

1 **Genome-skimming provides accurate quantification for pollen mixtures**

2 **Authors**

3 Dandan Lang^{#1,2}, Min Tang^{#1,3}, Jiahui Hu^{1,3}, and Xin Zhou^{*1,3}

4 **1:** Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,
5 100193, People's Republic of China.

6 **2:** College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic
7 of China.

8 **3:** College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China.

9 **Keywords:** pollen identification, abundance, plastid genome, metabarcoding, PCR-free,
10 metagenomics

11 **Running title:** Pollen genome-skimming

12 **Correspondence:**

13 Xin Zhou

14 Email: xinzhou@cau.edu.cn

15

16 **Abstract**

17 In the face of global pollinator declines, plant-pollinator interaction networks have been studied
18 to guide ecological conservation and restoration. In order to obtain more comprehensive and
19 unbiased knowledge of these networks, perspectives of both plants and pollinators need to be
20 considered integratively. Metabarcoding has seen increasing applications in characterizing pollen
21 transported by pollinators. However, amplification bias across taxa could lead to unpredictable
22 artefacts in pollen compositions. We examined the efficacy of a PCR-free genome-skimming method
23 in quantifying mixed pollen, using mock samples constructed with known pollen species (5 mocks of
24 flower pollen and 14 mocks of bee pollen). The results demonstrated a high level of repeatability and
25 accuracy in identifying pollen from mixtures of varied species ratios. All pollen species were detected
26 in all mock samples, and pollen frequencies estimated from the number of sequence reads of each
27 species were significantly correlated with pollen count proportions (linear model, $R^2 = 86.7\%$, $P = 2.2e-$
28 16). For >97% of the mixed taxa, pollen proportion could be quantified by sequencing to the correct
29 order of magnitude, even for species which constituted only 0.2% of the total pollen. We also showed
30 that DNA extracted from pollen grains equivalent to those collected from a single honeybee corbicula
31 was sufficient for the genome-skimming pipeline. We conclude that genome-skimming is a feasible
32 approach to identifying and quantifying pollen compositions for mixed pollen samples. By providing
33 reliable and sensitive taxon identification and relative abundance, this method is expected to improve
34 the understanding of pollen diversity transported by pollinators and their ecological roles in the plant-
35 pollinator networks.

36

37 **Introduction**

38 Pollinator declines have been widely reported in the last decades, causing substantial losses in
39 pollination services and subsequent reductions in crop yields (Potts et al., 2010). Over 80% of known
40 flowering plants are pollinated by animals, mainly insects (Ollerton, Winfree, & Tarrant, 2011).
41 Therefore, global conservation efforts have been carried out with a priority on biodiversity registration
42 and monitoring of pollinators, especially bees (Winfree, Griswold, & Kremen, 2007; Burkle, Marlin, &
43 Knight, 2013). In addition, an increasing amount of studies have been focused on the understanding
44 of pollination functions of pollinators through construction of pollination networks (Kremen, 2005;
45 McCann, 2007; Tylianakis, Laliberté, Nielsen, & Bascompte, 2010; Schleuning, Fründ, & García, 2014).
46 In turn, the network and its resilience to disturbances have been suggested as an effective proxy for
47 evaluating the efficacy of conservation management and restoration of ecosystem function (Devoto,
48 Bailey, Craze, & Memmott, 2012; Kaiserbunbury & Blüthgen, 2015; Kaiser-Bunbury et al., 2017).

49 Plant-pollinator network studies often involve field observation of flower visitations by various
50 pollinators. However, not all flower visitors provide pollination service (King, Ballantyne, & Willmer,
51 2013) and when they do, they may vary in efficiencies in pollen transport and pollination success
52 (Memmott, 1999). In addition, the construction of visitation networks is typically time-consuming (e.g.,
53 hours of observation on a moderate network containing a few dozens of flower species, Kaiser-
54 Bunbury et al., 2017), which usually leads to under-sampling of flower diversity or replicates, especially
55 when working at large geographical scales. Unfortunately, such under-samplings tend to
56 underestimate the level of nestedness (the degree to which interactions of specialist species are
57 residing in that of more generalist species) (Petanidou, Kallimanis, Tzanopoulos, Sgardelis, & Pantis,

58 2008; Bosch, González, Rodrigo, & Navarro, 2009), a crucial feature indicating resilience of the network
59 to perturbations (Bascompte, Jordano, Melián, & Olesen, 2003; Rohr, Saavedra, & Bascompte, 2014).
60 As a complementary approach, pollen transport web based on analysis of pollen loads carried by
61 insects (Forup & Memmott, 2005) may help to fine-tune pollination networks constructed from
62 visitations (Kanstrup & Olesen, 2000; Gibson, Nelson, Hopkins, Hamlett, & Memmott, 2006; Forup,
63 Henson, Craze, & Memmott, 2008; Jedrzejewska-Szmek, Krystyna, Zych, & Marcin, 2013). Firstly,
64 pollen analysis of flower visitors would help characterize the diversity of pollen carried by animals,
65 therefore identifying pollen transport variations, through which visitors carrying no pollen could be
66 excluded from the network. Secondly, pollen loads provide extended visitation information for visitors
67 (over time and space) as pollen grains would stay on pollinators' bodies when they travel across flowers
68 (Courtney, Hill, & Westerman, 1982). In fact, pollen analysis have been demonstrated to complement
69 network interactions built from visitations by increasing pollinator connectivity, nestedness and
70 centralization, and by revealing new modules (Bosch et al., 2009).

71 However, pollen identification based on classic palynology requires specialized skill set. Pollen
72 grains are usually stained and identified morphologically under a microscope, which is time- and
73 labor-consuming. Furthermore, rare species are prone to be overlooked in subsampling and
74 microscopic examination. Alternatively, molecular identifications especially metabarcoding have seen
75 increasing applications in bulk pollen characterizations (Galimberti et al., 2014; Richardson et al., 2015;
76 Cornman, Otto, Iwanowicz, & Pettis, 2015; Keller et al., 2015; Bell et al., 2016; Danner, Molitor, Schiele,
77 Härtel, & Steffan-Dewenter, 2016; Ponon et al., 2016; Bell et al., 2017; Kamo et al., 2018).
78 Metabarcoding employs high-throughput sequencing (HTS) in analyzing pooled amplicons obtained

79 from mixed taxa (Ji et al., 2013; Cristescu, 2014). While PCR of target genes (e.g., DNA barcodes) helps
80 to increase DNA quantity for HTS, this procedure is prone to introducing taxonomic bias due to varied
81 primer efficiencies across taxon lineages (Crampton-Platt, Yu, Zhou, & Vogler, 2016), and multiple
82 optimization methods have been proposed (e.g., Nichols et al., 2018; Piñol, Senar, & Symondson,
83 2018). Recent studies have introduced a PCR-free approach, a.k.a. genome-skimming, where the total
84 DNA extracts from bulk samples are directly subject to shotgun sequencing, therefore providing better
85 qualitative and quantitative results for pooled invertebrate samples (Zhou et al., 2013; Tang et al., 2015;
86 Arribas, Andújar, Hopkins, Shepherd, & Vogler, 2016; Choo, Crampton-Platt, & Vogler, 2017; Bista et
87 al., 2018).

88 Quantitative composition of pollen mixtures is particularly important to the understanding of
89 the flower diversity that bees visit and potentially their pollination contribution to the ecosystem.
90 However, the feasibility of genome-skimming in pollen samples has not been proofed. In particular,
91 as pollen grains are typically small in sizes, they may not provide sufficient DNA for HTS without PCR
92 amplifications. In this study, we examined the potentials of pollen genome-skimming using mock
93 samples consisting of known pollen at varied ratios. We show that our approach can provide accurate
94 taxon identification for pollen mixtures and quantitative information for all member species, including
95 those presented at low abundances. We also demonstrate that our method is feasible with small
96 amount of pollen, where pollen pellets carried by individual bees can provide sufficient DNA for
97 genome-skimming. Finally, we discuss practical considerations in the incorporation of new method
98 into current pollen network studies, including analytical cost, operational complexity and compatibility
99 with existing methods.

