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Abstract

RNA sequencing (RNA-seq) is a complementary approach for Mendelian disease diagnosis for patients
in whom exome-sequencing is not informative. For both rare neuromuscular and mitochondrial disor-
ders, its application has improved diagnostic rates. However, the generalizability of this approach to
diverse Mendelian diseases has yet to be evaluated. We sequenced whole blood RNA from 56 cases
with undiagnosed rare diseases spanning 11 diverse disease categories to evaluate the general application
of RNA-seq to Mendelian disease diagnosis. We developed a robust approach to compare rare disease
cases to existing large sets of RNA-seq controls (N=1,594 external and N=31 family-based controls) and
demonstrated the substantial impacts of gene and variant filtering strategies on disease gene identification
when combined with RNA-seq. Across our cohort, we observed that RNA-seq yields a 8.5% diagnostic
rate. These diagnoses included diseases where blood would not intuitively reflect evidence of disease. We
identified RARS2 as an under-expression outlier containing compound heterozygous pathogenic variants
for an individual exhibiting profound global developmental delay, seizures, microcephaly, hypotonia, and
progressive scoliosis. We also identified a new splicing junction in KCTD7 for an individual with global
developmental delay, loss of milestones, tremors and seizures. Our study provides a broad evaluation of
blood RNA-seq for the diagnosis of rare disease.

Main

It is estimated that 350 million individuals worldwide suffer from rare diseases, which are for the most
part caused by a mutation in a single gene [1-3]. Consequently, rare disease, when considered collectively,
poses a major disease burden. The current overall molecular diagnostic rate in the clinical genetics setting
is estimated at 50% [4]. Whole exome sequencing (WES) is among the most successful approaches for
identifying causal genetic factors in rare disease [5-7]. The strategy consists in identifying rare (minor
allelic frequency (MAF) < 107%), de novo or inherited variants with deleterious impact. For patients in
whom exome-sequencing is not informative, RNA-seq has shown diagnostic utility in specific tissues and
diseases [8-10]. This includes the application of RNA-seq on muscle biopsies in patients with genetically
undiagnosed rare muscle disorders [8], and RNA-seq on cultured fibroblasts from patients with mitochon-
drial disorders [9]. RNA-seq of tissues is a very powerful strategy when such tissues are obtained as part
of standard clinical care or are readily accessible. In many, if not most cases, biopsies are not performed
for clinical care, and the tissues are difficult to access.

To assess RNA-seq from blood as general diagnostic tool, we sought to evaluate it for rare diseases of
different pathophysiologies. We obtained RNA sequencing data from samples from 87 individuals, 56
affected by rare diseases and 31 unaffected family members (Fig. S1, Table S1). In total, 89.4% of
patients were exome-negative. Patients represented 47 different diseases and were broadly classified into
11 distinct disease categories, with neurology, hematology and ophthalmology as the most frequent (Fig.
1A, Table S2). We integrated these data with RNA-seq data from healthy individuals from the Depres-
sion Genes and Network (DGN) cohort (N=909) [11], the Prospective Investigation of the Vasculature in
Uppsala Seniors (PIVUS) project (N=65) [12] and the Genotype-Tissue Expression consortium (GTEx
version 7) (N=620) cohorts [13] (Table S3).

Results
Blood expression in known disease genes

We first evaluated the extent that whole blood RNA-seq captured gene expression of known rare disease
genes in each major disease category. We observed that the majority of known rare disease genes were
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expressed over 0.1 transcripts per million (TPM) (Fig. 1B, Table S4). When broadly considering disease
genes from the Online Mendelian Inheritance in Man (OMIM) database [14], we observed 70.6% were
expressed in blood and 50% of corresponding gene splicing junctions were covered with at least 5 reads
in 20% of samples (Fig. S2). Notably, for a panel of genes known to be involved in neurological disorders
(N=284), we observed that 72% were expressed. Using scores from ExAC [15], we further observed that
genes expressed across multiple tissues were less tolerant to missense or loss-of-function (LoF) muta-
tions (p-value < 2 x 1071%), Fig. 1C, Table S3). This suggests that mutations that have more severe
consequences occur more often in genes for which expression is not restricted to one tissue. Indeed, we
observed that 66% of LoF-intolerant genes (probability of being intolerant to LoF mutations (pLI) > 0.9)
are expressed in blood samples (average TPM > 1)(Fig. 1D).
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Figure 1: Using blood RNA-seq to study rare disease genes. A: Disease categories of sequenced
affected patients. The majority of cases belong to neurology (n=26), hematology (n=7) and opthalmology
(n=6) categories. B: Percentage of disease genes (from curated lists) expressed in blood. We used the
median TPM across 909 DGN samples, 65 PIVUS samples and our 87 samples. We used disease categories
that were the most represented in our dataset, in addition to OMIM genes. C: Tolerance to different
types of mutations (from ExAC) in function of the expression status in a single versus multiple tissues.
Genes that are expressed in multiple tissues tend to be more sensitive to missense and LoF mutations.
D: Number of LoF intolerant genes stratified by expression level in blood. We considered genes with pLI
score > 0.9 as LoF intolerant.

Gene expression outliers enriched for loss-of-function intolerance

Outlier (or aberrant) expression of a gene in a sample when comparing to all tested samples has previously
been shown to help identify large-effect rare variants and rare disease genes in blood [16-18]. We assessed
the differences between outlier genes in cases versus controls after correcting the data for batch effects (see
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Methods, Fig. S3, Fig. S4). We observed an enrichment of case outliers in genes more sensitive to LoF
mutations (Fig. 2A, red, Fig. S5). This enrichment is more pronounced for under-expression outliers,
which also corroborates the observations that new LoF mutations are more likely to lower expression
level through nonsense mediated decay (NMD) [19-21]. As we increased the number of controls, the
enrichment became stronger, demonstrating the importance of large control datasets to detecting outliers
in LoF-intolerant genes (Fig. 2B, Fig. S6). We did not observe the same level of enrichment for mis-
sense sensitive genes and there was no enrichment of outliers for genes depleted in synonymous mutations.

