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Abstract

The polygenic nature of complex diseases offers potential opportunities to utilize
network-based approaches that leverage the comprehensive set of protein-protein
interactions (the human interactome) to identify new genes of interest and relevant
biological pathways. However, the incompleteness of the current human
interactome prevents it from reaching its full potential to extract network-based
knowledge from gene discovery efforts, such as genome-wide association studies,
for complex diseases like chronic obstructive pulmonary disease (COPD). Here, we
provide a framework that integrates the existing human interactome information
with new experimental protein-protein interaction data for FAM13A, one of the
most highly associated genetic loci to COPD, to find a more comprehensive disease
network module. We identified an initial disease network neighborhood by applying
a random-walk method. Next, we developed a network-based closeness approach
(Cag) that revealed 9 out of 96 FAM13A interacting partners identified by affinity
purification assays were significantly close to the initial network neighborhood.
Moreover, compared to a similar method (local radiality), the Cpgapproach predicts
low-degree genes as potential candidates. The candidates identified by the network-
based closeness approach were combined with the initial network neighborhood to
build a comprehensive disease network module (163 genes) that was enriched with
genes differentially expressed between controls and COPD subjects in alveolar
macrophages, lung tissue, sputum, blood, and bronchial brushing datasets. Overall,
we demonstrate an approach to find disease-related network components using

new laboratory data to overcome incompleteness of the current interactome.
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Introduction

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death
worldwide, and recently it was estimated that COPD cases in developed countries
would increase by more than 150% from 2010 to 2030 4. Furthermore, similar to
other complex diseases, it has been challenging to identify systematically the likely
multiple genetic risk factors for COPD. Genome-wide association studies (GWAS)
can identify specific genetic loci consistently associated with disease in an unbiased
manner and have reported hundreds of associations between complex diseases and
traits 5-7. However, for the vast majority of such genome-wide “hits”, specific causal
mechanisms remain uncertain. There is increasing evidence supporting the
hypothesis that the onset and progression of complex diseases like COPD arise from
the interplay between a number of interconnected causative genes in a manner
compounding the effects of any one variant8-10. Indeed, integrating GWAS data with
molecular interaction networks and gene expression information facilitates a better
understanding of disease pathogenetic mechanisms10-14. A variety of approaches
have been developed to infer relationships between genes showing genome-wide
significant evidence of association within the human interactome—the
comprehensive set of molecular relationships between cellular proteins 14-17. For
example, we showed that a disease network module is enriched for disease
susceptibility variants in asthmal0. A GWAS of inflammatory bowel disease used
DAPPLE, which is based on the observation that truly causal genes tend to link to
each other in the human interactome, to prioritize potential disease candidatess.
Since combinations of genetic alterations associated with a disease might affect a
common component of the cellular system, module-centric approaches might be
helpful in finding the disease-related components in the interactome 1319, Yet, the
output of these approaches can be strongly influenced by (i) the incompleteness of
the pre-specified interactome (false-negative results), and (ii) false-positive errors
in the interactome. The impact of the incompleteness could result in failure to
identify network relationships for genes implicated by GWAS. Thus, integrating the

module-centric approach with targeted interaction analysis (e.g., pull-down assays)
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of GWAS genes might be helpful in discovering the functional relationships of these
genes with a disease of interest. In this work we combine new experimental
protein-protein interaction data with the existing human interactome to enhance
our understanding of the genes involved in COPD. The objective relies on the “local
impact hypothesis,” which assumes that if a few disease components are identified,
other components are likely to be found in their vicinity of the human interactome
1012 Moreover, if a disease gene is not mapped in the interactome, it is possible that
its neighbors detected by targeted interaction analysis might indicate it’s biological
function. Hence, we first identify the disease-related network neighborhood
including known COPD disease genes (seed genes) in the interactome by applying a
degree-adjusted random-walk algorithm?? (DADA), which is a guilt-by-association
approach. Next, we test whether experimentally determined links (pull-down assay)
for a single, consistently associated COPD gene (FAM13A) not mapped on the
human interactome could enhance our knowledge about functional implications of
FAM13A in COPD pathogenesis. The approach first aggregates the network
neighborhood around the COPD ‘seed’ disease genes using DADA 20. Further, to
define a boundary of the disease network neighborhood, we use the sub-genome-
wide significant association signals from the COPD GWAS (Figure 1). This step
helps to find enrichment of moderate p-value signals associated with those
neighboring genes that are in the proximity of the seed genes. We hypothesized that
combining experimental interaction data with the existing human interactome
would develop a more comprehensive disease network module for COPD. To test
this hypothesis, we derive a novel network-based closeness approach (Cg) to
predict FAM13A partners significantly close to the initial COPD localized
neighborhood. Overall, our approach enhances our understanding about the COPD
disease network module and predicts new candidate genes and pathways