100

101 **Materials and Methods**

102 **Pollen Samples**

103 Flower pollen (FP) was collected from fresh flowers (*Abutilon megapotamicum*, *Ab. pictum*,
104 *Alstroemeria aurea*, *Antirrhinum majus*, *Lilium brownii*, *Nymphaea stellata* and *Schlumbergera*
105 *truncata*), which were purchased from a local flower market. Fresh flowers were identified
106 morphologically by Dr. Lei Gu of Capital Normal University, China. Mature pollen grains were sampled
107 with a sterile needle and preserved in a sterile vial for each species. Before pollen maturation, stamens
108 from each species were isolated in petri dishes separately to avoid cross-contamination. Bee pollen
109 (BP) of *Brassica napus*, *Camellia japonica*, *Papaver rhoeas*, *Prunus armeniaca*, *Rhus chinensis* and *Vicia*
110 *faba* were purchased from Internet stores. These pollen pellets were collected from corbiculae (pollen
111 baskets) of farm honeybees (*Apis mellifera*), then desilicated and bottled by the merchandise. Pollen
112 identity and composition were examined using DNA barcoding and shotgun sequencing (described
113 in the following paragraphs). Two grams of each BP (ca. 200-350 pollen pellets) were dissolved with
114 sterile water then centrifuged at 14,000 g for 10 minutes and the supernatant was gently removed. FP
115 and BP were suspended with 1 mL and 20 mL of 95% ethanol, respectively.

116

117 **Pollen Counting**

118 Subsamples of FP and BP pollen suspensions were added into the Fuchsin dilution (16% glycerol,
119 33% alcohol, 1% basic fuchsine dye, and 50% deionized water) for pollen counting, where the total
120 volumes were adjusted so that individual pollen grains could be recognized under a microscope

121 without overlapping (Table S1 in Appendix 1). Pollen Fuchsin suspensions were homogenized by
122 vortex shaking and a 5 μ L or 10 μ L subsample was then examined on a glass slide under a Nikon
123 SMZ800N microscope or on a blood cell counting plate under a Nikon SMZ745T microscope, for FP
124 and BP, respectively (almost all BP had smaller grains than FP in the studied species). To reduce
125 stochastic errors during the process, the dilution procedure for each pollen species was repeated 3
126 times, whereas counting was repeated 3 times for each dilution. The average count from these 9
127 replicates was considered as the final pollen count for that species. These counts were then used to
128 calculate pollen numbers per volume unit for each species.

129

130 **Pollen Mixture Mocks**

131 Mock samples with species mixed at varied proportions each contained 200,000 to 5,000,000
132 pollen grains (Table 1), roughly reflecting those carried by an individual honeybee on 1 or 2 corbiculate
133 legs (estimated by BP samples, Table S1 in Appendix 1). Five fresh flower pollen mocks (M0001-0005)
134 were constructed. Among these, M0001 was made with an equal pollen ratio, which was used for
135 calibrations of plastid genome copy numbers (See “Genome-skimming of Mock Pollen Mixtures”).
136 Species ratios in FP mocks were set to test pollen-number variation from a minimum of 1-fold (e.g.,
137 *Al. aurea* vs. *L. brownii* in M0003) to a maximum of 100-fold (e.g., *L. brownii* vs. *Ab. spp.* in M0004).
138 Fourteen bee pollen mocks were constructed, with M0014-0018 and 0021 (equal species ratio at
139 varied total counts) used for testing repeatability of the proposed protocol and for calibrations of
140 plastid genome copy numbers of the relevant bee pollen species. M0006 and M0007 were mock
141 sample replicates, while M0008 and M0009 were DNA replicates. Species ratios in the rest of BP mocks

142 (M0010-0013) were set to test pollen number variations from a minimum of 1-fold (e.g., *B. napus* vs.
143 *Pa. rhoeas* in M0010) to a maximum of 300-fold (e.g., *C. japoica* vs. *Pr. armeniaca* in M0010).

144

145 **Pollen DNA Extractions**

146 Pollen DNA was extracted using the Wizard method (Soares, Amaral, Oliveira, & Mafra, 2015),
147 where the Wizard columns were replaced by Genomic Spin Columns (Transgen Biotech, Beijing, China).

148 We also estimated the number of pollen grains needed to produce the regular DNA mass
149 required for the library construction on Illumina platforms (200 ng). The DNA yield per pollen grain is
150 expected to vary among species due to differences in nuclear genome sizes and plastid genome copy
151 numbers. Total DNA was extracted from 20,000, 40,000, 100,000, 200,000 pollen grains of *B. napus*, *C.*
152 *japonica*, *Pa. rhoeas*, *Pr. armeniaca*, *Rh. chinensis*, *V. faba* and a mixture containing all 6 BP species at
153 an equal ratio. DNA extraction was repeated 3 times for each species at each pollen count (12 extracts
154 for each species), each of which was quantified using an Invitrogen Qubit®3.0 Fluorometer.

155

156 **Bee Pollen Barcoding**

157 The taxonomic identifications of BP were confirmed by Sanger sequencing of the *rbcL* barcodes.
158 Pollen DNA was extracted as described above. One microliter of each primer (1F: 5'-
159 ATGTCACCACAAACAGAAC-3' and 724R: 5'-TCGCATGTACCTGCAGTAGC-3', Fay, Bayer, Alverson,
160 De Bruijn, & Chase, 1998) was used in a PCR reaction with a total volume of 20 µL, containing 2.5 µL
161 of 10x *TransStart Taq* Buffer, 3.2 µL of dNTP (Promega U1515), 0.2 µL of *TransStart Taq* DNA
162 Polymerase and 1 µL of template DNA. The PCR program was set as: initial denaturation at 95°C for 2

163 min, 34 cycles of 94°C denaturation for 1 min, annealing at 55°C for 30 s, and extension 72°C for 1
164 min, and a final extension step at 72°C for 7 min. Amplicons were sequenced using Sanger sequencing
165 at Ruibiotech, Beijing, China. Sanger sequences were blasted individually against the GenBank
166 nucleotide database for taxonomic identifications.

167

168 **Construction of a Reference Database for Plastid Genomes**

169 About 100 mg of dried leaf tissues of each fresh flower species was ground with liquid nitrogen,
170 treated with solution A following a modified CTAB method (Li, Wang, Yu, Wang, & Zhou, 2013) and
171 then extracted using a Plant Genomic DNA Kit (TIANGEN, Beijing, China).

172 Libraries with an insert-size of 350 bp were prepared using leaf DNA extracts of *Ab. pictum*, *Ab.*
173 *megapotamicum*, *An. majus*, *N. stellate* and *S. truncates*, following the manufacturer's instruction. DNA
174 libraries were sequenced at 2 Gb per species with 150 paired-end (PE) reads using an Illumina
175 HiSeq4000 at BGI-Shenzhen, China. Additionally, the pollen DNA of *L. brownii* was sequenced with
176 the same sequencing strategy using a HiSeq X Ten at NOVOgene (Beijing, China).

177 Data filtering removed reads containing adaptor contamination, duplication contamination,
178 poly-Ns (>15 Ns) and those of >60 bases with quality score ≤ 32 . Assemblies of chloroplast genomes
179 were conducted using NOVOPlasty (Dierckxsens, Mardulyn, & Smits, 2017), except for *L. brownii*,
180 which was assembled using SOAPdenovo-Trans (K=71, Xie et al., 2014). Protein-coding genes (PCGs)
181 were annotated by using perl scripts from Zhou et al. (2013), which blasted the assemblies against a
182 database containing 1,552 angiosperm chloroplast genomes (Table S2 in Appendix 1) downloaded
183 from GenBank and predicted putative PCGs. All predicted plastid PCGs were aligned using MEGA 7.0

184 (Kumar, Stecher, & Tamura, 2016), and then PCGs shared by all FP and all BP taxa were concatenated
185 respectively and used as respective reference sequences for pollen mixture analysis (Fig. 1).

186

187 **Genome-skimming of Mock Pollen Mixtures**

188 For each mock, about 200 ng of DNA was used for library construction and high-throughput
189 sequencing. A 350 bp insert-size library was sequenced at 4 Gb depth and 150 PE on an Illumina
190 HiSeq4000 platform for each mock pollen mixture samples. After data filtering as described above,
191 clean reads for BP and FP samples were mapped onto reference PCGs using *a/n* BWA 0.7.16 (Li &
192 Durbin, 2010). Aligned reads were assigned to the mapped species only if they met all following criteria:
193 100% read coverage, ≤ 1 base difference and aligned with no more than 1 reference (unique mapping).
194 By the nature of the unique-mapping algorithm, uniquely mapped reads would only represent highly
195 variable regions among reference genomes. Additional reads would be expected to match multiple
196 PCGs of low taxonomic resolutions, which would not be assigned to any specific taxon (Tang et al.,
197 2015). Therefore, the total pollen read number of a given species was defined as the number of
198 uniquely mapped reads divided by the coverage percentage of its reference PCG sequence (Fig. 1).