Gene expression outliers in rare disease cases

We observed an average of 350 outliers per sample (|Z-score| > 2, Fig. 2C, Fig. S7). At more extreme
thresholds (|Z-score| > 5), there are 1.2 outlier genes per sample. We tested different variant and gene-
level filters that could aid in further narrowing down the lists of candidate genes (Fig. 2D). We filtered
for genes that were LoF intolerant (Filter 1; pLI > 0.9), likely to have a regulatory variant impacting gene
expression (Filter 2: RIVER score > 0.85); showed allele-specific expression (ASE) (Filter 3); linked to
the phenotype (Filter 4: Human Phenotype Ontology [22] (HPO) match), with a rare variant with MAF
< 0.01% within 10kb upstream of the gene (Filter 5); and with a rare variant that was likely deleterious
(Filter 7; CADD score > 10). Other filters tested were combinations of these sets. We observed that when
restricting to under-expression outlier genes with HPO matches and a deleterious rare variant nearby, we
were able to reduce the candidate genes list to less than 10% of the initial set of outliers with 10% of
cases having at least one candidate gene (Filter 11; Fig. S8A).


https://doi.org/10.1101/408492
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/408492; this version posted September 4, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

A Loss of function Missense Synonymous
0.05- + + + e | T e
8 0.00 See - o
o
o
9 -o00s
-0.104
Qo"\&%@»@\/qwb& PO Sare? TP SRR Pl NP @A S RhodeR
s s
3% Y .
TYEATS SO Percentile
Number of Controls
B 0505707050555,
k] 7
5o}
2" #%%%% %ﬁf’%ﬁ
o
le} LI
—! 0.00 — —t - :
L 02 Percentile 05 1
1) pLl=0.9
C D 1o 21 RIVER score = 0.85
w o+ o . 3) ASE
2000 wkk I Direction » 4) HPO match
) 0] 5) Rare variant with 10kb
E Under Expression c 6)1+5
§ 500 *4 E Over Expression 8’ 0.751 l é % I gADD score 210
- +
& e 2 10)3+5
o I 5 11)4+7
.29 1001 . o 12)1+2+7
= o | w 0.50] 13)2+4+7
> . o L
o * . c —
5 E 2
S p
o 10 8 o0.25] %
£ H o .
S : o T . :
=z ° ° . T * .o
] . 000 - Bl
3

4 5 1 2 4 5 6 7 8 9 10 11 12 18
Z-score Filter

Figure 2: Expression outliers in rare disease samples. A: Enrichment for case or control outlier
genes in intolerance to LoF (red), missense (blue) and synonymous (yellow) mutations at different per-
centiles of gene expression. B: Impact of the number of controls on enrichment in LoF model (10,000
permutations). Case enrichment increases as more controls are added. C: Impact of Z-score thresholds
on number of outliers. Vertical dashed lines indicate mean Z-score for n=1 and n=5 percentiles across all
genes used in analysis (N = 14,764). Significance level: **** p-value< 1 x 10~%; *** p-value < 1 x 10~3;
**k povalue < 1 x 1072; * p-value < 5 x 10~2. D: Proportion of under-expression outlier genes remaining
after filters. Adding genetic information (rare variant within 10kb of the gene body) allows to filter down
to 50% of the original set of outliers. Keeping only genes for which HPO information of the affected
individual match helps narrow down to less than 10% of candidates.
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Alternative splicing outliers in rare disease cases

Outlier splicing is also an important contributor to Mendelian disease [8,9,23-26]. To evaluate splicing
events across rare disease samples, we corrected junction data for batch effects (Fig. S9) and obtained
Z-scores in all samples (Fig. 3A, see Methods). On average, we detected 100 splicing outlier genes for
each sample at |Z-score| > 2 (Fig. 3B). We observed that the number of splicing outliers was influenced
by the number of junction in each gene (Fig. S10), was higher in cases (Fig. S11) and, unlike expression
outliers, was not enriched in genes sensitive to LoF or missense mutation (Fig. S12). From both exome
and genome data alone, we observed that the number of candidate rare splicing variants was large but
could be significantly reduced when combined with outlier splicing information from RNA-seq (Fig. 3C).
From our pool of candidate genes with splicing outliers, we looked at the proportion remaining after
different filters (Fig. 3D). We observed that limiting to genes relevant to the phenotype (Filter 2) and
with a deleterious rare variant within 20 bp of the splicing junction (Filter 5), we were able to narrow
down to only 0.05% of potential candidate genes (Filter 7). Overall, 15% of cases had at least one gene
matching these criteria (Fig. S8B). Furthermore, genes selected after filtering carried more deleterious
rare variants than unfiltered outliers suggesting an enrichment of disease-genes with compound heterozy-
gous mutations (Fig. 3E).
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Figure 3: Splicing outlier detection. A: Splicing outlier definition. Gene model is in green, rectangles
represent 3 exons. In this model, we show junction information for one donor (D) and two acceptors
(A1 and A2). For each sample for this gene we have coverage information for the two existing splicing
junctions (D-A1l and D-A2). We defined the proportion of one splice junction as the number of reads
overlapping this junction divided by the total number of reads spanning all junction from a common
donor (or acceptor). We calculated the proportion R of D-A1 through the equation on the right side of
the figure. In the controls, no perturbation was observed in R. In case of a variant impacting splicing (red
star), R in the affected sample will be very different from the other samples. B: Impact of the Z-score
threshold on splicing outlier discovery. Number of genes with at least one splicing outlier at different Z-
score thresholds. C: Number of rare variants in each sample, in total, nearby junction and associated with
a splicing outlier. Rare variants were defined as variants with MAF < 0.1%. D: Impact of different filters
on splicing outlier discoveries. Combining gene and variant annotation with splicing outliers significantly
reduced number of candidates. E: We observed a significant increase (Wilcoxon test, p-value 7.1 x 10~ 3)
in the median number of rare variants with CADD score > 10 in the gene when filtering outliers with a
rare variant within 20 bp of the junction and relevant to the disease phenotype (HPO match).
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Allele-specific expression outliers in rare disease cases