influencing COPD pathogenesis.
Results

Building an initial COPD network neighborhood using the Degree-Aware Disease Gene
Prioritization approach (DADA)
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The disease module hypothesis postulates that disease susceptibility genes should
form one or a few large connected components in a well-defined neighborhood of
the human interactomel®12, Selection of the seed genes strongly influences the
interpretation of such a module-centric approach, and therefore we restricted our
analysis to only high-confidence COPD disease genes from GWAS and Mendelian
syndromes (Figure 1B). To avoid bias toward including highly connected genes in
the network neighborhood, we implemented the random walk-based DADA
approach, which provides statistical adjustment models to remove the bias with
respect to degree of the genes?0. Since DADA provides ranking to all of the genes in
the human interactome, we defined the boundary of the disease network
neighborhood by integrating additional genetic signals from COPD GWAS (not
reaching traditional p-value thresholds for genome-wide significance)
(Supplementary figure 1). We first generated a single genetic association p-value
for each gene in the interactome using VEGAS with the default all snps test 21, and
then plotted p-values of the added DADA genes vs. the background p-value
distribution (Figure 2A). After the addition of 150 genes, the genetic association p-
value of added genes reached a plateau (Figure 2A) and the connected components
among the 150 genes were defined as the ‘initial network neighborhood’. At this
threshold, we found eight seed genes in the largest connected component (LCC) of
size 129 genes, and the other two seed genes were part of two small components of
sizes 17 and 4, respectively (Figure 2C). Indeed, the LCC of 129 genes was found to
be significant compared to the largest connected component that would emerge by
chance if the 129 genes were placed randomly (10,000 times) in the human
interactome (Z-score =27, p=<0.00001, Figure 2B). Overall, these three components
constitute the COPD localized neighborhood with 140 DADA genes plus 10 original
high-confidence COPD seed genes. We compared our results with the Disease
Module Detection (DIAMOnD) algorithm, which identifies the disease neighborhood
around a set of known disease proteins based on the connectivity significance 22.
Interestingly, we found a significant overlap between DADA and DIAMoND output
(Supplementary Figure 2), indicating that the results are consistent using a

different network-based approach.
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The 10 COPD seed genes that were part of the initial network neighborhood
included: IREBZ, SERPINA1, MMP12, HHIP, RIN3, ELN, FBLN5, CHRNA3, CHRNAS5, and
TGFBZ (Figure 2C). Since one of the key genes identified by COPD GWAS, FAM13A4,
was not mapped in the human interactome, we tested whether specific interacting
partners of FAM13A could reveal new knowledge regarding this particular gene in

COPD.
FAM13A pull down assay??

FAM13A contains a Rho GTPase-activating protein-binding domain; it inhibits signal
transduction and responds to hypoxia. Recent work by our research group indicates
that FAM13A is involved in WNT /beta catenin pathway signaling?3. FAM13A was not
mapped in the edge-weighted human interactome (ConsensuspathDB) and
moreover, no edges were reported in Rolland et al (2014)%* high-quality human
binary protein-protein interactions and BioGRID interaction data (2014)25. Thus,
we performed a pull-down assay using affinity purification-mass spectrometry,
which identified 96 interacting partners of FAM13A. We measured the likelihood of
having a protein with at least 96 interacting proteins in the interactome. Among
14,280 genes in the interactome, 581 genes had a degree of 96 or greater (P(k =
96) = 0.04), suggesting that FAM13A is a relatively highly connected protein in the
interactome (Supplementary figure 3A). Further, we tested whether the FAM13A
interacting partners are closer to each other within the interactome than a same-
sized set of randomly selected proteins. Based on 10,000 simulations, we observed
significant closeness (Zscore= -9.685) among FAM13A partners (Supplementary
figure 3B). This indicates that even if FAM13A partners are not directly interacting,
they might be involved in a similar biological process because of their close
proximity to each other. We found that none of the 96 FAM13A interacting partners
were among the COPD localized neighborhood that we had created with DADA.

Topological distance between the COPD neighborhood proteins and FAM13A

interacting proteins in the interactome
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Given the substantial incompleteness of the current human interactome 12, it is
difficult to conclusively determine whether the COPD disease network
neighborhood would directly connect to interacting partners of FAM13A, as a single
missing link might have disconnected FAM13A from the COPD localized
neighborhood. Hence, we computed a network-based closeness metric (Cag) that
compares the weighted distance between FAM13A partners (4) and proteins in the
COPD localized network neighborhood (B) to random expectation in order to
compute the Z-score (see methods and Figure 3A). With a Z-score significance
threshold of -1.6 (p<0.05), we found 9 genes significantly close to the COPD
localized neighborhood in the human interactome and 87 genes that were not
significant (Figure 3B). The 9 genes with significant closeness to the COPD localized
neighborhood were: GPC4 (Z=-4.04), ESF1 (Z=-3.46), OSBPL8 (Z=-2.97), KIAA1430
(-2.93), ZNF768 (Z=-2.68), AP3D1 (Z=-2.00), ANKRD17 (Z=-1.96), NIP7 (-Z=1.79)
and RBM34 (Z=-1.77).

Comparison with the Local Radiality (LR) method

We compared the Cpp results with the Local Radiality (LR) method that utilizes
topological information (i.e., shortest path distance) to predict the proximity of
dysregulated genes to corresponding drug targets 2°. In our case, we measured the
closeness of FAM13A partners (96 genes) with the COPD disease neighborhood
(150 genes) by applying the LR method. In Cpg the confidence scores of the edges
play an important role to either shorten or increase the distances. Thus, to
carefully claim that a gene is close to the COPD network neighborhood, we not
only ensured that the gene is topologically close to the neighborhood but also
considered the strength of each interaction based on different sources of evidence
for the existence of such a path. As compared to top C,g genes, the nine highest
score genes by LR were enriched in hubs. As a consequence, the average degrees
<k> between these two methods were significantly different (P=0.0004, Mann-
Whitney U test) (Supplementary Figure 4). The hubness criterion helped us

discriminate between the results from these two approaches. This seems pragmatic,
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as the low degree genes might be more likely to be involved in a local biological
process than those high degree genes representing global molecular pathways.
Furthermore, it has been proposed that highly connected superhubs perform the
most basic biological functions (evolutionarily early), with the more specialized
functions (evolutionarily late) being performed by the peripheral genes. Thus, Cpg
helps to predict the FAM13A partners that might be involved in more specialized
biological functions (low degree genes) related to COPD pathogenesis. Furthermore,
it has also been observed that changes in gene expression predominantly occur in

the genes (nodes) with low connectivity, but not in the superhubs 27.
COPD disease module with all eleven COPD seed genes

