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Abstract	

The	 polygenic	 nature	 of	 complex	 diseases	 offers	 potential	 opportunities	 to	 utilize	

network-based	approaches	that	 leverage	the	comprehensive	set	of	protein-protein	

interactions	(the	human	interactome)	to	identify	new	genes	of	interest	and	relevant	

biological	 pathways.	 However,	 the	 incompleteness	 of	 the	 current	 human	

interactome	 prevents	 it	 from	 reaching	 its	 full	 potential	 to	 extract	 network-based	

knowledge	 from	 gene	 discovery	 efforts,	 such	 as	 genome-wide	 association	 studies,	

for	complex	diseases	like	chronic	obstructive	pulmonary	disease	(COPD).		Here,	we	

provide	 a	 framework	 that	 integrates	 the	 existing	 human	 interactome	 information	

with	 new	 experimental	 protein-protein	 interaction	 data	 for	 FAM13A,	 one	 of	 the	

most	highly	associated	genetic	loci	to	COPD,	to	find	a	more	comprehensive	disease	

network	module.	We	identified	an	initial	disease	network	neighborhood	by	applying	

a	 random-walk	method.	 Next,	we	 developed	 a	 network-based	 closeness	 approach	

(CAB)	 that	 revealed	 9	 out	 of	 96	FAM13A	 interacting	 partners	 identified	 by	 affinity	

purification	 assays	 were	 significantly	 close	 to	 the	 initial	 network	 neighborhood.	

Moreover,	compared	to	a	similar	method	(local	radiality),	the	CAB	approach	predicts	

low-degree	genes	as	potential	candidates.	The	candidates	identified	by	the	network-

based	closeness	approach	were	combined	with	the	initial	network	neighborhood	to	

build	a	comprehensive	disease	network	module	(163	genes)	that	was	enriched	with	

genes	 differentially	 expressed	 between	 controls	 and	 COPD	 subjects	 in	 alveolar	

macrophages,	 lung	tissue,	sputum,	blood,	and	bronchial	brushing	datasets.	Overall,	

we	 demonstrate	 an	 approach	 to	 find	 disease-related	 network	 components	 using	

new	laboratory	data	to	overcome	incompleteness	of	the	current	interactome.		
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Introduction	

Chronic	obstructive	pulmonary	disease	 (COPD)	 is	 the	 third	 leading	cause	of	death	

worldwide,	 and	 recently	 it	was	estimated	 that	COPD	cases	 in	developed	 countries	

would	increase	by	more	than	150%	from	2010	to	2030	1-4.		Furthermore,	similar	to	

other	complex	diseases,	it	has	been	challenging	to	identify	systematically	the	likely	

multiple	 genetic	 risk	 factors	 for	 COPD.	 Genome-wide	 association	 studies	 (GWAS)	

can	identify	specific	genetic	loci	consistently	associated	with	disease	in	an	unbiased	

manner	and	have	reported	hundreds	of	associations	between	complex	diseases	and	

traits	5-7.	However,	for	the	vast	majority	of	such	genome-wide	“hits”,	specific	causal	

mechanisms	 remain	 uncertain.	 There	 is	 increasing	 evidence	 supporting	 the	

hypothesis	that	the	onset	and	progression	of	complex	diseases	like	COPD	arise	from	

the	 interplay	 between	 a	 number	 of	 interconnected	 causative	 genes	 in	 a	 manner	

compounding	the	effects	of	any	one	variant8-10.	Indeed,	integrating	GWAS	data	with	

molecular	interaction	networks	and	gene	expression	information	facilitates	a	better	

understanding	 of	 disease	 pathogenetic	 mechanisms10-14.	 A	 variety	 of	 approaches	

have	 been	 developed	 to	 infer	 relationships	 between	 genes	 showing	 genome-wide	

significant	 evidence	 of	 association	 within	 the	 human	 interactome—the	

comprehensive	 set	 of	 molecular	 relationships	 between	 cellular	 proteins	 14-17.	 For	

example,	 we	 showed	 that	 a	 disease	 network	 module	 is	 enriched	 for	 disease	

susceptibility	 variants	 in	 asthma10.	 A	 GWAS	 of	 inflammatory	 bowel	 disease	 used	

DAPPLE,	which	 is	based	on	 the	observation	 that	 truly	causal	genes	 tend	 to	 link	 to	

each	 other	 in	 the	 human	 interactome,	 to	 prioritize	 potential	 disease	 candidates18.	

Since	 combinations	 of	 genetic	 alterations	 associated	with	 a	 disease	might	 affect	 a	

common	 component	 of	 the	 cellular	 system,	 module-centric	 approaches	 might	 be	

helpful	 in	 finding	 the	disease-related	 components	 in	 the	 interactome	 13,19.	 Yet,	 the	

output	of	these	approaches	can	be	strongly	influenced	by	(i)	the	incompleteness	of	

the	pre-specified	 interactome	(false-negative	results),	 and	 (ii)	 false-positive	errors	

in	 the	 interactome.	 	 The	 impact	 of	 the	 incompleteness	 could	 result	 in	 failure	 to	

identify	network	relationships	for	genes	implicated	by	GWAS.	Thus,	integrating	the	

module-centric	approach	with	targeted	interaction	analysis	(e.g.,	pull-down	assays)	
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of	GWAS	genes	might	be	helpful	in	discovering	the	functional	relationships	of	these	

genes	 with	 a	 disease	 of	 interest.	 	 In	 this	 work	 we	 combine	 new	 experimental	

protein-protein	 interaction	 data	 with	 the	 existing	 human	 interactome	 to	 enhance	

our	understanding	of	the	genes	involved	in	COPD.	The	objective	relies	on	the	“local	

impact	hypothesis,”	which	assumes	that	if	a	few	disease	components	are	identified,	

other	components	are	likely	to	be	found	in	their	vicinity	of	the	human	interactome	
10,12.		Moreover,	if	a	disease	gene	is	not	mapped	in	the	interactome,	it	is	possible	that	

its	neighbors	detected	by	targeted	interaction	analysis	might	indicate	it’s	biological	

function.	 Hence,	 we	 first	 identify	 the	 disease-related	 network	 neighborhood	

including	known	COPD	disease	genes	(seed	genes)	in	the	interactome	by	applying	a	

degree-adjusted	 random-walk	 algorithm20	 (DADA),	which	 is	 a	 guilt-by-association	

approach.	Next,	we	test	whether	experimentally	determined	links	(pull-down	assay)	

for	 a	 single,	 consistently	 associated	 COPD	 gene	 (FAM13A)	 not	 mapped	 on	 the	

human	interactome	could	enhance	our	knowledge	about	 functional	 implications	of	

FAM13A	 in	 COPD	 pathogenesis.	 The	 approach	 first	 aggregates	 the	 network	

neighborhood	 around	 the	 COPD	 ‘seed’	 disease	 genes	 using	 DADA	 20.	 	 Further,	 to	

define	a	boundary	of	 the	disease	network	neighborhood,	we	use	 the	 sub-genome-

wide	 significant	 association	 signals	 from	 the	 COPD	 GWAS	 (Figure	 1).	 	 This	 step	

helps	 to	 find	 enrichment	 of	 moderate	 p–value	 signals	 associated	 with	 those	

neighboring	genes	that	are	in	the	proximity	of	the	seed	genes.	We	hypothesized	that	

combining	 experimental	 interaction	 data	 with	 the	 existing	 human	 interactome	

would	develop	a	more	comprehensive	disease	network	module	 for	COPD.	 	To	 test	

this	 hypothesis,	 we	 derive	 a	 novel	 network-based	 closeness	 approach	 (CAB)	 to	

predict	 FAM13A	 partners	 significantly	 close	 to	 the	 initial	 COPD	 localized	

neighborhood.	Overall,	our	approach	enhances	our	understanding	about	 the	COPD	

disease	 network	 module	 and	 predicts	 new	 candidate	 genes	 and	 pathways	

influencing	COPD	pathogenesis.		

