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ABSTRACT

Accurate, reliable prediction of risk for Alzheimer’s disease (AD) is essential for early, disease-
modifying therapeutics. Multimodal MRI, such as structural and diffusion MR, is likely to contain
complementary information of neurodegenerative processes in AD. Here we tested the utility of
the multimodal MRI (T1-weighted structure and diffusion MRI), combined with high-throughput
brain phenotyping—morphometry and structural connectomics—and machine learning, as a
diagnostic tool for AD. We used, firstly, a clinical cohort at a dementia clinic (National Health
Insurance Service-llsan Hospital [NHIS-IH]; N=211; 110 AD, 64 mild cognitive impairment [MCI],
and 37 cognitively normal with subjective memory complaints [SMC]) to test the diagnostic
models; and, secondly, Alzheimer’s Disease Neuroimaging Initiative (ADNI)-2 to test the
generalizability. Our machine learning models trained on the morphometric and connectome
estimates (number of features=34,646) showed optimal classification accuracy (AD/SMC: 97%
accuracy, MCI/SMC: 83% accuracy; AD/MCI: 97% accuracy) in NHIS-IH cohort, outperforming
a benchmark model (FLAIR-based white matter hyperintensity volumes). In ADNI-2 data, the
combined connectome and morphometry model showed similar or superior accuracies (AD/HC:
96%; MCI/HC: 70%; AD/MCI. 75% accuracy) compared with the CSF biomarker model (t-tau, p-
tau, and Amyloid 3, and ratios). In predicting MCI to AD progression in a smaller cohort of ADNI-
2 (n=60), the morphometry model showed similar performance with 69% accuracy compared
with CSF biomarker model with 70% accuracy. Our comparison of classifiers trained on
structural MR, diffusion MRI, FLAIR, and CSF biomarkers show the promising utility of the
white matter structural connectomes in classifying AD and MCI in addition to the widely used
structural MRI-based morphometry, when combined with machine learning.
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Highlights

We showed the utility of multimodal MRI, combining morphometry and white
matter connectomes, to classify the diagnosis of AD and MCI using machine
learning.

In predicting the progression from MCI to AD, the morphometry model showed
the best performance.

Two independent clinical datasets were used in this study: one for model

building, the other for generalizability testing.
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76 INTRODUCTION

77
78  There is an urgent, unmet need for clinically useful biomarkers of risk for Alzheimer’s disease
79  (AD) based on non-invasive and affordable measures suited for routine examination of
80 individuals with subthreshold symptoms. Studies have focused on brain MRI-derived markers.
81  Cortical thinning and reduced hippocampal volumes based on structural MRI are known for
82  markers for AD, but these structural estimates alone are insufficient for implementation at
83 clinical settings because of insufficient accuracy and generalizability (Teipel et al., 2015).
84
85 Itis conceptualized that biomarkers of ApB deposition become abnormal early, and then markers
86  of neuronal neurodegeneration or dysfunction show abnormality later in AD (Jack et al., 2010).
87  These markers of neurodegeneration, rather than those of AB or Tau proteinopathy, appear
88  directly related to cognitive symptoms (Jack et al., 2010). Neurobiology of AD relates to axonal
89  and neuronal degeneration followed by fibrillar lesions triggered by amyloid precursor protein
90 (APP)-initiated death-receptor mechanism and activation of tau (Holtzman et al., 2011; Nikolaev
91 etal., 2009). Initial axonal degeneration may lead to grey matter tissue changes and finally to
92  neuronal loss or atrophy resulting in cognitive and functional impairment. Since diffusion MRI
93 uses water molecules as an endogenous tracer to probe tissue microstructure or properties
94  (Beaulieu, 2002), it can detect subtle changes in microstructure tissue properties in AD.
95  Previous studies have shown that decreased white matter integrity is associated with AD
96 (Acosta-Cabronero et al., 2010; Douaud et al., 2011; Zhang et al., 2009).
97
98 A potentially powerful application of diffusion MRI to AD research is assessing axonal white
99  matter tracts using tractography. Tractography is a computational reconstruction of white matter
100 tracts using biophysical modeling of fiber orientations (Johansen-Berg and Behrens, 2006;
101  Seehaus et al., 2013). Recent advances in computational methods have enabled more rigorous
102  estimation of white matter tracts (Azadbakht et al., 2015; Ciccarelli et al., 2008; Shi and Toga,
103  2017; Sporns, 2011). In AD, human imaging of APP and tau shows widespread topography.
104  Given this, when tractography is applied at the connectome level, this structural connectome
105 data could be useful for assessing axonal or white matter abnormalities across the entire
106  connectome. A few studies using tractography at the connectome level have noted abnormal
107  topological organization of structural connectome in AD (Dai and He, 2014; Lo et al., 2010).
108 However, it remains untested whether and to what extent the structural connectome carries
109 additional information that structural MRI and morphometry analysis do not present.
110
111  In this study, we addressed this issue using rigorous, data-driven machine learning in two
112  independent datasets of moderate sample sizes (211 elders for the first dataset [Korean
113  National Health Insurance Service llsan Hospital, South Korea] and 179 elders for the second,
114  generalizability dataset [ADNI-2]). In both data, using multi-modal brain MRI (structural and
115 diffusion MRI), we performed high-throughput brain phenotyping, including automated
116  morphometry and white matter structural connectomics (probabilistic tractography) to generate
117  large-scale multi-modal, multi-parametric imaging-derived phenotypes used as features in
118 machine learning. A well-established, rigorous analysis pipeline was applied to diffusion MRI to
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119 estimate robust, individualized structure connectomes. We compared data-driven machine

