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Abstract

Motivation

The growth in publically available microbiome data in recent years has yielded
an invaluable resource for genomic research; allowing for the design of new
studies, augmentation of novel datasets and reanalysis of published works. This
vast amount of microbiome data, as well as the widespread proliferation of
microbiome research and the looming era of clinical metagenomics, means
there is an urgent need to develop analytics that can process huge amounts of
data in a short amount of time.

To address this need, we propose a new method for the compact representation
of microbiome sequencing data using similarity-preserving sketches of
streaming k-mer spectra. These sketches allow for dissimilarity estimation, rapid
microbiome catalogue searching, and classification of microbiome samples in
near real-time.

Results

We apply streaming histogram sketching to microbiome samples as a form of
dimensionality reduction, creating a compressed ‘histosketch’ that can be used
to efficiently represent microbiome k-mer spectra. Using public microbiome
datasets, we show that histosketches can be clustered by sample type using
pairwise Jaccard similarity estimation, consequently allowing for rapid
microbiome similarity searches via a locality sensitive hashing indexing scheme.
Furthermore, we show that histosketches can be used to train machine learning
classifiers to accurately label microbiome samples. Specifically, using a collection
of 108 novel microbiome samples from a cohort of premature neonates, we
trained and tested a Random Forest Classifier that could accurately predict
whether the neonate had received antibiotic treatment (95% accuracy, precision
97%) and could subsequently be used to classify microbiome data streams in
less than 12 seconds.

We provide our implementation, Histosketching Using Little K-mers (HULK),
which can histosketch a typical 2GB microbiome in 50 seconds on a standard
laptop using 4 cores, with the sketch occupying 3000 bytes of disk space.

Availability

Our implementation (HULK) is written in Go and is available at:
https://github.com/will-rowe/hulk (MIT License)
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1. Introduction

The global corpus of microbiome sequence data is being augmented daily with
vast volumes of data, particularly as a result of large-scale sequencing initiatives
such as the Human Microbiome Project (HMP) (Human Microbiome Project
Consortium, 2012), the Earth Microbiome Project (Thompson et al., 2017) and
Global Ocean Survey (Rusch et al., 2007). Data outputs will continue to increase,
particularly as metagenomics within the clinical field is more widely being
accepted and adopted (Mulcahy-O’'Grady and Workentine, 2016), and the
continued decline in sequencing costs (Forbes et al., 2018).

We are now at the point where our ability to analyse microbiome data quickly
and effectively is the main bottleneck in our workflows, particularly when it
comes to real-time sequencing platforms (Greninger et al., 2015; Forbes et al.,
2018). In addition, we also need to ensure that existing microbiome data
remains accessible and usable (including for end-users e.g clinicians), so that it
can be readily incorporated into our new analyses, and generate testable
hypotheses for validation/confirmation in experimental systems. It is becoming
clear that current microbiome analytics are not suitable in this age of ‘big data’,
particularly in terms of data retrieval and sample classification (Kakkanatt et al.,
2018).

Current microbiome analytics can be largely split into referenced-based or de
novo approaches (Morgan and Huttenhower, 2012). Whereas reference based
analyses (such as taxonomic classification) can often result in large amounts of
sequencing data being excluded and high computational requirements, de novo
approaches circumvent these issues. For example, the pairwise comparison of
k-mer spectra is a de novo analysis method that has been routinely used in
recent years for clustering microbiomes using dissimilarity measures (Dubinkina
et al., 2016; Benoit et al., 2016). These measures are used to identify microbiome
composition changes in studies that involve longitudinal sampling or multiple
isolation sites (Anvar et al, 2014). However, k-mer spectra can still take
considerable time to compute, are relatively large in file size and new sample
comparisons require additional computation. As well as this, Machine Learning
(ML) frameworks will struggle to use these de novo outputs as feature vectors
due to their scale. This is a potential barrier to the use of these methods in
microbiome analytics as ML can be used to help solve many of the data
problems encountered in genomics and holds great potential for microbiome
analytics (Libbrecht and Noble, 2015).

