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Abstract 

Motivation 
The growth in publically available microbiome data in recent years has yielded                       
an invaluable resource for genomic research; allowing for the design of new                       
studies, augmentation of novel datasets and reanalysis of published works. This                     
vast amount of microbiome data, as well as the widespread proliferation of                       
microbiome research and the looming era of clinical metagenomics, means                   
there is an urgent need to develop analytics that can process huge amounts of                           
data in a short amount of time. 
To address this need, we propose a new method for the compact representation                         
of microbiome sequencing data using similarity-preserving sketches of               
streaming k-mer spectra. These sketches allow for dissimilarity estimation, rapid                   
microbiome catalogue searching, and classification of microbiome samples in                 
near real-time. 

Results 
We apply streaming histogram sketching to microbiome samples as a form of                       
dimensionality reduction, creating a compressed ‘histosketch’ that can be used                   
to efficiently represent microbiome k-mer spectra. Using public microbiome                 
datasets, we show that histosketches can be clustered by sample type using                       
pairwise Jaccard similarity estimation, consequently allowing for rapid               
microbiome similarity searches via a locality sensitive hashing indexing scheme.  
Furthermore, we show that histosketches can be used to train machine learning                       
classifiers to accurately label microbiome samples. Specifically, using a collection                   
of 108 novel microbiome samples from a cohort of premature neonates, we                       
trained and tested a Random Forest Classifier that could accurately predict                     
whether the neonate had received antibiotic treatment (95% accuracy, precision                   
97%) and could subsequently be used to classify microbiome data streams in                       
less than 12 seconds.  
We provide our implementation, Histosketching Using Little K-mers (HULK),                 
which can histosketch a typical 2GB microbiome in 50 seconds on a standard                         
laptop using 4 cores, with the sketch occupying 3000 bytes of disk space. 

Availability 
Our implementation (HULK) is written in Go and is available at:                     
https://github.com/will-rowe/hulk​ (MIT License) 
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1. Introduction 
The global corpus of microbiome sequence data is being augmented daily with                       
vast volumes of data, particularly as a result of large-scale sequencing initiatives                       
such as the Human Microbiome Project (HMP) ​(Human Microbiome Project                   
Consortium, 2012)​, the Earth Microbiome Project ​(Thompson ​et al.​, 2017) and                     
Global Ocean Survey ​(Rusch ​et al.​, 2007)​. Data outputs will continue to increase,                         
particularly as metagenomics within the clinical field is more widely being                     
accepted and adopted ​(Mulcahy-O’Grady and Workentine, 2016)​, and the                 
continued decline in sequencing costs ​(Forbes ​et al.​, 2018)​. 
 
We are now at the point where our ability to analyse microbiome data quickly                           
and effectively is the main bottleneck in our workflows, particularly when it                       
comes to real-time sequencing platforms ​(Greninger ​et al.​, 2015; Forbes ​et al.​,                       
2018)​. In addition, we also need to ensure that existing microbiome data                       
remains accessible and usable (including for end-users e.g clinicians), so that it                       
can be readily incorporated into our new analyses, and generate testable                     
hypotheses for validation/confirmation in experimental systems. It is becoming                 
clear that current microbiome analytics are not suitable in this age of ‘big data’,                           
particularly in terms of data retrieval and sample classification ​(Kakkanatt ​et al.​,                       
2018)​. 
 
Current microbiome analytics can be largely split into referenced-based or ​de                     
novo approaches ​(Morgan and Huttenhower, 2012)​. Whereas reference based                 
analyses (such as taxonomic classification) can often result in large amounts of                       
sequencing data being excluded and high computational requirements, ​de novo                   
approaches circumvent these issues. For example, the pairwise comparison of                   
k-mer spectra is a ​de novo analysis method that has been routinely used in                           
recent years for clustering microbiomes using dissimilarity measures ​(Dubinkina                 
et al.​, 2016; Benoit ​et al.​, 2016)​. These measures are used to identify microbiome                           
composition changes in studies that involve longitudinal sampling or multiple                   
isolation sites ​(Anvar ​et al.​, 2014)​. However, k-mer spectra can still take                       
considerable time to compute, are relatively large in file size and new sample                         
comparisons require additional computation. As well as this, Machine Learning                   
(ML) frameworks will struggle to use these ​de novo outputs as feature vectors                         
due to their scale. This is a potential barrier to the use of these methods in                               
microbiome analytics as ML can be used to help solve many of the data                           
problems encountered in genomics and holds great potential for microbiome                   
analytics ​(Libbrecht and Noble, 2015)​. 
 