199 The copy number of plastid genomes in matured pollen show drastic variations between plant
200 species but remain relatively conservative within species (personal communication with Dr. Sodmergen
201 of Peking University, China). Mock samples M0001 (FP), M0014-18 (BP) and M0021 (BP) were
202 constructed with all member species mixed at equal pollen ratios. Therefore, in the sequencing results,
203 proportions of sequence read of the member species are expected to reflect natural copy number
204 differences in plastid genomes among species. These 7 mock samples were then used to estimate

205 relative plastid genome copy number (PGcpN) ratios among BP and FP (Fig. 1). The PGcpN of the
206 species with the least number was set as 1 and the average values of BP replicates (M0014-18 and
207 M0021) were adopted as PGcpN ratios for the member species. For other pollen mixture samples, the
208 pollen read number for each species per sample was then weighted by its PGcpN ratio, resulting in its
209 estimated pollen count in the mixture (Fig. 1, Table S3 in Appendix 1). Linear regression between
210 pollen proportion from Table 1 and pollen frequency computed from sequencing reads was
211 performed in R 3.4.4 base package (R Core Team 2015), to estimate correlations between pollen
212 counts and sequence reads for all species.

213

214 **Examination for Species Mixture in BP**

215 As honeybees are generalist pollinators, each pollen pellet collected from the corbicula is
216 expected to contain pollen from multiple plants. To examine to what extent the purchased BP are
217 “contaminated” by non-labeled pollen species, we sequenced each BP at 2 Gb with 150 PE reads on
218 Illumina platforms (*B. napus*, *R. chinensis* and *Pa. rhoeas* on a HiSeq X Ten at Novogene, Beijing, China;
219 *Pr. armeniaca*, *C. japoica* and *V. faba* on a HiSeq 4000 at BGI-Shenzhen, China). Clean data were
220 uniquely mapped onto BP reference PCGs as described above and used to compute the read
221 percentage for each of the mixed species.

222

223 **Results**

224 **DNA Extraction from Pollen Samples**

225 A total of 900 - 1500 ng of DNA were obtained for the tested pollen mocks (Table S4). These

226 results confirmed that 1 or 2 pollen pellets carried by a single honeybee can usually provide more
227 than enough DNA for high-throughput sequencing.

228 DNA yields were positively correlated to the number of grains used for extraction within each
229 species (Fig. 2, Table S5 in Appendix 1). On the other hand, species showed consistent differences in
230 DNA yields. For instances, ca. 200,000 grains were needed to produce 200 ng DNA in *Pr. armeniaca*,
231 whereas only ca. 40,000 grains needed for *C. japoica*. These differences are caused by variations in
232 genome sizes and plastid genome numbers in pollen across species. Approximately 60,000 pollen
233 grains of the mixed sample (consisting of 6 species at equal ratios) were required for 200 ng DNA.

234

235 **Bee Pollen Identification by *rbcL* Barcoding**

236 Sanger sequences of the *rbcL* barcodes for the six BP species were obtained (Table S6 in
237 Appendix 1) with high quality. Barcodes confirmed the taxonomic identifications for the labeled
238 species at $\geq 99\%$ identity.

239

240 **Plastid Reference Genome**

241 Plastid genomes were assembled into scaffolds of 120-167 kb for five plant species (Fig. S1 in
242 Appendix 2). Reads assigned to plastid genomes account for 2.8-19.6% of the total shotgun reads for
243 varied species, with an exception in *L. brownii* that was extracted from pollen, which contained much
244 fewer plastid genome copies than did leaf tissue (0.07%, Table S7 in Appendix 1). In addition, plastid
245 genomes of *B. napus* (NC_016734.1), *C. japoica* (NC_036830.1), *R. chinensis* (NC_033535.1), *Pr.*
246 *armeniaca* (KY420025.1), *Pa. rhoeas* (MF943221.1), *V. faba* (KF042344.1) and *Al. aurea* (KC968976.1)

247 were downloaded from GenBank and were included in the reference. A total of 65 PCGs shared by all
248 FP species and 71 shared by all BP species were used as reference PCGs, respectively. However,
249 *Abutilon megapotamicum* and *Ab. pictum* could not be differentiated from each other even using 65
250 PCGs, due to limited taxonomic resolution of the gene markers. These two species were pooled for
251 downstream analysis.

252

253 **Copy Number Variation of Plastid Genomes among Pollen Species**

254 Mock samples were constructed with equal pollen counts for all member species, for both FP
255 (M0001) and BP (M0014-0018, 0021). Shotgun reads were assigned to species using our unique-
256 mapping criteria and pollen read number for each species per sample was calculated as described
257 above. The species assigned with the least pollen read number was used as the standard, against
258 which pollen read number of all other species were compared to produce relative copy numbers of
259 plastid genomes (PGcpN). In our results, member species showed significant variations in plastid
260 genome numbers (not the number of plastid organelles). For instance, *Al. aurea* had 27.8 times more
261 plastid genomes per pollen than that of *An. majus*, and *Pr. armeniaca* had 57.7 times more plastid
262 genomes per pollen than that of *B. napus* on average (Table 2). Nevertheless, plastid genome numbers
263 were conserved within species as shown in BP samples M0014-0018 and M0021 (Table S3 in Appendix
264 1) and in proportion results in BP replicates M0006-0009 (see “Repeatability”).

265

266 **Repeatability**

267 The sequencing results were highly repeatable in both sets of BP mock samples constructed at

268 different species ratios (Fig. 3, Table 2). It is worth noting that these results also reflect consistency in
269 all relevant steps involved in the pipeline, including pollen counting, subsampling, pollen pooling, DNA
270 extraction, library construction, sequencing and etc.

271

272 **Species Richness and Abundance of Pollen Mocks**

273 Genome-skimming successfully detected all pollen species in all mock samples (Table 2, Table
274 S3 in Appendix 1), including species found at just 0.2% of the total abundance (*C. japoica* in M0010,
275 and *Pr. armeniaca* in M0006-0009). In principle, our stringent unique-mapping criteria would produce
276 conservative results, where the reference species uniquely mapped by sequence reads would unlikely
277 be an analytical artefact. This method was deliberately chosen to alleviate issues associated with the
278 high sensitivity of high-throughput sequencing technologies, where they tended to pick up minute
279 traces of DNA from the environment, causing false positives. Following this method, low-frequency
280 species identified by sequencing are likely present in the real sample, providing confidence in
281 detecting rare species in sample mixtures. In fact, all species with low abundances (e.g., with a relative
282 abundance of 0.2% by pollen counting) were readily detected (Table 2, Table S3 in Appendix 1).
283 However, two species absent from pollen counting were also detected by sequencing (*An. majus* and
284 *N. stellata* in M0004). These 2 species were not pooled in the mock sample but showed non-negligible
285 read depths and coverages (2.1X, 43.9% for *An. majus* and 5.1X, 23.2% for *N. stellata*, respectively),
286 which were comparable to rare taxa truly present in M0002 (2.0X, 46.0% and 1.9X, 34.9% for the
287 corresponding species, respectively) (Table S3 in Appendix 1). These results suggested that the two
288 species detected by sequencing were likely a result of sample contamination rather than being

289 analytical artefacts.

290 Quantification results for nearly all FP and BP mock samples were highly congruent with those
291 from pollen counting (Table 2, Figs. 4, 5). The radar shapes representing species compositions
292 concluded from sequencing (Fig. 3, dashed lines) matched well with those from pollen counting (Fig.
293 3, solid lines). The only exception was M0002, where the relative abundance (pollen ratio in mixture)
294 of *L. brownii* was lower in the sequencing result than pollen counting, while that for *Abutilon* spp. was
295 overestimated by the sequencing approach. This result was consistent in our repeat (Fig. S2 in
296 Appendix 2, Table S3 in Appendix 1).

297 Overall, pollen frequencies computed from pollen reads of each species were significantly
298 correlated with corresponding pollen count proportions (linear model, $R^2 = 86.7\%$, $P = 2.2e-16$, Fig. 6).
299 The genome-skimming approach demonstrated a high level of sensitivity and accuracy in
300 discriminating pollen counts at a wide range of compositional differences. In 68 out 70 cases (97.1%),
301 the sequencing results were able to quantify pollen proportions to the correct order of magnitudes.
302 Even when the maximum differences among pollen species had reached more than 100-fold within
303 mock samples (e.g., M0004, 0006-0012), genome-skimming was still able to correctly quantify species
304 at low abundances to the correct order of magnitudes with high consistency (e.g., *R. chinensis* vs. *C.
305 japoica* in M0006-0009, *Pa. rhoeas* vs. *V. faba* in M0012).

306

307 **Pollen Mixture in Bee Pollen**

308 The majority of each BP data set were mapped back onto the corresponding reference genomes,
309 indicating that the bee pollen pellets were mostly made up of the labeled pollen species. However, it

310 was also clear that all BP samples were mixed with other pollen species at varied proportions (Table
311 3). BP *V. faba* contained the most non-labeled pollen DNA (33.97%), while *Pr. armeniaca* showed the
312 least mixture (1.16%). These results suggest that honeybees may regularly visit multiple flower species
313 in a single trip, although we could not rule out the possibility of sample mixing during bee pollen
314 preparation by the merchandise.