The application of other dimensionality reduction techniques to genomic data
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address some of these issues. These techniques have ranged from distributed
string mining of informative k-mers (Seth et al, 2014), to the recent use of
Locality Sensitive Hashing (LSH) (Ondov et al., 2016; Luo et al., 2018; Brown and
Irber, 2016; Rowe and Winn, 2018). MinHash is one form of LSH that has greatly
improved genomic analysis speeds for operations such as sample clustering,
database searching and phylogenetic estimation; it works through reducing
sequence data to small, representative sketches using a set of minimum k-mer
hash values (Ondov et al., 2016). However, although MinHash-based tools like
MASH and sourmash can be used to great effect for certain microbiome
analytics (e.g. what genomes are in my microbiome), there remain limitations to
standard MinHash techniques; such as the loss of k-mer frequency information
and the impact of relative set size on Jaccard similarity estimates (Koslicki and
Zabeti, 2017; Wu et al., 2017). With this in mind, we assert that current de novo
microbiome analysis methods do not enable the rapid similarity, indexing and
classification operations that are required in this era of big data in microbiome
research. This is particularly pertinent within a clinical metagenomics setting, as
accurate and ‘useful’ data is required for downstream analysis, and clinical
decision making e.g. antibiotic treatment choices (Kakkanatt et al., 2018).

We present a method to reduce microbiome sequence data streams to an
updateable ‘histosketch’ of the underlying k-mer spectrum for a sample. We
utilise consistent weighted sampling to incorporate k-mer frequency information
into the histosketch, allowing the use of weighted and standard Jaccard similarity
for histosketch comparisons and sample retrieval (loffe, 2010). Our method
combines the recently proposed histogram sketching algorithm of Yang et al.
with count-min sketching of k-mer spectra and our recent implementation of
LSH Forest indexing for microbiome searching (Yang et al., 2017; Zhang et al.,
2014; Rowe and Winn, 2018). We show our method to accurately cluster
microbiome samples by sample type and demonstrate the utility of these
histosketches to create and search microbiome sequence databases. Finally, we
show that histosketches are suitable features for training ML classifiers and can
accurately classify microbiome samples according to antibiotic treatment history
in at-risk preterm infant populations.

2. Materials and Methods

Here we describe our method for the compact representation of microbiome
sequencing data using similarity-preserving histosketches of streaming k-mer
spectra (Figure 1.). We then document our implementation, HULK, and describe
several use cases.
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Figure 1. Overview of our method to histosketch microbiome samples from sequence data streams.
A. During counting, sequence reads are collected from the data stream by n counting processes.
Reads are decomposed to canonical k-mers, encoded to uint64 values and used to increment local
countmin sketches. Once X reads have been received from the data stream, approximate k-mer
counts from the counting processes are transmitted as histogram elements to the single sketching
process. B. To update the histosketch, the incoming histogram element is hashed and compared
against each hash value (W) or the previous histosketch (S), updating S and W if a new minimum is
encountered. To hash the incoming vector, uniform scaling is applied and a cumulative frequency
estimate is made using a countmin sketch; we then utilise CWS to generate a hash value for the
updated histogram bin.

2.1. Histosketching microbiome data

We use the k-mer spectrum (a normalised vector of k-mer frequencies) to
represent microbiome diversity, which is a standard analysis method that allows
for metagenome dissimilarity analysis (Dubinkina et al., 2016; Benoit et al., 2016).
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However, rather than computing and storing a full k-mer spectrum after reading
the sequence data, which is resource intensive (in terms of memory or disk
space), we use the recently proposed histosketch data structure to maintain a
set of fixed size sketches to approximate the overall k-mer spectrum as it is
received from a data stream (Yang et al, 2017). The histosketch has two
properties making it suitable for this application, i. it is updateable, and ii. it is
similarity-preserving. Thus, as new data is received, we can incrementally update
the histosketch of the underlying k-mer spectrum and also approximate
similarity to other spectra.