The application of other dimensionality reduction techniques to genomic data                   
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address some of these issues. These techniques have ranged from distributed                     
string mining of informative k-mers ​(Seth ​et al.​, 2014)​, to the recent use of                           
Locality Sensitive Hashing (LSH) ​(Ondov ​et al.​, 2016; Luo ​et al.​, 2018; Brown and                           
Irber, 2016; Rowe and Winn, 2018)​. MinHash is one form of LSH that has greatly                             
improved genomic analysis speeds for operations such as sample clustering,                   
database searching and phylogenetic estimation; it works through reducing                 
sequence data to small, representative sketches using a set of minimum k-mer                       
hash values ​(Ondov ​et al.​, 2016)​. However, although MinHash-based tools like                     
MASH and sourmash can be used to great effect for certain microbiome                       
analytics (e.g. what genomes are in my microbiome), there remain limitations to                       
standard MinHash techniques; such as the loss of k-mer frequency information                     
and the impact of relative set size on Jaccard similarity estimates ​(Koslicki and                         
Zabeti, 2017; Wu ​et al.​, 2017)​. With this in mind, we assert that current ​de novo                               
microbiome analysis methods do not enable the rapid similarity, indexing and                     
classification operations that are required in this era of big data in microbiome                         
research. This is particularly pertinent within a clinical metagenomics setting, as                     
accurate and ‘useful’ data is required for downstream analysis, and clinical                     
decision making e.g. antibiotic treatment choices  ​(Kakkanatt ​et al.​, 2018)​. 
 
We present a method to reduce microbiome sequence data streams to an                       
updateable ‘histosketch’ of the underlying k-mer spectrum for a sample. We                     
utilise consistent weighted sampling to incorporate k-mer frequency information                 
into the histosketch, allowing the use of weighted and standard Jaccard similarity                       
for histosketch comparisons and sample retrieval ​(Ioffe, 2010)​. Our method                   
combines the recently proposed histogram sketching algorithm of Yang ​et al.                     
with count-min sketching of k-mer spectra and our recent implementation of                     
LSH Forest indexing for microbiome searching ​(Yang ​et al.​, 2017; Zhang ​et al.​,                         
2014; Rowe and Winn, 2018)​. We show our method to accurately cluster                       
microbiome samples by sample type and demonstrate the utility of these                     
histosketches to create and search microbiome sequence databases. Finally, we                   
show that histosketches are suitable features for training ML classifiers and can                       
accurately classify microbiome samples according to antibiotic treatment history                 
in at-risk preterm infant populations. 

2. Materials and Methods 
Here we describe our method for the compact representation of microbiome                     
sequencing data using similarity-preserving histosketches of streaming k-mer               
spectra (Figure 1.). We then document our implementation, HULK, and describe                     
several use cases. 
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Figure 1 ​. Overview of our method to histosketch microbiome samples from sequence data streams.              
A. During counting, sequence reads are collected from the data stream by ​n counting processes.               
Reads are decomposed to canonical k-mers, encoded to uint64 values and used to increment local               
countmin sketches. Once ​X reads have been received from the data stream, approximate k-mer              
counts from the counting processes are transmitted as histogram elements to the single sketching              
process. ​B. To update the histosketch, the incoming histogram element is hashed and compared              
against each hash value (​W​) or the previous histosketch (​S​), updating ​S and ​W if a new minimum is                   
encountered. To hash the incoming vector, uniform scaling is applied and a cumulative frequency              
estimate is made using a countmin sketch; we then utilise CWS to generate a hash value for the                  
updated histogram bin. 

2.1. Histosketching microbiome data 
We use the k-mer spectrum (a normalised vector of k-mer frequencies) to                       
represent microbiome diversity, which is a standard analysis method that allows                     
for metagenome dissimilarity analysis ​(Dubinkina ​et al.​, 2016; Benoit ​et al.​, 2016)​.                       
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However, rather than computing and storing a full k-mer spectrum after reading                       
the sequence data, which is resource intensive (in terms of memory or disk                         
space), we use the recently proposed histosketch data structure to maintain a                       
set of fixed size sketches to approximate the overall k-mer spectrum as it is                           
received from a data stream ​(Yang ​et al.​, 2017)​. The histosketch has two                         
properties making it suitable for this application, ​i​. it is updateable, and ​ii​. it is                             
similarity-preserving. Thus, as new data is received, we can incrementally update                     
the histosketch of the underlying k-mer spectrum and also approximate                   
similarity to other spectra.  
 