Cag considers all of the possible paths between (CA) and (CB) genes to calculate the
statistical significance; hence, we applied a greedy strategy (Steiner) to find the
optimal paths among all of the paths connecting the COPD network neighborhood
and Cpp genes 28. We observed a single network module consisting of C,g genes and
COPD network neighborhood genes with only four intermediate genes (ELAVLI,
CSNK2AZ2, BARD1 and SIRT7). Of interest, including these linker genes provided
connections to the network module for the two COPD seed genes, RIN3 and HHIP,
that were not part of the original 129 genes largest connected component. Our
resulting expanded set of 163 connected genes, including all of the 11 seed genes
(Supplementary table 1), is referred to as the * COPD disease network module’
(Figure 4A).

Validation of COPD disease network module in COPD specific gene-expression data

We tested the relevance of the COPD disease network module by evaluating fold
change of differentially expressed module genes in COPD-specific gene expression
data sets. We compared the fold change (absolute value of logarithm of fold change)
of differentially expressed module genes to all other differentially expressed genes
with unadj.p<0.05 in eight COPD-specific gene expression data sets (Table 2). We

observed a significantly higher fold-change in the COPD disease network module
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compared to other differentially expressed genes in seven datasets (Figure 4B). As
shown in Table 2, even after removing the seed genes, the significance was retained
in six datasets (Supplementary figure 5). Further, by considering all of the genes
tested for differential expression, we still find that COPD disease network module
genes were significantly enriched in four COPD gene-expression datasets (sputum,
lung tissue, peripheral blood and alveolar macrophages) (Supplementary figure
6). These results suggest the ability of our network-based approach to identify new
genes relevant to COPD. Additionally, to correct for connectivity as a potential
selection bias in the comparison of module and non-module genes, we selected 10
random genes either from the disease network module or from all differentially
expressed genes (filtered at p<0.05). For the latter, we made sure that all selected
genes were connected using an iterative procedure: the first gene was selected at
random, the second gene was selected in the neighborhood of the first gene, the
third gene was selected in the neighborhood of the two first genes and so on. As
compared to our previous observation in Supplementary figure 5, we observed
that the selection of a connected subset increases the significance of the differences
in gene expression between the COPD disease module genes and randomly selected
genes (*p<0.05, **p<0.01, ***p<0.001, Supplementary figure 7). This seems to be
due to the fact that high fold change genes selected at random when looking at all
differentially expressed genes tend to not be connected to other differentially
expressed genes. Overall, these results indicate that the differentially expressed
genes were heavily localized in the gene set added by our approach, and not
influenced by the p-value criteria, thus supporting our method’s ability to identify

candidate genes relevant to COPD.
Potential candidate genes for COPD

With an adjusted p-value <0.05 (limma), we found 36 COPD disease module genes
differentially expressed in different COPD-related datasets. For example, AP3D1
(adj.p-0.038) and IL32 (adj.p-0.001) were up-regulated and MMP12 (adj.p=0.042)
was down-regulated in non-smoking controls vs. COPD subjects in alveolar

macrophages?® (Alveolar macrophage I). In lung tissue, we found TGFB2
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(adj.p=0.014) and CAT (adj.p=0.03) were down-regulated in control vs. COPD
subjects3? (Lung I). Twenty COPD disease module genes were differentially
expressed in GOLD stage II vs. GOLD stage IV subjects in ECLIPSE induced sputum
data3l. CTGF (adj.p=0.047), GSDMB (adj.p=0.044) and CHRNA?7 (adj.p=0.043) were
up-regulated between current smokers with no COPD vs. current smokers with
COPD in bronchial brushing samples 32 (Table 1). These results support the ability
of our approach to localize candidate genes of potential relevance in COPD-related
tissue types. Moreover, all of the 9 C,p genes were differentially expressed in at least

one of the gene expression datasets (Z=2.2, p=0.016) (Supplementary figure 8).
Biological pathway enrichment in the COPD disease module

Among the biological pathways most significantly enriched in the COPD disease
network module were inflammatory response, collagen catabolic process, regulation
of TGFB-receptor signaling pathway, and extracellular matrix organization pathway
(Table 3). Alterations of extracellular matrix components (ECM), including elastin,
are known in patients with COPD, and they contribute to airflow obstruction33. In
the COPD network module, 34 genes representing the ECM pathway were connected
to each other (Figure 5A). Moreover, we found support from the medical literature
for 23 module genes from the total of 41 genes representing the ECM pathway in
COPD pathogenesis (Supplementary table 2). Cjpg genes were part of:
Glycosaminoglycan/aminoglycan catabolic process (GPC4), negative regulation of
muscle cell differentiation (ANKRD17), negative regulation of cell migration
(OSBPL8), regulation of alpha-beta T cell activation (AP3D1) and response to
decrease in oxygen levels (AP3D1). Gene expression analyses in cell lines from
several tissues have demonstrated an increase in FAM13A levels in response to
decrease in oxygen levels 34. It has been suggested that lower oxygen tension might
modulate FAM13A activity35, however, the exact mechanism has not been explained.
In the COPD disease network module, AP3D1 (Cpg gene) interacts with FAM13A and
is an immediate neighbor of the CTGF gene, which is part of the hypoxia pathway

(decrease in oxygen levels). Thus, the connection of FAM13A to CTGF reveals a

10
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potential mechanism by which FAM13A could contribute to the hypoxia response
(Figure 5B).