We view the k-mer spectrum as a histogram, where k-mers from a microbiome
sample are hashed uniformly across N bins and the frequency value of a bin
corresponds to observed k-mer frequency. In order to incorporate both the bin
and frequency (a weighted set) into the histosketch, we employ Consistent
Weighted Sampling (CWS) to generate hash values for each histogram element,
which ensures that the computational complexity of hashing is independent of
bin frequency (loffe, 2010; Yang et al., 2017).

2.1.1. Consistent Weighted Sampling

As highlighted in the introduction, a drawback to the efficient set similarity
estimations afforded by MinHash sketches is that the input is restricted to binary
sets and does not account for weighted sets (e.g. k-mer frequencies). To
overcome this, histosketching employs CWS to account for element frequency
and approximate the generalised Jaccard similarity between weighted sets,
without splitting each weighted element into sub-elements and computing
independent hash values (quantization) (Haveliwala et al., 2000; Manasse et al.,
2010; loffe, 2010; Wu et al., 2017).

For a weighted set of k-mers, W, where k-mer frequency W, > 0 for all elements
of the set, CWS produces a sample, (k, y,) : 0 <y, £W,, which is both uniform and
consistent. The sample is uniformly sampled from U {k} x [0, W,], meaning that
the probability of selecting k is proportional to the k-mer frequency, W,, and y is
uniformly distributed on [0, W,]. The sample is also consistent as given two
weighted sets, W1 and W2, if Vk, W1, <W2,, a subelement (k, y,) is selected from
W1 and satisfies y, < W2,, then (k, y,) will also be selected from W2 (loffe, 2010;
Wu et al., 2017).

In order to generate a weighted MinHash code (y,, y, for a member of a
weighted set (W,), CWS uses two equations (Eq. 1 and Eq. 2), where r, ~
Gamma(2, 1), B, ~ Uniform(0, 1) and ¢, ~ Gamma(2, 1):
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Eq. 1:
Ve = exp(log W, - rkﬂk)

Vi exp( rk)

Eg. 1 generates an “active index” that is then fed in to Eq. 2 so that k is sampled
in proportion to its sample weight. Eq. 2 outputs a hash value the conforms to
the exponential distribution that is parameterised with the sample weight of W,.

2.1.2. Histosketch creation

Equations 1 and 2 describe the CWS method, which we apply to sample a k-mer
spectrum in a way that takes the relative abundance of k-mers into account. To
generate a sketch of a k-mer spectrum originating from a biological sample, the
k-mer spectrum is sampled Z times, where Z is the size of the sketch.

We will denote our underlying k-mer spectrum (a histogram) as V, with
cardinality || = X (i = 1, ..., X). The corresponding histosketch we will denote as
S, with cardinality || = Z (j = 1, ..., Z). To initialise S from V, first three
independent variables are sampled from the CWS distributions: r,; ~ Gamma(2,
1), ¢,; ~ Gamma(2, 1) and Bi,j ~ Uniform(0, 1) fori € Eandj=1, ..., Z. We then use
Algorithm 1 of Yang et al. for histosketch creation (Yang et al., 2017). The sketch,
S, and the corresponding hash values, A, are both kept as the histosketch (A
allows for incremental sketch updating).

Algorithm 1: Histosketch creation

V < k-mer spectrum

Z < sketch size

r, ¢ — Gamma distributions

B < Uniform distribution

S <« empty sketch

A < empty sketch hashvalues

for j=1,...Z do

Computey;; = exp(log V; = r,8;))

Compute a;; = ¢;/(y;; exp(r;;))

Set sketch element S; = argmin, ¢ a;,

Set the corresponding hash value A; = min,; a;
returnSand A
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To summarise, to create an element (j = 1, ..., Z) for one histosketch slot, based
on underlying histogram V, we select the histogram element (i = 1, ..., X) whose
hash value is minimal and also keep the corresponding hash value.

2.1.3. Histosketch updating

To update the histosketch as a new histogram element is received, the previous
sketch and the sketch hash values (S and A) are required. In its simplest form,
the histosketch incremental update works by hashing and evaluating the
incoming element against each slot of the histosketch. The cumulative bin
frequency of the incoming element is estimated using a persistent countmin
sketch (Cormode and Muthukrishnan, 2005); the frequency estimate is then
used to update the hash value for the required histogram bin. If this hash value
is now a minimum, the sketch slot and corresponding hash value are updated.