315

316 **Discussion**

317 Pollination networks are complicated by nature, where visitation frequencies, pollen transport
318 efficiencies, variations in pollen deposition and plant reproductive success have all been considered in
319 various network construction methods. Recent studies suggested that these parameters would
320 complement each other and collectively produce a better network (Ballantyne, Baldock, & Willmer,
321 2015). However, it is also apparent that balance would have to be made between an accurate
322 construction of a comprehensive network and the overall efficiency in ecological studies, especially
323 those at large scales. Therefore, an effective approach to identifying pollen diversity for flower visitors
324 would help to incorporate this important information into the construction of pollination networks.

325 Although some studies have suggested metabarcoding is able to estimate valid abundances for
326 pollen mixtures using amplicon frequencies (Poron et al., 2016), others have shown less reliable
327 correlations (Keller et al., 2015; Richardson et al., 2015). These conflicting observations may imply that
328 the success of PCR-based metabarcoding is dependent on species composition of the pollen sample,
329 which is highly variable in natural systems. By bypassing target gene amplifications and by expanding
330 sequence references, the genome-skimming method can further provide quantitative pollen

331 compositions for individual bees (corbicula pollen pellets) or pooled bees (pollen grains on bee
332 bodies). In our results, a consistent positive correlation between pollen counts and pollen read
333 numbers was established, in congruence with previous studies on macro-invertebrates. In fact, the
334 correlation of the linear model is much more significant in pollen than in invertebrate animals tested
335 so far (Tang et al., 2015; Bista et al., 2018), which is likely due to a higher level of homogeneity in
336 organelle genome copy numbers per sample unit (pollen grain vs. individual animal). As with
337 previously studied animal samples, this abundance-read correlation was significant independent of
338 phylogenetic relationships among member pollen species (valid in both FP and BP samples) and levels
339 of heterogeneity in pollen proportions (from 1-fold to 300-fold). The only exception in our study was
340 observed in M0002, where the proportions of *L. brownii* and *Abutilon* spp. were seemingly flipped in
341 the sequencing results. This result was repeated in our second trial (Fig. S2 in Appendix 2, Table S3 in
342 Appendix 1), which excluded the likelihood of errors in sample contamination or mis-labeling. We
343 speculate that the structural nature of the *Lilium* pollen (more hydrophobic compared to other pollen)
344 may have caused its reduced abundance in final pollen mixtures, in which case the sequencing results
345 would be more reliable. In fact, *Lilium* pollen floated in the supernatants, which might have led to its
346 low representation in the mock subsamples.

347 Our pipeline also expanded reference gene markers from standard DNA barcodes (*matK* and
348 *rbcL* for plants) to dozens of PCGs selected from whole plastid genomes. This extended sequence
349 reference can produce better taxonomic resolution by recruiting additional variable genes, although
350 some closely related species may still remain indistinguishable, as demonstrated by *Ab.*
351 *megapotamicum* and *Ab. pictum* in our study. As with classic DNA barcoding approach, incomplete

352 reference databases are often a key factor in causing false negatives. Fortunately, HTS-based methods
353 have promised feasible paths in producing both standard DNA barcodes (Liu, Yang, Zhou, & Zhou,
354 2017; Hebert et al., 2018; Srivathsan et al., 2018) and organelle genomes (Straub et al., 2011; Tang et
355 al., 2014) at significantly reduced costs. Indeed, large sequencing efforts for chloroplast genomes have
356 seen significant progress in China. By November 2017, plastid genomes of 4,000 plants have been
357 sequenced by the Kunming Institute of Botany, China. And an ambitious plan is in place, with a goal
358 to complete the sequencing of plastid genomes for 18,000 Chinese seed plant species by 2021,
359 covering ca. 2,750 genera (Li et al. in review).

360 While gaining benefits in producing quantitative results, the genome-skimming approach
361 shows some compromise, where it requires higher DNA quantity for library construction and HTS
362 sequencing (Zhou et al., 2013). Considering the low unit weight of pollen grains, DNA quantity may
363 present a major challenge to a PCR-free based method. Current Illumina-based sequencing protocols
364 require 200 ng or less genomic DNA for library construction, which is roughly the amount of DNA
365 extracted from ca. 60,000 mixed pollen grains of tested species (Fig. 2). Regular pollen pellets collected
366 from a single corbicula of the honeybees (*Apis mellifera*) were estimated to each contain more than
367 100,000 pollen grains (Table S1 in Appendix 1), which shall provide sufficient DNA for standard high-
368 throughput sequencing. On the other hand, pollen carried on the body of pollinating bees may contain
369 a much smaller number of grains and may vary significantly across species and individuals. Relevant
370 studies are scarce, but some showed that honeybees and bumblebees visiting *Rhododendron*
371 *ferrugineum* in the Alps carried ca. 11,000 and 15,000 pollen grains on the body of each insect,
372 respectively (Escaravage & Wagner, 2004). In these cases, multiple individuals of bees (e.g., 10) would

373 need to be pooled to reach the need for genome-skimming. It is worth noting that although the
374 proposed method has a minimum requirement for the total DNA quantity, pollen species represented
375 by low DNA proportions can still be readily detected from the mixture. For instance, our pipeline was
376 highly sensitive in that all pollen species in the mocks were detected, including those with very low
377 abundances (e.g., 0.2% for *C. japoica* in M0010, or ca. 100 pollen grains in a pollen mixture with ca.
378 47,000 total grains, Table S4 in Appendix 1).

379 Admittedly, most current pollen analysis employed in pollination network studies are based on
380 individual pollinators. Modifications are needed to fully utilize the genome-skimming pipeline
381 proposed in this study. We expect the following possibilities: 1) Further developments in high
382 throughput sequencing technologies would continually reduce the minimum requirements for DNA
383 quantity. In fact, DNA obtained from single cells has been proofed ample for genomics studies,
384 provided with whole-genome amplifications (Wang & Navin, 2015). 2) Pollen pellets collected from
385 bee corbiculae may contain similar pollen composition as those collected from their bodies, therefore
386 providing reliable information for pollen transport web, with sufficient DNA for the genome-skimming
387 method. Although some bees showed varied preferences in corbiculate pollen and body pollen
388 through active or passive behaviors (Westerkamp, 1996), we expect that at least some bees would
389 have more homogenous pollen preferences, especially generalist pollinators, which of course needs
390 to be examined carefully. 3) New algorithm needs to be developed to incorporate heterogeneous
391 pollination contributions for pollinators. Although specimen pooling (due to insufficient DNA) might
392 mask variations among individuals, it also creates the potential to reduce stochastic errors, therefore
393 providing better understanding on pollination diversity at the species or population level.

394 Analytical cost is obviously variable depending on service carriers and technology advents. At
395 the time we conducted our study, the sequencing of *de novo* plastid genomes and pollen mixtures
396 costed ca. 100 USD per sample (including DNA extraction, library construction, and sequencing at ca.
397 2-4 Gb data), with the prime on DNA library construction. Costs on both sequencing and library
398 construction have seen significant reduction in the past decade, although the latter is at a much slower
399 pace (Feng, Costa, & Edwards, 2018). Given current chemistry cost and the fact that most of the
400 laboratory pipelines have been standardized and can be accomplished at regular molecular labs, we
401 expect future cost on pollen genome-skimming can be further brought down to just a fraction of what
402 we have now. Furthermore, global efforts on chloroplast genome sequencing coupled with more
403 focused scrutiny of local flora will help to establish comprehend reference databases for molecular
404 pollen identifications via metabarcoding or PCR-free genome-skimming.

405 Finally, in addition to applications in pollination networks, the proposed pollen genome-
406 skimming method can also be useful in diet analysis of pollen consumers (bees, hoverflies, bee flies,
407 beetles etc.), through sequencing gut contents. In these studies, DNA degradation may present a
408 major challenge for a PCR-based method, but less so for a direct shotgun sequencing approach.

409

410 **Acknowledgements**

411 We thank Dr. Lei Gu of Capital Normal University and Dr. Sodmergen of Peking University for their
412 advice in plant taxonomy and knowledge on the biology and molecular mechanism of plant organelles.
413 XZ acknowledge Dr. Douglass W. Yu of University of East Anglia, UK and Kunming Institute of Zoology,
414 Chinese Academy of Sciences, for his helpful comments that improved the paper. XZ is supported by

415 the National Natural Science Foundation of China (31772493) and funding from the Beijing Advanced
416 Innovation Center for Food Nutrition and Human Health.