RNA-seq provides the ability to measure allele-specific expression. ASE can inform the presence of a
large-effect heterozygous regulatory, splicing or nonsense variant, or epi-mutation aiding the identifica-
tion of candidate rare disease genes and variants [9,27-29]. Out of all possible heterozygous sites (~ 10°
to 10° per sample for exome and genome, respectively), 10* variants had sufficient coverage for analysis
(Fig. 4A). Independent of sequencing technology, we observed 103 sites displaying allelic imbalance with
an allelic ratio < 0.35 or > 0.65. To highlight ASE events that might be disease-related, we focused
on the subset of genes outlier ASE sites within case individuals when compared to all other rare dis-
ease individuals and GTEx samples (Fig. 4A). We found an average of 10 ASE outliers per individual.
We next assessed the relevance of ASE outliers to case-specific phenotype-related genes as curated by
Amelie. We observed that ASE outliers have significantly more genes with a non-zero Amelie score than
random (Wilcoxon test p-value=0.015; Figure 4B). We also tested whether ASE would allow us to identify
deleterious variants that were over-represented as this may be a marker for compound events or haploin-
sufficiency. Here, we focused on rare deleterious variants where the alternative allele is more abundant
than the reference allele (Fig. 4C). In total, 25 rare variants show allelic imbalance biased toward the
deleterious alternative allele (20 splice and 5 stop-gain). Among those, one variant is in EFHD2, a gene
coding for Ca?t adapter protein involved in B-cell apoptosis, NF-kB mediated inflammatory response,
and immune cell activation and motility [30-33]. The carrier of this event was diagnosed with idiopathic
cardiomyopathy, where accompanying symptoms (elevated inflammatory markers, Raynaud’s disease,
and alopecia) are indicative of auto-immune issues.
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Figure 4: Allele specific expression across rare disease samples. A: Prevalence of ASE events.
Results are displayed separately for exome and genome sequencing. B: Difference in proportion of non-
zero Amelie scores for genes with outlier ASE in comparison to random genes (100 random gene sets
for each sample). There are significantly more genes with non-zero Amelie scores in the non-random set
(Wilcoxon rank test) indicating that the outlier ASE genes are influencing case-specific phenotype genes.
C: Rare deleterious variants are biased towards the alternative allele across all samples. A stop-gain
variant was highly expressed in EFHD2 for one sample where there were matching symptoms.

Diagnostic rate using blood RNA-sequencing

By integrating expression, splicing and ASE signals, we were able to identify and validate the causal
gene in 4/47 independent cases (8.5%, 2 expression outliers, 2 splicing outliers), identify candidate genes
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potentially linked to the disease phenotype (gene matching HPO terms for the symptoms of the proband)
in 9 cases (19.1%) and suggest novel genes not previously linked to the phenotype for 8 cases (17%, gene
not matching HPO terms of the symptoms) (Fig. S14, Table S1). We did not find relevant candidate
genes for 26 cases (55%). Notably, candidates were identified for three neurological cases where blood is
not assumed to be a representative tissue.

Expression outliers identify RARS2 casual gene

To represent how RNA-seq and subsequent filtering can enable disease gene discovery, we focused on
one previously validated case. In this case, two sisters exhibited profound global developmental de-
lay, neonatal-onset seizures, acquired microcephaly, hypotonia, G-/J-tube dependence, and progressive
scoliosis and had undergone a diagnostic odyssey including comprehensive metabolic evaluation, storage
disorder enzymology, and genetic testing. Exome sequencing identified two heterozygous pathogenic vari-
ants in the RARS2 gene present in trans in both sisters: ¢.419T>G (p.F140C) and c.1612delA (p.T538fs).
Pathogenic variants in RARS2 had previously been associated with pontocerebellar hypoplasia type 6
(PCHS6), a progressive neurodegenerative disorder reported in approximately 30 individuals in the lit-
erature to date [34-36]. The c.1612delA variant had never been reported in the literature in a patient
with PCH6. RNA-seq identified RARS2 as an under-expression outlier in one sister (Fig. 5) and with a
Z-score=-1.55 in the other sister (Fig. S15). In the outlier sister, we were able to filter down from 1,724
candidate outlier genes to only 5 genes when limiting to those where a deleterious rare variant was within
10 kb of the gene body and had a HPO match. This is compared to 54 genes without any expression
data. Among these five genes, RARS2 was ranked first in terms of expression Z-scores.

11
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Figure 5: Identification of disease gene through expression outlier detection A: Expression
outliers in the RARS2 case. Number of candidate genes obtained throughout different filters using genetic
data, expression outlier data, and phenotypic data. Shape indicates if the causal gene is in the list. After
filtering for expression outliers with a deleterious rare variant within 10 kb of gene body and limiting the
search to genes for which there is a link to phenotype (HPO match), 5 candidate genes were left, with
RARS2 ranked first. B: Sanger sequencing showed c.1612delA and ¢.419T>G in the two affected sisters
(proband marked with *) and their parents. Parents were carriers of one mutation and the two sisters

carried both.
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Splicing outliers identify KCTD7 casual gene

To represent how spicing outliers and subsequent filtering can influence disease gene discovery, we focused
on one previously unsolved case. In this case, a 12 year old Hispanic female presented with developmental
regression after typical development until age 18 months, manifesting with loss of milestones including
head control, and speech. Tremors developed at 21 months; and seizures at 22 months. She also suffered
from occasional myoclonus. She has a 5-year-old brother with onset at 13 months of ataxia, autism,
developmental delay, recurrent febrile seizures, and absent speech. We were able to filter the number of
candidate genes from 2,543 genes to 33 genes, when looking only at genes associated with the phenotypes
(from HPO terms [22]) and containing rare variants withing 20bp of annotated junctions with a CADD
score > 10 [37]. Adding splicing outlier information from RNA-seq data left us with two genes; KCTD7,
containing a non-annotated junction in the affected sample, was the top-ranked (Fig. 6A, left panel).
A synonymous mutation was found responsible for the creation of a new splicing junction in this gene
(p-V152V, Fig. 6B). RT-PCR from RNA extracted from fibroblasts from exons 2-4 regions of the gene
confirmed a difference in fragment size in the probands (Fig. 6C). In addition, this variant exhibited
monoallelic expression towards the reference allele as a consequence of the premature splicing event (Fig.
S16).
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Figure 6: Identification of disease gene through splicing outlier detection A: Splicing outliers
in the KCTD7 case. Number of candidate genes obtained throughout different filters using genetic data,
splicing outlier data, and phenotypic data. Shape indicates if the causal gene is in the list. After filtering
for splicing outliers with a deleterious rare splice variant within 20 bp of a splice junction and limiting
the search to genes for which there is a link to phenotype (HPO match), 2 candidate genes were left, with
KCTD7 ranked first. B: Sashimi plot of the case and 3 controls of the splicing gain region in KCTD?7.
For the case only (red track), we observed a new splicing junction ahead of the annotated one in exon 3.
C: cDNA gel from fibroblast cDNA of exons 2-4 of KCTD?7 for the proband, her affected sibling and three
unaffected controls. Both for the case and her affected brother we observed 2 fragments of different size,
corresponding to the alternative splice products induced by the splice-gain mutation. In control samples,
only one fragment is observed, corresponding to the original transcript.
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Identification of causal disease genes using RINA-seq alone

While many of our cases had genetic data, use of RNA-seq alone can aid in disease gene identification. We
reprocessed a solved case for which we had found an exon-skipping event in a previous study [10]. In this
case, the patient presented with a sporadic form of spinal muscular atrophy. After filtering for splicing
outliers (|Z-score| > 2) and selecting only genes relevant to the symptoms (HPO), only one gene was
left (Fig. S17A), corresponding to ASAH for which we subsequently identified with Sanger sequencing a
splice-loss mutation leading to the creation of a new transcript, skipping exon 6 (Fig. S17B).