In addition to this update method, we can also utilise the gradual forgetting
weights of the original histosketch implementation to adjust for changes in the
underlying distribution (concept drift) (Koychev, 2000; Yang et al., 2017). Prior to
the update, uniform scaling is applied to the estimate frequency counts. After
this, the histosketh hashes are scaled using a decay weight before evaluating
against the incoming element.

2.2. Our implementation

We have implemented our method as an easy to use program called HULK.
HULK is written in Go (version 1.11) and compiles for a variety of operating
systems and architectures. It is also packaged for installation with Bioconda and
Biocontainers (Bjoérn Gruning et al., 2018; Bjorn Gruning et al., 2018). HULK
utilizes a concurrent pipeline pattern that is driven by the flow of data between
structs. This pattern facilitates the streaming of data from STDIN, as well as from
disk, and allows the HULK subcommands to be piped together and operate on
data streams.

2.2.1. Histosketching

The HULK subcommand “sketch™ performs histosketching on a FASTQ data
stream. Reads are collected from the data stream by one or more independent
counting processes (Figure 1: counting); each utilising a separate Go routine for
concurrent counting. Each counting process will count reads until an interval is
reached (e.g. 1 million reads have been seen) or a signal is sent (e.g. the sample
has been classified using a downstream ML classifier, see section 2.2.4), the
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counting processes will then send their count data via a Go channel to be
histosketched, then wipe their stores and collect more reads.

A read is received by the counting process as a slice of bytes and the canonical
k-mers are encoded to unsigned integers (uinté4) using bit shift operations.
Once encoded, the k-mer frequency is updated in the local store of the counting
process. To ensure the counting processes operate in a fixed amount of
memory, we again use the countmin sketch data structure to record frequency
estimates for the k-mer spectrum (Cormode and Muthukrishnan, 2005; Zhang et
al., 2014). The countmin sketches are initialised with epsilon and delta values to
control the relative accuracy and the resulting number of countmin counters are
used as a proxy for the number of bins in the underlying kmer spectrum.

Once an interval is reached, the counting processes send their k-mer spectrum
data in a randomised order to the single histosketching process; this process
follows the incremental histosketch update process described above (Figure 1:
sketching).

2.2.2. Distance estimation

HULK includes two distance subcommands, "distance” and "smash’. Running
“hulk distance™ will run a pairwise comparison of two histosketches and output
the Jaccard, weighted Jaccard, Bray Curtis or Euclidean metrics. Running "hulk
smash ™ will perform a pairwise comparison of two or more histosketches and
output a matrix of Jaccard or weighted Jaccard similarities. The calculation of
weighted Jaccard distance utilises the histosketch bin and corresponding hash
values; Eq. 3 shows the calculation of weighted Jaccard distance for two
histosketches, Sand T.

Eq. 3:

n D, min(S,.T,)

U z max( AP Tk)

k

weightedJaccardDistance( S, T) = 1—

2.2.3. Indexing

HULK utilises the LSH Forest self-tuning indexing scheme as employed in our
previous work (Rowe and Winn, 2018). Briefly, this scheme will take a query and
return a subset of nearest-neighbour candidates, based on the number of hash
collisions (Bawa et al., 2005). The two parameters to tune this index are (i) the
number of hash functions to encode an item (K) and (ii) the number of hash
tables to split an item in to (L). To tune index prior to adding items, multiple
combinations of K and L are evaluated by false positive/negative rate at the
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given Jaccard similarity threshold. To add a histosketch to the index we use only
the sketch S (i.e. not the hash values A, see section 2.1.2); the sketch is splitin to
L equally sized chunks of K hashes. The chunks are hashed to a binary string
(little-endian ordering) and stored in the corresponding hash table. Prior to
searching the index, the hash tables are transferred to a set of arrays and
sorted.