Results	

Building	an	initial	COPD	network	neighborhood	using	the	Degree-Aware	Disease	Gene	

Prioritization	approach	(DADA)	
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The	disease	module	hypothesis	postulates	 that	disease	susceptibility	genes	should	

form	one	or	a	 few	 large	connected	components	 in	a	well-defined	neighborhood	of	

the	 human	 interactome10,12.	 Selection	 of	 the	 seed	 genes	 strongly	 influences	 the	

interpretation	of	 such	a	module-centric	approach,	and	 therefore	we	restricted	our	

analysis	 to	 only	 high-confidence	 COPD	 disease	 genes	 from	 GWAS	 and	 Mendelian	

syndromes	(Figure	1B).	 	To	avoid	bias	toward	including	highly	connected	genes	in	

the	 network	 neighborhood,	 we	 implemented	 the	 random	 walk-based	 DADA	

approach,	 which	 provides	 statistical	 adjustment	 models	 to	 remove	 the	 bias	 with	

respect	to	degree	of	the	genes20.	Since	DADA	provides	ranking	to	all	of	the	genes	in	

the	 human	 interactome,	 we	 defined	 the	 boundary	 of	 the	 disease	 network	

neighborhood	 by	 integrating	 additional	 genetic	 signals	 from	 COPD	 GWAS	 (not	

reaching	 traditional	 p-value	 thresholds	 for	 genome-wide	 significance)	

(Supplementary	 figure	1).	We	first	generated	a	single	genetic	association	p-value	

for	each	gene	in	the	interactome	using	VEGAS	with	the	default	all	snps	test	21,	and	

then	 plotted	 p-values	 of	 the	 added	 DADA	 genes	 vs.	 the	 background	 p-value	

distribution	(Figure	2A).	After	the	addition	of	150	genes,	the	genetic	association	p-

value	of	added	genes	reached	a	plateau	(Figure	2A)	and	the	connected	components	

among	 the	 150	 genes	were	 defined	 as	 the	 ‘initial	 network	 neighborhood’.	 At	 this	

threshold,	we	found	eight	seed	genes	in	the	largest	connected	component		(LCC)	of	

size	129	genes,	and	the	other	two	seed	genes	were	part	of	two	small	components	of	

sizes	17	and	4,	respectively	(Figure	2C).	Indeed,	the	LCC	of	129	genes	was	found	to	

be	significant	compared	to	the	largest	connected	component	that	would	emerge	by	

chance	 if	 the	 129	 genes	 were	 placed	 randomly	 (10,000	 times)	 in	 the	 human	

interactome	(Z-score	=27,	p=<0.00001,	Figure	2B).	Overall,	these	three	components	

constitute	the	COPD	localized	neighborhood	with	140	DADA	genes	plus	10	original	

high-confidence	 COPD	 seed	 genes.	 	 We	 compared	 our	 results	 with	 the	 Disease	

Module	Detection	(DIAMOnD)	algorithm,	which	identifies	the	disease	neighborhood	

around	 a	 set	 of	 known	 disease	 proteins	 based	 on	 the	 connectivity	 significance	 22.	

Interestingly,	we	 found	a	 significant	overlap	between	DADA	and	DIAMoND	output	

(Supplementary	 Figure	 2),	 indicating	 that	 the	 results	 are	 consistent	 using	 a	

different	network-based	approach.		
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The	 10	 COPD	 seed	 genes	 that	 were	 part	 of	 the	 initial	 network	 neighborhood	

included:		IREB2,	SERPINA1,	MMP12,	HHIP,	RIN3,	ELN,	FBLN5,	CHRNA3,	CHRNA5,	and	

TGFB2	(Figure	2C).		Since	one	of	the	key	genes	identified	by	COPD	GWAS,	FAM13A,	

was	not	mapped	in	the	human	interactome,	we	tested	whether	specific	 interacting	

partners	of	FAM13A	 could	reveal	new	knowledge	regarding	this	particular	gene	 in	

COPD.		

FAM13A	pull	down	assay23	

FAM13A	contains	a	Rho	GTPase-activating	protein-binding	domain;	it	inhibits	signal	

transduction	and	responds	to	hypoxia.		Recent	work	by	our	research	group	indicates	

that	FAM13A	is	involved	in	WNT/beta	catenin	pathway	signaling23.	FAM13A	was	not	

mapped	 in	 the	 edge-weighted	 human	 interactome	 (ConsensuspathDB)	 and	

moreover,	 no	 edges	 were	 reported	 in	 Rolland	 et	 al	 (2014)24	 high-quality	 human	

binary	 protein-protein	 interactions	 and	 BioGRID	 interaction	 data	 (2014)25.	 	 Thus,	

we	 performed	 a	 pull-down	 assay	 using	 affinity	 purification-mass	 spectrometry,	

which	identified	96	interacting	partners	of	FAM13A.		We	measured	the	likelihood	of	

having	 a	 protein	with	 at	 least	 96	 interacting	 proteins	 in	 the	 interactome.	 	 Among	

14,280	genes	 in	 the	 interactome,	581	genes	had	a	degree	of	96	or	greater	 (𝑃 𝑘 ≥

96 = 0.04),	suggesting	that	FAM13A	is	a	relatively	highly	connected	protein	in	the	

interactome	(Supplementary	figure	3A).		Further,	we	tested	whether	the	FAM13A	

interacting	partners	 are	 closer	 to	 each	other	within	 the	 interactome	 than	a	 same-

sized	set	of	randomly	selected	proteins.		Based	on	10,000	simulations,	we	observed	

significant	 closeness	 (Zscore=	 -9.685)	 among	 FAM13A	 partners	 (Supplementary	

figure	3B).	This	indicates	that	even	if	FAM13A	partners	are	not	directly	interacting,	

they	 might	 be	 involved	 in	 a	 similar	 biological	 process	 because	 of	 their	 close	

proximity	to	each	other.	We	found	that	none	of	the	96	FAM13A	interacting	partners	

were	among	the	COPD	localized	neighborhood	that	we	had	created	with	DADA.		 

Topological	 distance	 between	 the	 COPD	 neighborhood	 proteins	 and	 FAM13A	

interacting	proteins	in	the	interactome	
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Given	 the	 substantial	 incompleteness	 of	 the	 current	 human	 interactome	 12,	 it	 is	

difficult	 to	 conclusively	 determine	 whether	 the	 COPD	 disease	 network	

neighborhood	would	directly	connect	to	interacting	partners	of	FAM13A,	as	a	single	

missing	 link	 might	 have	 disconnected	 FAM13A	 from	 the	 COPD	 localized	

neighborhood.	 Hence,	 we	 computed	 a	 network-based	 closeness	 metric	 (CAB)	 that	

compares	the	weighted	distance	between	FAM13A	partners	(A)	and	proteins	in	the	

COPD	 localized	 network	 neighborhood	 (B)	 to	 random	 expectation	 in	 order	 to	

compute	 the	 Z-score	 (see	 methods	 and	 Figure	 3A).	 With	 a	 Z-score	 significance	

threshold	 of	 -1.6	 (p<0.05),	 we	 found	 9	 genes	 significantly	 close	 to	 the	 COPD	

localized	 neighborhood	 in	 the	 human	 interactome	 and	 87	 genes	 that	 were	 not	

significant	(Figure	3B).	The	9	genes	with	significant	closeness	to	the	COPD	localized	

neighborhood	were:	GPC4	(Z=-4.04),	ESF1	(Z=-3.46),	OSBPL8	(Z=-2.97),	KIAA1430	

(-2.93),	 ZNF768	 (Z=-2.68),	 AP3D1	 (Z=-2.00),	 ANKRD17	 (Z=-1.96),	 NIP7	 (-Z=1.79)	

and	RBM34	(Z=-1.77).		

