of the four different setups,
149 i.e. GCA, GCDA, GCA+GCDA and GCDA+GCA docking runs, 32 different poses were
150 generated and evaluated. Total energy of the docked complexes was estimated using the
151 MacroModel routine with the OPLS3 force field and water as solvent.

152 **Data analysis**

153 Correspondence to the experimental parameters was analyzed using the CoNSEnsX
154 webserver [32,36] (for S^2 order parameters and chemical shift data) as well as in-house Perl
155 scripts (for NOE distance restraints). NOE restraints were evaluated on a per-ensemble

156 basis using r^{-6} averaging both for intramolecular ambiguity and between members of the
157 ensembles.

158 For the S^2 order parameter correspondences, MUMO simulations and the original PDB
159 ensembles, the corrected S^2 values are also displayed. In the correction, those points were
160 excluded from the analysis, which had greater than 0.2 as an absolute value of the
161 difference between the experimental and back-calculated values. For the MUMO
162 simulations, maximum 5 such values were found. All the experimental and back-calculated
163 values are depicted in S1 Fig.

164 Principal Component Analysis was performed using ProDy [37] and visualized with the
165 NMWIZ module of the program VMD [38]. Structure-based chemical shift calculations were
166 performed with the program SHIFTX2 [39].

167 The presence or absence of hydrogen bonds in the ensembles was investigated with an in-
168 house Perl program using distance-angle based hydrogen bond identification parameters
169 [40-41].

170 **Comparing calculated ^{15}N chemical shift differences with**

171 **experimentally derived $\Delta\square$ (^{15}N) values**

172 For each structure, backbone ^{15}N chemical shifts were estimated with Shiftx [39]. For each
173 conformation in the large conformer pool (see above), the absolute value of the difference of
174 the predicted chemical shifts relative to those in each calculated unliganded structure in the
175 MUMO ensembles was calculated. These differences were then compared to experimental
176 $\Delta\square$ (^{15}N) data derived from CPMG relaxation dispersion NMR measurements for each
177 residue for which it was available [19]. Both correlation and RMSD measures were
178 calculated after normalization to the 0-1 range. As there are $\Delta\square$ values available for three
179 temperatures and the conformational pool is of a heterogeneous source with no well-defined
180 temperature, the correlation and RMSD values were calculated for all three temperatures
181 and then were averaged for each structure investigated. The structures with highest
182 correlation and lowest RMSD values were selected for analysis.

183 Results and Discussion

184 The generated ensembles reflect experimental parameters

185 Table 1. RMSD values, S2 parameters, NOE correspondence, amide N and H chemical shift

186 correlations.

	Ensemble size	Temperature (K)	Backbone RMSD (Å)	Backbone S ² correlation	Corrected backbone S ² correlation	Percentage of violated NOE restraints (r ⁻⁶ , >0.5Å)	Chemical shift correlation	
							amide N	amide H
1O1U pdb	10	305	0.66+-0	0.502 ^a	0.857	0.00 %	0.709	0.596
apo MUMO	168	283	1.01+-0.03	0.675	0.873	0.29 %	0.832	0.72
apo MUMO	168	291	1.12+-0.04	0.8	0.841	0.29 %	0.828	0.729
apo MUMO	168	298	1.27+-0.06	0.797	0.883	0.12 %	0.834	0.738
apo MUMO	168	313	1.45+-0.04	0.963	0.972	-	0.834	0.705
apo unrestrained	48	283	1.46+-0.09	0.307	-	-	0.827	0.724
apo unrestrained	48	291	1.45+-0.05	0.351	-	-	0.832	0.703
apo unrestrained	48	298	1.53+-0.03	0.301	-	-	0.833	0.731
apo unrestrained	48	313	1.5+-0.07	0.6	-	-	0.829	0.733
2MM3 pdb	10	293	0.52+-0	0.297 ^b	0.315	0.00 %	0.773	0.593
holo MUMO	168	283	1.28+-0.03	0.726	0.756	0.41 %	0.784	0.548
holo MUMO	168	291	1.31+-0.07	0.544	0.731	0.46 %	0.78	0.589
holo MUMO	168	298	1.46+-0.15	0.884	0.930	0.36 %	0.767	0.552
holo MUMO	168	313	1.5+-0.08	0.724	0.870	0.36 %	0.758	0.551
holo unrestrained	48	283	1.92+-0.64	0.073	-	-	0.782	0.531
holo unrestrained	48	291	2.34+-0.65	0.296	-	-	0.777	0.537
holo unrestrained	48	298	1.82+-0.07	0.484	-	-	0.772	0.493
holo unrestrained	48	313	2.59+-2.09	0.272	-	-	0.775	0.544

187 a: S^2 data of 313 K (highest correlation from the 4 datasets)

188 b: S^2 data of 298 K (highest correlation from the 4 datasets)

189

190 According to the expectations, experimental S^2 parameters are generally better reflected in
191 the MUMO generated ensembles than in the PDB ensembles or the unrestrained ensembles
192 (Table 1). Interestingly, the MUMO ensemble of the *apo* protein calculated with the S^2
193 parameters of 283 K and the MUMO ensemble of the ternary complex calculated with the S^2
194 parameters of 291 K corresponds only moderately to these data, while all other restrained
195 ensembles show good correspondence. The reason for this is the presence of some
196 extremely low (< 0.3) experimental S^2 values, located mostly in turn regions, not reflected in
197 the simulations. Plots for the experimental and the back-calculated S^2 values are depicted in
198 S1 Fig.

199 The number of ensemble-calculated NOE violations are below 0.5 percent in each of the
200 MUMO ensembles, despite the clearly higher global RMSD values of the MUMO ensembles
201 than those for the original PDB ensembles. Correspondence to the amide N and H chemical
202 shifts are in the same range for the MUMO and the original PDB ensembles.

203

204 **Fig. 2. Description of the Type I and Tye II motions.**

205 (A) PCA (Principal Component Analysis) scatter plot of the simulated and experimentally
206 determined conformer pool.

207 (B) Hydrogen bonds with the largest changes between the *apo* and *holo* states according to
208 the MUMO ensembles. Black numbers denote amino acid residues, black letters denote
209 atoms, secondary structure elements are labeled with green letters. Red lines represent H-
210 bonds characteristic of the *apo* form, blue lines represent those formed mainly in the *holo*
211 form and purple lines indicate H-bonds between amino acids and the ligands. Note the
212 central role of Thr73 in the hydrogen bond network.

213 (C) Structural movements along PC1: barrel opening

214 (D) Structural movements along PC2

215 (E) Square fluctuation of C_α atoms in the two PCA modes: PC1 (Type I motion, purple), PC2
216 (Type II motion, orange). The previously measured experimental k_{ex} values indicating two
217 distinct clusters of residues involved in slow conformational exchange processes are
218 depicted as different gray areas corresponding to the three different temperatures (283 K,
219 287 K, 291 K) of the measurements. As only about 30-40 amino acids have displayed ms
220 timescale motion with measurable k_{ex} values [19], a continuous depiction is used to guide
221 the eye to highlight the regional differences.