120 learning classifiers trained on the individualized brain connectome and morphometric estimates
121 with benchmark models (white matter hyperintensity) for the first Korean data and CSF

122  biomarkers for the second reproducibility ADNI-2 data) using existing metrics.
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123 MATERIALS AND METHODS

124

125 Participants. For the NHIS-IH Cohort, we used data from 211 seniors who visited the dementia
126 clinic at National Health Insurance Service llsan Hospital (NHIS-IH), Goyang, South Korea from
127 2010 to 2015. This sample is a randomly selected subset of the llsan Dementia Cohort, a

128  retrospective clinical cohort. Neurologists made a diagnosis based on possible AD and

129  Peterson’s MCI criteria (Petersen, 2004), clinical history, a full battery of neuropsychological
130 evaluations (Seoul neuropsychological screening battery) and MMSE (Mini-Mental State

131  Examination). Those with vascular changes were not excluded from the study as long as they
132  had a diagnosis of AD or MCI. Diagnosis is based on MMSE, CDR, and the neuropsychological
133  evaluations. Distinction between MCI and SMC was based on the full battery of the

134  neuropsychological evaluation (Seoul Neuropsychological Screening Battery-Dementia

135  Version)(Ahn et al., 2010). To meet the diagnosis of MCI, an individual must show a

136  neuropsychological score 1 SD below the normal range at least one of the nine domains of the
137  full battery. Thus, all individuals with SMC show neuropsychological scores within the normal
138 range; they are thus cognitively normal. Those with AD as a primary diagnosis and with small
139  vessel disease were noted as “AD with small vessel disease”. Participants included 110 with the
140 diagnosis of Alzheimer's disease (AD; median age=82; interquartile intervals (Q3-Q1)=85-77),
141 64 with mild cognitive impairment (MCI; median age=73; Q3-Q1=77-66), and 37 subjective

142  memory complaints (SMC; median age=74; Q3-Q1=78-72) (Table 1). To test the

143  generalizability of our approach, we also used ADNI-2 (Alzheimer’s Disease Neuroimaging

144  Initiative), where structural and diffusion MRI was collected. Demographical information is also
145  provided in Table 1. The institutional review board of our hospital approved this study before
146  implementation.

147

148 MRl acquisition. National Health Insurance Service lisan Hospital (NHIS-IH): We collected the
149  following multimodal MRI from all participants: T1- MPRAGE: TE, 4.6 ms; matrix, 310 x 480x
150  480; voxel size, 0.5 x 0.5 x 0.5 mm. T2-FLAIR; matrix = 320 x 240 x 240; voxel size = 0.56 x
151  1.04 x 1.04. Diffusion MRI: matrix = 112 x 112 x 70; voxel size = 1.9 x 1.9 x 2.0 mm; the series
152  included one image acquired without diffusion weighting and with diffusion weighting along 40
153  non-collinear directions (b = 600 s/m-2). ADNI-2: T1-weighted anatomical MRI and diffusion
154 MRI. T1-MPRAGE: TE, min full echo; matrix, 208 x 240x 256; voxel size, 1 x 1 x 1 mm.