We observed a small overlap (37 genes, 23%; vs 14% background, p-value=0.0013)
of the COPD disease network module with the Inflammasome (see methods) 3¢
(Supplementary table 1). This suggests that the COPD disease network module
was enriched for inflammation-related genes, which is consistent with the known
role of inflammation in COPD 37. Overall, the COPD disease network module not
only contains the inflammation component, but also other functional components
like extracellular matrix organization, hypoxia response, and WNT/beta catenin

signaling pathways 23.

Discussion

The purpose of this work was to determine whether a network-based approach
could enhance our understanding of the genes involved in the pathogenesis of a
complex disease (COPD) by combining new experimental protein-protein
interaction data with the existing human interactome. Identifying causal genes for
complex diseases like COPD, which are likely influenced by many genetic factors of
modest effect size, is a major bottleneck in understanding the biological
mechanisms leading to these diseases. A complete and accurate map of the human
interactome could have tremendous impact on our ability to understand the
molecular underpinnings of human disease. Yet, such a map is far from completion,
which makes it currently impossible to evaluate precisely how far a given disease
network module is from completion. Here, we showed that despite its
incompleteness, a systematic network-based approach could help us to understand
the connectivity of disease genes in COPD. Our initial analysis provided a set of 140
potential candidate genes that were part of three connected components in a
disease network neighborhood. Interestingly, the largest connected component of

this set of genes included 8 of the seed genes, which showed substantial network
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coherence and localization. Some of these 140 candidate genes have been previously
implicated in COPD. For example, OLFM2 was among the genes within the COPD
protein-protein interaction network built with a greedy search algorithm 38. SOD3 is
known to attenuate emphysema and reduces oxidative fragmentation of ECM in
mouse lung 3°. In addition, TGFB1 and its pathway members have been frequently
implicated in COPD pathogenesis 49. The novel C,g measure assisted in constructing
a more comprehensive COPD disease network module including FAM13A and its
relevant partners, eventually connecting all of the 11 COPD seed genes into a single
connected component comprising 163 genes/proteins (Figure 4A). Overall, the
COPD module genes showed significant differences in gene expression levels from
lung tissue, alveolar macrophage, blood, and sputum samples. For example, Tumor
necrosis factor alpha (TNFa)-induced protein 1 (TNFAIP1) was upregulated in
smokers with COPD and directly interacts with RIN3, a COPD GWAS gene 4.
TNFAIP1 has been reported to be crucial for the induction of apoptosis 42, indicating
a potential role of RIN3 in apoptosis. Furthermore, AP3D1 was upregulated in COPD
subjects?? (Alveolar macrophage I) and directly interacts with FAM13A in our pull-
down assay. The new alliance of FAM13A to the COPD disease network module via
AP3D1 connects it to the hypoxia pathway (Figure 5B), which reveals the potential
molecular mechanism by which FAM13A influence hypoxia in epithelial and
endothelial cells. Although other lung (e.g., idiopathic pulmonary fibrosis) and heart
(e.g., congestive heart failure) diseases can cause hypoxia, hypoxia is a common and
important complication of advanced COPD. Thus, we found it interesting that
pathway analysis of the COPD network module identified the hypoxia pathway. This
evidence suggests the potential of the C,g measure to reveal new disease biology

that might have been missed due to the incomplete human interactome.

Our approach adds a new dimension to the current causal gene identification
approaches in complex diseases using the human interactome. Moreover, we were
able to localize the network neighborhood of COPD and try to address (at least in
part) the shortcomings of interactome incompleteness by providing new

experimentally derived interactions for FAM13A4, a key COPD gene not present in the

12


https://doi.org/10.1101/408229
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/408229; this version posted September 4, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

current human interactome. We were able to connect FAM13A individual
interactions to a localized network neighborhood by developing a new metric of
network closeness, Cpg. With the current thrust to understand GWAS genes with the
help of incomplete protein interaction networks, our approach provides an
alternative to connect targeted interaction and interactome data to identify a

disease network module.

We focused on only a small set of seed genes for COPD, and that could be one of the
limitations of the work. Moreover, since the disease-related gene within each COPD
GWAS locus has not been definitively proven, we selected those genes that had the
most compelling evidence for a role in COPD pathogenesis. For example, murine
models of emphysema have demonstrated a smoking-related phenotypic effect for
genes in four of the COPD GWAS loci that we included: 1) HHIP 43; 2) FAM13A 44; 3)
IREBZ2 %5; and 4) MMP12 “6. In addition, several other COPD GWAS loci have strong
candidate genes, such as the nicotinic acetylcholine receptor genes that have been
related to nicotine addiction (CHRNA3 and CHRNA5) and TGFBZ (part of the
TGFBeta pathway). Thus, we contend that most of our selected seed genes are likely
related to COPD pathogenesis. We also acknowledge that protein-protein
interactions observed during in vitro experiments like yeast two-hybrid or affinity
purification assays may not actually occur due to the absence of cellular co-
localization or gene expression in the tissue of interest. COPD is a heterogeneous
disease, and it is possible that different subtypes of COPD patients could have
different disease network modules. Since linker genes connected the three COPD
disease components in the COPD network neighborhood into a single disease
network module, it could be possible that these are really three different COPD
network modules. Thus, future research to identify network modules related to

specific COPD subtypes is warranted.