222 **Gastrotropin ensembles reveal two distinct modes of
223 barrel opening**

224 Principal component analysis (PCA) of the ensembles suggests the presence of two kinds of
225 modes, both corresponding to the opening of the barrel structure, termed 'Type I' and Type
226 II' openings below. Type I opening clearly separates the *apo* and *holo* structures along PC1,
227 corresponding to the opening of the barrel between strands F and G. Viewing the structure
228 from the direction of the helices, this *apo* to *holo* structural change can be described as a
229 clockwise rotation of the E/F- and G/H-turns accompanied by a lower amplitude
230 counterclockwise rotation of the C/D-turn and helix-II, resulting in the appearance of a large
231 aperture between the E/F- and G/H-turns at the 'top' of the barrel. PC2 or Type II opening, in
232 contrast, primarily affects helix-I and the CD-turn, most prominently resulting in the widening
233 of the interhelical gap and the appearance of an opening between strands D and E.
234 It is notable that the Type II opening motion occurs in both the *apo* and the *holo* structures.
235 At higher temperatures, the ensembles occupy a larger region of the conformational space
236 along this particular opening mode (S4 Fig). It should also be noted that this kind of opening
237 is also compatible with the portal hypothesis as described in detail for human liver fatty acid
238 binding protein [42-43].
239 The structural changes can be described in more detail by measuring distances between
240 selected amino acids. In S2 Fig A the correlation of C_α distances with each of the two
241 motional modes is plotted for each amino acid pair as a matrix. On the basis of the

242 correlation of these Ca-C α distances, the most mobile regions corresponding to Type I
243 opening are near the termini and at the D/E-turn region including β strand E itself. Regarding
244 Type II motion, the regions around amino acid 50 (β strand C) and 35 (linker between helix II
245 and β strand B) appear to be the most flexible together moving segments.
246 Ca-C α distances displaying the best correlation with Type I opening are between residues
247 47-69, 48-69, 60-69, 61-69, 62-69, 63-69 (corr. -0.96) as well as 66-70, 67-70 (corr. 0.96).
248 Regarding Type II motion, the best correlated C α distances are between residues 16-58, 17-
249 58, and 18-58 (corr. -0.92). The listed C α atom-atom distances are mapped on the structure
250 in S2 Fig B-C. Our results suggest that the increasing distance between β strands C and E
251 or D and E are correlated with Type I opening, and the increasing distance of helix I from the
252 top of the barrel (around the C/D.turn) correlates with Type II opening. Note that the residues
253 displaying the largest displacement relative to the average structure do not necessarily
254 coincide with the ones exhibiting the largest changes in interatomic distances.
255 While the experimentally determined *apo* structure (1O1U) is clustered with the dynamic
256 ensembles for the *apo* state, the NMR structure of the ternary complex (2MM3) is located
257 between the *apo* and *holo* ensembles. This indicates that our ensembles of the complex
258 state exhibit a more pronounced opening along PC1 than the structure obtained by
259 conventional NMR calculations. The phenomenon that dynamic ensembles, corresponding
260 reasonably well to experimental data 'magnify' the differences between different states has
261 been observed in previous works [44] and is likely a consequence of the ensemble-based
262 treatment of NOE restraints allowing more conformational freedom than conventional
263 structure calculations, as well as the different balance between the force field and
264 experimental restraints than in conventional structure calculation methods.

265

266 **Table 2. List of the most significantly changing hydrogen bonds in the course of the**
267 **MUMO simulations.**

Bond (amino acid number and	Protein state	Donor region	Acceptor
-----------------------------	---------------	--------------	----------

atom identifier)			region
64 N – 69 OG	<i>apo</i>	D-E	E
64 N – 70 OD1	<i>holo</i>	D-E	E
71 N – 79 O	<i>apo</i>	E	F
73 N – 73 OG1	<i>holo</i>	E-F	E-F
73 N – 77 O	<i>holo</i>	E-F	E-F
73 OG1 – 72 O	<i>apo</i>	E-F	E
81 N – 69 O	<i>apo</i>	F	E
81 N – 79 O	Mostly <i>holo</i>	F	F
90 N – 101 O	mostly <i>apo</i>	G	H

268

269 The *apo* and *holo* states exhibit characteristic differences in their hydrogen bond pattern as
270 well (Fig 2B), (Table 2) and (S1 Table). As shown previously, hydrogen bonds form an
271 extensive network in human I-BABP [17,19]. According to our calculations, the most
272 significant differences in hydrogen bond occurrence include the formation of one and
273 breaking of two intrastrand hydrogen bonds upon transition from the *apo* to the *holo* state,
274 consistent with a specific mode of barrel opening between strands E and F. Interestingly,
275 hydrogen bonds with ligands (purple lines on Fig 2B) are present only in a few
276 conformations, which may indicate a loose ligand binding as a result of dynamically
277 changing hydrogen bonds. Notable are the hydrogen bonds of Thr73, where the γ 1 OH
278 group forms an intraresidue hydrogen bond in the *holo* state that is not present in the *apo*
279 form. This particular residue in the E/F-turn has been suggested to have a key role in a
280 conformational selection mechanism of ligand binding together with proximate residues in
281 the EFGH region of human I-BABP [14].

282 **Residues involved in the two opening modes coincide with**
283 **different exchange rates along the sequence as**
284 **determined by NMR**

285 Comparing the regions affected by the motions with NMR-derived conformational exchange
286 data, it is apparent that there is a coincidence of the region affected by Type II opening and
287 the the NMR-reported 'slow' cluster located in the N-terminal half of the protein [14] (Fig 2E).
288 Although k_{ex} parameters derived from CPMG relaxation dispersion NMR measurements
289 report on a motion occurring on a much slower μ s-ms time scale than reflected by the S^2
290 restraints used in our simulations, we suggest that the observed Type II barrel opening is
291 related to the slow conformational exchange revealed by NMR relaxation dispersion
292 analysis. Specifically, the fast motions could set the stage for slower, larger-amplitude
293 motions in the protein along a similar opening mode. The structural transition on a different
294 time scale is also consistent with the temperature-dependence of the observed motions, i.e.
295 a more even distribution of conformers along the Type II mode at higher temperatures.
296 Importantly, the presence of fast motion along this mode in both the *apo* and the *holo* states
297 suggests that Type II motions may have a role in both ligand uptake and release.

298 **The hidden “holo-like” conformation in the apo state is**
299 **partially unfolded**

300 Previous NMR investigations of human gastrin-releasing peptide have identified the presence of an
301 invisible state that is in slow exchange with the observable *apo* state [2]. Moreover, it was
302 suggested that this state exhibits *holo*-like structural features [19,14]. In order to get a
303 deeper insight into the nature of this conformer, we generated a pool of conformers and
304 selected structures that might be representative of the higher energy state based on the
305 differences in chemical shifts relative to the *apo* state when compared with the NMR-derived
306 $\Delta\Delta$ (^{15}N) values between the ground and higher energy states of IBABP. We note that with

307 the availability of only backbone ^{15}N chemical shift differences the structural information on
308 the invisible state remains to be rather limited.

309

310 **Fig. 3. PCA scatter plot of the *apo* MUMO (red dots) and *holo* MUMO (blue dots)**
311 **ensembles along with the conformer pool (purple hollow squares) used to select the**
312 **structures best corresponding to the NMR-derived invisible state.** Structures with a
313 mean correlation between $\Delta\square$ (^{15}N) values and calculated chemical shift differences above a
314 threshold of 0.35 are shown with black dots (left panel). Structures with an RMSD between
315 $\Delta\square$ (^{15}N) values and calculated chemical shift differences lower than 0.00603 are depicted
316 with green dots (right panel). Selected structures are also depicted and linked to their
317 corresponding points in the PCA scatter plots. These hidden conformations are termed HD1-
318 HD5.