The HULK index operations are performed using the ‘index’ subcommand. Three
modes are available: create, add and search. To create an index, the LSH Forest
index is initialised using a Jaccard similarity and error rate thresholds, then each
histosketch is split in to the appropriate number of chunks and added as
described earlier. The index is written to disk in the unsorted form. To add a
histosketch to an existing index, the index is loaded and the histosketch is added
using the existing index parameters.

To search the index, the index is first loaded and the hash tables are transferred
to a set of arrays and sorted. The query set of histosketches are then queried in
series and the similar histosketches are returned (by label) that are within the
Jaccard similarity threshold that was set during indexing.

2.2.4. Random Forest Classifier

We implemented a Random Forest Classifier (RFC) as an example ML classifier to
showcase the applicability of our histosketches as features for predicting
microbiome sample labels. Our implementation (BANNER) is written in Python
(version 3.6) and is distributed with HULK, as well as through Bioconda and Pypi.
Source code is available at https://github.com/will-rowe/banner. It uses the SciKit
Learn (version 0.19.2) implementation of the RFC (Pedregosa et al., 2011). Again,
we use only the sketch values S and discard the hash values A. BANNER trains on
80% of the available data using bootstrapping and 1000 estimators; testing then
uses the remaining 20% of the available data and does this with 10-fold cross
validation. Once trained, the RFC model is serialised. To classify histosketches
with BANNER, the RFC model is first loaded and un-serialised, before collecting
histosketches from STDIN, allowing the output of "hulk sketch™ to be piped so
that histosketches can be classified as they are generated:

hulk sketch -f sample.fastq --stream -p 8 | banner predict -m banner.rfc

The predict subcommand will only terminate once it makes a prediction above a
set probability threshold or the sketching processes finishes.
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2.3. Evaluating performance

The full commands and code used to evaluate the performance of our
implementation can be found in the HULK repository
(https://github.com/will-rowe/hulk/tree/master/paper). HULK version 0.0.2 was
used in all experiments (release 0.0.2, commit 97ba8ac).

For running the clustering and indexing experiments, the simulated short reads
from the Critical Assessment of Metagenome Interpretation (CAMI) project
(dataset to benchmark new programs against highly complex and realistic
metagenomic datasets) were downloaded in FASTQ format (Sczyrba et al., 2017).
For each read set, HULK sketches (k-mer size=21, histosketch size=512) and
Simka (version 1.4.0) k-mer spectra (k-mer size=21) were created and pairwise
Jaccard distances were loaded into Python (version 3.6.5) using Pandas (version
0.23.4) (Mc Kinney) and clustered using Seaborn (version 0.9.0) (clustering
method=complete). For running HULK and Simka, both were restricted to 12
CPUs per FASTQ file and run using LSF on a high performance computing cluster
(Atos Bull Sequana, Intel Skylake nodes).

As an additional clustering experiment, we used a recently published dog
microbiome dataset to detect dietary intervention using histosketches on
varying levels of sequencing data (ENA: PRJEB20308) (Coelho et al., 2018). This
study reported a significant shift in the taxonomic composition of dog
microbiomes when diets were changed from a baseline diet. The full dataset
contains 1.9 terabasepairs of sequencing data, of which we sampled 0.005%,
0.05% and 0.5% of each microbiome. We histosketched these samples (k-mer
size=21, histosketch size=512) and clustered them as above.