Overall, the disease network module approach that we applied is generic and can be
applied to other diseases; this type of approach may be of broad use in disease gene

identification in complex diseases in the coming era of network medicine.
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Materials and Methods

Selection of high confidence COPD-associated genes

Starting with previous GWAS for COPD susceptibility, and with specific genes
implicated by eQTL or functional studies within GWAS regions, we identified a set of
well-established genes associated with COPD: HHIP, CHRNA3/CHRNA5/IREBZ, and
FAM13A. We added recently described genome-wide significant associations to
moderate-to-severe COPD or severe COPD, including RIN3, MMP12, and TGFBZ2 41.47-
51, We also considered genes causing Mendelian syndromes which include
emphysema as part of their syndrome constellation: alpha-1 antitrypsin deficiency
(SERPINA1) and cutis laxa (ELN and FBLN5) 5253, These 11 genes, in toto, were
subsequently used as seed genes for network analyses. We included several genes
from the chromosome 15q25 locus, since previous work from our group has
suggested that there are likely at least two COPD genetic determinants in this
region—both related to nicotine addiction (nicotinic acetylcholine receptor genes
CHRNA3 and CHRNAS) and unrelated to nicotine addiction (IREB2)5%. Of note, HHIP,
FAM13A, and IREB2 are also supported by animal models of emphysema. In
addition to these five COPD GWAS genes, we added MMP12, which was associated
with COPD before it was discovered by GWAS>> and which is also supported by an
animal model of emphysema, as well as TGFB2 and RIN3. TGFB2 and RIN3 (as well
as HHIP, FAM13A, and the chromosome 1525 region) were also strongly

supported by the recent International COPD Genetics Consortium GWAS?.
Human protein interaction network: Interactome

We compiled the physical protein-protein interactions from the ConsensusPathDB
database 56. Physical protein interactions were assigned a confidence score between
0 and 1 using the interaction confidence-scoring tool (IntScore)>’. We relied only on

physical interaction data in ConsensusPathDB, obtaining M=150,168 links between
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N=14,280 genes encoding these proteins with mean degree <k> of 21.03 and

average clustering coefficient <C> of 0.141.
Localization of COPD network neighborhood in the human interactome

The concept that proteins located close to one another in the human interactome
may cause similar diseases is becoming an increasingly important factor in the
search for complex disease genes. Different approaches tackle this problem of
predicting complex disease susceptibility genes using different kinds of integrative
data, but all of them involve superimposing a set of candidate genes alongside a set
of known disease genes in some physical or functional network 13175859, However,
many existing methods are likely to favor highly connected genes, making
prioritization sensitive to the skewed degree distribution of protein-protein
interaction (PPI) networks, as well as ascertainment bias in available interaction
and disease association data. To enhance our understanding regarding the local
neighborhood of seed genes in the network, we applied the degree aware algorithm
(DADA) 20 to compute the proximity of the selected COPD seed genes to their
neighbors by exploiting the global structure of the network. Several studies 17:60
have shown global approaches like random walk outperform other local approaches
like shortest path distances, and therefore we focused on the global method. The
final ranking for 14,280 genes encoding proteins included in the network was
achieved by merging the random walk restarts output and statistical adjustment
models. We used the results from a COPD GWAS of 6,633 cases and 5,704 controls
from 4 cohorts to define a boundary for the most promising DADA-ranked genes 41.
We assigned significant SNPs to genes using 50kb boundaries, and generated gene-

based p-values using VEGAS 2.
FAM13A pull-down assay

The FAM13A gene resides at a locus associated with COPD and with lung function in
the general population by GWAS 41516162 FAM13A contains a Rho GTPase-activating
protein-binding domain, inhibits signal transduction, and responds to hypoxia;

however, its primary function in the lung remains to be determined. The pull-down
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assay using affinity purification-mass spectrometry was performed previously?3 and
resulted in 96 interacting proteins, establishing 96 edges for FAM13A in the

interactome.

Proximity of the targeted interactions to the COPD neighborhood - Cab

To quantify the network-based separation between the identified FAM13A
interactions and the COPD disease network neighborhood, we introduce the Cab

minimum weighted distance, which we define as follows:

For any two nodes / and m we define the Cab distance as:

dim = min{Zu,vEpath(l,m) ln(p/Wuv)}' B (1)

where w,,, € [0,1] is the edge confidence score and p € (1, OO) is the parameter of
the model. Note that distance d,,, depends both on the total number of network-
based edges one needs to traverse from node / to node 1 and also the confidence
scores of these weights, while parameter p tunes the relative contribution of these

two factors.

In particular, in the p = 1 case, d;;,, depends only on confidence scores of edges

connecting two nodes:

dlm = min{_ln(nu,vez}ath(l,m) Wuv)} (2)

If confidence scores w,,,, are regarded as independent probabilities for the edges to

be present in the network, then the product in Eq. (2) is simply the probability that

given path from/ to m exists. The larger this probability, the smaller distance d,,, is.