Discussion

In summary, the use of whole blood RNA-seq in combination with variants and gene filters was able to
identify the causal gene and variant(s) in 8.5% of cases or to highlight candidates genes linked to the
phenotype in 19% of cases. This performance was demonstrated across a broad range of clinical cases with
diverse clinical findings. Similar to the utility of large databases of control exomes for Mendelian disease
diagnoses, we demonstrated the utility of large control RNA-seq data to identify aberrant expression,
splicing and ASE events in candidate rare disease genes. Furthermore, this work demonstrates the utility
of performing RNA-Seq on peripheral blood, which is a readily available specimen type in clinical practice.
A trade-off needed to be found between strictly filtering the data and losing candidates of interest. We
combined independent features of gene expression (aberrant expression level, splicing, ASE) to available
data (variants, phenotypes) to prioritize genes of interest. It is worth noting that this combination of
information is not expected to lead to the causal gene successfully in the following situations: first, if
the causal gene is not expressed in the analyzed tissue; second, if the effects of the causal variant do
not affect the expression of the gene; and third, if the filters are too strict (causal variant not present
in exome-sequencing data, or gene not previously associated with the phenotype). Therefore, expert
evaluation is still required when prioritizing candidate genes using RNA-seq data. We can expect that
combining information from multiple ”omics” sources will only further improve diagnosis of unsolved rare
disease cases in the future.

Acknowledgments

SBM is supported by NIH grants ROIHG008150 (NoVa) and U01HG009080 (GSPAC). LF was supported
by the by the Stanford Center for Computational, Evolutionary, and Human Genomics Fellowship. CS
is supported by BD2K Training Grant (T32 LM012409). NMF is supported by a National Science Foun-
dation Graduate Research Fellowship. NAT is supported by the Stanford Genome Training Program
(2T32HG000044-21). BL is supported by the Stanford Computational, Evolutionary and Human Ge-
nomics fellowship and the National Key R&D Program of China (2016 YFD0400800). KMB is supported
by a CIHR Foundation grant (FDN-154279). BB is supported by the Stanford Genome Training Program
and Dean’s Postdoctoral Fellowship. CJP is supported by the NIST/JIMB grant 70NANB15H268. Clin-
ical sample collection was supported, in part, by the Care4dRare Canada Consortium funded by Genome
Canada, the Canadian Institutes of Health Research, the Ontario Genomics Institute, Ontario Research
Fund, and Children’s Hospital of Eastern Ontario Foundation. Research reported in this manuscript was
in part supported by the NIH Common Fund, through the Office of Strategic Coordination/Office of
the NIH Director under Award Number U0THGO007708 . The content is solely the responsibility of the
authors and does not necessarily represent the official views of the National Institutes of Health.
Members of the Undiagnosed Diseases Network; David R. Adams; Aaron Aday; Mercedes E. Ale-
jandro; Patrick Allard; Euan A. Ashley; Mahshid S. Azamian; Carlos A. Bacino; Eva Baker; Ashok
Balasubramanyam; Hayk Barseghyan; Gabriel F. Batzli; Alan H. Beggs; Babak Behnam; Hugo J. Bellen;
Jonathan A. Bernstein; Gerard T. Berry; Anna Bican; David P. Bick; Camille L. Birch; Devon Bonner;

15


https://doi.org/10.1101/408492
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/408492; this version posted September 4, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Braden E. Boone; Bret L. Bostwick; Lauren C. Briere; Elly Brokamp; Donna M. Brown; Matthew Brush;
Elizabeth A. Burke; Lindsay C. Burrage; Manish J. Butte; Shan Chen; Gary D. Clark; Terra R. Coak-
ley; Joy D. Cogan; Heather A. Colley; Cynthia M. Cooper; Heidi Cope; William J. Craigen; Precilla
D’Souza; Mariska Davids; Jean M. Davidson; Jyoti G. Dayal; Esteban C. Dell’ Angelica; Shweta U. Dhar;
Katrina M. Dipple; Laurel A. Donnell-Fink; Naghmeh Dorrani; Daniel C. Dorset; Emilie D. Douine;
David D. Draper; Annika M. Dries; Laura Duncan; David J. Eckstein; Lisa T. Emrick; Christine M.
Eng; Gregory M. Enns; Ascia Eskin; Cecilia Esteves; Tyra Estwick; Liliana Fernandez; Carlos Ferreira;
Elizabeth L. Fieg; Paul G. Fisher; Brent L. Fogel; Noah D. Friedman; William A. Gahl; Emily Glanton;
Rena A. Godfrey; Alica M. Goldman; David B. Goldstein; Sarah E. Gould; Jean-Philippe F. Gourdine;
Catherine A. Groden; Andrea L. Gropman; Melissa Haendel; Rizwan Hamid; Neil A. Hanchard; Frances
High; Ingrid A. Holm; Jason Hom; Ellen M. Howerton; Yong Huang; Fariha Jamal; Yong-hui Jiang;
Jean M. Johnston; Angela L. Jones; Lefkothea Karaviti; David M. Koeller; Isaac S. Kohane; Jennefer
N. Kohler; Donna M. Krasnewich; Susan Korrick; Mary Koziura; Joel B. Krier; Jennifer E. Kyle; Seema
R. Lalani; C. Christopher Lau; Jozef Lazar; Kimberly LeBlanc; Brendan H. Lee; Hane Lee; Shawn E.
Levy; Richard A. Lewis; Sharyn A. Lincoln; Sandra K. Loo; Joseph Loscalzo; Richard L. Maas; Ellen F.
Macnamara; Calum A. MacRae; Valerie V. Maduro; Marta M. Majcherska; May Christine V. Malicdan;
Laura A. Mamounas; Teri A. Manolio; Thomas C. Markello; Ronit Marom; Martin G. Martin; Julian A.
Martinez- Agosto; Shruti Marwaha; Thomas May; Allyn McConkie-Rosell; Colleen E. McCormack; Alexa
T. McCray; Jason D. Merker; Thomas O. Metz; Matthew Might; Paolo M. Moretti; Marie Morimoto;
John J. Mulvihill; David R. Murdock; Jennifer L. Murphy; Donna M. Muzny; Michele E. Nehrebecky;
Stan F. Nelson; J. Scott Newberry; John H. Newman; Sarah K. Nicholas; Donna Novacic; Jordan S. Or-
ange; James P. Orengo; J. Carl Pallais; Christina GS. Palmer; Jeanette C. Papp; Neil H. Parker; Loren
DM. Pena; John A. Phillips III; Jennifer E. Posey; John H. Postlethwait; Lorraine Potocki; Barbara N.
Pusey; Genecee Renteria; Chloe M. Reuter; Lynette Rives; Amy K. Robertson; Lance H. Rodan; Jill
A. Rosenfeld; Jacinda B. Sampson; Susan L. Samson; Kelly Schoch; Daryl A. Scott; Lisa Shakachite;
Prashant Sharma; Vandana Shashi; Rebecca Signer; Edwin K. Silverman; Janet S. Sinsheimer; Kevin S.
Smith; Rebecca C. Spillmann; Joan M. Stoler; Nicholas Stong; Jennifer A. Sullivan; David A. Sweetser;
Queenie K.-G. Tan; Cynthia J. Tifft; Camilo Toro; Alyssa A. Tran; Tiina K. Urv; Eric Vilain; Tiphanie
P. Vogel; Daryl M. Waggott; Colleen E. Wahl; Nicole M. Walley; Chris A. Walsh; Melissa Walker; Jijun
Wan; Michael F. Wangler; Patricia A. Ward; Katrina M. Waters; Bobbie-Jo M. Webb-Robertson; Monte
Westerfield; Matthew T. Wheeler; Anastasia L. Wise; Lynne A. Wolfe; Elizabeth A. Worthey; Shinya
Yamamoto; John Yang; Yaping Yang; Amanda J. Yoon; Guoyun Yu; Diane B. Zastrow; Chunli Zhao;
Allison Zheng