We view the k-mer spectrum as a histogram, where k-mers from a microbiome                         
sample are hashed uniformly across N bins and the frequency value of a bin                           
corresponds to observed k-mer frequency. In order to incorporate both the bin                       
and frequency (a weighted set) into the histosketch, we employ Consistent                     
Weighted Sampling (CWS) to generate hash values for each histogram element,                     
which ensures that the computational complexity of hashing is independent of                     
bin frequency ​(Ioffe, 2010; Yang ​et al.​, 2017)​. 

2.1.1. Consistent Weighted Sampling 
As highlighted in the introduction, a drawback to the efficient set similarity                       
estimations afforded by MinHash sketches is that the input is restricted to binary                         
sets and does not account for weighted sets (e.g. k-mer frequencies). To                       
overcome this, histosketching employs CWS to account for element frequency                   
and approximate the generalised Jaccard similarity between weighted sets,                 
without splitting each weighted element into sub-elements and computing                 
independent hash values (quantization) ​(Haveliwala ​et al.​, 2000; Manasse ​et al.​,                     
2010; Ioffe, 2010; Wu ​et al.​, 2017)​. 
 
For a weighted set of k-mers, W, where k-mer frequency W​k ≥ 0 for all elements                               
of the set, CWS produces a sample, (k, y​k​) : 0 ≤ y​k ≤ W​k​, which is both uniform and                                       
consistent. The sample is uniformly sampled from ∪​k​{k} × [0, W​k​], meaning that                         
the probability of selecting k is proportional to the k-mer frequency, W​k​, and y is                             
uniformly distributed on [0, W​k​]. The sample is also consistent as given two                         
weighted sets, W1 and W2, if ∀k, W1​k ≤ W2​k​, a subelement (k, y​k​) is selected from                                 
W1 and satisfies y​k ≤ W2​k​, then (k, y​k​) will also be selected from W2 ​(Ioffe, 2010;                                 
Wu ​et al.​, 2017)​. 
 
In order to generate a weighted MinHash code (y​k​, y​a​) for a member of a                             
weighted set (W​k​), CWS uses two equations (Eq. 1 and Eq. 2), where r​k ∼                             
Gamma(2, 1), β​k​ ∼ Uniform(0, 1) and c​k​ ∼ Gamma(2, 1): 
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Eq. 1: 

 
 
Eq. 2: 

 
 
Eq. 1 generates an “active index” that is then fed in to Eq. 2 so that k is sampled                                     
in proportion to its sample weight. Eq. 2 outputs a hash value the conforms to                             
the exponential distribution that is parameterised with the sample weight of W​k​. 

2.1.2. Histosketch creation 
Equations 1 and 2 describe the CWS method, which we apply to sample a k-mer                             
spectrum in a way that takes the relative abundance of k-mers into account. To                           
generate a sketch of a k-mer spectrum originating from a biological sample, the                         
k-mer spectrum is sampled Z times, where Z is the size of the sketch.  
We will denote our underlying k-mer spectrum (a histogram) as V, with                       
cardinality |ε| = X (i = 1, ..., X). The corresponding histosketch we will denote as                               
S, with cardinality |ε| = Z (j = 1, ..., Z). To initialise S from V, first three                                   
independent variables are sampled from the CWS distributions: r​i​,​j ∼ Gamma(2,                     
1), c​i​,​j ∼ Gamma(2, 1) and β​i​,​j ∼ Uniform(0, 1) for i ∈ E and j = 1, ..., Z. We then use                                             
Algorithm 1 of Yang et al. for histosketch creation ​(Yang ​et al.​, 2017)​. The sketch,                             
S, and the corresponding hash values, A, are both kept as the histosketch (A                           
allows for incremental sketch updating). 
 

 
Algorithm 1​: Histosketch creation 

 
V    ← k-mer spectrum 
Z    ← sketch size 
r, c ← Gamma distributions 
β    ← Uniform distribution 
S    ← empty sketch 
A    ← empty sketch hashvalues 
 
for​ j=1,...,Z ​do 

Compute y​i,j​ = exp(log V​i​ − r​i,j​β​i,j​) 
Compute a​i,j​ = c​i,j​/(y​i,j​ exp(r​i,j​)) 
Set sketch element S​j​ = argmin​i∈E​ a​i,j 
Set the corresponding hash value A​j​ = min​i∈E​ a​i,j 

return​ S and A 
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To summarise, to create an element (j = 1, ..., Z) for one histosketch slot, based                               
on underlying histogram V, we select the histogram element (i = 1, ..., X) whose                             
hash value is minimal and also keep the corresponding hash value. 