319

320 Apparently, the identified conformers with best correspondence to the experimental data are
321 scattered around a large conformational space (Fig 3). Their common characteristics is that
322 they are closer to the *holo* than to the *apo* state, which is in agreement with the previously
323 proposed *holo*-like characteristics of the sparsely populated excited state indicated by NMR
324 dynamic measurements [14]. Importantly, some of the conformers show a more pronounced
325 Type II-like opening than the MUMO ensembles. The principal components in Fig 3. are not
326 directly corresponding to those in Fig 2 and the HD3 and HD5 structures, close in the PCA
327 plot, show different degree of Type II-like opening in their helical region. Nevertheless, we
328 consider this aspect the most relevant as Type II opening is clearly identifiable in the MUMO
329 ensembles calculated with a substantial amount of experimental data, in contrast to other
330 motions identified in unrestrained simulations only.

331

332 **Fig. 4. Secondary structure of the conformations inferred from our simulations (rows).**
333 Each column represents one amino acid. Extended β -strands are colored yellow, α -helices
334 are brown, the rest of the residues are colored black.

335 (A) All of the conformations.
336 (B) The high correlation conformations (subset of conformations of panel A).
337 (C) Conformations with lowest RMSD (another subset of panel A).
338 The analysis was performed with DSSPCont [46]. Note the shortening of secondary
339 structure elements in some structures, especially in C) and D).
340
341 As shown in Fig 4, secondary structure of the simulated conformers is diverse around the
342 boundary of the α -helical and β -strand elements. In some structures almost all of the α -
343 helical and β -strand elements are partially unfolded. The structures assumed to be the '*holo*-
344 like' *apo* conformations have low helical and β -strand content. The E-F region is the most
345 susceptible to unfolding, in accordance with recent reports by Töke et al. [24]. Taken
346 together, these observations suggest that the transition from the *apo* to the *holo* state,
347 instead of being a simple physical opening along the shortest route, is rather a complex
348 succession of conformational rearrangements proceeding through a partially unfolded
349 intermediate involving a loosened helical and C/D-turn regions, resembling in part the
350 observed 'Type II' mode of motions.

351 **Docking simulations support cooperativity of ligand**

352 **binding**
353 In order to further characterize the mechanism of ligand binding, we performed docking
354 simulations into selected structures obtained in our calculations.
355 Based on the PCA analysis, four structures were selected representing extreme states along
356 Type I and Type II opening, respectively. Additional three structures, regarded as the best
357 models of the invisible state in slow exchange with the *apo* form were also included.
358
359 **Table 3. A summary of the docking simulations conducted on three specific input**
360 **structures showing the number of successful calculations as well as the number of**

361 **cases where the ligand binds in an orientation similar to that observed in the 2MM3**

362 **structure.**

Input structure	Successful docking of GCDA poses into an empty protein	Successful docking of GCA poses into a protein containing GCDA	Successful docking of GCA poses into an empty protein	Successful docking of GCDA poses into a protein containing GCA
HM	32 (22)	32 (24)	32 (13)	32 (25)
HW	32 (9)	30 (25)	32 (14)	32 (20)
HN	32 (12)	32 (29)	32 (32)	32 (23)

363 HW (holo wide), HN (holo narrow), corresponding to selected extreme conformations along

364 Type II opening in the holo MUMO ensembles (Fig 2D).

365

366 In general, the most favorable complexes were obtained when GCA was docked first,
367 followed by the docking of GCDA (box diagrams in Fig 5). This scenario did not result in a
368 successful ternary complex for only one of the proposed hidden structures, HD1,
369 corresponding to an intermediate position between the apo and holo ensembles along Type
370 I opening. Ligand binding provides the highest stabilization for the partially unfolded
371 structures corresponding to a larger opening along a motion resembling Type II opening.
372 Comparing the relative estimated energies of the corresponding apo structures (colored bars
373 in Fig 5) suggests a complex energetic landscape where conformational states and ligand
374 binding contribute to stability in an interdependent manner. Our results are compatible with a
375 scenario where ligand entry occurs in an open, partially unfolded state followed by
376 subsequent structural compaction, completing a transition along Type I rearrangement along
377 a pathway including a different, Type II-like opening.

378

379 **Fig. 5. Relative energies of docked structures relative to the ligand-free**
380 **conformations.** Differences between the starting conformations of the molecular dynamics-
381 derived structures relative to 2MM3 are depicted with colored bars. White boxes: only GCDA
382 docked, stripped white boxes: GCDA docked first, GCA docked second, gray boxes: only
383 GCDA docked, stripped gray boxes: GCA docked first, GCDA docked second. HM denotes a
384 representative conformer from the holo MUMO ensemble, HN (holo narrow) and HW (holo
385 wide) are selected extreme structures from the holo MUMO ensembles corresponding to
386 Type II opening. In addition, three from the high correlation hidden conformers are selected
387 (HD1, HD3 and HD5).

388

389 Comparison of ligand positions in the different structures (Table 3) and the total energies of
390 the complexes (Fig 5) leads to the conclusion that open gastrotropin structures can bind
391 ligands with a high structural versatility while maintaining high affinity. This suggests that
392 ligands might undergo dynamic reposition even in the binary and ternary complexes.

393 **Conclusions**

394 We have generated structural ensembles that are in agreement with available NMR
395 parameters reporting on the structure and fast time-scale dynamics of human gastrotropin.
396 The two types of barrel opening identified are in agreement with previous observations of the
397 iLBP family. We propose a refined model of ligand entry that is compatible with the portal
398 hypothesis, namely, that the structural transition from the *apo* to the *holo* state, termed Type
399 I opening, proceeds along an indirect route involving partial unfolding of the helical cap
400 structure. In our model this unfolding is related to and facilitated by another mode of barrel
401 opening, termed Type II, that is present in both the *apo* and *holo* states.

402 **Author contributions**

403 ZG designed the study, ZH and ALS performed MD simulations, ALS performed docking
404 calculations, all authors participated in data analysis and interpretation as well as in writing
405 the manuscript.

406 **References**

407 [1] Smathers RL, Petersen DR. The human fatty acid-binding protein family: evolutionary
408 divergences and functions. *Hum Genomics*. 2011 Mar;5(3):170-191. doi: 10.1186/1479-
409 7364-5-3-170

410 [2] Horváth G, Király P, Tárkányi G, Toke O. Internal motions and exchange processes in
411 human ileal bile acid binding protein as studied by backbone ¹⁵N nuclear magnetic
412 resonance spectroscopy. *Biochemistry*. 2012 Mar 6;51(9):1848-1861. doi:
413 10.1021/bi201588q

414 [3] Lin MC, Kramer W, Wilson FA. Identification of cytosolic and microsomal bile acid-binding
415 proteins in rat ileal enterocytes. *J Biol Chem*. 1990 Sep 5;265(25):14986-14995. PMID:
416 2394709

417 [4] Alrefai WA, Gill RK. Bile acid transporters: structure, function, regulation and
418 pathophysiological implications. *Pharm Res*. 2007 Oct;24(10):1803-1823. doi:
419 10.1007/s11095-007-9289-1