Author Contributions

SBM, MTW, JDM, EAA and KMB conceived and planned the experiments. KSM, DB, JNK, DZ, DGF,
MEG, JMD contributed to sample preparation. LL and EI provided phenotypic data together with blood
RNA-seq of PIVUS control samples. SM, XL, KK, RJ, SU helped processing the variant data. LF carried
out the analyses with the help of CS, NMF, NAT, ZZ, XL, BB, JRD, BL. KDK, BJS, AB, GB and JAB
contributed to the interpretation of the results. KDK, CJP, DB, JNK, DZ, DGF, MEG performed the
validation of results. LF and SBM wrote the manuscript with support from CS, NMF and NAT. All
authors provided critical feedback and helped shape the research, analysis and manuscript.

16


https://doi.org/10.1101/408492
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/408492; this version posted September 4, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Material and Methods

Rare disease cases and controls

We sequenced 87 whole blood samples, 56 extracted from affected individuals and 31 unaffected family
members. The 56 cases represent a total of 47 independent diseases. Those samples were collected from 3
different institutions, the Children’s Hospital of Eastern Ontario (CHEO), the Stanford Clinical Genomics
Program (CGP) and the Undiagnosed Disease Network (UDN).

Whole blood samples were sent to our lab in Paxgene RNA tubes or as isolated RNA for processing.
Paxgene RNA tubes were processed manually per manufacturer’s protocol and 1.0 pug RNA was used
for further processing. Isolated total RNA was analyzed on an Agilent Bioanalyzer 2100 by pico RNA
chip for RIN quality. Globin mRNA was removed using GLOBINclear prior to cDNA library construc-
tion. cDNA libraries were constructed following the Illumina TrueSeq Stranded mRNA Sample Prep Kit
protocol and dual indexed. The average size and quality of each cDNA library was determined by Bioan-
alyzer and concentrations were determined by Qubit for proper dilutions and balancing across samples.
On average, twenty pooled samples were run simultaneously on an Illumina NextSeq 500 (high output
cartridge). Pooled samples were run in 6 distinct sequencing runs: two runs generated 75bp paired end
reads and three runs generated 150 bp paired end reads. Output bcl files were converted to fastq files
and demultiplexed using bcl2fastq version 2.15.0.4 from Illumina.

Reads were trimmed and adapters were removed using cutadapt (https://github. com/marcelm/cutadapt).
Reads were then aligned to the reference human genome (hgl9) with STAR v2.4.0j (https://github.
com/alexdobin/STAR/releases/tag/STAR_2.4.0j). We used gencode v19 for reference annotation
(https://www.gencodegenes.org/releases/19.html). We removed reads with a mapping quality un-
der 30 and filtered duplicate reads with Picard Tools (http://broadinstitute.github.io/picard/).
Gene-level and transcript-level quantifications were generated with RSEM v1.2.21 [38](https://github.
com/deweylab/RSEM/releases/tag/v1.2.21). Junctions files generated by STAR were filtered: to con-
sider a junction, a minimum of 10 reads uniquely spanning was required.

Independent control cohorts for expression, splicing and ASE analyses

We used whole blood transcriptome data of 909 samples from the DGN cohort [11] as well as 65 samples
(age 70) from the PIVUS cohort [12] to serve as independent healthy controls for expression analysis and
splicing respectively. DGN samples are single-end 50bp reads and PIVUS samples are 75bp paired-end
reads. Sequences were aligned, quantified and filtered following the same protocol used for rare disease
cases and controls. We determined outlier ASE events at the gene level per individual by comparing
our data to 620 individuals in GTEx v7 [39] across 48 tissues. Allele-specific expression in GTEx was
processed as in [40], and only sites with a minimum of 20 reads overlapping and not entirely mono-
allelically expressed were analyzed.

Disease gene lists

Disease gene lists for neurology (n=284 genes), ophthalmology (n=380 genes) and hematology (n=>50
genes) disease categories were obtained from curators for genes of interest in regards of the disease
(Table S4). We obtained OMIM genes list (n=3,766 genes) from https://omim.org/downloads/. Gene
expression of disease genes in our samples was restricted to protein coding genes.