417

418 **References**

419 Arribas, P., Andújar, C., Hopkins, K., Shepherd, M., & Vogler, A. P. (2016). Metabarcoding and
420 mitochondrial metagenomics of endogeal arthropods to unveil the mesofauna of the soil.
421 *Methods in Ecology and Evolution*, 7, 1071–1081.

422 Ballantyne, G., Baldock, K. C. R., & Willmer, P. G. (2015). Constructing more informative plant–pollinator
423 networks: visitation and pollen deposition networks in a heathland plant community.
424 *Proceedings of the Royal Society*, 282, 20151130.

425 Bascompte, J., Jordano, P., Melián, C. J., & Olesen, J. M. (2003). The nested assembly of plant–animal
426 mutualistic networks. *Proceedings of the National Academy of Sciences of the United States
427 of America*, 100, 9383–9387.

428 Bell, K. L., De, V. N., Keller, A., Richardson, R. T., Gous, A., Burgess, K. S., & Brosi, B. J. (2016). Pollen
429 DNA barcoding: current applications and future prospects. *Genome*, 59, 629–640.

430 Bell, K. L., Fowler, J., Burgess, K. S., Dobbs, E. K., Gruenewald, D., Lawley, B., ... Brosi, B. J. (2017). Applying
431 pollen DNA metabarcoding to the study of plant–pollinator interactions1. *Applications in Plant
432 Sciences*, 5, 1600124.

433 Bista, I., Carvalho, G. R., Tang, M., Walsh, K., Zhou, X., Hajibabaei, M., ... Creer, S. (2018). Performance
434 of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate
435 community samples. *Molecular Ecology Resources*. <https://doi.org/10.1111/1755-0998.12888>

436 Bosch, J., González, A. M., Rodrigo, A., & Navarro, D. (2009). Plant–pollinator networks: adding the
437 pollinator's perspective. *Ecology Letters*, 12, 409–419.

438 Burkle, L. A., Marlin, J. C., & Knight, T. M. (2013). Plant–pollinator interactions over 120 years: loss of
439 species, co-occurrence, and function. *Science*, 339, 1611–1615.

440 Choo, L. Q., Crampton-Platt, A., & Vogler, A. P. (2017). Shotgun mitogenomics across body size classes
441 in a local assemblage of tropical Diptera: Phylogeny, species diversity and mitochondrial
442 abundance spectrum. *Molecular Ecology*, 26, 5086–5098.

443 Cornman, R. S., Otto, C. R., Iwanowicz, D., & Pettis, J. S. (2015). Taxonomic characterization of honey
444 bee (*Apis mellifera*) pollen foraging based on non-overlapping paired-end sequencing of
445 nuclear ribosomal loci. *PLoS One*, 10, e145365.

446 Courtney, S. P., Hill, C. J., & Westerman, A. (1982). Pollen carried for long periods by butterflies. *Oikos*,
447 38, 260–263.

448 Crampton-Platt, A., Yu, D. W., Zhou, X., & Vogler, A. P. (2016). Mitochondrial metagenomics: letting
449 the genes out of the bottle. *GigaScience*, 5, 15.

450 Cristescu, M. E. (2014). From barcoding single individuals to metabarcoding biological communities:
451 towards an integrative approach to the study of global biodiversity. *Trends in Ecology and
452 Evolution*, 29, 566–571.

453 Danner, N., Molitor, A. M., Schiele, S., Härtel, S., & Steffan-Dewenter, I. (2016). Season and landscape

454 composition affect pollen foraging distances and habitat use of honey bees. *Ecological*
455 *Ecological Applications*, 26, 1920–1929.

456 Devoto, M., Bailey, S., Craze, P., & Memmott, J. (2012). Understanding and planning ecological
457 restoration of plant–pollinator networks. *Ecology Letters*, 15, 319–328.

458 Dierckxsens, N., Mardulyn, P., & Smits, G. (2017). NOVOPlasty: de novo assembly of organelle
459 genomes from whole genome data. *Nucleic Acids Research*, 45, e18.

460 Escaravage, N., & Wagner, J. (2004). Pollination effectiveness and pollen dispersal in a *Rhododendron*
461 *ferrugineum* (Ericaceae) population. *Plant Biology*, 6, 606–615.

462 Fay, M. F., Bayer, C., Alverson, W. S., De Bruijn, A. Y., & Chase, M. W. (1998). Plastid *rbcL* sequence data
463 indicate a close affinity between *Diegodendron* and *Bixa*. *Taxon*, 47, 43–50.

464 Feng, K., Costa, J., & Edwards, J. S. (2018). Next-generation sequencing library construction on a
465 surface. *BMC Genomics*, 19, 416.

466 Forup, M. L., Henson, K. S. E., Craze, P. G., & Memmott, J. (2008). The restoration of ecological
467 interactions: plant–pollinator networks on ancient and restored heathlands. *Journal of Applied*
468 *Ecology*, 45, 742–752.

469 Forup, M. L., & Memmott, J. (2005). The restoration of plant–pollinator interactions in hay meadows.
470 *Restoration Ecology*, 13, 265–274.

471 Galimberti, A., De, F. M., Bruni, I., Scaccabarozzi, D., Sandionigi, A., Barbuto, M., ... Labra, M. (2014). A
472 DNA barcoding approach to characterize pollen collected by honeybees. *PLoS One*, 9,
473 e109363.

474 Gibson, R. H., Nelson, I. L., Hopkins, G. W., Hamlett, B. J., & Memmott, J. (2006). Pollinator webs, plant
475 communities and the conservation of rare plants: arable weeds as a case study. *Journal of*
476 *Applied Ecology*, 43, 246–257.

477 Hebert, P. D. N., Braukmann, T. W. A., Prosser, S. W. J., Ratnasingham, S., DeWaard, J. R., Ivanova, N.
478 V., ... Zakharov, E. V. (2018). A sequel to sanger: amplicon sequencing that scales. *BMC*
479 *Genomics*, 19, 219.

480 Jedrzejewska-Szmek, Krystyna, Zych, & Marcin. (2013). Flower–visitor and pollen transport networks
481 in a large city: structure;and properties. *Arthropod-Plant Interactions*, 7, 503–516.

482 Ji, Y., Ashton, L., Pedley, S. M., Edwards, D. P., Tang, Y., Nakamura, A., ... Yu, D. W. (2013). Reliable,
483 verifiable and efficient monitoring of biodiversity via metabarcoding. *Ecology Letters*, 16,
484 1245–1257.

485 Kaiser-Bunbury, C. N., & Blüthgen, N. (2015). Integrating network ecology with applied conservation:
486 a synthesis and guide to implementation. *AoB PLANTS*, 7, 361–367.

487 Kaiser-Bunbury, C. N., Mousal, J., Whittington, A. E., Valentin, T., Gabriel, R., Olesen, J. M., & Blüthgen,
488 N. (2017). Ecosystem restoration strengthens pollination network resilience and function.
489 *Nature*, 542, 223–227.

490 Kamo, T., Kusumoto, Y., Tokuoka, Y., Okubo, S., Hayakawa, H., Yoshiyama, M., ... Konuma, A. (2018). A
491 DNA barcoding method for identifying and quantifying the composition of pollen species
492 collected by European honeybees, *Apis mellifera* (Hymenoptera: Apidae). *Applied Entomology*
493 and *Zoology*, 1–9.

494 Kanstrup, J., & Olesen, J. M. (2000). Plant–flower visitor interactions in a neotropical rain forest canopy:
495 community structure and generalization level. *Det Norske Videnskaps–Akademi, Ny Serie*, 39,
496 33–41.

497 Keller, A., Danner, N., Grimmer, G., Ankenbrand, M., von der Ohe, K., von der Ohe, W., ... Steffan-
498 Dewenter, I. (2015). Evaluating multiplexed next-generation sequencing as a method in
499 palynology for mixed pollen samples. *Plant Biology*, *17*, 558–566.

500 King, C., Ballantyne, G., & Willmer, P. G. (2013). Why flower visitation is a poor proxy for pollination:
501 measuring single-visit pollen deposition, with implications for pollination networks and
502 conservation. *Methods in Ecology and Evolution*, *4*, 811–818.

503 Kremen, C. (2005). Managing ecosystem services: what do we need to know about their ecology?
504 *Ecology Letters*, *8*, 468–479.

505 Kumar, S., Stecher, G., & Tamura, K. (2016). Mega7: molecular evolutionary genetics analysis version
506 7.0 for bigger datasets. *Molecular Biology and Evolution*, *33*, 1870–1874.

507 Lang, D., Tang, M., & Zhou, X. (2018). Qualitative and quantitative molecular construction of plant–
508 pollinator network: application and prospective. *Biodiversity Science*, *26*, 445–456.