	

Comparison	with	the	Local	Radiality	(LR)	method	

We	 compared	 the	 CAB	 results	 with	 the	 Local	 Radiality	 (LR)	 method	 that	 utilizes	

topological	 information	 (i.e.,	 shortest	 path	 distance)	 to	 predict	 the	 proximity	 of	

dysregulated	genes	to	corresponding	drug	targets	26.	In	our	case,	we	measured	the	

closeness	 of	 FAM13A	 partners	 (96	 genes)	 with	 the	 COPD	 disease	 neighborhood	

(150	genes)	by	applying	the	LR	method.	In	CAB	the	confidence	scores	of	the	edges	

play	 an	 important	 role	 to	 either	 shorten	 or	 increase	 the	 distances.	 	 Thus,	 to	

carefully	 claim	 that	 a	 gene	 is	 close	 to	 the	 COPD	 network	 neighborhood,	we	 not	

only	 ensured	 that	 the	 gene	 is	 topologically	 close	 to	 the	 neighborhood	 but	 also	

considered	the	strength	of	each	interaction	based	on	different	sources	of	evidence	

for	 the	 existence	 of	 such	 a	 path.	 As	 compared	 to	 top	 CAB	 genes,	 the	 nine	 highest	

score	genes	by	LR	were	enriched	 in	hubs.	 	As	a	consequence,	 the	average	degrees	

<k>	 between	 these	 two	 methods	 were	 significantly	 different	 (P=0.0004,	 Mann–

Whitney	 U	 test)	 (Supplementary	 Figure	 4).	 The	 hubness	 criterion	 helped	 us	

discriminate	between	the	results	from	these	two	approaches.	This	seems	pragmatic,	
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as	 the	 low	 degree	 genes	might	 be	more	 likely	 to	 be	 involved	 in	 a	 local	 biological	

process	 than	 those	 high	 degree	 genes	 representing	 global	 molecular	 pathways.	

Furthermore,	 it	 has	 been	 proposed	 that	 highly	 connected	 superhubs	 perform	 the	

most	 basic	 biological	 functions	 (evolutionarily	 early),	 with	 the	 more	 specialized	

functions	 (evolutionarily	 late)	being	performed	by	 the	peripheral	 genes.	Thus,	CAB		
helps	 to	predict	 the	 FAM13A	partners	 that	might	 be	 involved	 in	more	 specialized	

biological	functions	(low	degree	genes)	related	to	COPD	pathogenesis.	Furthermore,	

it	has	also	been	observed	that	changes	 in	gene	expression	predominantly	occur	 in	

the	genes	(nodes)	with	low	connectivity,	but	not	in	the	superhubs	27.		

COPD	disease	module	with	all	eleven	COPD	seed	genes	

CAB	considers	all	of	the	possible	paths	between	⟨CA⟩	and	⟨CB⟩	genes	to	calculate	the	

statistical	 significance;	 hence,	 we	 applied	 a	 greedy	 strategy	 (Steiner)	 to	 find	 the	

optimal	paths	among	all	of	 the	paths	connecting	 the	COPD	network	neighborhood	

and	CAB		genes	28.		We	observed	a	single	network	module	consisting	of	CAB		genes	and	

COPD	 network	 neighborhood	 genes	 with	 only	 four	 intermediate	 genes	 (ELAVL1,	

CSNK2A2,	 BARD1	 and	 SIRT7).	 Of	 interest,	 including	 these	 linker	 genes	 provided	

connections	 to	 the	network	module	 for	 the	 two	COPD	seed	genes,	RIN3	 and	HHIP,	

that	 were	 not	 part	 of	 the	 original	 129	 genes	 largest	 connected	 component.	 	 Our	

resulting	expanded	 set	of	163	connected	genes,	 including	all	 of	 the	11	 seed	genes		

(Supplementary	 table	 1),	 is	 referred	 to	 as	 the	 ‘	 COPD	 disease	 network	 module’	

(Figure	4A).		

Validation	of	COPD	disease	network	module	in	COPD	specific	gene-expression	data	

We	 tested	 the	 relevance	 of	 the	 COPD	 disease	 network	module	 by	 evaluating	 fold	

change	of	differentially	 expressed	module	genes	 in	COPD-specific	 gene	expression	

data	sets.	We	compared	the	fold	change	(absolute	value	of	logarithm	of	fold	change)	

of	differentially	expressed	module	genes	to	all	other	differentially	expressed	genes	

with	unadj.p<0.05	 in	eight	COPD-specific	gene	expression	data	sets	 (Table	 2).	We	

observed	 a	 significantly	 higher	 fold-change	 in	 the	 COPD	 disease	 network	module	
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compared	to	other	differentially	expressed	genes	in	seven	datasets	(Figure	4B).	As	

shown	in	Table	2,	even	after	removing	the	seed	genes,	the	significance	was	retained	

in	six	datasets	(Supplementary	 figure	5).	Further,	by	considering	all	of	the	genes	

tested	 for	differential	 expression,	we	 still	 find	 that	COPD	disease	network	module	

genes	were	significantly	enriched	 in	 four	COPD	gene-expression	datasets	(sputum,	

lung	 tissue,	 peripheral	 blood	 and	 alveolar	macrophages)	 (Supplementary	 figure	

6).	These	results	suggest	the	ability	of	our	network-based	approach	to	identify	new	

genes	 relevant	 to	 COPD.	 	 Additionally,	 to	 correct	 for	 connectivity	 as	 a	 potential	

selection	bias	 in	the	comparison	of	module	and	non-module	genes,	we	selected	10	

random	 genes	 either	 from	 the	 disease	 network	 module	 or	 from	 all	 differentially	

expressed	genes	(filtered	at	p<0.05).	For	the	 latter,	we	made	sure	that	all	selected	

genes	were	 connected	using	an	 iterative	procedure:	 the	 first	 gene	was	 selected	at	

random,	 the	 second	 gene	was	 selected	 in	 the	 neighborhood	 of	 the	 first	 gene,	 the	

third	 gene	was	 selected	 in	 the	 neighborhood	 of	 the	 two	 first	 genes	 and	 so	 on.	 As	

compared	 to	 our	 previous	 observation	 in	Supplementary	 figure	 5,	 we	 observed	

that	the	selection	of	a	connected	subset	increases	the	significance	of	the	differences	

in	gene	expression	between	the	COPD	disease	module	genes	and	randomly	selected	

genes	(*p<0.05,	**p<0.01,	***p<0.001,	Supplementary	 figure	7).	This	seems	to	be	

due	to	the	fact	 that	high	fold	change	genes	selected	at	random	when	looking	at	all	

differentially	 expressed	 genes	 tend	 to	 not	 be	 connected	 to	 other	 differentially	

expressed	 genes.	 Overall,	 these	 results	 indicate	 that	 the	 differentially	 expressed	

genes	 were	 heavily	 localized	 in	 the	 gene	 set	 added	 by	 our	 approach,	 and	 not	

influenced	by	 the	p-value	criteria,	 thus	supporting	our	method’s	ability	 to	 identify	

candidate	genes	relevant	to	COPD.				

Potential	candidate	genes	for	COPD	

With	an	adjusted	p-value	<0.05	(limma),	we	found	36	COPD	disease	module	genes	

differentially	 expressed	 in	 different	 COPD-related	 datasets.	 For	 example,	 AP3D1	

(adj.p-0.038)	 and	 IL32	 (adj.p-0.001)	were	 up-regulated	 and	MMP12	 (adj.p=0.042)	

was	 down-regulated	 in	 non-smoking	 controls	 vs.	 COPD	 subjects	 in	 alveolar	

macrophages29	 (Alveolar	 macrophage	 I).	 In	 lung	 tissue,	 we	 found	 TGFB2	
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(adj.p=0.014)	 and	 CAT	 (adj.p=0.03)	 were	 down-regulated	 in	 control	 vs.	 COPD	

subjects30	 (Lung	 I).	 Twenty	 COPD	 disease	 module	 genes	 were	 differentially	

expressed	in	GOLD	stage	II	vs.	GOLD	stage	IV	subjects	 in	ECLIPSE	induced	sputum	

data31.	CTGF	 (adj.p=0.047),	GSDMB	 (adj.p=0.044)	 and	CHRNA7	 (adj.p=0.043)	were	

up-regulated	 between	 current	 smokers	 with	 no	 COPD	 vs.	 current	 smokers	 with	

COPD	in	bronchial	brushing	samples	32	(Table	1).		These	results	support	the	ability	

of	our	approach	to	 localize	candidate	genes	of	potential	relevance	in	COPD-related	

tissue	types.	Moreover,	all	of	the	9	CAB	genes	were	differentially	expressed	in	at	least	

one	of	the	gene	expression	datasets		(Z=2.2,	p=0.016)	(Supplementary	figure	8).	