2.1.3. Histosketch updating 
To update the histosketch as a new histogram element is received, the previous                         
sketch and the sketch hash values (S and A) are required. In its simplest form,                             
the histosketch incremental update works by hashing and evaluating the                   
incoming element against each slot of the histosketch. The cumulative bin                     
frequency of the incoming element is estimated using a persistent countmin                     
sketch ​(Cormode and Muthukrishnan, 2005)​; the frequency estimate is then                   
used to update the hash value for the required histogram bin. If this hash value                             
is now a minimum, the sketch slot and corresponding hash value are updated. 
 
In addition to this update method, we can also utilise the gradual forgetting                         
weights of the original histosketch implementation to adjust for changes in the                       
underlying distribution (concept drift) ​(Koychev, 2000; Yang ​et al.​, 2017)​. Prior to                       
the update, uniform scaling is applied to the estimate frequency counts. After                       
this, the histosketh hashes are scaled using a decay weight before evaluating                       
against the incoming element. 

2.2. Our implementation 
We have implemented our method as an easy to use program called HULK​.                         
HULK is written in Go (version 1.11) and compiles for a variety of opera​ting                           
systems and architectures. It is also packaged for installation with Bioconda and                       
Biocontainers ​(Björn Grüning ​et al.​, 2018; Bjorn Grüning ​et al.​, 2018)​. HULK                       
utilizes a concurrent pipeline pattern that is driven by the flow of data between                           
structs. This pattern facilitates the streaming of data from STDIN, as well as from                           
disk, and allows the HULK subcommands to be piped together and operate on                         
data streams. 

2.2.1. Histosketching 
The HULK subcommand `sketch` performs histosketching on a FASTQ data                   
stream. Reads are collected from the data stream by one or more independent                         
counting processes (Figure 1: counting); each utilising a separate Go routine for                       
concurrent counting. Each counting process will count reads until an interval is                       
reached (e.g. 1 million reads have been seen) or a signal is sent (e.g. the sample                               
has been classified using a downstream ML classifier, see section 2.2.4), the                       
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counting processes will then send their count data via a Go channel to be                           
histosketched, then wipe their stores and collect more reads. 
 
A read is received by the counting process as a slice of bytes and the canonical                               
k-mers are encoded to unsigned integers (uint64) using bit shift operations.                     
Once encoded, the k-mer frequency is updated in the local store of the counting                           
process. To ensure the counting processes operate in a fixed amount of                       
memory, we again use the countmin sketch data structure to record frequency                       
estimates for the k-mer spectrum ​(Cormode and Muthukrishnan, 2005; Zhang ​et                     
al.​, 2014)​. The countmin sketches are initialised with epsilon and delta values to                         
control the relative accuracy and the resulting number of countmin counters are                       
used as a proxy for the number of bins in the underlying kmer spectrum. 
 
Once an interval is reached, the counting processes send their k-mer spectrum                       
data in a randomised order to the single histosketching process; this process                       
follows the incremental histosketch update process described above (Figure 1:                   
sketching). 

2.2.2. Distance estimation 

HULK includes two distance subcommands, `distance` and `smash`. Running                 
`hulk distance` will run a pairwise comparison of two histosketches and output                       
the Jaccard, weighted Jaccard, Bray Curtis or Euclidean metrics. Running `hulk                     
smash` will perform a pairwise comparison of two or more histosketches and                       
output a matrix of Jaccard or weighted Jaccard similarities. The calculation of                       
weighted Jaccard distance utilises the histosketch bin and corresponding hash                   
values; Eq. 3 shows the calculation of weighted Jaccard distance for two                       
histosketches, S and T. 
 
Eq. 3: 

 

2.2.3. Indexing 

HULK utilises the LSH Forest self-tuning indexing scheme as employed in our                       
previous work ​(Rowe and Winn, 2018)​. Briefly, this scheme will take a query and                           
return a subset of nearest-neighbour candidates, based on the number of hash                       
collisions ​(Bawa ​et al.​, 2005)​. The two parameters to tune this index are (i) the                             
number of hash functions to encode an item (K) and (ii) the number of hash                             
tables to split an item in to (L). To tune index prior to adding items, multiple                               
combinations of K and L are evaluated by false positive/negative rate at the                         
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given Jaccard similarity threshold. To add a histosketch to the index we use only                           
the sketch S (i.e. not the hash values A, see section 2.1.2 ); the sketch is split in to                                     
L equally sized chunks of K hashes. The chunks are hashed to a binary string                             
(little-endian ordering) and stored in the corresponding hash table. Prior to                     
searching the index, the hash tables are transferred to a set of arrays and                           
sorted. 
 