On the other hand, if p is large, then d;,, is independent of confidence scores:
dpy = Lin(p), (3)

where L is the smallest number of edges that need to be traversed from / to m.
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We then use d,,, to define distance from / to a set of nodes M as the sum of

distances from / to all nodes in M :
d() Y d. (4)
rEM

We evaluated distances from nodes to the neighborhood for a set of parameters

Yz ={e°,el,e2,ew}. In the following, the values of the parameter are indexed with

power of the exponent (0,1,2,10). To quantify the significance of the observed

distribution of distances 2 = () from target proteins to the COPD localized

neighborhood we used the Mann-Whitney U test with significance cutoff of P < 0.05.
Specifically, we calculated the distribution of distances between targeted proteins to

the module /2 =(a/») and a random distribution of distance from target proteins to

all proteins in the network /2 =(4). To measure how much the two distributions

TMe —(TRc™)

are different, we calculate the Z-score: 2 —.score = y
O_(]VRC/‘IIII 4 )

(5)

rand

Where 7R and 0(7Rc™™) denote the mean value and standard deviation of the

random expectation p"““(7Rc) . Assuming normality of »™“(7Rc) , we can

analytically calculate a corresponding p-value for each z-score, yielding a threshold

of z-score < -1.6 for the distance to be smaller than expected by chance with

significant p-value < 0.05.

Local Radiality (LR) method for target prediction

The LR method quantifies the proximity of a node from a set of genes of interest.

The LR score of node n in the network G is calculated as follows 26:
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Ygemlsp(n, g G|
M|

LR(n) =

Where sp calculates the length of shortest path between nodes n and g. and |M| is

the size of the community of interest (150 genes).

In other words, LR calculates the average shortest paths from node n to the module

M.

COPD network module overlap with inflammasome genes

Since clinical COPD is influenced by inflammation,®3 we looked for the potential
overlap between the COPD disease network module and recognized genes relevant
to inflammatory response or the ‘inflammasome’ genes. These inflammasome
signature genes were compiled from 11 disease models (asthma, COPD, fibrosis,
atherosclerosis, diabetes (adipose), diabetes (islet), obesity, stroke, neuropathic
pain, inflammation pain and sarcopenia) 36. We used the total of 2,483 inflammatory
signature genes previously reported from mouse models and converted them to
their human orthologs, obtaining 2,331 genes in our analysis. Mouse to human
orthologs were extracted from the Mouse Genome Informatics (MGI) database

(http://www.informatics.jax.org).
Validation of COPD disease module in COPD- specific gene-expression data

Our disease network module approach selects genes based on their topological
closeness to the COPD seed genes. To evaluate COPD-specific relevance of genes
localized around the seed genes, we extracted significantly differentially expressed
genes (p-value<0.05) from eight publicly available COPD-specific gene-expression
datasets and assessed for each case the fold change difference between genes
present in the COPD disease module compared to non-module differentially
expressed genes. We used the limma R package (ver 3.10.1) for differential

expression analysis. The 8 datasets are as follow:

1. Singh2014: Peripheral blood gene expression samples from 171 subjects
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from the Evaluation of COPD Longitudinally to Identify Predictive Surrogate
Endpoints (ECLIPSE) study (GSE54837). Differential expression analysis was
performed between control (n=6) (healthy nonsmokers) vs. severe COPD
(n=13)6%.

2. Singh2011: Induced sputum gene expression from 148 COPD subjects in the
ECLIPSE study, with 69 Global Initiative for Chronic Obstructive Lung
Disease (GOLD) stage 2, and 71 GOLD stage 3 & 4 subjects (GSE22148). Gene
expression differences between GOLD 2 and GOLD 3&4 were analyzed 3.

3. Shaykhiev 2009: Transcriptional profiling of alveolar macrophages obtained
by bronchoalveolar lavage of 24 healthy nonsmokers and 12 COPD smokers
(GSE13896) 2.

4. Bahr2013: Expression data from peripheral blood mononuclear cells (PBMC()
generated from 136 subjects from the COPDGene study (GSE42057), which
consisted of 42 ex-smoking control subjects and 94 subjects with varying
severity of COPD 5.

5. Tedrow2013: Microarray data from whole lung homogenates of subjects
undergoing thoracic surgery from the Lung Tissue Research Consortium
(LTRC). These subjects were diagnosed as being controls or having COPD as
determined by clinical history, chest CT scan, and surgical pathology. We
considered 220 COPD subjects and 108 controls with no chronic lung disease
by CT or pathology. These subjects went for surgery typically to investigate a
pulmonary nodule and normal lung tissue was obtained for differential
expression analysis (GSE47460) 3°.

6. Bhattacharya2009 : Gene expression patterns in lung tissue samples derived
from 56 subjects (GSE8581). Cases (n=15) were defined as subjects with
FEV1<70% predicted and FEV1/FVC<0.7 and Controls (n=18) as subjects
with FEV1>80% predicted and FEV1/FVC>0.7 6.

7. Poliska2011: Gene expression data from alveolar macrophage samples from
26 COPD and 20 healthy control subjects (GSE16972) 67.

8. Steiling2013: Bronchial brushings obtained from current and former smokers

with and without COPD (GSE37147). Data from 238 subjects was used in the
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analysis to determine the association of gene expression with COPD-related

phenotypes 32.
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Table 1: Differentially expressed COPD disease network module genes in four datasets
with adjusted p-values <0.05.