Biological	pathway	enrichment	in	the	COPD	disease	module	

Among	 the	 biological	 pathways	 most	 significantly	 enriched	 in	 the	 COPD	 disease	

network	module	were	inflammatory	response,	collagen	catabolic	process,	regulation	

of	TGFB-receptor	signaling	pathway,	and	extracellular	matrix	organization	pathway	

(Table	3).	Alterations	of	extracellular	matrix	components	(ECM),	including	elastin,	

are	known	 in	patients	with	COPD,	and	 they	 contribute	 to	airflow	obstruction33.	 In	

the	COPD	network	module,	34	genes	representing	the	ECM	pathway	were	connected	

to	each	other	(Figure	5A).	Moreover,	we	found	support	from	the	medical	literature	

for	23	module	genes	 from	 the	 total	of	41	genes	 representing	 the	ECM	pathway	 in	

COPD	 pathogenesis	 (Supplementary	 table	 2).	 CAB	 genes	 were	 part	 of:	

Glycosaminoglycan/aminoglycan	 catabolic	 process	 (GPC4),	 negative	 regulation	 of	

muscle	 cell	 differentiation	 (ANKRD17),	 negative	 regulation	 of	 cell	 migration	

(OSBPL8),	 regulation	 of	 alpha-beta	 T	 cell	 activation	 (AP3D1)	 and	 response	 to	

decrease	 in	 oxygen	 levels	 (AP3D1).	 	 Gene	 expression	 analyses	 in	 cell	 lines	 from	

several	 tissues	 have	 demonstrated	 an	 increase	 in	 FAM13A	 levels	 in	 response	 to	

decrease	in	oxygen	levels	34.	It	has	been	suggested	that	lower	oxygen	tension	might	

modulate	FAM13A	activity35,	however,	the	exact	mechanism	has	not	been	explained.	

In	the	COPD	disease	network	module,	AP3D1	(CAB		gene)	interacts	with	FAM13A	and	

is	an	 immediate	neighbor	of	 the	CTGF	gene,	which	 is	part	of	 the	hypoxia	pathway	

(decrease	 in	 oxygen	 levels).	 Thus,	 the	 connection	 of	 FAM13A	 to	 CTGF	 reveals	 a	
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potential	mechanism	by	which	 FAM13A	 could	 contribute	 to	 the	hypoxia	 response	

(Figure	5B).		

We	observed	a	small	overlap	(37	genes,	23%;	vs	14%	background,	p-value=0.0013)	

of	 the	 COPD	 disease	 network	 module	 with	 the	 Inflammasome	 (see	 methods)	 36	

(Supplementary	 table	 1).	 This	 suggests	 that	 the	 COPD	 disease	 network	module	

was	 enriched	 for	 inflammation-related	 genes,	which	 is	 consistent	with	 the	 known	

role	 of	 inflammation	 in	 COPD	 37.	 	 Overall,	 the	 COPD	 disease	 network	module	 not	

only	 contains	 the	 inflammation	 component,	 but	 also	 other	 functional	 components	

like	 extracellular	 matrix	 organization,	 hypoxia	 response,	 and	 WNT/beta	 catenin	

signaling	pathways	23.		

	

Discussion			

The	 purpose	 of	 this	 work	 was	 to	 determine	 whether	 a	 network-based	 approach	

could	 enhance	 our	 understanding	 of	 the	 genes	 involved	 in	 the	 pathogenesis	 of	 a	

complex	 disease	 (COPD)	 by	 combining	 new	 experimental	 protein-protein	

interaction	data	with	 the	existing	human	 interactome.	 Identifying	causal	genes	 for	

complex	diseases	like	COPD,	which	are	likely	influenced	by	many	genetic	factors	of	

modest	 effect	 size,	 is	 a	 major	 bottleneck	 in	 understanding	 the	 biological	

mechanisms	leading	to	these	diseases.	A	complete	and	accurate	map	of	the	human	

interactome	 could	 have	 tremendous	 impact	 on	 our	 ability	 to	 understand	 the	

molecular	underpinnings	of	human	disease.	Yet,	such	a	map	is	far	from	completion,	

which	makes	 it	 currently	 impossible	 to	evaluate	precisely	how	 far	a	given	disease	

network	 module	 is	 from	 completion.	 Here,	 we	 showed	 that	 despite	 its	

incompleteness,	a	systematic	network-based	approach	could	help	us	to	understand	

the	connectivity	of	disease	genes	in	COPD.		Our	initial	analysis	provided	a	set	of	140	

potential	 candidate	 genes	 that	 were	 part	 of	 three	 connected	 components	 in	 a	

disease	 network	 neighborhood.	 Interestingly,	 the	 largest	 connected	 component	 of	

this	 set	 of	 genes	 included	8	of	 the	 seed	genes,	which	 showed	 substantial	network	
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coherence	and	localization.	Some	of	these	140	candidate	genes	have	been	previously	

implicated	 in	 COPD.	 For	 example,	OLFM2	 was	 among	 the	 genes	 within	 the	 COPD	

protein-protein	interaction	network	built	with	a	greedy	search	algorithm	38.	SOD3	is	

known	 to	 attenuate	 emphysema	 and	 reduces	 oxidative	 fragmentation	 of	 ECM	 in	

mouse	lung	39.	 	In	addition,	TGFB1	and	its	pathway	members	have	been	frequently	

implicated	in	COPD	pathogenesis	40.		The	novel	CAB	measure	assisted	in	constructing	

a	 more	 comprehensive	 COPD	 disease	 network	 module	 including	 FAM13A	 and	 its	

relevant	partners,	eventually	connecting	all	of	the	11	COPD	seed	genes	into	a	single	

connected	 component	 comprising	 163	 genes/proteins	 (Figure	 4A).	 Overall,	 the		

COPD	module	genes	showed	significant	differences	 in	gene	expression	 levels	 from	

lung	tissue,	alveolar	macrophage,	blood,	and	sputum	samples.	For	example,	Tumor	

necrosis	 factor	 alpha	 (TNFα)-induced	 protein	 1	 (TNFAIP1)	 was	 upregulated	 in	

smokers	 with	 COPD	 and	 directly	 interacts	 with	 RIN3,	 a	 COPD	 GWAS	 gene	 41.	

TNFAIP1	has	been	reported	to	be	crucial	for	the	induction	of	apoptosis	42,	indicating	

a	potential	role	of	RIN3	in	apoptosis.	Furthermore,	AP3D1	was	upregulated	in	COPD	

subjects29	(Alveolar	macrophage	I)	and	directly	interacts	with	FAM13A	in	our	pull-

down	assay.		The	new	alliance	of	FAM13A	to	the	COPD	disease	network	module	via	

AP3D1	connects	it	to	the	hypoxia	pathway	(Figure	5B),	which	reveals	the	potential	

molecular	 mechanism	 by	 which	 FAM13A	 influence	 hypoxia	 in	 epithelial	 and	

endothelial	cells.	Although	other	lung	(e.g.,	idiopathic	pulmonary	fibrosis)	and	heart	

(e.g.,	congestive	heart	failure)	diseases	can	cause	hypoxia,	hypoxia	is	a	common	and	

important	 complication	 of	 advanced	 COPD.	 	 Thus,	 we	 found	 it	 interesting	 that	

pathway	analysis	of	the	COPD	network	module	identified	the	hypoxia	pathway. This	

evidence	 suggests	 the	 potential	 of	 the	 CAB	measure	 to	 reveal	 new	disease	 biology	

that	might	have	been	missed	due	to	the	incomplete	human	interactome.		