509 Li, H., & Durbin, R. (2010). Fast and accurate short read alignment with Burrows–Wheeler transform.
510 *Bioinformatics*, *26*, 589–595.

511 Li, J., Wang, S., Yu, J., Wang, L., & Zhou, S. (2013). A modified CTAB protocol for plant DNA extraction.
512 *Chinese Bulletin of Botany*, *48*, 72–78.

513 Liu, S., Yang, C., Zhou, C., & Zhou, X. (2017). Filling reference gaps via assembling DNA barcodes using
514 high-throughput sequencing—moving toward barcoding the world. *GigaScience*, *6*, 1–8.

515 McCann, K. (2007). Protecting biostructure. *Nature*, *446*, 29.

516 Memmott, J. (1999). The structure of a plant–pollinator food web. *Ecology Letters*, *2*, 276–280.

517 Nichols, R. V., Vollmers, C., Newsom, L. A., Wang, Y., Heintzman, P. D., Leighton, M., ... & Shapiro, B.
518 (2018). Minimizing polymerase biases in metabarcoding. *Molecular Ecology Resources*, *18*,
519 927–939.

520 Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals?
521 *Oikos*, *120*, 321–326.

522 Petanidou, T., Kallimanis, A. S., Tzanopoulos, J., Sgardelis, S. P., & Pantis, J. D. (2008). Long-term
523 observation of a pollination network: fluctuation in species and interactions, relative invariance
524 of network structure and implications for estimates of specialization. *Ecology Letters*, *11*, 564–
525 575.

526 Piñol, J., Senar, M. A., & Symondson, W. O. (2018). The choice of universal primers and the
527 characteristics of the species mixture determine when DNA metabarcoding can be quantitative.
528 *Molecular ecology*, *6*, 1809–1813.

529 Pornon, A., Escaravage, N., Burrus, M., Holota, H., Khimoun, A., Mariette, J., ... Andalo, C. (2016). Using
530 metabarcoding to reveal and quantify plant–pollinator interactions. *Sci Rep*, *6*, 27282.

531 Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global
532 pollinator declines: trends, impacts and drivers. *Trends in Ecology and Evolution*, *25*, 345–353.

533 R Core Team. (2015). *R: A Language and Environment for Statistical Computing*. R Foundation for
534 Statistical Computing, Vienna, Austria URL <http://www.R-project.org/>

535 Richardson, R. T., Lin, C. H., Sponsler, D. B., Quijia, J. O., Goodell, K., & Johnson, R. M. (2015). Application
536 of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an
537 agroecosystem. *Applications in Plant Sciences*, *3*, 235–250.

538 Rohr, R. P., Saavedra, S., & Bascompte, J. (2014). On the structural stability of mutualistic systems.
539 *Science*, *345*, 1253497.

540 Schleuning, M., Fründ, J., & García, D. (2014). Predicting ecosystem functions from biodiversity and
541 mutualistic networks: an extension of trait-based concepts to plant–animal interactions.
542 *Ecography*, 38, 380–392.

543 Soares, S., Amaral, J. S., Oliveira, M. B. P. P., & Mafra, I. (2015). Improving DNA isolation from honey
544 for the botanical origin identification. *Food Control*, 48, 130–136.

545 Srivathsan, A., Baloğlu, B., Wang, W., Tan, W. X., Bertrand, D., Ng, A., ... Meier, R. (2018). A MinION-
546 based pipeline for fast and cost-effective DNA barcoding. *Molecular Ecology Resources*, 1–
547 36.

548 Straub, S. C., Parks, M., Weitemier, K., Fishbein, M., Cronn, R. C., & Liston, A. (2011). Navigating the tip
549 of the genomic iceberg: Next-generation sequencing for plant systematics. *American Journal
550 of Botany*, 99, 349–364.

551 Tang, M., Hardman, C. J., Ji, Y., Meng, G., Liu, S., Tan, M., ... Yu, D. W. (2015). High-throughput
552 monitoring of wild bee diversity and abundance via mitogenomics. *Methods in Ecology and
553 Evolution*, 6, 1034–1043.

554 Tang, M., Tan, M., Meng, G., Yang, S., Su, X., Liu, S., ... Zhou, X. (2014). Multiplex sequencing of pooled
555 mitochondrial genomes—a crucial step toward biodiversity analysis using mito-metagenomics.
556 *Nucleic Acids Research*, 42, e166.

557 Tylianakis, J. M., Laliberté, E., Nielsen, A., & Bascompte, J. (2010). Conservation of species interaction
558 networks. *Biological Conservation*, 143, 2270–2279.

559 Wang, Y., & Navin, N. E. (2015). Advances and applications of single-cell sequencing technologies.
560 *Molecular cell*, 58, 598–609.

561 Westerkamp, C. (1996). Pollen in bee–flower relations. Some considerations on melittophily. *Botanica
562 acta*, 109, 325–332.

563 Winfree, R., Griswold, T., & Kremen, C. (2007). Effect of human disturbance on bee communities in a
564 forested ecosystem. *Conservation Biology* 21, 213–223.

565 Xie, Y., Wu, G., Tang, J., Luo, R., Patterson, J., Liu, S., ... Wang, J. (2014). SOAPdenovo-Trans: de novo
566 transcriptome assembly with short RNA-Seq reads. *Bioinformatics*, 30, 1660–1666.

567 Zhou, X., Li, Y., Liu, S., Yang, Q., Su, X., Zhou, L., ... Huang, Q. (2013). Ultra-deep sequencing enables
568 high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification.
569 *GigaScience*, 2, 4.

570

571 **Data accessibility**

572 The genomic data sets (6 FP, 6 BP and 20 pollen mixture samples) have been deposited in GenBank
573 (PRJNA481636).

574

575 **Author contributions**

576 XZ, DDL, MT, and JHH designed the study. DDL and JHH conducted the bench work. DDL and MT
577 performed data analysis. All authors participated in writing and proofed the manuscript.
578

579 **Table 1. Total pollen counts and species ratios in mock samples.**

	Mock samples	Total pollen counts	Species ratios
			<i>L. brownii</i> : <i>Ab. pictum</i> : <i>Al. aurea</i> : <i>S. truncata</i> : <i>Ab. megapotamicum</i> : <i>An. majus</i> : <i>N. stellata</i>
FP	M0001	500,000	1 : 1 : 1 : 1 : 1 : 1 : 1
	M0002	500,000	91 : 27 : 9 : 3 : 1 : 9 : 1
	M0003	500,000	1 : 9 : 1 : 30 : 9 : 15 : 30
	M0004	500,000	10 : 1000 : 100 : 10 : 1 : 0 : 0
	M0005	500,000	4 : 16 : 32 : 2 : 1 : 2 : 8
<i>R. chinensis</i> : <i>B. napus</i> : <i>Pa. rhoeas</i> : <i>V. faba</i> : <i>C. japoica</i> : <i>Pr. armeniaca</i>			
BP	M0010	2,500,000	25 : 5 : 5 : 125 : 1 : 300
	M0011	2,500,000	180 : 90 : 30 : 30 : 1 : 1
	M0012	2,500,000	30 : 90 : 1 : 1 : 180 : 30
	M0013	2,500,000	4 : 16 : 2 : 32 : 1 : 8
	M0006	2,500,000	5 : 300 : 125 : 25 : 5 : 1
	M0007	2,500,000	5 : 300 : 125 : 25 : 5 : 1
	M0008 & M0009	5,000,000	5 : 300 : 125 : 25 : 5 : 1
	M0014	200,000	1 : 1 : 1 : 1 : 1 : 1
	M0015	500,000	1 : 1 : 1 : 1 : 1 : 1
	M0016	1,000,000	1 : 1 : 1 : 1 : 1 : 1
	M0017	2,500,000	1 : 1 : 1 : 1 : 1 : 1
	M0018	2,500,000	1 : 1 : 1 : 1 : 1 : 1
	M0021	5,000,000	1 : 1 : 1 : 1 : 1 : 1