For performing the RFC analysis, an RFC model was constructed as described in
2.2.4, using a clinically relevant dataset; gut microbiome profiles from a cohort of
healthy pre-term neonates from a single hospital. This is part of a wider clinical
study, that is longitudinally profiling the gut microbiota of preterm infants that
are residing in neonatal intensive care units (NICUs) and correlating this to
health data, including impact of antibiotics. Faecal samples from preterm infants
were collected and their bacterial DNA extracted following the protocols
described in Alcon-Giner et al., 2017 (Alcon-Giner et al., 2017). Shotgun
metagenomics libraries were prepared from 500 ng of genomic DNA which was
sheared into fragments of ~450 bp. The sheared DNA was purified and
concentrated using an SPRI-clean-up kit. Library construction entailed an end
repair, A-tailing and adapter ligation steps. Following, adapter ligation, samples
were amplified and indexed by PCR using established Illlumina paired end
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protocols. A portion of each library was used to create an equimolar pool and
pooled libraries were subjected to 125 bp paired end sequencing on a HiSeq
2500 V4. The cohort was labelled according to whether the infants were
receiving prophylactic antibiotic treatment or no antibiotics. The histosketches
from 108 FASTQ files (BioProject: PRJEB28428) were split into training (80%) and
testing (20%) groups. When using the RFC model to classify the incremental
sketch updates of blinded samples, HULK was run using a sketching interval of
1,000,000 reads using a 4 core laptop (k-mer size=21, histosketch size=512).

3. Results

The results presented here evaluate our implementation of histosketching for
rapid microbiome comparisons, in terms of both the accuracy of the tool and its
potential applications. All analyses can be run using the analyses workbooks
(https://github.com/will-rowe/hulk/tree/master/paper/analysis-notebooks)

3.1. Clustering microbiome datasets

The CAMI metagenome sequence data for 48 microbiome samples were
sketched by HULK in 1 minute 30 seconds and the full k-mer spectra were
computed by Simka in 24 minutes and 1 seconds. Hierarchical clustering
identified 5 distinct groups using both the HULK histosketches (Figure 2a) and
the full k-mer spectrum (Figure 2b). These groups corresponded to the 5 body
sites of the CAMI project, as denoted by the coloured bars on the dendrograms.
Using the HULK sketches, 2 samples failed to cluster by body site (skin and
airways), whereas 3 samples failed to cluster for the full k-mer spectra (skin and
airways).

0
F-
=

"
[



https://github.com/will-rowe/hulk/tree/master/paper/analysis-notebooks
https://doi.org/10.1101/408070
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/408070; this version posted September 4, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 2. Hierarchical clustering of CAMI short read microbiome samples (Sczyrba et al., 2017).
Heatmaps show the pairwise Jaccard similarity between microbiome samples; colormap ranges
are computed using robust quantiles and dendrogram clades are coloured by body site. A. HULK
histosketches (k-mer size=21, histosketch size=512) for 48 microbiome samples were sketched in
1 minute 30 seconds (12 cores per histosketch). B. Simka k-mer spectra (k-mer size=21) for 48
microbiome samples were computed in 24 minutes 1 seconds (12 cores per spectrum).

To show the ability of our method to cluster incomplete data streams in a
biological meaningful way, we performed incremental histosketch updating on
data streams from a collection of dog microbiome samples. As the data was
downloading, we histosketched the data stream (using fastg-dump to stream the
download); approximately 0.005%, 0.05% and 0.5% of the reads from each
sample (129 samples total) were processed and then clustered based on
pairwise Jaccard similarity (Figure 3). At all intervals, we found clear separation of
histosketches between microbiome samples from dogs receiving the baseline
diet and those receiving an altered diet (high/low protein). This is in agreement
with the findings of the original study, where they reported a significant shift in
the taxonomic composition of dog microbiomes when diets were changed
(Coelho et al., 2018). The total microbiome data for the original study was stored
in 3096 runs across 129 samples, amounting to 1.9 terabasepairs. Complete
download of this dataset from the ENA took over 7 days using fastg-dump with
20 parallel downloads. Sketching the initial 0.005% of the data stream took an
average of 4 seconds per sequencing run (approximately 100 seconds per
sample).
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Figure 3. Hierarchical clustering of dog microbiome samples (Coelho et al., 2018). A, B and C
correspond to clustered histosketches from 0.005%, 0.05% and 0.5% of sample reads
respectively. The majority of microbiome samples from the dogs on the baseline diet clustered
together (green), however the samples taken after these dogs were put on to an altered diet
(pink/blue) did not show any distinct clustering pattern.