The HULK index operations are performed using the ‘index’ subcommand. Three                     
modes are available: create, add and search. To create an index, the LSH Forest                           
index is initialised using a Jaccard similarity and error rate thresholds, then each                         
histosketch is split in to the appropriate number of chunks and added as                         
described earlier. The index is written to disk in the unsorted form. To add a                             
histosketch to an existing index, the index is loaded and the histosketch is added                           
using the existing index parameters. 
 
To search the index, the index is first loaded and the hash tables are transferred                             
to a set of arrays and sorted. The query set of histosketches are then queried in                               
series and the similar histosketches are returned (by label) that are within the                         
Jaccard similarity threshold that was set during indexing. 

2.2.4. Random Forest Classifier 
We implemented a Random Forest Classifier (RFC) as an example ML classifier to                         
showcase the applicability of our histosketches as features for predicting                   
microbiome sample labels. Our implementation (BANNER) is written in Python                   
(version 3.6) and is distributed with HULK, as well as through Bioconda and Pypi.                           
Source code is available at ​https://github.com/will-rowe/banner​. It uses the SciKit                   
Learn (version 0.19.2) implementation of the RFC ​(Pedregosa ​et al.​, 2011)​. Again,                       
we use only the sketch values S and discard the hash values A. BANNER trains on                               
80% of the available data using bootstrapping and 1000 estimators; testing then                       
uses the remaining 20% of the available data and does this with 10-fold cross                           
validation. Once trained, the RFC model is serialised. To classify histosketches                     
with BANNER, the RFC model is first loaded and un-serialised, before collecting                       
histosketches from STDIN, allowing the output of `hulk sketch` to be piped so                         
that histosketches can be classified as they are generated: 
 
hulk sketch -f sample.fastq --stream -p 8 ​| ​ banner predict -m banner.rfc 

 
The predict subcommand will only terminate once it makes a prediction above a                         
set probability threshold or the sketching processes finishes. 
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2.3. Evaluating performance 
The full commands and code used to evaluate the performance of our                       
implementation can be found in the HULK repository               
(​https://github.com/will-rowe/hulk/tree/master/paper​). HULK version 0.0.2 was         
used in all experiments (release 0.0.2, commit ​97ba8ac​). 
 
For running the clustering and indexing experiments, the simulated short reads                     
from the Critical Assessment of Metagenome Interpretation (CAMI) project                 
(dataset to benchmark new programs against highly complex and realistic                   
metagenomic datasets) were downloaded in FASTQ format ​(Sczyrba ​et al.​, 2017)​.                     
For each read set, HULK sketches (k-mer size=21, histosketch size=512) and                     
Simka (version 1.4.0) k-mer spectra (k-mer size=21) were created and pairwise                     
Jaccard distances were loaded into Python (version 3.6.5) using Pandas (version                     
0.23.4) ​(Mc Kinney) and clustered using Seaborn (version 0.9.0) (clustering                   
method=complete). For running HULK and Simka, both were restricted to 12                     
CPUs per FASTQ file and run using LSF on a high performance computing cluster                           
(Atos Bull Sequana, Intel Skylake nodes). 
 
As an additional clustering experiment, we used a recently published dog                     
microbiome dataset to detect dietary intervention using histosketches on                 
varying levels of sequencing data (ENA: ​PRJEB20308​) ​(Coelho ​et al.​, 2018)​. This                       
study reported a significant shift in the taxonomic composition of dog                     
microbiomes when diets were changed from a baseline diet. The full dataset                       
contains 1.9 terabasepairs of sequencing data, of which we sampled 0.005%,                     
0.05% and 0.5% of each microbiome. We histosketched these samples (k-mer                     
size=21, histosketch size=512) and clustered them as above. 
 