Genetic data

Variant data was produced according to recommended protocols for exome or genome data. VCFs
obtained from UDN were generated through the Hudson Alpha and Baylor pipelines. In short, DNA
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reads alignment was performed using BWA-mem v0.7.12 [41] and variant calling was made using GATK
v3.3 [42]. For CGS samples, variant calling was performed using GATK v3.4. We filtered variants
according to the following criteria from previous studies [15,43]:

o Filter field is PASS
o At least 20 reads covering the position (DP field)
e Genotype quality greater than 20 (GQ field)

e Normalized Phred-scaled likelihoods of the predicted genotypes lower than 20 (PL field)

Alleledepth

Totaldepth = 0.8 for homozygous calls and > 0.2 for each allele for heterozygous calls.

e Exclude variants with Hardy-Weinberg Equilibrium p-value < 1 x 1076
e Exclude variants with call rate < 0.80 (missing > 20%)

We obtained genetic information for 75 samples (out of 87, 22 from whole genome sequencing, 53 from
whole exome sequencing) (Fig. S13A). The number of LoF rare variants is variable across samples, and
institutions (Fig. S13B). We merged all VCF files from those different institutions and homogenized their
format for further analysis.

Genetic data annotation

We annotated genetic data with allele frequency from the Genome Aggregation Database (gnomAD) [15]
and Combined Annotation Dependent Depletion scores (CADD) [37] scores using Vefanno (version 0.2.7)
[44]. We used CADD scores v1.3 and gnomAD genomes release 2.0.2.

Ancestry inference

VCF files were processed for ancestry inference using BCFtools v1.8 as following. They were normalized
(fixing strand flips and left aligning indel records) and merged. We then subset this file to only variants in
exonic regions, and filtered out variant with > 25% missingness. Missing variants were set to homozygous
reference. A total of 11,016 variants remained after filtering. To perform ancestry inference, we used all
individuals from 1000 Genomes phase 3 version 5 populations. For computational feasibility, we used
genotypes from chromosomes 1,4,12,15,16, and 19. We used the prcomp function in R [45] to extract
principal components and plotted the first three principal components.

Expression levels normalization

We filtered out genes for which less than 50% of samples from each origin (i.e. rare disease individuals and
unaffected family members sequenced in-house, external controls) had TPM > 0.5 and/or variance equal
to zero. We performed Surrogate Variable Analysis (SVA) [46] using the ”two-step” method on a cen-
tered and scaled matrix of logig-transformed (log1o(TPM+1)) RNA-seq count data output by RSEM [38].
We did not provide any known covariates to SVA. We added regression splines for Surrogate Variables
(SVs) significantly associated with batch and/or institution (p-value < 1le-30 from linear regression of
known covariates against all significant SVs). Linear regression splines had knots positioned at every
1.66% of samples, resulting in approximately 16 individuals per region - which is around the average
number of individuals in each batch sequenced in-house (Fig. S4). Significant surrogate variables (SVs)
and regression splines were then used as covariates in a regression model. The residuals of this model
were centered and scaled to generate Z-scores for use in all subsequent analyses using gene expression data.
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Global outliers

To control for potential residual technical artifacts impacting outlier expression, we removed samples
for which 100 or more genes had normalized expression values of |Z-score| > 4 after SVA correction (29
samples). We tested the model described in Figure 2 for several global outlier thresholds and observed a
similar enrichment profile.

Gene expression outlier enrichment analyses

In this analysis, we use the union of DGN samples and healthy family members that passed the global
outliers criteria as the control set. We assessed enrichment for case outliers at increasingly stringent
percentiles of gene expression in genes intolerant to mutations using a logistic regression model. As
features in this model we used ExAC gene constraint metrics for LoF, missense and synonymous mutations
[15]. For each gene in the dataset that had ExAC gene constraint metrics (n genes = 10535), we calculated
a binomial outcome variable corresponding to the proportion of case expression outliers found in each
gene: Y; ~ B(n;,p;), where n; is the number of outlier samples in gene; at a given percentile tested
(the number of ’trials’), and p; is the proportion of case outlier samples (which can be thought of as the
probability of ’success’ (or all outliers being case outliers) for gene;). Then we model the relationship
between the observed proportion of cases for each gene, and the corresponding gene constraint Z-score
from ExAC. Specifically, we want to find Pr(Y; = Allcases|X;), where X is the gene constraint Z-score
for gene;. We assess the effect of X using logistic regression: logit(p(X)) = Bo + S1X. A positive 51
value indicates that a step change in constraint metric X (toward genes less tolerant to mutations) is
associated with an increase in the log odds of Y; = 1 (i.e. all outliers being case outliers). A separate
model was fit for each mutation class. We reported results as the log odds (+/- 1.96*SE) associated with
each feature for each percentile. P-values were calculated based on the z-statistic.

Rare variants around genes

We used BEDtools (version 2.26.0-112-gd8c0fe4) [47] to annotate gene and with rare variants within 10
kb. We filtered for rare variants with minor allele frequency from gnomAD <0.1%. We kept the singletons
in the analysis.

Junctions coverage ratios

Reference junctions were derived from Gencode v19 annotation file on known protein coding genes. A
total of 142,246 in 14,296 genes. For each junction donor (then acceptor), all possible acceptors (then
donors) were screened in the samples junctions files. The distribution of reads spanning those junction
sets was attested by calculating the set ratios (Fig. 3A). We restricted the analysis to junctions for which
several acceptors (donors) were associated to one donor (acceptor). In total, 13,109 groups of junctions
were generated that way. In total, 25,941 junctions in 5,437 protein coding genes across all samples
fulfilled those criteria.

Splicing data normalization

In this analysis, we use the union of PIVUS samples and healthy family members as the control set. To
remove as much noise as possible, and to allow missing values imputation, we removed junctions for which
there was no more than 30 samples with data in the junction group (< 20% of samples). We analyzed
coverage ratios for a total of 23,619 junctions.

Missing values in junction coverage ratios were imputed using missMDA R package [48]. PCA analysis was
then performed using prcomp R package [45]. We regressed out principal components (PCs) accounting

19


https://doi.org/10.1101/408492
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/408492; this version posted September 4, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

for 95% of the variation in our imputed dataset (129 PCs). We then put back original existing missing
values in the dataset and derived Z-scores used in the outlier analysis. We looked at the correlation
pattern between the 10 first PCs and known covariates from our dataset (Fig. S9). In brief, PC1 is
mainly separating the source of the data (UDN, CGS, CHEO or PIVUS). PC2 is highlighting differences
between the first batch and the other batches. Overall, we observe some level of correlation between all
known covariates and the PCs that are regressed out from the data. We are assuming that the corrected
data is exempt from most of the potential effects of those covariates.

Rare variants around splicing junctions

We used BEDtools (version 2.26.0-112-gd8c0fe4) [47] to filter junction with a rare variant within 20 bp
of a tested splicing junction. We filtered for rare variants with minor allele frequency <0.1%. We kept
the singletons in the analysis.