420 [5] Veerkamp JH, Maatman RG. Cytoplasmic fatty acid-binding proteins: their structure and
421 genes. *Prog Lipid Res*. 1995;34(1):17-52. doi: 10.1016/0163-7827(94)00005-7

422 [6] Sessler RJ, Noy N. A ligand-activated nuclear localization signal in cellular retinoic acid
423 binding protein-II. *Mol Cell*. 2005 Apr 29;18(3):343-353. doi: 10.1016/j.molcel.2005.03.026

424 [7] Ayers SD, Nedrow KL, Gillilan RE, Noy N. Continuous nucleocytoplasmic shuttling
425 underlies transcriptional activation of PPARgamma by FABP4. *Biochemistry*. 2007 Jun
426 12;46(23):6744-6752. doi: 10.1021/bi700047a

427 [8] Nakahara M, Furuya N, Takagaki K, Sugaya T, Hirota K, Fukamizu A, et al. Ileal bile acid-
428 binding protein, functionally associated with the farnesoid X receptor or the ileal bile acid

429 transporter, regulates bile acid activity in the small intestine. *J Biol Chem.* 2005 Dec
430 23;280(51):42283-42289. doi: 10.1074/jbc.M507454200

431 [9] Tochtrup GP, Richter K, Tang C, Toner JJ, Covey DF, Cistola DP. Energetics by NMR:
432 site-specific binding in a positively cooperative system. *Proc Natl Acad Sc U S A.* 2002 Feb
433 99(4):1847-1852. doi: 10.1073/pnas.012379199

434 [10] Eliseo T, Ragona L, Catalano M, Assfalg M, Paci M, Zetta L, et al. Structural and
435 dynamic determinants of ligand binding in the ternary complex of chicken liver bile acid
436 binding protein with two bile salts revealed by NMR. *Biochemistry.* 2007 Nov
437 6;46(44):12557-12567. doi: 10.1021/bi7013085

438 [11] Turpin ER, Fang HJ, Thomas NR, Hirst JD. Cooperativity and site selectivity in the ileal
439 lipid binding protein. *Biochemistry.* 2013 Jul 9;52(27):4723-4733. doi: 10.1021/bi400192w

440 [12] Kouvatsos N, Thurston V, Ball K, Oldham NJ, Thomas NR, Searle MS. Bile acid
441 interactions with rabbit ileal lipid binding protein and an engineered helixless variant reveal
442 novel ligand binding properties of a versatile beta-clam shell protein scaffold. *J Mol Biol.* 2007
443 Aug 31;371(5):1365-1377. doi: 10.1016/j.jmb.2007.06.024

444 [13] Kurz M, Brachvogel V, Matter H, Stengelin S, Thüring H, Kramer W. Insights into the
445 bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex
446 and its comparison with homologous structures. *Proteins.* 2003 Feb 1;50(2):312-328. doi:
447 10.1002/prot.10289

448 [14] Horváth G, Bencsura Á, Simon Á, Tochtrup GP, DeKoster GT, Covey DF, et al.
449 Structural determinants of ligand binding in the ternary complex of human ileal bile acid
450 binding protein with glycocholate and glycochenodeoxycholate obtained from solution NMR.
451 *FEBS J.* 2016 Feb;283(3):541-555. doi: 10.1111/febs.13610

452 [15] Banaszak L, Winter N, Xu Z, Bernlohr DA, Cowan S, Jones TA. Lipid-binding proteins: a
453 family of fatty acid and retinoid transport proteins. *Adv Protein Chem.* 1994;45:89-151. doi:
454 10.1016/S0065-3233(08)60639-7

455 [16] Tochtrop GP, Bruns JL, Tang C, Covey DF, Cistola DP. Steroid ring hydroxylation
456 patterns govern cooperativity in human bile acid binding protein. *Biochemistry*. 2003 Oct
457 14;42(40):11561-11567. doi: 10.1021/bi0346502

458 [17] Toke O, Monsey JD, DeKoster GT, Tochtrop GP, Tang C, Cistola DP. Determinants of
459 cooperativity and site selectivity in human ileal bile acid binding protein. *Biochemistry*. 2006
460 Jan 24;45(3):727-737. doi: 10.1021/bi051781p

461 [18] Tochtrop GP, DeKoster GT, Covey DF, Cistola DP. A single hydroxyl group governs
462 ligand site selectivity in human ileal bile acid binding protein. *J Am Chem Soc*. 2004 Sep
463 8;126(35):11024-11029. doi: 10.1021/ja047589c

464 [19] Horváth G, Egyed O, Toke O. Temperature dependence of backbone dynamics in
465 human ileal bile acid-binding protein: implications for the mechanism of ligand binding.
466 *Biochemistry*. 2014 Aug 12;53(31):5186-5198. doi: 10.1021/bi500553f

467 [20] Hodsdon ME, Cistola DP. Discrete backbone disorder in the nuclear magnetic
468 resonance structure of apo intestinal fatty acid-binding protein: implications for the
469 mechanism of ligand entry. *Biochemistry*. 1997 Feb 11;36(6):1450-1460, doi:
470 10.1021/bi961890r

471 [21] Jenkins AE, Hockenberry JA, Nguyen T, Bernlohr DA. Testing of the portal hypothesis:
472 analysis of a V32G, F57G, K58G mutant of the fatty acid binding protein of the murine
473 adipocyte. *Biochemistry*. 2002 Feb 12;41(6):2022-2027. doi: 10.1021/bi015769i

474 [22] Ragona L, Pagano K, Tomaselli S, Favretto F, Ceccon A, Zanzoni S, et al. The role of
475 dynamics in modulating ligand exchange in intracellular lipid binding proteins. *Biochim
476 Biophys Acta*. 2014 Jul;1844(7):1268–1278. doi: 10.1016/j.bbapap.2014.04.011.

477 [23] Cogliati C, Ragona L, D'Onofrio M, Günther U, Whittaker S, Ludwig C, et al. Site-
478 specific investigation of the steady-state kinetics and dynamics of the multistep binding of
479 bile acid molecules to a lipid carrier protein. *Chemistry*. 2010 Oct 4;16(37):11300-11310. doi:
480 10.1002/chem.201000498

481 [24] Horváth G, Biczók L, Majer Z, Kovács M, Micsonai A, Kardos J, et al. Structural insight
482 into a partially unfolded state preceding aggregation in an intracellular lipid-binding protein.
483 FEBS J. 2017 Nov;284(21):3637-3661. doi: 10.1111/febs.14264

484 [25] Ángyán AF, Gáspári Z. Ensemble-based interpretations of NMR structural data to
485 describe protein internal dynamics. Molecules. 2013 Aug 30;18(9):10548-10567. doi:
486 10.3390/molecules180910548

487 [26] Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS:
488 fast, flexible and free. J Comput Chem. 2005 Dec;26(16):1701-1718. doi: 10.1002/jcc.20291

489 [27] Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, et al. GROMACS 4.5: a
490 high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics.
491 2013 Apr 1;29(7):845-854. doi: 10.1093/bioinformatics/btt055

492 [28] Fizil Á, Gáspári Z, Barna T, Marx F, Batta G. "Invisible" conformers of an antifungal
493 disulfide protein revealed by constrained cold and heat unfolding, CEST-NMR experiments
494 and molecular dynamics calculations. Chemistry. 2015 Mar 23;21(13):5136-5144. doi:
495 10.1002/chem.201404879