Shaykhiev2009-

Alveolar macrophages Non-smoker vs COPD
Gene.symbol logFC adj.P.val P.Value
IL32 -3.770 0.0014 1.35E-06
ADAM11 -1.441 0.0342 0.0004
CXCL5 -2.049 0.0359 0.0004
MMP7 1.952 0.0381 0.0005
AP3D1 0.451 0.0387 0.0005
MMP12 2.390 0.0423 0.0006
Tedrow2013-Lung Control vs COPD
Gene.symbol logFC adj.P.val P.Value
MMP1 2.452 0.0069 3.13E-05
TGFB2 -0.768 0.0141 0.0001
WISP1 1.410 0.0158 0.0002
PRSS3 1.023 0.0165 0.0002
MMP9 1.238 0.0240 0.0004
TGFBR3 -0.629 0.0298 0.0006
CAT -0.466 0.0306 0.0007
SRPX2 0.728 0.0401 0.0011
MMP12 1.621 0.0433 0.0013
Singh2011-Eclipse
sputum GOLD I vs GOLD IV
Gene.symbol logFC adj.P.val P.Value
FAM115A -1.228 0.0023 2.78E-06
HHIP -0.645 0.0046 2.91E-05
CAT -0.535 0.0047 3.17E-05
SERPINE1 0.969 0.0088 0.0002
CAT -0.683 0.0100 0.0002
CHRNA3 -0.875 0.0109 0.0003
MMP1 1.320 0.0157 0.0006
CXCL1 0.494 0.0167 0.0007
TNFRSF14 0.492 0.0176 0.0008
F12 0.485 0.0184 0.0008
LTBP2 0.722 0.0205 0.0010
BPI 0.870 0.0229 0.0013
CTRC 0.625 0.0273 0.0019
FBN1 -1.399 0.0278 0.0019

23


https://doi.org/10.1101/408229
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/408229; this version posted September 4, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

COL14A1 -0.410 0.0288 0.0021
SERPINA1 0.592 0.0294 0.0021
FBXL5 0.400 0.0384 0.0035
PLAUR 0.283 0.0394 0.0037
PTCH1 -0.753 0.0394 0.0037

Current smokers NO-

Steiling2013-bronchial COPD-Current

brushing smokers with COPD
Gene.symbol logFC adj.P.val P.Value
CDON -0.264 0.0296 0.0005
LYPD3 0.218 0.0370 0.0009
GSDMB 0.322 0.0431 0.0012
CHRNA7 0.185 0.0438 0.0013
CTGF 0.237 0.0477 0.0016
TNFAIP1 0.126 0.0495 0.0018
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Table 2 : Enrichment of COPD disease module genes in different tissue gene expression

data sets with and without seed genes

P-value with Se«¢

Reference GEOID Tissue genes
Shaykhiev2009 GSE13896  Alveolar Macrophages | 0.002
Poliska2011 GSE16972 Alveolar Macrophages Il 0.037
Singh2011 GSE22148  Sputum 0.018
Steiling2013 GSE37147  Bronchial brushings 0.011
Bahr2013 GSE42057  Peripheral blood mononuclear cell 0.030
Tedrow2013 GSE47460 Lung homogenate (Lung ) 0.00026
Singh2014 GSE54837 Blood 0.009
Bhattacharya2009 GSE8581 Lung tissue (Lung Il) 0.163
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Table 3: Biological pathways significantly enriched in the COPD disease network

module
Biological Process Adjuste | Genes
dP-
value
Extracellular matrix organization 0 FBN2;PRSS1;COL14A1;ELN;SERPINEL;IHH;DPT;FBLN1;LTBP3;FBLN2;NID2;L
TBP1;LOXL1;FBLN5;ADAMTS4;LGALS3;EFEMP2;CTSG;PRSS2;ELANE; TGFB2;
TGFB1;MMP7;LUM;TGFB3;MMP1;CTRB1;SPINK5;BGN;MMP9;DCN;MFAP5
;MMP12;MMP11;BMP2;LOX;MFAP2;COL8A1;FMOD;ENG;FBN1
Collagen catabolic process 5.46615 | MMP12;MMP11;MMP7;COL14A1;MMP26;MMP1;COL8A1;PRTN3;MMP9;
E-07 PRSS2;ELANE
Negative regulation of TGFB receptor 2.60849 | TGFBR3;FBN2;TGFB1;TGFB3;ADAMTSL2;LTBP1;ASPN;VASN;ENG;FBN1
signaling pathway E-06
Response to decreased oxygen levels 1.04424 | CHRNB2;TGFB2;TGFB1;CHRNA4;TGFB3;CHRNA7;IREB2;SOD3;VASN;CTGF;
E-05 TGFBR3;BMP2;STC2;CAT;ENG
Rregulation of transmembrane receptor 8.56907 TGFBR3;FBN2;BMP2;SHH;TGFB1;TGFB3;ADAMTSL2;LTBP1;ASPN;VASN;EN
protein serine/threonine kinase signaling E-05 G;FBN1
pathway
Inflammatory response 0.0002 CXCL6;SERPINA3;CCL13;0RM1;TGFB1;SERPINA1;F12;CXCL1;CELAL;LYZ;B
MP2;CCL8;CCL7;CCR3;ELANE;CCR2
Defense response to bacterium 0.0003 ADAMTS4;CXCL6;MMP7;CD160;SERPINE1;DEFAS;BPI;TNFRSF14;PPBP;LYZ;
ELANE
Regulation of epithelial cell proliferation 0.0003 TGFB2;TGFB1;PTCH1;IHH;TGFBR3;MMP12;BMP2;SHH;SMO;APOH;GAS1;C
CR3;ENG
Regulation of angiogenesis 0.0014 CX3CR1;SRPX2;CHRNA7;APOH;SERPINE1;SPINK5;KLK3;CX3CL1;CCR3;CCR2
Negative regulation of endopeptidase 0.0015 SERPINA3;SERPINB1;SERPINAL;SPINK1;SERPINE1;PZP;SPINK5;LCN1;PI3;TF
activity PI;LPA
Negative regulation of protein processing 0.0016 SERPINA3;SERPINB1;SERPINA1L;SPINK1;SERPINE1;PZP;SPINKS5;TFPI;SHH;G
AS1;LCN1;PI3;LPA
Leukocyte migration 0.0016 CX3CR1;LGALS3;CCL13;TGFB2;CCL7;MMP1;PPBP;MMP9;CX3CL1;ELANE;C
CR2
Transmembrane receptor protein 0.0023 TGFBR3;BMP2;TGFB2;TGFB1;TGFB3;SERPINE1;LTBP2;LTBP3;LTBP1;ENG
serine/threonine kinase signaling pathway
Aging 0.0029 TGFB1,TERT,TGFB3;CAT;SERPINE1;IREB2;CANX;DCN;CTGF;ENG
negative regulation of proteolysis 0.0034 SERPINA3;SHH;SERPINB1;SERPINA1;SPINK1;SERPINE1;PZP;SPINK5;LCN1;PI
3,TFPI;LPA
Epithelium development 0.0034 BMP2;TGFB2;SHH;TGFB1;SMO;PTCH1;CAT;PTCH2;IHH;KLK5;CTGF
Negative regulation of hydrolase activity 0.0035 SERPINA3;TGFB2;SERPINB1;SERPINA1;SPINK1;SERPINE1;PZP;SPINK5;TFPI;
ADCYAP1;LCN1;PI3;LPA
Cellular calcium ion homeostasis 0.0037 ADCYAP1;CCL13;TGFB1;CCL8;CCL7;CHRNA7;STC2;CHRNA9;CCR3;ELANE;C