Allele specific expression

ASEReadCounter [49] version 3.8-0-ge9d806836 from Genome Anaysis Tool Kit (GATK) [50] was run on
single nucleotide variants from VCFs provided by the UDN, CHEO and CGS and the RNA-seq data we
processed. Only sites with a minimum read depth of 10, mapping quality of 10 and base quality of 2 were
integrated in the analysis. For a gene to be considered with ASE, we required that at least 5 samples
had heterozygous sites in the gene, that the heterozygous site was covered by at least 20 reads for the
individual with ASE with an allelic ratio > 0.65 or < 0.35. We eliminated total mono-allelic expression
from the analysis (ie allelic ratio = 0 or 1).

To detect ASE outliers we restricted our analysis to sites and genes common to our samples and GTEx
dataset, including 8,758 genes and 61,447 sites, subject to the same site filters above. We scaled the
reference ratios for all sites within a gene across samples to obtain Z-scores per site. To summarize GTEx
data per individual, we considered the maximum ratio (| 0.5—reference_ratio |) across all tissues for which
the individual had data at that site. We called an individual an ASE outlier for a gene if it had either
the most extreme positive or negative Z-score, with |Z-score| > 2. Finally, we scored the ASE outlier
genes based on their phenotypic relevance per sample using Amelie [51]. We generated a background
distribution of Amelie scores per sample by randomly selecting the same number of genes for which a
case was an ASE outlier from the set of all genes tested for ASE across both datasets, and scoring those
genes against the case’s HPO terms using Amelie. This was repeated for 100 iterations per sample.

RIVER

RIVER (RNA-informed variant effect on regulation) is a hierarchical Bayesian model to infer rare variants
of their regulatory effects. Compared with other variant scoring methods, RIVER takes the advantage
of utilizing both genomic information and transcriptome information [40].

We used GTEx v7 whole genome sequencing and cross-tissue RNA-seq data as training data for the
model. The trained model (with learned parameters) is subsequently applied on UDN data to predict
effects of rare variants. The model uses rare variants and the genomic annotations at those variants as
predictors, uses RNA status (for this case is outlier status based on total gene expression levels) as the
target/response variable.

Rare variants here are defined as those of minor allele frequency (MAF) < 0.01 in 1000 genome project
phase III all populations combined. For variants in GTEx we additionally require MAF < 0.01 within
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GTEx cohort itself and for variants in the rare disease samples we additionally require MAF < 0.02
within the rare disease samples themselves. We considered all rare variants 10kb near genes (10kb before
transcription start site until 10kb after transcription end site). Overall, there were a median of 2 rare
variants per gene and individual pair for GTEx subjects and rare disease subjects. For this analysis, we
considered protein-coding and lincRNA genes only.

We used the following genomic annotations: Ensembl VEP [52], CADD [37], DANN [53], conservation
score (Gerp [54], PhyloP [55], PhastCons [56]), CpG content, GC content, chromHMM [57] and Encode
chromatin-openness track. We selected those features based on their prior evidence of association with
regulatory effects [40]. Features were aggregated over each gene and individual pair, using either max(),
min() for quantitative features, or any() for categorical features.

Expression outliers (the response variable) were defined as those with |Z-score| > 2. Z-scores were
calculated based on total gene expression level RPKM from RNA-seq. In addition, for GTEx training
data, gene expression levels were corrected by PEER [58] to remove technical artifacts and major common-
variant eQTL effects are also removed. Z-scores for GTEx are median over all available tissues [40].

Phenotypic data

For each case we have RNA-seq data for, we also obtained HPO terms corresponding to the symptoms of
the affected individual. We extended this list of HPO terms to terms that were hierarchically one level
lower (child terms), one level higher (parent terms) or alternative terms for the same phenotype. To do so,
we used the Human Phenotypic Ontology (HPO) [22] (http://human-phenotype-ontology.github.io/
downloads.html). To link HPO terms to genes we used the genes to phenotype and phenotype annotation
files provided by the Human Phenotypic Ontology. We used Amelie [51] to rank expression and splicing
outlier candidates together with genes with outlier ASE events in regards of the relatedness of the gene
to the cases HPO terms.

Diagnostic rate

We labeled ”solved” cases for which we found candidates from RN A-seq data for which the causal mutation
was found and validated. ”Linked to phenotype” candidates correspond to cases for which we found a
good candidate gene linked to the phenotype of the affected individual that has not been validated yet.
”No direct link to phenotype” refers to cases for which we found a gene not directly linked to the disease
phenotype with aberrant expression pattern and for which further information is needed. Cases for which
no strong candidate genes were found after analyzing RNA-seq data are labeled "no candidate”.
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Fig. S1: Ancestry principal components. We inferred ancestry principal components for all rare
disease samples with genotype data using 1000 genome phase 3 version 5 as a reference. Panel (A) - (C)
shows pairwise scatterplot for principal components 1 to 3. Abbreviation: RD = rare disease, AFR =
African, AMR = Native American, EAS = East Asian, EUR = European, SAS = South Asian.
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Fig. S2: Junctions coverage across whole blood samples. We used a total of 1,061 whole blood
samples from our controls cohorts and rare disease samples. A: Density plot representing the proportion
of annotated junctions covered per gene. Those are a subset of genes for which at least one junction
is covered with at least 5 uniquely mapped reads across at least 20% of the samples. On average (blue
dashed line) 86%, (median of 100% - red dashed line) of junctions fulfill those criteria. B: Percentage
of genes from disease genes panels in which at least one junction is covered with at least 5 uniquely
mapped reads in at least 20% of samples. We observe that about 50% of genes from OMIM, Neurology,
Ophthalmology or Hematology panels are fulfilling this criteria.
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Fig. S3: Correction for batch effects - Expression data. A: Plot of first two principal components
run on uncorrected gene expression data. Samples are colored by batch. Largest cluster (green dots)
is DGN control samples. B: Plot of first two principal components run on gene expression data after
regressing out significant surrogate variables found by SVA. C: Correlation between known covariates and
all significant surrogate variables (SVs). We did observe that SV2 is highly correlated with the read type,
and the sequencing technology which corresponds to differences between DGN and the other samples.
Overall, the first SVs are correcting for batch effects across our samples.
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Fig. S4: Use of regression splines in expression data. A: Normalized gene expression residuals,
without correction (left panel), after regressing out significant surrogate variables (SVs) (middle panel)
and significant SVs plus regression splines on SVs significantly associated with batch (right panel, p-
value<le-30). Residuals were plotted against SV2 - significantly associated with batch. Adding splines
reduces the number of outliers without removing biologically-significant outliers. B: Number of outliers
genes per batch (Z-score<-2) after correction with SVs (left panel) and SVs with regression splines on
SVs associated with batch (right panel). Regression splines results in a more consistent number of outliers
across all batches. C: Benjamini & Hochberg adjusted p-values resulting from a per-gene likelihood ratio
test comparing linear regression model fit both with and without regression splines on SVs associated
with batch and/or institution. Regression splines improve the model fit for 4,126 genes (p-value < 0.05,
27.9% of all genes in dataset).
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Fig. S5: Further information on outlier enrichment analysis. A: Z-score may not correspond to
expected gene expression distribution percentile due to outlier samples skewing the normal distribution.
Finding fixed percentiles of samples ensures consistent sample sizes across all genes. B: Mapping between
percentile and Z-score across thirteen under- and over-expression gene expression percentile thresholds.
Percentiles are particularly useful for finding the least-expressed or most-expressed sample in a given
gene. C: Based on Fig. 2A. Log odds testing proportion of case outliers found in mutation-intolerant