Our	 approach	 adds	 a	 new	 dimension	 to	 the	 current	 causal	 gene	 identification	

approaches	 in	complex	diseases	using	the	human	interactome.	Moreover,	we	were	

able	 to	 localize	 the	network	neighborhood	of	COPD	and	 try	 to	address	 (at	 least	 in	

part)	 the	 shortcomings	 of	 interactome	 incompleteness	 by	 providing	 new	

experimentally	derived	interactions	for	FAM13A,	a	key	COPD	gene	not	present	in	the	
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current	 human	 interactome.	 We	 were	 able	 to	 connect	 FAM13A	 individual	

interactions	 to	 a	 localized	 network	 neighborhood	 by	 developing	 a	 new	metric	 of	

network	closeness,	CAB.	With	the	current	thrust	to	understand	GWAS	genes	with	the	

help	 of	 incomplete	 protein	 interaction	 networks,	 our	 approach	 provides	 an	

alternative	 to	 connect	 targeted	 interaction	 and	 interactome	 data	 to	 identify	 a	

disease	network	module.			

We	focused	on	only	a	small	set	of	seed	genes	for	COPD,	and	that	could	be	one	of	the	

limitations	of	the	work.	Moreover,	since	the	disease-related	gene	within	each	COPD	

GWAS	locus	has	not	been	definitively	proven,	we	selected	those	genes	that	had	the	

most	 compelling	 evidence	 for	 a	 role	 in	 COPD	pathogenesis.	 	 For	 example,	murine	

models	of	emphysema	have	demonstrated	a	smoking-related	phenotypic	effect	 for	

genes	in	four	of	the	COPD	GWAS	loci	that	we	included:	1)	HHIP	43;	2)	FAM13A	44;	3)	

IREB2	45;	and	4)	MMP12	46.		In	addition,	several	other	COPD	GWAS	loci	have	strong	

candidate	genes,	such	as	 the	nicotinic	acetylcholine	receptor	genes	 that	have	been	

related	 to	 nicotine	 addiction	 (CHRNA3	 and	 CHRNA5)	 and	 TGFB2	 (part	 of	 the	

TGFBeta	pathway).		Thus,	we	contend	that	most	of	our	selected	seed	genes	are	likely	

related	 to	 COPD	 pathogenesis.	 We	 also	 acknowledge	 that	 protein-protein	

interactions	observed	during	 in	vitro	experiments	 like	yeast	 two-hybrid	or	affinity	

purification	 assays	 may	 not	 actually	 occur	 due	 to	 the	 absence	 of	 cellular	 co-

localization	 or	 gene	 expression	 in	 the	 tissue	 of	 interest.	 COPD	 is	 a	 heterogeneous	

disease,	 and	 it	 is	 possible	 that	 different	 subtypes	 of	 COPD	 patients	 could	 have	

different	 disease	network	modules.	 	 Since	 linker	 genes	 connected	 the	 three	COPD	

disease	 components	 in	 the	 COPD	 network	 neighborhood	 into	 a	 single	 disease	

network	 module,	 it	 could	 be	 possible	 that	 these	 are	 really	 three	 different	 COPD	

network	 modules.	 	 Thus,	 future	 research	 to	 identify	 network	 modules	 related	 to	

specific	COPD	subtypes	is	warranted.			

Overall,	the	disease	network	module	approach	that	we	applied	is	generic	and	can	be	

applied	to	other	diseases;	this	type	of	approach	may	be	of	broad	use	in	disease	gene	

identification	in	complex	diseases	in	the	coming	era	of	network	medicine.	
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Materials	and	Methods	

Selection	of	high	confidence	COPD-associated	genes	

Starting	 with	 previous	 GWAS	 for	 COPD	 susceptibility,	 and	 with	 specific	 genes	

implicated	by	eQTL	or	functional	studies	within	GWAS	regions,	we	identified	a	set	of	

well-established	 genes	 associated	with	 COPD:	HHIP,	CHRNA3/CHRNA5/IREB2,	and	

FAM13A.	 	 We	 added	 recently	 described	 genome-wide	 significant	 associations	 to	

moderate-to-severe	COPD	or	severe	COPD,	including	RIN3,	MMP12,	and	TGFB2	41,47-

51.	 We	 also	 considered	 genes	 causing	 Mendelian	 syndromes	 which	 include		

emphysema	as	part	of	their	syndrome	constellation:	alpha-1	antitrypsin	deficiency	

(SERPINA1)	 and	 cutis	 laxa	 (ELN	 and	 FBLN5)	 52,53.	 	 These	 11	 genes,	 in	 toto,	 were	

subsequently	used	as	seed	genes	for	network	analyses.	 	We	included	several	genes	

from	 the	 chromosome	 15q25	 locus,	 since	 previous	 work	 from	 our	 group	 has	

suggested	 that	 there	 are	 likely	 at	 least	 two	 COPD	 genetic	 determinants	 in	 this	

region—both	 related	 to	 nicotine	 addiction	 (nicotinic	 acetylcholine	 receptor	 genes	

CHRNA3	and	CHRNA5)	and	unrelated	to	nicotine	addiction	(IREB2)54.		Of	note,	HHIP,	

FAM13A,	 and	 IREB2	 are	 also	 supported	 by	 animal	 models	 of	 emphysema.	 In	

addition	to	these	five	COPD	GWAS	genes,	we	added	MMP12,	which	was	associated	

with	COPD	before	it	was	discovered	by	GWAS55		and	which	is	also	supported	by	an	

animal	model	of	emphysema,	as	well	as	TGFB2	and	RIN3.		TGFB2	and	RIN3	(as	well	

as	 HHIP,	 FAM13A,	 and	 the	 chromosome	 15q25	 region)	 were	 also	 strongly	

supported	by	the	recent	International	COPD	Genetics	Consortium	GWAS7.			

Human	protein	interaction	network:		Interactome	

We	compiled	 the	physical	protein-protein	 interactions	 from	 the	ConsensusPathDB	

database	56.	Physical	protein	interactions	were	assigned	a	confidence	score	between	

0	and	1	using	the	interaction	confidence-scoring	tool	(IntScore)57.	We	relied	only	on	

physical	 interaction	data	in	ConsensusPathDB,	obtaining	M=150,168	links	between	
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N=14,280	 genes	 encoding	 these	 proteins	 with	 mean	 degree	 <k>	 of	 21.03	 and	

average	clustering	coefficient	<C>	of	0.141.	

Localization	of	COPD	network	neighborhood	in	the	human	interactome	

The	 concept	 that	 proteins	 located	 close	 to	 one	 another	 in	 the	human	 interactome	

may	 cause	 similar	 diseases	 is	 becoming	 an	 increasingly	 important	 factor	 in	 the	

search	 for	 complex	 disease	 genes.	 Different	 approaches	 tackle	 this	 problem	 of	

predicting	complex	disease	susceptibility	genes	using	different	kinds	of	 integrative	

data,	but	all	of	them	involve	superimposing	a	set	of	candidate	genes	alongside	a	set	

of	known	disease	genes	in	some	physical	or	functional	network	13,17,58,59.		However,	

many	 existing	 methods	 are	 likely	 to	 favor	 highly	 connected	 genes,	 making	

prioritization	 sensitive	 to	 the	 skewed	 degree	 distribution	 of	 protein-protein	

interaction	 (PPI)	 networks,	 as	 well	 as	 ascertainment	 bias	 in	 available	 interaction	

and	 disease	 association	 data.	 	 To	 enhance	 our	 understanding	 regarding	 the	 local	

neighborhood	of	seed	genes	in	the	network,	we	applied	the	degree	aware	algorithm	

(DADA)	 20	 to	 compute	 the	 proximity	 of	 the	 selected	 COPD	 seed	 genes	 to	 their	

neighbors	 by	 exploiting	 the	 global	 structure	 of	 the	 network.	 Several	 studies	 17,60	

have	shown	global	approaches	like	random	walk	outperform	other	local	approaches	

like	 shortest	 path	 distances,	 and	 therefore	we	 focused	 on	 the	 global	method.	 The	

final	 ranking	 for	 14,280	 genes	 encoding	 proteins	 included	 in	 the	 network	 was	

achieved	 by	 merging	 the	 random	walk	 restarts	 output	 and	 statistical	 adjustment	

models.	We	used	the	results	from	a	COPD	GWAS	of	6,633	cases	and	5,704	controls	

from	4	cohorts	to	define	a	boundary	for	the	most	promising	DADA-ranked	genes	41.	

We	assigned	significant	SNPs	to	genes	using	50kb	boundaries,	and	generated	gene-

based	p-values	using	VEGAS	21.	