496 [29] Richter B, Gsponer J, Várnai P, Salvatella X, Vendruscolo M. The MUMO (minimal
497 under-restraining minimal over-restraining) method for the determination of native state
498 ensembles of proteins. J Biomol NMR. 2007 Feb;37(2):117-135. doi: 10.1007/s10858-006-
499 9117-7

500 [30] Kony D, Damm W, Stoll S, Van Gunsteren WF. An improved OPLS-AA force field for
501 carbohydrates. J Comput Chem. 2002 Nov 30;23(15):1416-1429. doi: 10.1002/jcc.10139

502 [31] Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of
503 simple potential functions for simulating liquid water. J Chem Phys. 1983 Apr;79(2):926-935.
504 doi: 10.1063/1.445869

505 [32] Ángyán AF, Szappanos B, Perczel A, Gáspári Z. CoNSEnsX: an ensemble view of
506 protein structures and NMR-derived experimental data. BMC Struct Biol. 2010 Oct 29;10:39.
507 doi: 10.1186/1472-6807-10-39

508 [33] Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A Linear Constraint Solver
509 for Molecular Simulations. *J Comput Chem.* 07 Dec 1998;18(12):1463-1472. doi:
510 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

511 [34] Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Squyres JM, et al.
512 Open MPI: Goals, Concept and Design of a Next Generation MPI Implementation. In:
513 Kranzlmüller D, Kacsuk P, Dongarra J, editors. *Recent Advances in Parallel Virtual Machine*
514 and Message Passing Interface. *EuroPVM/MPI Lecture Notes in Computer Science*, vol
515 3241. pp 97-104; 2004; Springer, Berlin, Heidelberg, Germany. doi: 10.1007/978-3-540-
516 30218-6_19

517 [35] Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, et al.
518 Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure
519 for protein-ligand complexes. *J Med Chem.* 2006 Oct 19;49(21):6177-6196. doi:
520 10.1021/jm051256o

521 [36] Dudola D, Kovács B, Gáspári Z. CoNSEnsX+ Webserver for the Analysis of Protein
522 Structural Ensembles Reflecting Experimentally Determined Internal Dynamics. *J Chem Inf*
523 *Model.* 2017 Aug 28;57(8):1728-1734. doi: 10.1021/acs.jcim.7b00066

524 [37] Bakan A, Meireles LM, Bahar I. ProDy: Protein Dynamics Inferred from Theory and
525 Experiments. *Bioinformatics.* 2011 Jun 1;27(11):1575–1577. doi:
526 10.1093/bioinformatics/btr168

527 [38] Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. *J Mol Graph.* 1996
528 Feb;14(1):33-38. doi: 10.1016/0263-7855(96)00018-5

529 [39] Han B, Liu Y, Ginzinger SW, Wishart DS. SHIFTX2: significantly improved protein
530 chemical shift prediction. *J Biomol NMR.* 2011 May;50(1):43-57. doi: 10.1007/s10858-011-
531 9478-4

532 [40] Xu D, Tsai CJ, Nussinov R. Hydrogen bonds and salt bridges across protein-protein
533 interfaces. *Protein Eng Des Sel.* 1997 Sep;10(9):999-1012. doi: 10.1093/protein/10.9.999

534 [41] Baker EN, Hubbard RE. Hydrogen bonding in globular proteins. *Prog Biophys Mol Biol.*
535 1984;44(2):97-179. doi: 10.1016/0079-6107(84)90007-5

536 [42] Cai J, Lücke C, Chen Z, Qiao Y, Klimtchuk E, Hamilton JA. Solution structure and
537 backbone dynamics of human liver fatty acid binding protein: fatty acid binding revisited.
538 Biophys J. 2012 Jun 6;102(11):2585–2594. doi: 10.1016/j.bpj.2012.04.039
539 [43] Lücke C, Zhang F, Hamilton JA, Sacchettini JC, Rüterjans H. Solution structure of ileal
540 lipid binding protein in complex with glycocholate. Eur J Biochem. 2000 May;267(10):2929–
541 2938. doi: 10.1046/j.1432-1327.2000.01307.x
542 [44] Czajlik A, Kovács B, Permi P, Gáspári Z. Fine-tuning the extent and dynamics of binding
543 cleft opening as a potential general regulatory mechanism in parvulin-type peptidyl prolyl
544 isomerases. Sci Rep. 2017 Mar 16;7:44504. doi: 10.1038/srep44504
545 [45] Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al.
546 UCSF Chimera--a visualization system for exploratory research and analysis. J Comput
547 Chem. 2004 Oct;25(13):1605-1612. doi: 10.1002/jcc.20084
548 [46] Andersen CA, Palmer AG, Brunak S, Rost B. Continuum secondary structure captures
549 protein flexibility. Structure. 2002 Feb;10(2):175-184. doi: 10.1016/S0969-2126(02)00700-1

550 **Supporting information**

551 **S1 Fig. Experimental and back-calculated S2 order parameters parameters of different**
552 **ensembles.**
553 (A) Apo MUMO ensembles by amino acids
554 (B) Apo MUMO ensembles as correlation plots
555 (C) Holo MUMO ensembles by amino acids
556 (D) Holo MUMO ensembles as correlation plots
557 (E) Unrestrained ensembles by amino acids
558 (F) Unrestrained ensembles as correlation plots
559 The PDB ensembles are depicted in all panels as references. All the plots were generated
560 by the CoNSEnsX webserver.
561 **S2 Fig. $\text{C}\alpha$ atom distance correlations.**

562 (A) C α atom distance correlation matrix with PC1 (above diagonal) and PC2 (below
563 diagonal) for each amino acid pair. Helical regions are labeled with beige rectangles, β
564 strand regions with gray rectangles
565 (B) The highest (red, brown lines) and lowest (blue, gray lines) distances depicted on the
566 structure correalted with PC1
567 (C) The lowest (blue, gray lines) distances depicted on the structure correalted with PC2.

568 **S3 Fig. Investigation of the docked frames.**

569 (A) Tanimoto distances of the simulation frames and the docked frames based on ligand
570 contact data (see text)
571 (B) Comparison of the average of the number of ligand heavy atoms (vertical axis) being
572 closer, than 4 \AA to each amino acid (horizontal axis) of CHO (blue all frames, black docked
573 frames).
574 (C). Comparison of the average of the number of ligand heavy atoms (vertical axis) being
575 closer, than 4 \AA to each amino acid (horizontal axis) of GCH: green simulated frames, red
576 docked frames.