genes.

Case and control labels of rare disease individuals and unaffected family members have been

switched, resulting in the previously observed enrichment no longer being evident. D: Observed log odds
(color dots) relative to mean log odds (+/- 1.96*SE) resulting from 10,000 permutations of case/control
labels across individuals. Asterisks indicate significance of observed log odds given permutation results
(empirical p-value). E: Based on Fig. 2A but using Z-scores in place of percentiles. We observed a similar

enrichment profile as found in Fig. 2A.
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Fig. S6: Impact of the number of controls on the enrichment. A: Enrichment of cases (red)
under-expression outliers in LoF sensitive genes as we increase the number of controls (8,200 random sub-
sets). This enrichment was not observed for rare disease family members controls (gray). B: Benjamini
& Hochberg adjusted p-values associated with the enrichment at different number of controls. Horizontal
line indicates 0.05 significance cutoff. The p-values are decreasing as we increase the number of con-
trols. This observation is only true for case enrichment and holds at different under-expression percentile
thresholds. When switching cases for controls (gray) we did not see the same pattern, particularly when
using 909 external control samples.
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Fig. S7: Impact of the affected status on number of outliers. Distribution of total number
of outlier genes per sample across increasingly stringent Z-score thresholds for controls (light blue) and
cases (dark blue) samples. Under-expression outliers are outlined in light gray, over-expression outliers
are outlined in black. As Z-score threshold becomes more stringent, we observed fewer outlier genes per
sample. There are more outlier genes in cases in comparison to controls at every Z-score cut-off for both
under-expression and over-expression.
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Fig. S8: Percentage of samples with at least one candidate genes when filtering outliers.
Filters have various impacts on the number of samples with at least one candidate gene. By combining
several layers of filters we are drastically reducing the number of candidate genes but also the number
of samples for which we have candidates. We recommend to relax filter stringency after looking at sets
of genes that match the most stringent criterion. A: Expression outliers. After filtering for genes with a
high RIVER score, matching HPO terms, with a deleterious rare variant within 10kb, we observed less
than 10% of samples with at least one candidate gene (13). B: Splicing outliers. When keeping only genes
with HPO match, and a deleterious rare variant with 20bp of the outlier junction, we observed candidate

genes in less than 10% of samples.
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Fig. S9: Correction for batch effects - Splicing data. A: Plot of first two principal components
(PCs) run on uncorrected splicing ratio data. Samples are colored by batch. We observed that PC1 is
separating PIVUS controls samples (left) from rare disease samples (right). B: Plot of first two PCs on
splicing ratios after regressing out PCs that explain up to 95% of the variance in the data. Batches are no
longer separated on the first PCs. C: Correlation between known covariates 10 first PCs. We do observe
that PC1 is highly correlated with the batch, whereas PCs separates samples from one institution (batch
1, CHEO) from others. We also observed that PC1 is highly correlated with RIN, highlighting differences
in quality across samples. Overall, the first PCs are correcting for batch effects and quality across our
samples.
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Fig. S10: Number of junctions effect on the average number of outliers. We see a significant
increase in the average number of outliers in genes when those genes have more splicing junctions (p-values
from Wilcoxon test).
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Fig. S11: Affected status and cohort effect on splicing Z-score. A: Differences in number of
outliers depending on affected status. No significant difference was observed between cases and controls.
B: Differences in number of outliers between cohorts. RD: Rare disease. We observed significantly more
outliers in the rare disease cohort in comparison to PIVUS (Wilcoxon test).
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Fig. S12: Enrichment patterns for ExAC scores in splicing outliers. We looked at enrichment
for cases outlier in genes sensitive to LoF (red), missense (blue) or synonymous variants (yellow) using
splicing data. We did not observe a significant enrichment for LoF Z-scores as we do for under-expression
outliers. A total of 65 PIVUS were used for controls in this analysis. Due to a lower sample size, those
observations can be due to a lack of power or to the intrinsic properties of splicing outliers in opposition
to expression outliers.
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Fig. S13: Genetic data across rare disease samples. A: Variant information across rare disease
samples and their unaffected family members. We obtained genetic data for 75 samples. B: Number of
rare LoF variants across the rare disease samples. Overall, we observed a comparable number of LoF
variants across samples.
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Fig. S14: Diagnostic rate after analysis of 47 distinct cases. Solved: causal gene found and
further validated. Linked: a gene relevant to the phenotype was found. Not linked: a gene not directly
relevant to the phenotype was found. No candidate: no good candidate gene was found
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Fig. S15: Candidates filters for sister of proband in RARS2 case. For this sample, RARS2
Z-score did not pass the |2| threshold (Z-score=-1.55), so the gene was not selected in subsequent filters.
However, when we lowered the Z-score threshold to |1.5|, RARS?2 is a candidate among 6 left after filtering
the data for deleterious rare variant within 10kb and selecting genes with HPO match.
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Fig. S16: Allelic ratios of variants from second presented case. In blue are variants in KCTD7

gene. The variant with reference allelic ratio of one corresponds to the causal variant p.V152V. Due to
the newly created premature splice junction, only the reference allele is observed.
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Fig. S17: Solved case without genetic data. Example of ASAH1 gene. A: After filtering our
detected splicing outliers for genes related to the phenotype (through HPO Ids), only one candidate was
left, ASAH1, for which we previously confirmed the association with SMA-PME phenotype in the case.
B: Sashimi plot of the case and 2 controls of the ASAHI gene. For the case (red track), we observed
an alternative transcripts skipping exon 6 (supported by 142 reads). This pattern was never observed in

controls.
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