FAM13A	pull-down	assay	

The	FAM13A	gene	resides	at	a	locus	associated	with	COPD	and	with	lung	function	in	

the	general	population	by	GWAS	41,51,61,62.	FAM13A	contains	a	Rho	GTPase-activating	

protein-binding	 domain,	 inhibits	 signal	 transduction,	 and	 responds	 to	 hypoxia;	

however,	its	primary	function	in	the	lung	remains	to	be	determined.	The	pull-down	
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assay	using	affinity	purification-mass	spectrometry	was	performed	previously23	and	

resulted	 in	 96	 interacting	 proteins,	 establishing	 96	 edges	 for	 FAM13A	 in	 the	

interactome.		

Proximity	of	the	targeted	interactions	to	the	COPD	neighborhood	-	Cab	

	

To	 quantify	 the	 network-based	 separation	 between	 the	 identified	 FAM13A	

interactions	 and	 the	 COPD	 disease	 network	 neighborhood,	 we	 introduce	 the	 Cab	

minimum	weighted	distance,		which	we	define	as	follows:	

For	any	two	nodes	 	and	 	we	define	the	Cab	distance	as:	

𝑑!" = min 𝑙𝑛 𝑝
𝑤!"!,!∈!"#! !,! ,	-			(1)	

where	𝑤!" ∈ 0,1 	is	 the	 edge	 confidence	 score	 and	𝑝 ∈ 1,∞ 	is	 the	 parameter	 of	

the	model.	 Note	 that	 distance	𝑑!"	depends	 both	 on	 the	 total	 number	 of	 network-

based	edges	one	needs	to	traverse	from	node	 	to	node	 and	also	the	confidence	

scores	of	 these	weights,	while	parameter	𝑝	tunes	the	relative	contribution	of	 these	

two	factors.		

In	 particular,	 in	 the	𝑝 = 1	case,	𝑑!"	depends	 only	 on	 confidence	 scores	 of	 edges	

connecting	two	nodes:	

𝑑!" = min −𝑙𝑛 𝑤!"!,!∈!"#! !,! 								(2)	

If	confidence	scores	𝑤!"	are	regarded	as	independent	probabilities	for	the	edges	to	

be	present	in	the	network,	then	the	product	in	Eq.	(2)	is	simply	the	probability	that	

given	path	from 	to	m	exists.	The	larger	this	probability,	the	smaller	distance	𝑑!"	is.	

On	the	other	hand,	if	 𝑝	is		large,	then	𝑑!"	is	independent	of	confidence	scores:	

𝑑!" ≈ 𝐿𝑙𝑛 𝑝 ,																														(3)	

where	𝐿	is	the	smallest	number	of	edges	that	need	to	be	traversed		from	 	to	m.		

l m

l m

l

l
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We	 then	 use	𝑑!" to	 define	 distance	 from	 	to	 a	 set	 of	 nodes	 	as	 the	 sum	 of	

distances	from	 	to	all	nodes	in	 :	

	 (4)		

We	 evaluated	 distances	 from	 nodes	 to	 the	 neighborhood	 for	 a	 set	 of	 parameters	
	

p = e 0 ,e 1,e 2 ,e 10{ } .	 In	 the	 following,	 the	 values	 of	 the	 parameter	 are	 indexed	with	

power	 of	 the	 exponent	 (0,1,2,10).	 To	 quantify	 the	 significance	 of	 the	 observed	

distribution	 of	 distances	 P = (dlm) 	from	 target	 proteins	 to	 the	 COPD	 localized	

neighborhood	we	used	the	Mann–Whitney	U	test	with	significance	cutoff	of		P	<	0.05.		

Specifically,	we	calculated	the	distribution	of	distances	between	targeted	proteins	to	

the	module		 P = (dlm) 	and	a	random	distribution	of	distance	from	target	proteins	to	

all	proteins	in	the	network		 P = (dlm) .	To	measure	how	much	the	two	distributions	

are	different,	we	calculate	the	Z-score:	
	
Z − score = TMc − (TRc

rand )
σ (TRc rand ) 				

(5)	

Where		TRc rand 	and	σ (TRc rand ) 	denote	the	mean	value	and	standard	deviation	of	the	

random	 expectation p rand (TRc ) .	 Assuming	 normality	 of	 p rand (TRc ) ,	 we	 can	

analytically	calculate	a	corresponding	p-value	for	each	z-score,	yielding	a	threshold	

of	 z-score	≤	 -1.6	 for	 the	 distance	 to	 be	 smaller	 than	 expected	 by	 chance	 with	

significant	p-value	≤	0.05.		

Local	Radiality	(LR)	method	for	target	prediction	

The	LR	method	quantifies	the	proximity	of	a	node	from	a	set	of	genes	of	interest.		

The	LR	score	of	node	n	in	the	network	G	is	calculated	as	follows	26:	

	

l M
l M

dM (l )= dlk
k∈M
∑
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LR n =  
sp(n, g,G)!∈!

M 	

Where	sp	calculates	the	length	of	shortest	path	between	nodes	n	and	g.	and	 M 	is	

the	size	of	the	community	of	interest	(150	genes).	

In	other	words,	LR	calculates	the	average	shortest	paths	from	node	n	to	the	module	

M.			

COPD	network	module	overlap	with	inflammasome	genes	

Since	 clinical	 COPD	 is	 influenced	 by	 inflammation,63	 we	 looked	 for	 the	 potential	

overlap	between	the	COPD	disease	network	module	and	recognized	genes	relevant	

to	 inflammatory	 response	 or	 the	 ‘inflammasome’	 genes.	 These	 inflammasome	

signature	 genes	 were	 compiled	 from	 11	 disease	 models	 (asthma,	 COPD,	 fibrosis,	

atherosclerosis,	 diabetes	 (adipose),	 diabetes	 (islet),	 obesity,	 stroke,	 neuropathic	

pain,	inflammation	pain	and	sarcopenia)	36.	We	used	the	total	of	2,483	inflammatory	

signature	 genes	 previously	 reported	 from	 mouse	 models	 and	 converted	 them	 to	

their	 human	 orthologs,	 obtaining	 2,331	 genes	 in	 our	 analysis.	 Mouse	 to	 human	

orthologs	 were	 extracted	 from	 the	 Mouse	 Genome	 Informatics	 (MGI)	 database	

(http://www.informatics.jax.org).	

Validation	of	COPD	disease	module	in	COPD-	specific	gene-expression	data	

Our	 disease	 network	 module	 approach	 selects	 genes	 based	 on	 their	 topological	

closeness	 to	 the	 COPD	 seed	 genes.	 To	 evaluate	 COPD-specific	 relevance	 of	 genes	

localized	around	the	seed	genes,	we	extracted	significantly	differentially	expressed	

genes	 (p-value<0.05)	 from	 eight	 publicly	 available	 COPD-specific	 gene-expression	

datasets	 and	 assessed	 for	 each	 case	 the	 fold	 change	 difference	 between	 genes	

present	 in	 the	 COPD	 disease	 module	 compared	 to	 non-module	 differentially	

expressed	 genes.	 We	 used	 the	 limma	 R	 package	 (ver	 3.10.1)	 for	 differential	

expression	analysis.	The	8	datasets	are	as	follow:	

1. Singh2014:	 Peripheral	 blood	 gene	 expression	 samples	 from	 171	 subjects	
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from	the	Evaluation	of	COPD	Longitudinally	to	Identify	Predictive	Surrogate	

Endpoints	(ECLIPSE)	study	(GSE54837).	Differential	expression	analysis	was	

performed	 between	 control	 (n=6)	 (healthy	 nonsmokers)	 vs.	 severe	 COPD	

(n=13)64.	

2. Singh2011:	Induced	sputum	gene	expression	from	148	COPD	subjects	in	the	

ECLIPSE	 study,	 with	 69	 Global	 Initiative	 for	 Chronic	 Obstructive	 Lung	

Disease	(GOLD)	stage	2,	and	71	GOLD	stage	3	&	4	subjects	(GSE22148).	Gene	

expression	differences	between	GOLD	2	and	GOLD	3&4	were	analyzed	31.		