CR2
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Cellular metal ion homeostasis 0.0039 | CCL13;TGFB1;CHRNA7;IREB2;CHRNA9;ADCYAP1;CCL8;CCL7;STC2;ATP6VO
A4;CCR3;ELANE;CCR2

Regulation of peptidase activity 0.0046 | SERPINA3;SERPINB1;SERPINA1;SPINK1;SERPINE1;PZP;SPINKS;FBLNL;TFPI;
CTGF;LCN1;PI3;LPA

Response to alcohol 0.0046 | CHRNB2;ADCYAP1;TGFB1;SMO;CCL7;DHH;CHRNA7;STC2;PTCH1;IHH;CTGF

Cellular cation homeostasis 0.0063 | CCL13;TGFB1;CHRNA7;IREB2;CHRNA9;ADCYAP1;CCL8;CCL7;STC2;ATP6VO
A4;CCR3;ELANE;CCR2

Regulation of endopeptidase activity 0.0081 SERPINA3;SERPINB1;SERPINAL;SPINK1;SERPINE1;PZP;SPINK5;LCN1;PI3;TF
PI;LPA;CTGF

Negative regulation of immune system 0.0093 LGALS3;ADCYAP1;TGFB2;SHH;TGFB1;TGFB3;SPINK5;IHH;BPI;TNFRSF14;CC

process R2

Positive regulation of cell migration 0.0119 LGALS3;BMP2;TGFB2;TGFB1;SRPX2;CCL7;SERPINE1;TNFRSF14,MMP9;CCR
2

Coagulation 0.0184 TGFB2;TGFB1;SERPINAL;TGFB3;MMP1;F12;SERPINE1;PLAUR;PPBP;TFPI;F

BLN5;SHH;EFEMP2
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Figure legends:

Figure 1: Overview of the approach to identify the COPD disease network module
by using the edge-weighted interaction network. First, we applied the Degree-Aware
Disease Gene Prioritization (DADA) algorithm and we prune the DADA results by
integrating COPD GWAS data. A. Workflow describing the method. B. Among the 11
high confidence COPD seed genes, 10 were mapped on the human interactome, with

3 of them being directly connected.

Figure 2: Initial COPD disease network neighborhood. A. GWAS p-values of the
added DADA genes vs. the background p-value distribution (150 gene cut-off). B. Z-
score significance of the largest connected component (LCC). C. COPD localized
network neighborhood of 140 DADA genes and 10 seed genes distributed in three

components.

Figure 3: Network-based closeness of FAM13A partners to COPD disease network
neighborhood. A: Illustration of the network-based closeness measure ({(Cag)) for
FAM13A partners to COPD disease network neighborhood. We calculate the mean
shortest distances between (CA) and (CB) and compare it with the random selection
of same number of nodes. B: The closeness significance of 96 FAM13A partners to

COPD disease network neighborhood.

Figure 4: COPD disease network module, including experimentally determined
FAM13A interactors, and gene-expression changes in COPD-specific data. A. COPD
disease network module connecting 11 seed genes including FAM13A. B. Fold
change difference between module differentially expressed genes (p<0.05) and non-

module differentially expressed genes.

Figure 5: A. Extracellular matrix organization pathway genes in COPD disease

network module. B. Connection of COPD disease network module genes in the
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hypoxia pathway: (Cag) helps to connect FAM13A to the hypoxia pathway through
CTGF gene.

Table 1: Differentially expressed COPD disease module genes in four datasets with

adjusted p-values <0.05

Table 2: Enrichment of COPD disease network module genes in different tissue

gene expression data sets with and without seed genes

Table 3: Biological pathways significantly enriched in the COPD disease network

module
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