For performing the RFC analysis, an RFC model was constructed as described in                         
2.2.4, using a clinically relevant dataset; gut microbiome profiles from a cohort of                         
healthy pre-term neonates from a single hospital. This is part of a wider clinical                           
study, that is longitudinally profiling the gut microbiota of preterm infants that                       
are residing in neonatal intensive care units (NICUs) and correlating this to                       
health data, including impact of antibiotics. Faecal samples from preterm infants                     
were collected and their bacterial DNA extracted following the protocols                   
described in Alcon-Giner et al., 2017 ​(Alcon-Giner ​et al.​, 2017)​. Shotgun                     
metagenomics libraries were prepared from 500 ng of genomic DNA which was                       
sheared into fragments of ~450 bp. The sheared DNA was purified and                       
concentrated using an SPRI-clean-up kit. Library construction entailed an end                   
repair, A-tailing and adapter ligation steps. Following, adapter ligation, samples                   
were amplified and indexed by PCR using established Illumina paired end                     
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protocols. A portion of each library was used to create an equimolar pool and                           
pooled libraries were subjected to 125 bp paired end sequencing on a HiSeq                         
2500 V4. The cohort was labelled according to whether the infants were                       
receiving prophylactic antibiotic treatment or no antibiotics. The histosketches                 
from 108 FASTQ files (BioProject: PRJEB28428) were split into training (80%) and                       
testing (20%) groups. When using the RFC model to classify the incremental                       
sketch updates of blinded samples, HULK was run using a sketching interval of                         
1,000,000 reads using a 4 core laptop (k-mer size=21, histosketch size=512). 

3. Results 
The results presented here evaluate our implementation of histosketching for                   
rapid microbiome comparisons, in terms of both the accuracy of the tool and its                           
potential applications. All analyses can be run using the analyses workbooks                     
(​https://github.com/will-rowe/hulk/tree/master/paper/analysis-notebooks​) 

3.1. Clustering microbiome datasets 
The CAMI metagenome sequence data for 48 microbiome samples were                   
sketched by HULK in 1 minute 30 seconds and the full k-mer spectra were                           
computed by Simka in 24 minutes and 1 seconds. Hierarchical clustering                     
identified 5 distinct groups using both the HULK histosketches (Figure 2a) and                       
the full k-mer spectrum (Figure 2b). These groups corresponded to the 5 body                         
sites of the CAMI project, as denoted by the coloured bars on the dendrograms.                           
Using the HULK sketches, 2 samples failed to cluster by body site (skin and                           
airways), whereas 3 samples failed to cluster for the full k-mer spectra (skin and                           
airways). 
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Figure 2​. Hierarchical clustering of CAMI short read microbiome samples ​(Sczyrba ​et al.​, 2017)​.                           
Heatmaps show the pairwise Jaccard similarity between microbiome samples; colormap ranges                     
are computed using robust quantiles and dendrogram clades are coloured by body site. ​A​. HULK                             
histosketches (k-mer size=21, histosketch size=512) for 48 microbiome samples were sketched in                       
1 minute 30 seconds (12 cores per histosketch). ​B​. Simka k-mer spectra (k-mer size=21) for 48                               
microbiome samples were computed in 24 minutes 1 seconds (12 cores per spectrum). 

To show the ability of our method to cluster incomplete data streams in a                           
biological meaningful way, we performed incremental histosketch updating on                 
data streams from a collection of dog microbiome samples. As the data was                         
downloading, we histosketched the data stream (using fastq-dump to stream the                     
download); approximately ​0.005%, 0.05% and 0.5% of the reads from each                     
sample (129 samples total) were processed and then clustered based on                     
pairwise Jaccard similarity (Figure 3). At all intervals, we found clear separation of                         
histosketches between microbiome samples from dogs receiving the baseline                 
diet and those receiving an altered diet (high/low protein). This is in agreement                         
with the findings of the original study, where they reported a significant shift in                           
the taxonomic composition of dog microbiomes when diets were changed                   
(Coelho ​et al.​, 2018)​. The total microbiome data for the original study was stored                           
in 3096 runs across 129 samples, amounting to 1.9 terabasepairs​. Complete                     
download of this dataset from the ENA took over 7 days using fastq-dump with                           
20 parallel downloads. Sketching the initial 0.005% of the data stream took an                         
average of 4 seconds per sequencing run (approximately 100 seconds per                     
sample). 
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Figure 3​. Hierarchical clustering of dog microbiome samples ​(Coelho ​et al.​, 2018)​. A, B and C                               
correspond to clustered histosketches from 0.005%, 0.05% and 0.5% of sample reads                       
respectively. The majority of microbiome samples from the dogs on the baseline diet clustered                           
together (green), however the samples taken after these dogs were put on to an altered diet                               
(pink/blue) did not show any distinct clustering pattern. 