3. Shaykhiev	2009:	 	Transcriptional	profiling	of	alveolar	macrophages	obtained	

by	bronchoalveolar	lavage	of	24	healthy	nonsmokers	and	12	COPD	smokers	

(GSE13896)	29.	

4. Bahr2013:	Expression	data	from	peripheral	blood	mononuclear	cells	(PBMC)	

generated	 from	136	 subjects	 from	 the	COPDGene	 study	 (GSE42057),	which	

consisted	 of	 42	 ex-smoking	 control	 subjects	 and	 94	 subjects	 with	 varying	

severity	of	COPD	65.	

5. Tedrow2013:	 Microarray	 data	 from	 whole	 lung	 homogenates	 of	 subjects	

undergoing	 thoracic	 surgery	 from	 the	 Lung	 Tissue	 Research	 Consortium	

(LTRC).	These	subjects	were	diagnosed	as	being	controls	or	having	COPD	as	

determined	 by	 clinical	 history,	 chest	 CT	 scan,	 and	 surgical	 pathology.	 We	

considered	220	COPD	subjects	and	108	controls	with	no	chronic	lung	disease	

by	CT	or	pathology.		These	subjects	went	for	surgery	typically	to	investigate	a	

pulmonary	 nodule	 and	 normal	 lung	 tissue	 was	 obtained	 for	 differential	

expression	analysis	(GSE47460)	30.		

6. Bhattacharya2009	:	Gene	expression	patterns	in	lung	tissue	samples	derived	

from	 56	 subjects	 (GSE8581).	 Cases	 (n=15)	 were	 defined	 as	 subjects	 with	

FEV1<70%	 predicted	 and	 FEV1/FVC<0.7	 and	 Controls	 (n=18)	 as	 subjects	

with	FEV1>80%	predicted	and	FEV1/FVC>0.7	66.	

7. Poliska2011:	Gene	expression	data	 from	alveolar	macrophage	samples	 from	

26	COPD	and	20	healthy	control	subjects	(GSE16972)	67.	

8. Steiling2013:	Bronchial	brushings	obtained	from	current	and	former	smokers	

with	and	without	COPD	(GSE37147).	Data	from	238	subjects	was	used	in	the	
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analysis	to	determine	the	association	of	gene	expression	with	COPD-related	

phenotypes	32.	
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Table	1:	Differentially	expressed	COPD	disease	network	module	genes	in	four	datasets	
with	adjusted	p-values	<0.05.		

		

Shaykhiev2009-
Alveolar	macrophages	 		 		 Non-smoker	vs	COPD	

Gene.symbol	 logFC	 adj.P.Val	 P.Value	
IL32	 -3.770	 0.0014	 1.35E-06	

ADAM11	 -1.441	 0.0342	 0.0004	
CXCL5	 -2.049	 0.0359	 0.0004	
MMP7	 1.952	 0.0381	 0.0005	
AP3D1	 0.451	 0.0387	 0.0005	
MMP12	 2.390	 0.0423	 0.0006	

Tedrow2013-Lung	 		 		 Control	vs	COPD	
Gene.symbol	 logFC	 adj.P.Val	 P.Value	

MMP1	 2.452	 0.0069	 3.13E-05	
TGFB2	 -0.768	 0.0141	 0.0001	
WISP1	 1.410	 0.0158	 0.0002	
PRSS3	 1.023	 0.0165	 0.0002	
MMP9	 1.238	 0.0240	 0.0004	
TGFBR3	 -0.629	 0.0298	 0.0006	
CAT	 -0.466	 0.0306	 0.0007	
SRPX2	 0.728	 0.0401	 0.0011	
MMP12	 1.621	 0.0433	 0.0013	

Singh2011-Eclipse	
sputum	 		 		 GOLD	I	vs	GOLD	IV	

Gene.symbol	 logFC	 adj.P.Val	 P.Value	
FAM115A	 -1.228	 0.0023	 2.78E-06	
HHIP	 -0.645	 0.0046	 2.91E-05	
CAT	 -0.535	 0.0047	 3.17E-05	

SERPINE1	 0.969	 0.0088	 0.0002	
CAT	 -0.683	 0.0100	 0.0002	

CHRNA3	 -0.875	 0.0109	 0.0003	
MMP1	 1.320	 0.0157	 0.0006	
CXCL1	 0.494	 0.0167	 0.0007	

TNFRSF14	 0.492	 0.0176	 0.0008	
F12	 0.485	 0.0184	 0.0008	
LTBP2	 0.722	 0.0205	 0.0010	
BPI	 0.870	 0.0229	 0.0013	
CTRC	 0.625	 0.0273	 0.0019	
FBN1	 -1.399	 0.0278	 0.0019	
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COL14A1	 -0.410	 0.0288	 0.0021	
SERPINA1	 0.592	 0.0294	 0.0021	
FBXL5	 0.400	 0.0384	 0.0035	
PLAUR	 0.283	 0.0394	 0.0037	
PTCH1	 -0.753	 0.0394	 0.0037	

Steiling2013-bronchial	
brushing	 		 		

Current	smokers	NO-
COPD-Current	

smokers	with	COPD	
Gene.symbol	 logFC	 adj.P.Val	 P.Value	

CDON	 -0.264	 0.0296	 0.0005	
LYPD3	 0.218	 0.0370	 0.0009	
GSDMB	 0.322	 0.0431	 0.0012	
CHRNA7	 0.185	 0.0438	 0.0013	
CTGF	 0.237	 0.0477	 0.0016	

TNFAIP1	 0.126	 0.0495	 0.0018	

	 	 	 		

	 	 	 	 	 	 	 	 	 	 	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/408229doi: bioRxiv preprint 

https://doi.org/10.1101/408229
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 25	

Table	2	:	Enrichment	of		COPD	disease	module	genes	in	different	tissue	gene	expression	

data	sets	with	and	without	seed	genes	

	

	

	

	

	

	

	

	

	

	

	

	

	

Reference	 GEO	ID	 Tissue	
P-value	with	Seed	
genes	

P-value	without	
seed	genes	

Shaykhiev2009	 GSE13896	 Alveolar	Macrophages	I	 0.002	 0.004	
Poliska2011	 GSE16972	 Alveolar	Macrophages	II	 0.037	 0.111	
Singh2011	 GSE22148	 Sputum	 0.018	 0.037	
Steiling2013	 GSE37147	 Bronchial	brushings	 0.011	 0.011	
Bahr2013	 GSE42057	 	Peripheral	blood	mononuclear	cell	 0.030	 0.030	
Tedrow2013	 GSE47460	 Lung	homogenate	(Lung	I)	 0.00026	 0.001	
Singh2014	 GSE54837	 Blood	 0.009	 0.009	
Bhattacharya2009	 GSE8581	 Lung	tissue	(Lung	II)	 0.163	 0.061	
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Table	 3:	 Biological	 pathways	 significantly	 enriched	 in	 the	 COPD	 disease	 network	

module	

Biological	Process	 Adjuste
d	P-
value	

Genes	

Extracellular	matrix	organization		 0	 FBN2;PRSS1;COL14A1;ELN;SERPINE1;IHH;DPT;FBLN1;LTBP3;FBLN2;NID2;L
TBP1;LOXL1;FBLN5;ADAMTS4;LGALS3;EFEMP2;CTSG;PRSS2;ELANE;TGFB2;
TGFB1;MMP7;LUM;TGFB3;MMP1;CTRB1;SPINK5;BGN;MMP9;DCN;MFAP5
;MMP12;MMP11;BMP2;LOX;MFAP2;COL8A1;FMOD;ENG;FBN1	

Collagen	catabolic	process		 5.46615
E-07	

MMP12;MMP11;MMP7;COL14A1;MMP26;MMP1;COL8A1;PRTN3;MMP9;
PRSS2;ELANE	

Negative	regulation	of	TGFB	receptor	
signaling	pathway		

2.60849
E-06	

TGFBR3;FBN2;TGFB1;TGFB3;ADAMTSL2;LTBP1;ASPN;VASN;ENG;FBN1	

Response	to	decreased	oxygen	levels		 1.04424
E-05	

CHRNB2;TGFB2;TGFB1;CHRNA4;TGFB3;CHRNA7;IREB2;SOD3;VASN;CTGF;
TGFBR3;BMP2;STC2;CAT;ENG	

Rregulation	of	transmembrane	receptor	
protein	serine/threonine	kinase	signaling	
pathway		