577 Correlations are listed on the top.

578 **S4 Fig. Histograms of PC2 (Type II motion) of the MUMO ensembles along PC1 and
579 PC2.**

580 **S1 Table: The number of frames in each simulation, where the respective hydrogen
581 bonds are present.**

582 **S1 Movie. The movement along the first PCA mode PC1.**

583 **S2 Movie. The movement along the second PCA mode PC2.**

584 **S1 File. Topology file for the apo 283 MUMO 6 ns simulation.**

585 **S2 File. Topology file for the apo 291 MUMO 6 ns simulation.**

586 **S3 File. Topology file for the apo 298 MUMO 6 ns simulation.**

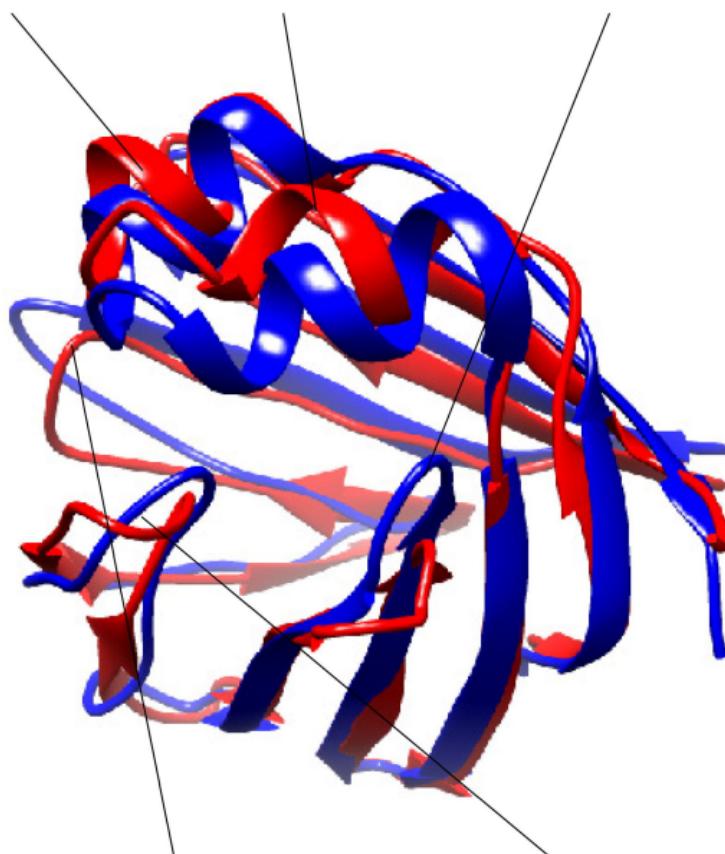
587 **S4 File. Topology file for the apo 313 MUMO 6 ns simulation.**

588 **S5 File. Topology file for the holo 283 MUMO 6 ns simulation.**

589 **S6 File. Topology file for the holo 291 MUMO 6 ns simulation.**

590 **S7 File. Topology file for the holo 298 MUMO 6 ns simulation.**

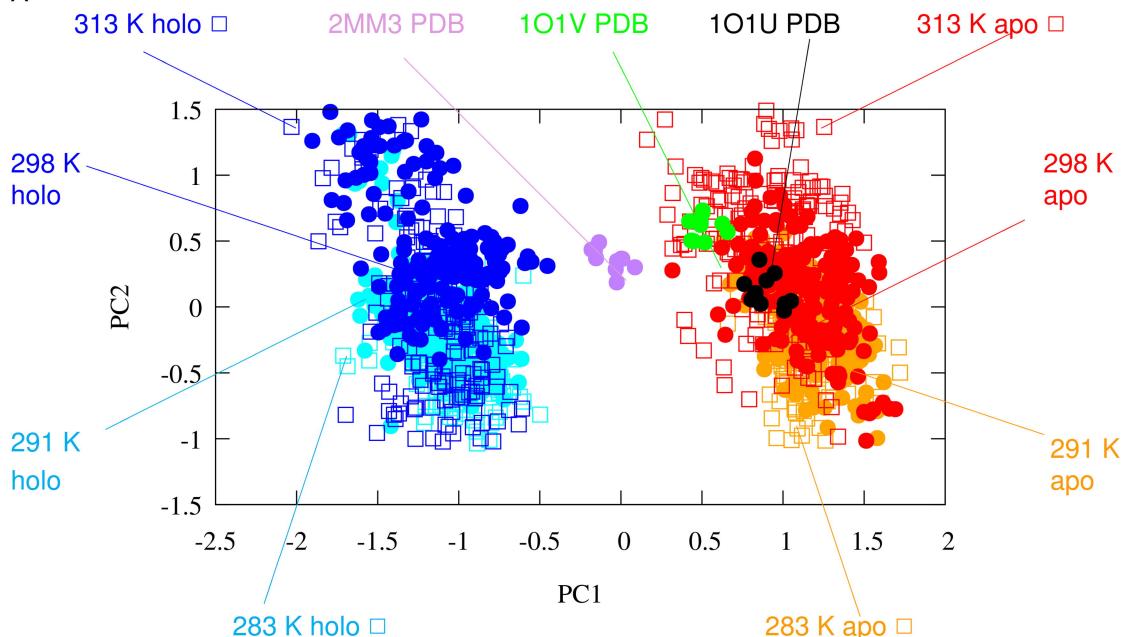
591 **S8 File. Topology file for the holo 313 MUMO 6 ns simulation.**

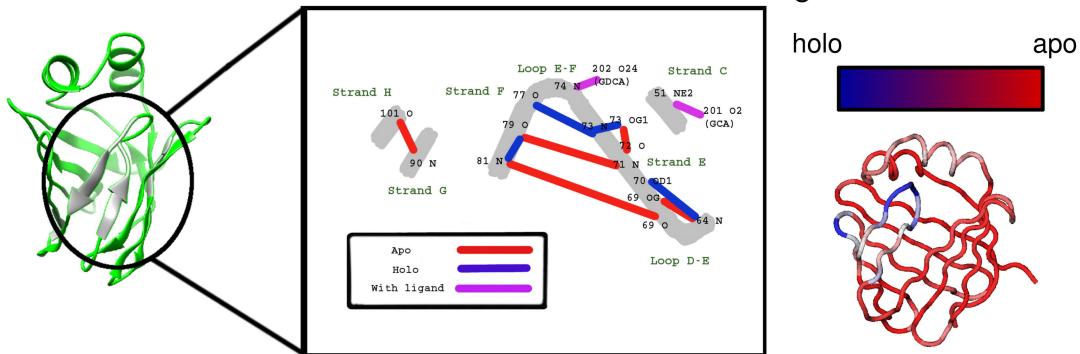

592 **S1 Appendix. Main features of protein-ligand interactions are similar in the simulated**