3.2. Indexing microbiome collections 
The histosketches from the CAMI metagenome sequence data were labelled by                     
body site before 1 sample was randomly removed from each group and used as                           
search queries. The remaining sketches were indexed using HULK in 0.039                     
seconds (with a Jaccard similarity threshold of 0.90). All the queries returned at                         
least one CAMI sample from the same body site (Figure 4). The oral query                           
returned only oral samples, the Gastrointestinal (GI) tract, airways and skin                     
queries returned predominantly samples from their own respective body sites,                   

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2018. ; https://doi.org/10.1101/408070doi: bioRxiv preprint 

https://paperpile.com/c/dg3HPF/S22i
https://paperpile.com/c/dg3HPF/S22i
https://paperpile.com/c/dg3HPF/S22i
https://doi.org/10.1101/408070
http://creativecommons.org/licenses/by/4.0/


whilst the Urogenital (UG) tract returned one sample from the same body site,                         
plus another from airways. When overlaid on Principal Components 1 and 2 of a                           
PCA analysis, the search queries are grouped nearest their respective LSH Forest                       
search results (Figure 4). 

 

Figure 4​. Principal component analysis of histosketches from CAMI short read microbiome                       
samples, coloured by body site ​(Sczyrba ​et al.​, 2017)​. Circular data points indicate the                           
histosketches used to build the LSH Forest index, stars data points indicate histoketches used as                             
search queries. Red rings enclose the returned LSH Forest search results for each search query                             
(Jaccard Similarity threshold > 90%). 

3.3. Classifying microbiomes using machine learning 
We trained a Random Forest Classifier using ​a clinically relevant microbiome                     
collection (gut microbiome profiles from a cohort of healthy pre-term neonates                     
from a single NICU) and labelled the samples according to whether the infants                         
were receiving prophylactic antibiotic treatment or no antibiotics. ​The accuracy                   
on the test set during RFC construction was 0.95, with an F1 score of 0.92 (Figure                               
5). When streaming reads from blinded microbiome samples from the cohort,                     
histosketches after the first sampling interval (1,000,000 reads, average                 
sketching time = 12 seconds) were then successfully classified by the previously                       
trained RFC as being from an antibiotic treated neonate (probability = 0.90),                       
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upon which the data stream was terminated and a new sample data stream was                           
then histosketched. 
 

F1 score  0.92 

precision  0.97 

recall score  0.89 

test accuracy   0.95 

 
Figure 5​. Random Forest Classification test accuracy for predicting antibiotic treated vs.                       
no-antibiotic treated neonatal microbiomes. 

4. Discussion 
In this paper we have presented a new method, as well as several use cases, for                               
rapid microbiome analytics using streaming histogram sketching. This work has                   
been in direct response to the call for improved microbiome analytics in this era                           
of big data, massive microbiome sequencing initiatives and the realistic prospect                     
of clinical metagenomics ​(Kakkanatt ​et al.​, 2018; Mulcahy-O’Grady and                 
Workentine, 2016)​. We feel that our microbiome sketching method and the                     
applications shown here go toward addressing this challenge. 
 
As outlined in the introduction, the dimensionality reduction methods that have                     
only recently been applied to genomics have been a great advance toward the                         
goal of rapid microbiome analytics; facilitating fast similarity queries such as                     
identifying genomes or genes within metagenome samples ​(Brown and Irber,                   
2016; Rowe and Winn, 2018)​. Our dimensionality reduction method for the                     
comparison, indexing and classification of microbiomes offers a novel and                   
complementary method to these existing ones. In particular, it addresses the                     
main limitations of traditional MinHash for certain microbiome analyses. These                   
being: (i) histogram sketching is not impacted by mismatched set size ​(Koslicki                       
and Zabeti, 2017) and (ii), histogram sketching accounts for weighted sets (e.g.                       
k-mer frequency). 
 
In terms of the advantages of our method over other ​de novo analysis methods                           
(e.g. k-mer spectra dissimilarity analysis), we have shown here that the                     
computation of histogram sketches is 16 times faster than computation of the                       
full k-mer spectra (see Results 3.1). As well as faster analysis times, histogram                         
sketching has a much smaller footprint as the entire k-mer spectrum does not                         
need to be kept in memory or written to disk, and the resulting sketches are                             
much smaller in size than the full spectrum. Our method also does not require                           
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re-computation of previously sketched samples in order to make new                   
comparisons. In addition, we showed that histosketching microbiome samples                 
can work on incomplete data streams and allow samples to be clustered by the                           
underlying microbiome composition when using just a small proportion of the                     
total reads (see Results 3.1, Figure 3). Our results suggest that only a small                           
proportion of the total data stream needs to be sampled in order to cluster the                             
samples according to a particular treatment using histosketch similarity.                 
Although we managed to identify the time point when the diet was changed                         
from baseline to an altered diet, we were not able to differentiate between the                           
two altered diets using our sketches from the initial data stream. This may be                           
due to insufficient sampling of the data stream; however, the original study did                         
not report being able to differentiate between the two altered diets either (see                         
figure 2c, Coelho et al. ​(Coelho ​et al.​, 2018)​). 
 