3.2. Indexing microbiome collections

The histosketches from the CAMI metagenome sequence data were labelled by
body site before 1 sample was randomly removed from each group and used as
search queries. The remaining sketches were indexed using HULK in 0.039
seconds (with a Jaccard similarity threshold of 0.90). All the queries returned at
least one CAMI sample from the same body site (Figure 4). The oral query
returned only oral samples, the Gastrointestinal (Gl) tract, airways and skin
queries returned predominantly samples from their own respective body sites,
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whilst the Urogenital (UG) tract returned one sample from the same body site,
plus another from airways. When overlaid on Principal Components 1 and 2 of a
PCA analysis, the search queries are grouped nearest their respective LSH Forest
search results (Figure 4).

® airways
Gl tract

@ oral
skin
UG tract

principal component 2

principal component 1

Figure 4. Principal component analysis of histosketches from CAMI short read microbiome
samples, coloured by body site (Sczyrba et al, 2017). Circular data points indicate the
histosketches used to build the LSH Forest index, stars data points indicate histoketches used as
search queries. Red rings enclose the returned LSH Forest search results for each search query
(Jaccard Similarity threshold > 90%).

3.3. Classifying microbiomes using machine learning

We trained a Random Forest Classifier using a clinically relevant microbiome
collection (gut microbiome profiles from a cohort of healthy pre-term neonates
from a single NICU) and labelled the samples according to whether the infants
were receiving prophylactic antibiotic treatment or no antibiotics. The accuracy
on the test set during RFC construction was 0.95, with an F1 score of 0.92 (Figure
5). When streaming reads from blinded microbiome samples from the cohort,
histosketches after the first sampling interval (1,000,000 reads, average
sketching time = 12 seconds) were then successfully classified by the previously
trained RFC as being from an antibiotic treated neonate (probability = 0.90),
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upon which the data stream was terminated and a new sample data stream was
then histosketched.

F1 score 0.92
precision 0.97
recall score 0.89

test accuracy | 0.95

Figure 5. Random Forest Classification test accuracy for predicting antibiotic treated vs.
no-antibiotic treated neonatal microbiomes.

4. Discussion

In this paper we have presented a new method, as well as several use cases, for
rapid microbiome analytics using streaming histogram sketching. This work has
been in direct response to the call for improved microbiome analytics in this era
of big data, massive microbiome sequencing initiatives and the realistic prospect
of clinical metagenomics (Kakkanatt et al, 2018; Mulcahy-O'Grady and
Workentine, 2016). We feel that our microbiome sketching method and the
applications shown here go toward addressing this challenge.

As outlined in the introduction, the dimensionality reduction methods that have
only recently been applied to genomics have been a great advance toward the
goal of rapid microbiome analytics; facilitating fast similarity queries such as
identifying genomes or genes within metagenome samples (Brown and Irber,
2016; Rowe and Winn, 2018). Our dimensionality reduction method for the
comparison, indexing and classification of microbiomes offers a novel and
complementary method to these existing ones. In particular, it addresses the
main limitations of traditional MinHash for certain microbiome analyses. These
being: (i) histogram sketching is not impacted by mismatched set size (Koslicki
and Zabeti, 2017) and (ii), histogram sketching accounts for weighted sets (e.g.
k-mer frequency).

In terms of the advantages of our method over other de novo analysis methods
(e.g. k-mer spectra dissimilarity analysis), we have shown here that the
computation of histogram sketches is 16 times faster than computation of the
full k-mer spectra (see Results 3.1). As well as faster analysis times, histogram
sketching has a much smaller footprint as the entire k-mer spectrum does not
need to be kept in memory or written to disk, and the resulting sketches are
much smaller in size than the full spectrum. Our method also does not require
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re-computation of previously sketched samples in order to make new
comparisons. In addition, we showed that histosketching microbiome samples
can work on incomplete data streams and allow samples to be clustered by the
underlying microbiome composition when using just a small proportion of the
total reads (see Results 3.1, Figure 3). Our results suggest that only a small
proportion of the total data stream needs to be sampled in order to cluster the
samples according to a particular treatment using histosketch similarity.
Although we managed to identify the time point when the diet was changed
from baseline to an altered diet, we were not able to differentiate between the
two altered diets using our sketches from the initial data stream. This may be
due to insufficient sampling of the data stream; however, the original study did
not report being able to differentiate between the two altered diets either (see
figure 2¢, Coelho et al. (Coelho et al., 2018)).