593 **and docked structures.**

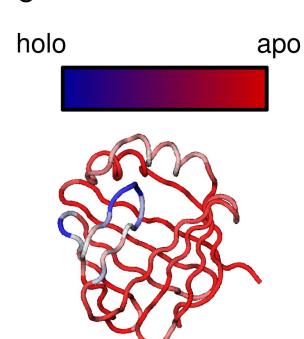
Helix I

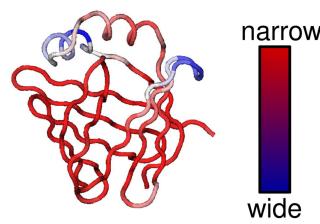
Helix II

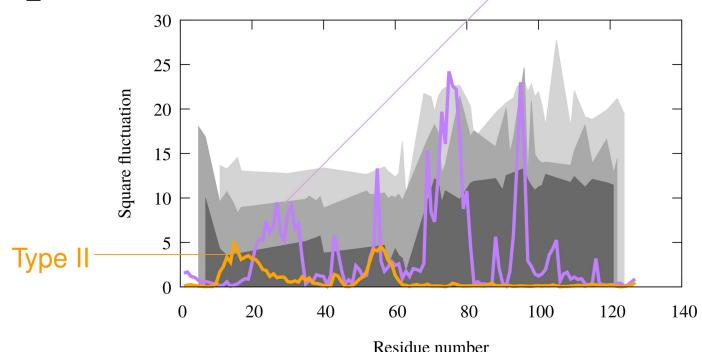

C-D turn

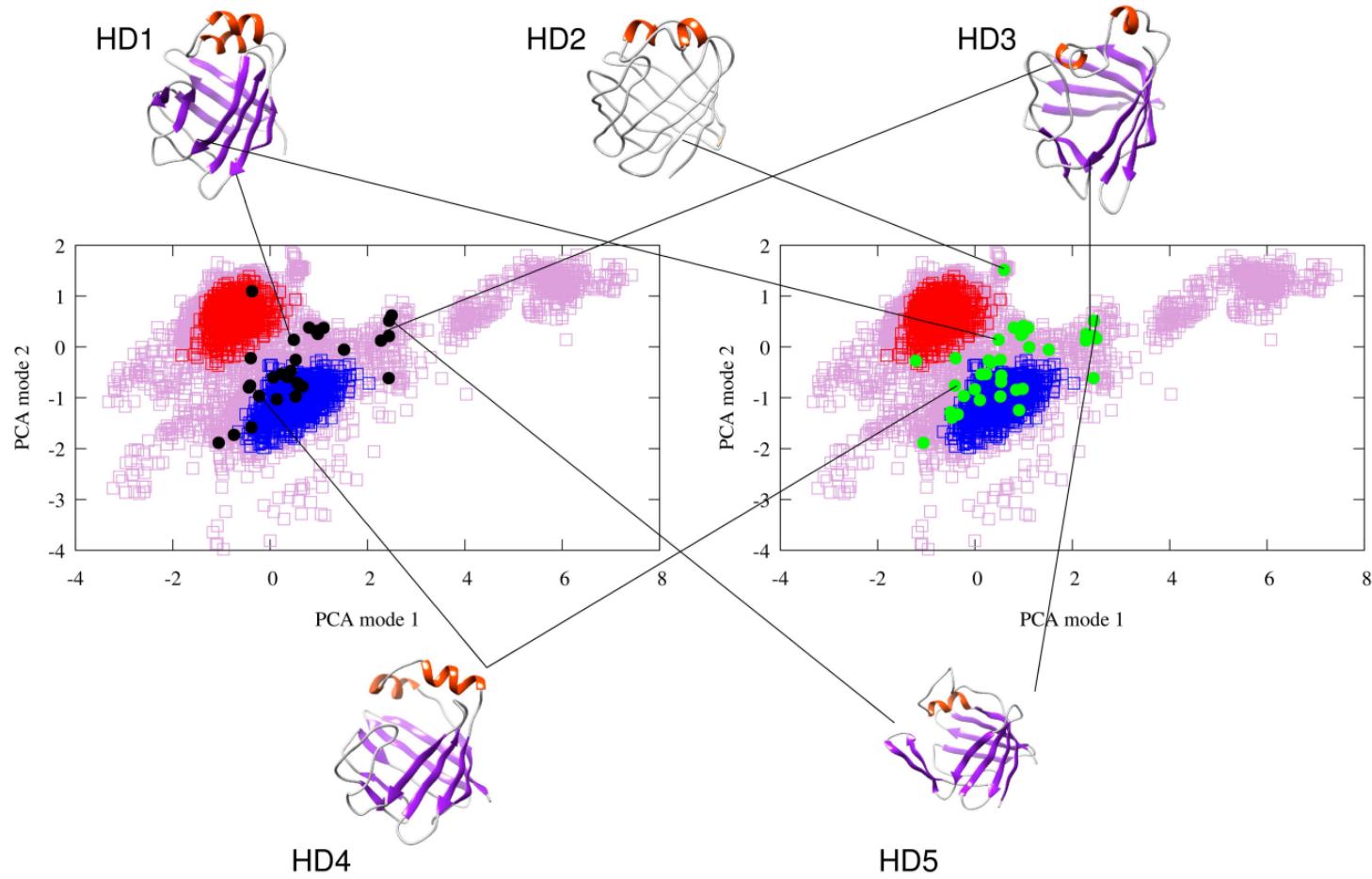

G-H region

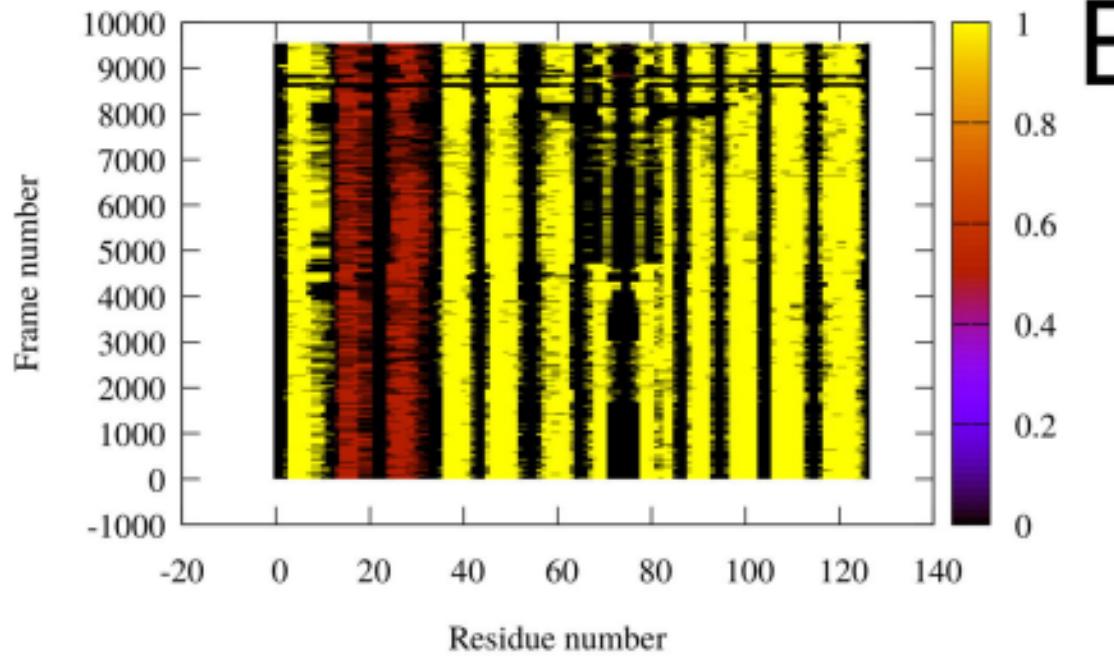
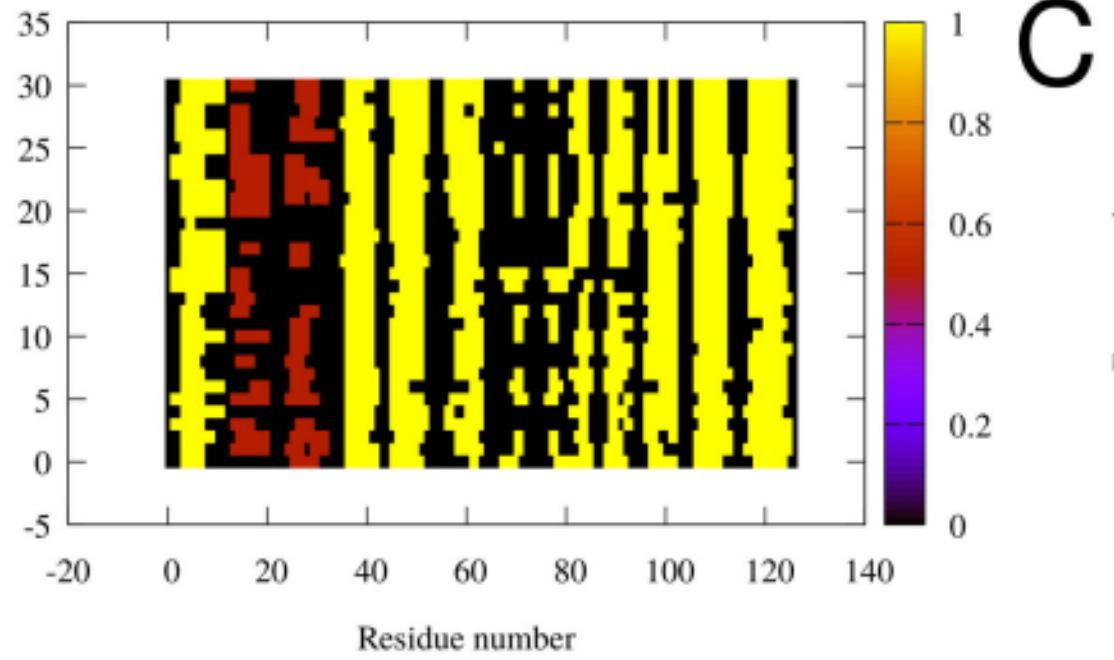
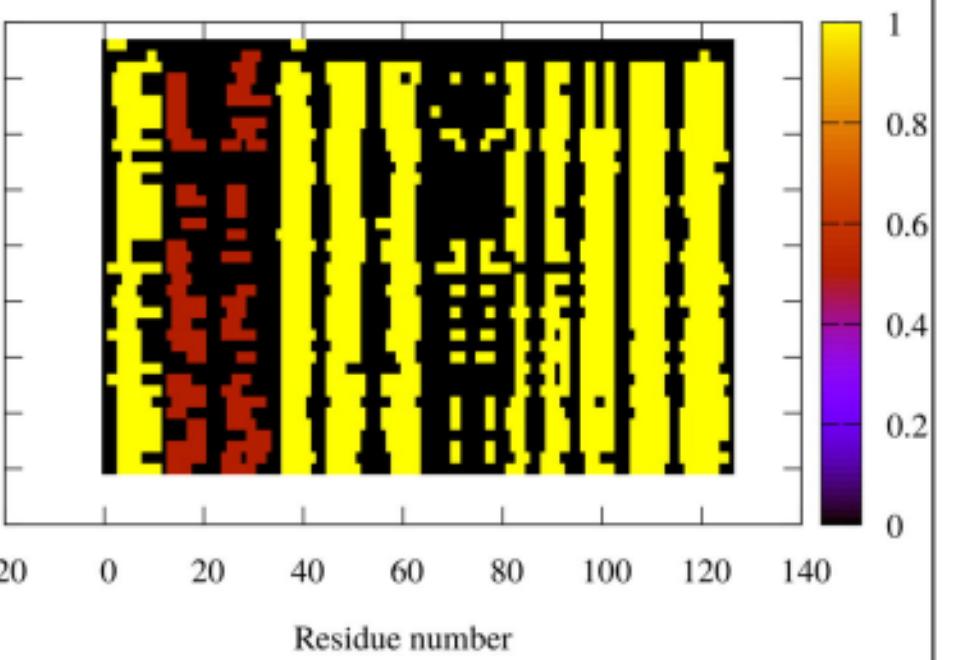
E-F region