In sections 3.2 and 3.3, we demonstrated that microbiome histosketches can be                       
efficiently indexed and also used as features in ML classification, which are both                         
typically hard to do using the full k-mer spectra due to their scale and sparsity                             
(Kakkanatt ​et al.​, 2018)​. In terms of the LSH Forest index for microbiome sample                           
retrieval, our results showed that a histosketch from a given body site would                         
predominantly return microbiome samples from the same body site (Figure 4).                     
Only the oral histosketch query returned solely oral samples, which is likely due                         
to the high similarity observed between these datasets (Figure 2). On the whole,                         
these results indicate that histosketches of k-mer spectra can offer an efficient                       
and fast way to index and query collections of microbiome data. 
 
Our performance evaluation of HULK using an RFC illustrates how incremental                     
sketching (as highlighted in Figure 3) can be combined with ML in order to                           
classify a microbiome and stop processing a data stream (see Results 3.3). This is                           
a step forward in dealing with streaming genomics data; the combination of                       
incremental histosketch updates with a ML classifier (and associated                 
classification probabilities) allows for the possibility of terminating data streams                   
in applications such as real-time sequencing ​(Ondov ​et al.​, 2016)​. Here, we used                         
this approach to quickly evaluate longitudinal samples from a cohort, identifying                     
whether there is a response to a treatment or other stimulus. In this case we                             
have used this sketching approach to differentiate between those preterm                   
infants that had received antibiotics, versus those that did not. This is important                         
clinically as antibiotic treatment in preterm infants is associated with significant                     
alterations in the gut microbiota, which may link to increase risk of development                         
serious conditions such as necrotising enterocolitis or sepsis ​(Sim ​et al.​, 2015;                       
Shaw ​et al.​, 2015; Alcon-Giner ​et al.​, 2017)​. Thus a rapid and discriminatory                         
microbiome profiling method for this fragile and at-risk patient cohort, or indeed                       
for other clinical microbiome samples, could prove useful for intervention or                     
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treatment options. Alternatively, it could be applied to real-time sequencing                   
platforms and inform the sequencer when enough data has been produced.                     
These examples illustrate how this method could be used in the coming era of                           
clinical metagenomics ​(Mulcahy-O’Grady and Workentine, 2016)​. We are not                 
restricted to using RFC as and it would be very useful to evaluate other more                             
sophisticated ML approaches that can utilise histosketches as feature vectors. As                     
well as this, we could refine our ML models further by identifying the more                           
significant elements of the histosketch in terms of their influence over the model                         
training. This in turn could reveal more information relating to the underlying                       
k-mer spectrum of a sample, which may be of use in downstream applications                         
(e.g. feature extraction). 
 
For future work into microbiome analytics, the histogram sketching method                   
presented has potential for further refinement and improvements in order meet                     
the big data challenges that microbiome research presents. Of these, we have                       
already identified that further work into the use of histosketches in ML is                         
definitely needed, particularly with the hope of improving classification accuracy                   
and expanding out from the binary classification task we have shown here. In                         
addition, we would like to explore the idea of concept drift for gradually                         
forgetting outdated histogram elements ​(Yang ​et al.​, 2017)​. We included the                     
gradual forgetting of the original histosketch method in our implementation but                     
this was not exploited in the performance analysis ​(Yang ​et al.​, 2017)​. We                         
envisage that this could be useful to experiment with in terms of real-time                         
sequencing applications. Finally, we have shown that microbiome samples can                   
be histosketched on a laptop with a few cores and a small, fixed amount of                             
memory. In order to fully take advantage of this performance, histosketching                     
needs to move beyond command line interfaces. To this end, we have begun                         
work on a WebAssembly (WASM) port of HULK to enable client side sketching                         
(WASM available Go Version 1.11) so that users can histosketch their own                       
microbiome data and compare just the sketches against online databases,                   
ensuring their microbiome data remains private but enabling quick and easy                     
microbiome analytics. 

5. Conclusions 
To conclude, histosketching generates compact representations of microbiomes               
from data streams; facilitating sample indexing, similarity-search queries,               
clustering, and the application of machine learning methods to analyse                   
microbiome samples in the context of the global microbiome corpus. 
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