In sections 3.2 and 3.3, we demonstrated that microbiome histosketches can be
efficiently indexed and also used as features in ML classification, which are both
typically hard to do using the full k-mer spectra due to their scale and sparsity
(Kakkanatt et al., 2018). In terms of the LSH Forest index for microbiome sample
retrieval, our results showed that a histosketch from a given body site would
predominantly return microbiome samples from the same body site (Figure 4).
Only the oral histosketch query returned solely oral samples, which is likely due
to the high similarity observed between these datasets (Figure 2). On the whole,
these results indicate that histosketches of k-mer spectra can offer an efficient
and fast way to index and query collections of microbiome data.

Our performance evaluation of HULK using an RFC illustrates how incremental
sketching (as highlighted in Figure 3) can be combined with ML in order to
classify a microbiome and stop processing a data stream (see Results 3.3). This is
a step forward in dealing with streaming genomics data; the combination of
incremental histosketch updates with a ML classifier (and associated
classification probabilities) allows for the possibility of terminating data streams
in applications such as real-time sequencing (Ondov et al., 2016). Here, we used
this approach to quickly evaluate longitudinal samples from a cohort, identifying
whether there is a response to a treatment or other stimulus. In this case we
have used this sketching approach to differentiate between those preterm
infants that had received antibiotics, versus those that did not. This is important
clinically as antibiotic treatment in preterm infants is associated with significant
alterations in the gut microbiota, which may link to increase risk of development
serious conditions such as necrotising enterocolitis or sepsis (Sim et al., 2015;
Shaw et al., 2015; Alcon-Giner et al, 2017). Thus a rapid and discriminatory
microbiome profiling method for this fragile and at-risk patient cohort, or indeed
for other clinical microbiome samples, could prove useful for intervention or
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treatment options. Alternatively, it could be applied to real-time sequencing
platforms and inform the sequencer when enough data has been produced.
These examples illustrate how this method could be used in the coming era of
clinical metagenomics (Mulcahy-O’'Grady and Workentine, 2016). We are not
restricted to using RFC as and it would be very useful to evaluate other more
sophisticated ML approaches that can utilise histosketches as feature vectors. As
well as this, we could refine our ML models further by identifying the more
significant elements of the histosketch in terms of their influence over the model
training. This in turn could reveal more information relating to the underlying
k-mer spectrum of a sample, which may be of use in downstream applications
(e.g. feature extraction).

For future work into microbiome analytics, the histogram sketching method
presented has potential for further refinement and improvements in order meet
the big data challenges that microbiome research presents. Of these, we have
already identified that further work into the use of histosketches in ML is
definitely needed, particularly with the hope of improving classification accuracy
and expanding out from the binary classification task we have shown here. In
addition, we would like to explore the idea of concept drift for gradually
forgetting outdated histogram elements (Yang et al., 2017). We included the
gradual forgetting of the original histosketch method in our implementation but
this was not exploited in the performance analysis (Yang et al, 2017). We
envisage that this could be useful to experiment with in terms of real-time
sequencing applications. Finally, we have shown that microbiome samples can
be histosketched on a laptop with a few cores and a small, fixed amount of
memory. In order to fully take advantage of this performance, histosketching
needs to move beyond command line interfaces. To this end, we have begun
work on a WebAssembly (WASM) port of HULK to enable client side sketching
(WASM available Go Version 1.11) so that users can histosketch their own
microbiome data and compare just the sketches against online databases,
ensuring their microbiome data remains private but enabling quick and easy
microbiome analytics.

5. Conclusions

To conclude, histosketching generates compact representations of microbiomes
from data streams; facilitating sample indexing, similarity-search queries,
clustering, and the application of machine learning methods to analyse
microbiome samples in the context of the global microbiome corpus.
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