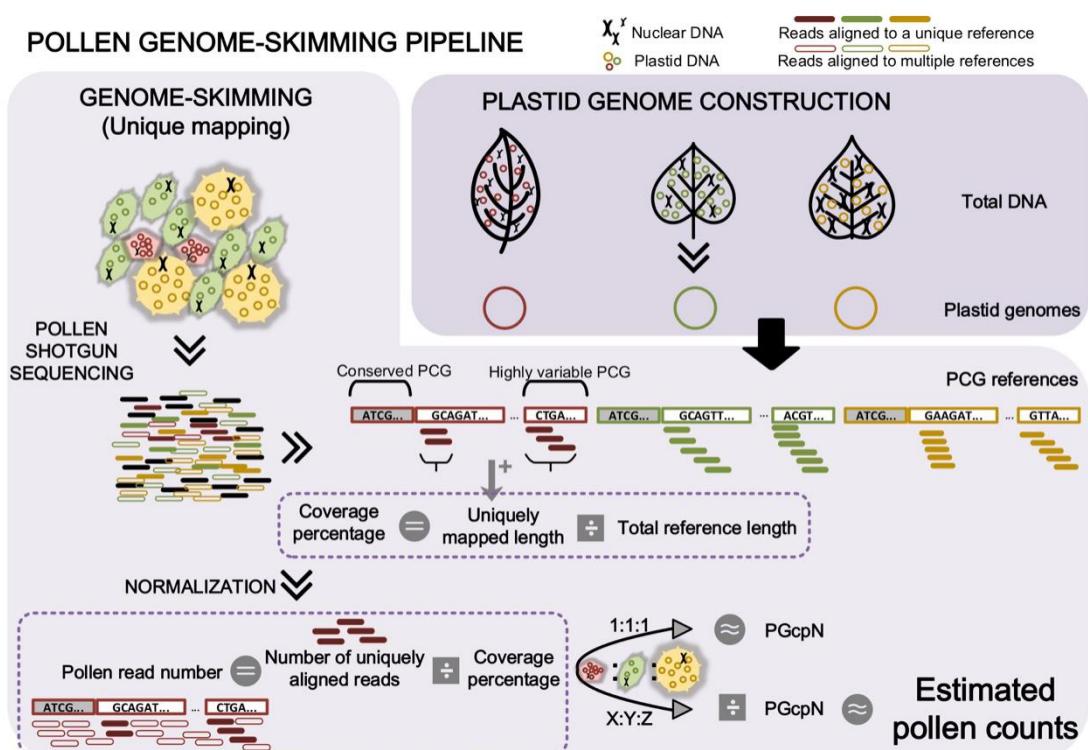
580 M0001–0005 are FP mixtures; M0006–0018 and M0021 are BP mixtures. M0006 and M0007 are sample
 581 replicates; M0008 and M0009 are DNA replicates. M0014–0018 and M0021 contain pollen at equal
 582 ratios but varied total pollen counts.

583

584 Table 2. Pollen proportions of mock samples calculated from pollen counts and sequences.

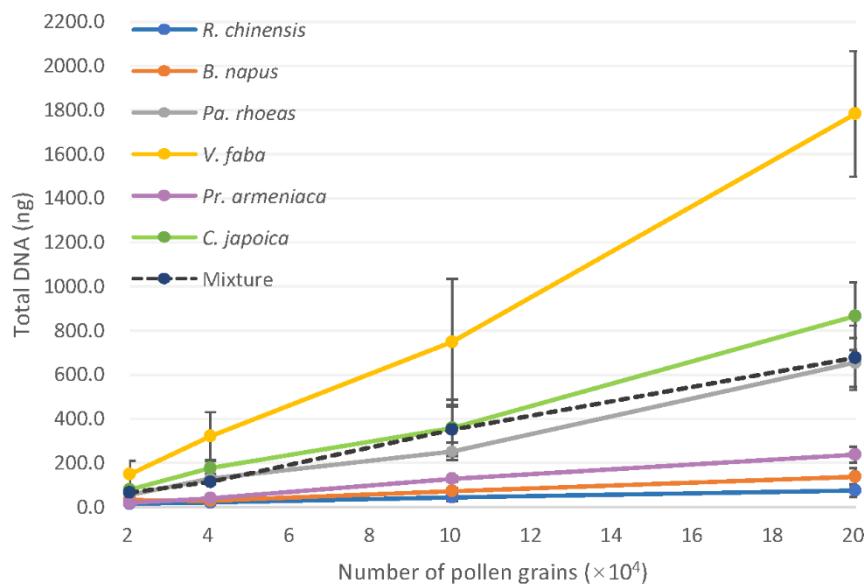
		Pollen counts						Sequence reads					
		<i>L. brownii</i>	<i>Ab. spp.</i>	<i>Al. aurea</i>	<i>S. truncates</i>	<i>An. majus</i>	<i>N. stellata</i>	<i>L. brownii</i>	<i>Ab. spp.</i>	<i>Al. aurea</i>	<i>S. truncates</i>	<i>An. majus</i>	<i>N. stellata</i>
PGcpN								3.4	2.2	27.8	21.1	1.0	9.5
FP	M0002	64.5%	19.9%	6.4%	2.1%	6.4%	0.7%	23.7%	63.1%	2.1%	1.3%	8.9%	0.9%
	M0003	1.1%	18.9%	1.1%	31.6%	15.8%	31.6%	1.1%	20.8%	1.4%	26.5%	11.4%	38.8%
	M0004	0.9%	89.3%	8.9%	0.9%	0.0%	0.0%	1.0%	91.1%	5.5%	0.6%	1.4%	0.4%
	M0005	6.2%	26.2%	49.2%	3.1%	3.1%	12.3%	7.2%	29.3%	40.2%	2.7%	8.9%	11.7%
PGcpN		<i>R. chinensis</i>	<i>B. napus</i>	<i>Pa. rhoeas</i>	<i>V. faba</i>	<i>C. japoica</i>	<i>Pr. armeniaca</i>	<i>R. chinensis</i>	<i>B. napus</i>	<i>Pa. rhoeas</i>	<i>V. faba</i>	<i>C. japoica</i>	<i>Pr. armeniaca</i>
BP	M0006	1.1%	65.1%	27.1%	5.4%	1.1%	0.2%	3.2%	56.3%	31.0%	6.5%	2.6%	0.4%
	M0007	1.1%	65.1%	27.1%	5.4%	1.1%	0.2%	2.9%	60.1%	28.0%	6.6%	2.1%	0.3%
	M0008	1.1%	65.1%	27.1%	5.4%	1.1%	0.2%	3.9%	57.6%	26.1%	9.1%	3.0%	0.3%
	M0009	1.1%	65.1%	27.1%	5.4%	1.1%	0.2%	3.6%	55.8%	27.6%	9.9%	2.8%	0.3%
	M0010	5.4%	1.1%	1.1%	27.1%	0.2%	65.1%	7.1%	6.4%	1.6%	31.7%	5.3%	47.9%
	M0011	54.2%	27.1%	9.0%	9.0%	0.3%	0.3%	57.4%	21.4%	10.0%	9.1%	1.7%	0.4%
	M0012	9.0%	27.1%	0.3%	0.3%	54.2%	9.0%	11.1%	24.4%	0.9%	1.0%	52.9%	9.8%
	M0013	6.3%	25.4%	3.2%	50.8%	1.6%	12.7%	7.7%	25.0%	3.4%	49.4%	3.8%	10.7%

585 M0006–0009 are BP mock samples used for repeatability test. Table cells were colored in red, with
 586 the darkest representing the highest percentage. The two red blocks were putative false positives
 587 detected by sequencing.


588

589 **Table 3. Pollen mixing frequencies in bee pollen suggested by sequencing data.**

BP sample \ Reference species	<i>R. chinensis</i>	<i>B. napus</i>	<i>Pa. rhoeas</i>	<i>V. faba</i>	<i>C. japonica</i>	<i>Pr. armeniaca</i>
<i>R. chinensis</i>	84.28%	2.68%	0.00%	0.00%	7.21%	5.83%
<i>B. napus</i>	0.00%	85.74%	6.34%	0.00%	4.75%	3.17%
<i>Pa. rhoeas</i>	0.00%	0.00%	96.63%	0.00%	1.56%	1.82%
<i>V. faba</i>	5.47%	5.93%	4.06%	66.03%	9.94%	8.56%
<i>C. japonica</i>	2.98%	3.27%	2.96%	2.80%	82.52%	5.47%
<i>Pr. armeniaca</i>	0.37%	0.15%	0.07%	0.17%	0.41%	98.84%