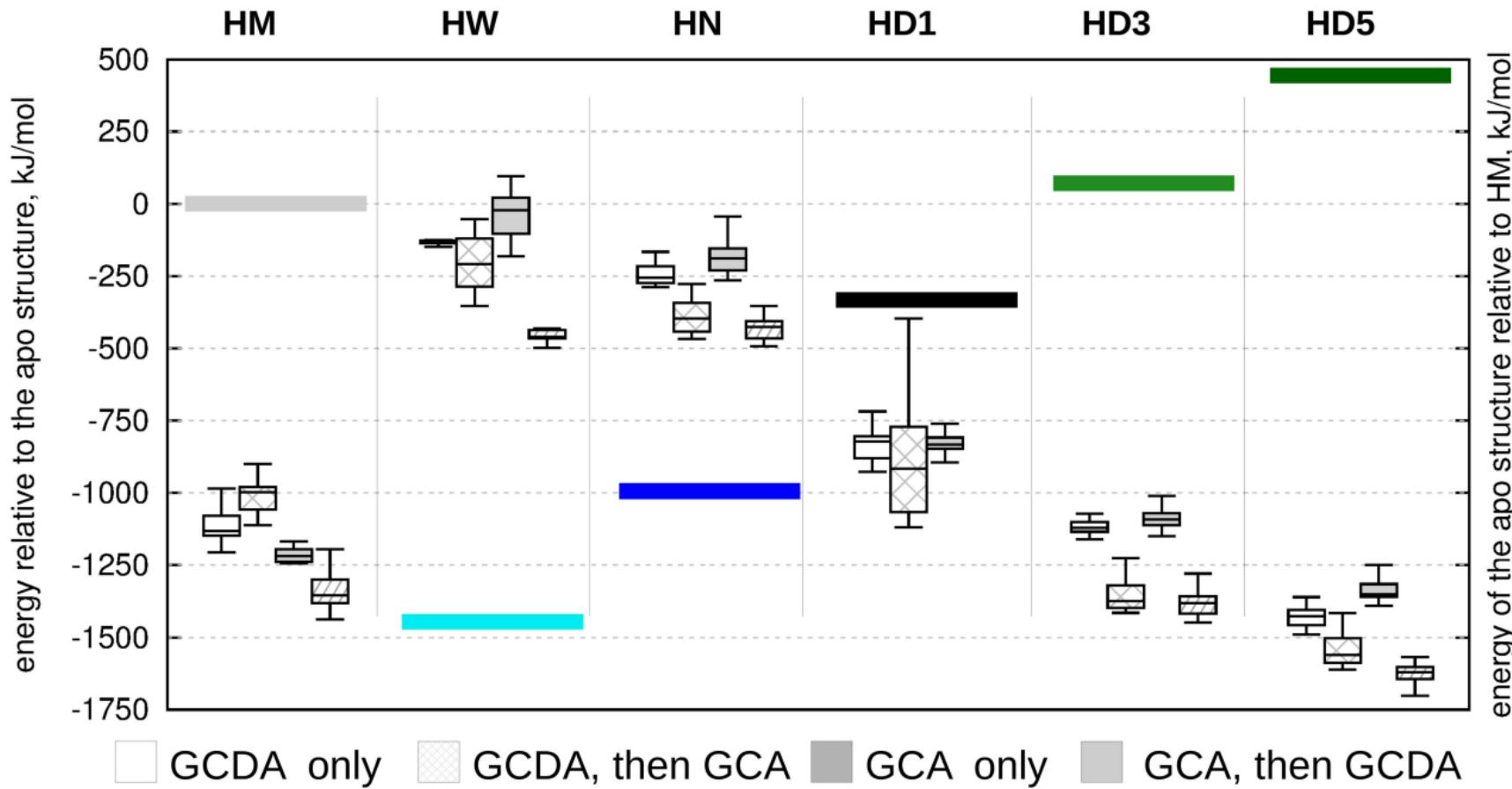

A


B


C






D



E

A**B****C**