8.56907
E-05	

TGFBR3;FBN2;BMP2;SHH;TGFB1;TGFB3;ADAMTSL2;LTBP1;ASPN;VASN;EN
G;FBN1	

Inflammatory	response		 0.0002	 CXCL6;SERPINA3;CCL13;ORM1;TGFB1;SERPINA1;F12;CXCL1;CELA1;LYZ;B
MP2;CCL8;CCL7;CCR3;ELANE;CCR2	

Defense	response	to	bacterium		 0.0003	 ADAMTS4;CXCL6;MMP7;CD160;SERPINE1;DEFA5;BPI;TNFRSF14;PPBP;LYZ;
ELANE	

Regulation	of	epithelial	cell	proliferation		 0.0003	 TGFB2;TGFB1;PTCH1;IHH;TGFBR3;MMP12;BMP2;SHH;SMO;APOH;GAS1;C
CR3;ENG	

Regulation	of	angiogenesis		 0.0014	 CX3CR1;SRPX2;CHRNA7;APOH;SERPINE1;SPINK5;KLK3;CX3CL1;CCR3;CCR2	

Negative	regulation	of	endopeptidase	
activity		

0.0015	 SERPINA3;SERPINB1;SERPINA1;SPINK1;SERPINE1;PZP;SPINK5;LCN1;PI3;TF
PI;LPA	

Negative	regulation	of	protein	processing		 0.0016	 SERPINA3;SERPINB1;SERPINA1;SPINK1;SERPINE1;PZP;SPINK5;TFPI;SHH;G
AS1;LCN1;PI3;LPA	

Leukocyte	migration	 0.0016	 CX3CR1;LGALS3;CCL13;TGFB2;CCL7;MMP1;PPBP;MMP9;CX3CL1;ELANE;C
CR2	

Transmembrane	receptor	protein	
serine/threonine	kinase	signaling	pathway	

0.0023	 TGFBR3;BMP2;TGFB2;TGFB1;TGFB3;SERPINE1;LTBP2;LTBP3;LTBP1;ENG	

Aging		 0.0029	 TGFB1;TERT;TGFB3;CAT;SERPINE1;IREB2;CANX;DCN;CTGF;ENG	

negative	regulation	of	proteolysis	 0.0034	 SERPINA3;SHH;SERPINB1;SERPINA1;SPINK1;SERPINE1;PZP;SPINK5;LCN1;PI
3;TFPI;LPA	

Epithelium	development		 0.0034	 BMP2;TGFB2;SHH;TGFB1;SMO;PTCH1;CAT;PTCH2;IHH;KLK5;CTGF	

Negative	regulation	of	hydrolase	activity	 0.0035	 SERPINA3;TGFB2;SERPINB1;SERPINA1;SPINK1;SERPINE1;PZP;SPINK5;TFPI;
ADCYAP1;LCN1;PI3;LPA	

Cellular	calcium	ion	homeostasis		 0.0037	 ADCYAP1;CCL13;TGFB1;CCL8;CCL7;CHRNA7;STC2;CHRNA9;CCR3;ELANE;C
CR2	
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Cellular	metal	ion	homeostasis		 0.0039	 CCL13;TGFB1;CHRNA7;IREB2;CHRNA9;ADCYAP1;CCL8;CCL7;STC2;ATP6V0
A4;CCR3;ELANE;CCR2	

Regulation	of	peptidase	activity		 0.0046	 SERPINA3;SERPINB1;SERPINA1;SPINK1;SERPINE1;PZP;SPINK5;FBLN1;TFPI;
CTGF;LCN1;PI3;LPA	

Response	to	alcohol		 0.0046	 CHRNB2;ADCYAP1;TGFB1;SMO;CCL7;DHH;CHRNA7;STC2;PTCH1;IHH;CTGF	

Cellular	cation	homeostasis		 0.0063	 CCL13;TGFB1;CHRNA7;IREB2;CHRNA9;ADCYAP1;CCL8;CCL7;STC2;ATP6V0
A4;CCR3;ELANE;CCR2	

Regulation	of	endopeptidase	activity		 0.0081	 SERPINA3;SERPINB1;SERPINA1;SPINK1;SERPINE1;PZP;SPINK5;LCN1;PI3;TF
PI;LPA;CTGF	

Negative	regulation	of	immune	system	
process		

0.0093	 LGALS3;ADCYAP1;TGFB2;SHH;TGFB1;TGFB3;SPINK5;IHH;BPI;TNFRSF14;CC
R2	

Positive	regulation	of	cell	migration		 0.0119	 LGALS3;BMP2;TGFB2;TGFB1;SRPX2;CCL7;SERPINE1;TNFRSF14;MMP9;CCR
2	

Coagulation		 0.0184	 TGFB2;TGFB1;SERPINA1;TGFB3;MMP1;F12;SERPINE1;PLAUR;PPBP;TFPI;F
BLN5;SHH;EFEMP2	
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Figure	legends:	

	

Figure	1:	Overview	of	the	approach	to	 identify	the	COPD	disease	network	module	

by	using	the	edge-weighted	interaction	network.	First,	we	applied	the	Degree-Aware	

Disease	Gene	 Prioritization	 (DADA)	 algorithm	 and	we	 prune	 the	DADA	 results	 by	

integrating	COPD	GWAS	data.		A.	Workflow	describing	the	method.	B.	Among	the	11	

high	confidence	COPD	seed	genes,	10	were	mapped	on	the	human	interactome,	with	

3	of	them	being	directly	connected.		

Figure	 2:	 Initial	 COPD	 disease	 network	 neighborhood.	 A.	 GWAS	 p-values	 of	 the	

added	DADA	genes	vs.	the	background	p-value	distribution	(150	gene	cut-off).	B.	Z-

score	 significance	 of	 the	 largest	 connected	 component	 (LCC).	 C.	 COPD	 localized	

network	neighborhood	of	140	DADA	genes	and	10	seed	genes	distributed	 in	three	

components.			

Figure	 3:	Network-based	closeness	of	FAM13A	partners	 to	COPD	disease	network	

neighborhood.	A:	 Illustration	 of	 the	 network-based	 closeness	measure	 (⟨CAB⟩)	 for	

FAM13A	partners	 to	COPD	disease	network	neighborhood.	We	calculate	 the	mean	

shortest	distances	between	⟨CA⟩	and	⟨CB⟩	and	compare	it	with	the	random	selection	

of	same	number	of	nodes.	B:	The	closeness	significance	of	96	FAM13A	partners	to	

COPD	disease	network	neighborhood.		

Figure	 4:	 COPD	 disease	 network	 module,	 including	 experimentally	 determined	

FAM13A	 interactors,	 and	gene-expression	 changes	 in	COPD-specific	data.	A.	 COPD	

disease	 network	 module	 connecting	 11	 seed	 genes	 including	 FAM13A.	 B.	 Fold	

change	difference	between	module	differentially	expressed	genes	(p<0.05)	and	non-

module	differentially	expressed	genes.		

Figure	 5:	 A.	 Extracellular	 matrix	 organization	 pathway	 genes	 in	 COPD	 disease	

network	module.	 	 	 B.	 Connection	 of	 COPD	 disease	 network	module	 genes	 in	 the	
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hypoxia	pathway:		⟨CAB⟩	helps	to	connect	FAM13A	to	the	hypoxia	pathway	through	

CTGF	gene.	

Table	1:	Differentially	expressed	COPD	disease	module	genes	in	four	datasets	with	

adjusted	p-values	<0.05	

Table	 2:	 Enrichment	 of	 COPD	 disease	 network	 module	 genes	 in	 different	 tissue	

gene	expression	data	sets	with	and	without	seed	genes	

Table	 3:	 Biological	 pathways	 significantly	 enriched	 in	 the	 COPD	 disease	 network	

module	
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Supplementary Figure 4 

Mann-Whitney P-value: 0.00040
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Supplementary Figure 8

Number of genes DE in at least one set
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