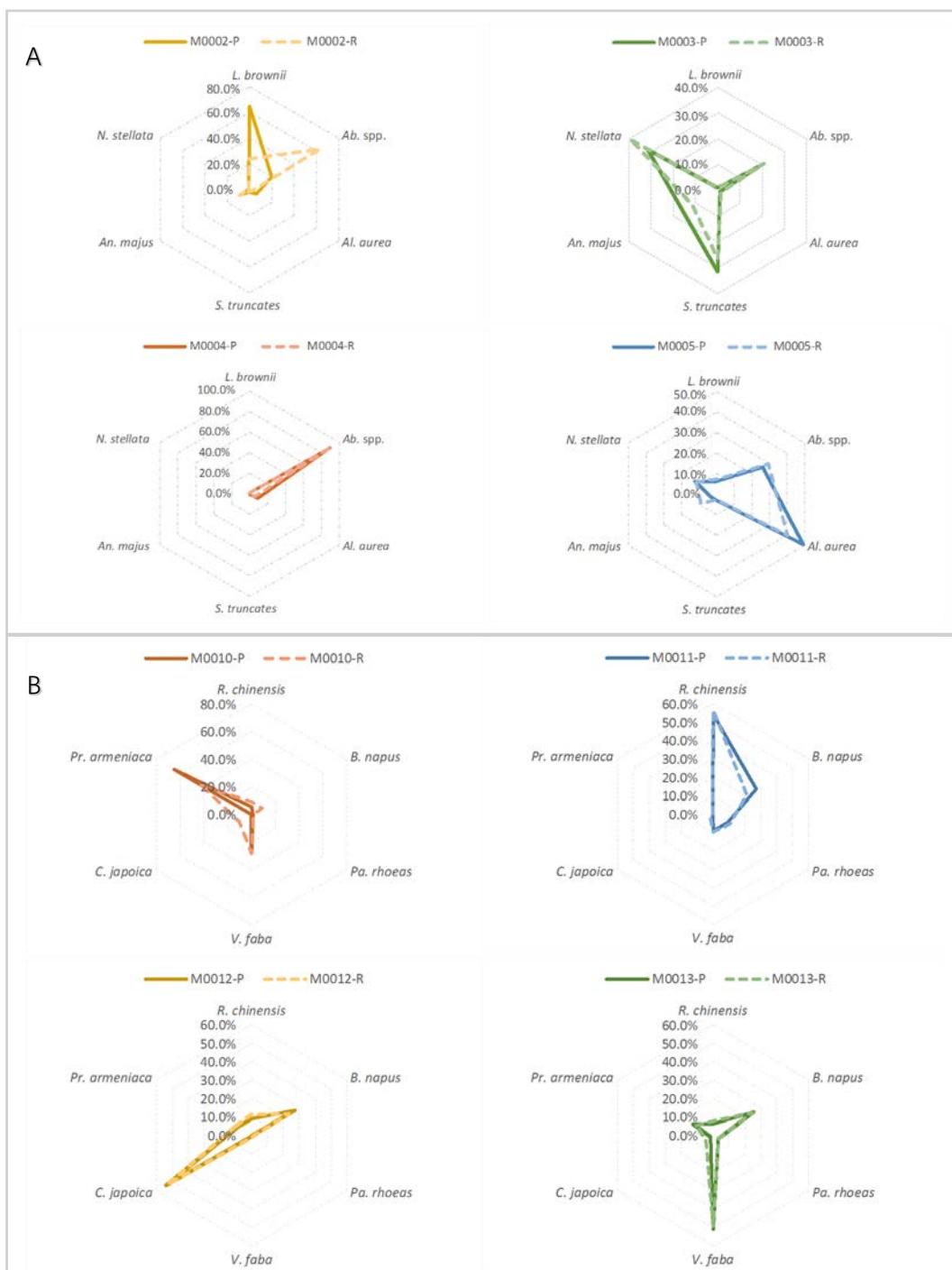

590 All BP samples were primarily consisting of the labeled species, but with multiple sources of pollen
591 mixing at varied proportions.

592



593

594 **Fig. 1. Pollen genome-skimming pipeline.** Plastid protein-coding gene (PCG) references were
595 obtained from "PLASTID GENOME CONSTRUCTION" and used for unique mapping in "GENOME-
596 SKIMMING". Only reads mapped onto a unique reference (solid short bars) were retained for
597 calculation of the coverage percentage, which was then used for normalization of pollen read number
598 for each member species. Pollen read numbers of member species in mock samples mixed at equal
599 pollen counts (1:1:1) were considered as the plastid genome copy number (PGcpN) for corresponding
600 species. The PGcpN was then used in calculating pollen counts for all member species from sequence
601 reads in regular mocks (X:Y:Z).



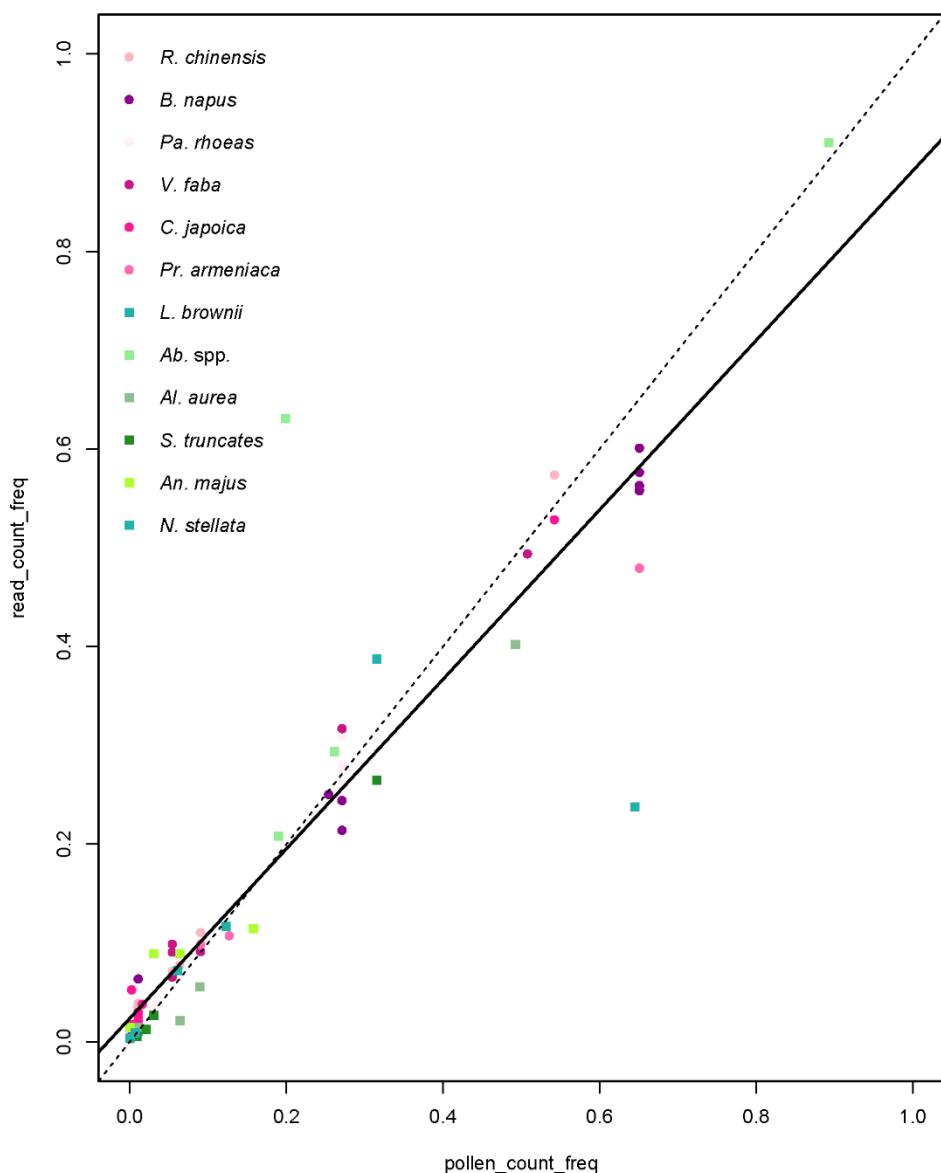
602
603 **Fig. 2. DNA yields from six bee pollen species.** DNA were isolated respectively from 20,000, 40,000,
604 100,000 and 200,000 pollen grains of each BP species and the mixture contained six pollen species at
605 equal ratios.
606

607 **Fig. 3. Repeatability of pollen genome-skimming.** Mock samples consisted of 6 species of fresh
608 flower pollen at given ratios: *R. chinensis*: *B. napus*: *Pa. rhoeas*: *V. faba*: *C. japoica*: *Pr. armeniaca* =
609 5:300:125:25:5:1 (panel A, 4 replicates) and 1:1:1:1:1:1 (panel B, 6 replicates). Solid lines and “-P1”
610 represent results from pollen counts; dashed lines and “-R1” represent replicates of genome-
611 skimming sequencing.

612

613

614 **Fig. 4. Coherence in pollen proportions between counting and sequencing.** Solid lines represent
615 results from pollen counting and dashed lines represent replicates of genome skimming sequencing.


616

617

618

619

620

621 **Fig. 5. Scatter plots of pollen species frequencies from pollen counts versus genome–
622 skimming.** The solid line is the linear regression ($\text{read_count_freq} \sim 0.02367 +$
623 $0.85800 \times \text{pollen_count_freq}$) and the dashed line is the 1:1 line, representing complete match
624 between results from pollen counts and sequence reads.

625