155  Diffusion MRI: matrix = 256 x 256 x 46; voxel size = 1.36 x 1.36 x 2.7 mm; the series included 5
156 image acquired without diffusion weighting and with diffusion weighting along 41 non-collinear
157  directions (b = 1000 s/m-2).

158

159  MRI Analysis-Structural MRI.

160 The high-throughput computational analysis was conducted. First, we estimated morphometric
161  estimates using the Freesurfer image analysis pipeline (Fischl, 2012) (v6) from T1 and T2-

162 FLAIR images. Morphometric measures (N=948 per subject) include volumes of the

163 hippocampal subdivisions, and thickness, surface area, and volume of cortical/subcortical

164  regions using two different atlases available in Freesurfer (Desikan-Killiany atlas and Destrieux
165 atlas; https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation). The technical details of
166 these procedures are described in previous studies (Desikan et al., 2006; Destrieux et al., 2010;

6


https://doi.org/10.1101/407601
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/407601; this version posted May 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Wang, et al.

167 Fischl and Dale, 2000; Fischl et al., 1999). In brief, the image processing includes motion

168 correction, removal of non-brain tissue, Talairach transformation, segmentation, intensity

169 normalization, tessellation of the gray matter-white matter boundary, topology correction, and
170  surface deformation. Deformation procedures use both intensity and continuity information to
171  produce representations of cortical thickness. The maps produced are not restricted to the voxel
172  resolution and are thus capable of detecting submillimeter differences between groups.

173

174  MRI Analysis-Diffusion MRI

175 We estimated structural connectome from structural and diffusion MRI. Structural MRI was used
176 to define seed and target nodes of the connectome in each brain. We used the diffusion MRI
177  analysis pipeline, MRtrix 3 (Tournier et al., 2004). The connectome measures (33,698 features
178  per subject) include counts of streamlines, a surrogate measure of structural connectivity (Cha
179 etal., 2015; Cha et al., 2017; Cha et al., 2016), and mean length of streamlines given any two
180 brain regions based on multiple atlases. Diffusion-weighted magnetic resonance imaging (DWI)
181  was preprocessed using the following pipeline in MRtrix 3. DWI was first denoised using a novel
182  algorithm based on random matrix theory that permits data-driven, non-arbitrary threshold for
183  Principal Component Analysis denoising; this method enhances the DWI quality for quantitative
184  and statistical interpretation (Veraart et al., 2016). Denoised images then underwent eddy

185 current and motion correction (Andersson and Sotiropoulos, 2016), brain extraction from three
186 non-diffusion-weighted images (taking their median), and bias field correction using N4

187  algorithm (N4ITK), an improved N3 method, in Advanced Normalization Tools (ANTs)(Tustison
188 etal., 2010). We then estimated fiber orientation distributions from each preprocessed image
189  using 2"%-order integration over fiber orientation distributions (iFOD2). Based on the FODs,

190 probabilistic tractography was performed using constrained spherical devolution (CSD). We
191  used a target streamline count of 10 million across the whole brain. The tractograms were

192 filtered using spherical-deconvolution informed filtering of tractograms (SIFT) with a target

193  streamline count of 3 million. After a primary statistical analysis using these filtered tractograms,
194  we tested whether the effects of interest were robust to the tractography and filtering

195 parameters, such as the target streamline count for tractography, SIFT, or a ratio between them.
196  This method permits mapping to streamline estimation back to individual's DWI and updating a
197  reconstruction to improve model fit. This approach renders the streamline counts connecting
198 two brain regions proportional to the total cross-sectional area of the white matter fibers

199 connecting those regions, enhancing streamline counts as a biologically plausible quantity,

200 representing "structural connectivity". This was done by repeating tractography and SIFT with a
201  set of extreme parameters (100 million and 5 million target streamlines, respectively) with a

202 filtering factor of 20 (100/5). Finally, from the filtered tractograms, we generated a connectivity
203  matrix in each participant using brain parcellation and segmentation obtained from structural
204  MRI from the same person. In this way, our structural connectome estimates reflect

205 individualized connectomes. We used two different atlases in Freesurfer (Desikan-Killiany atlas
206 (Desikan et al., 2006) and Destrieux atlas (Destrieux et al., 2010). We used streamline counts
207  as the primary connectivity metric in this study as in a recent human infant imaging study (van
208 den Heuvel et al., 2015b), as well mean length as secondary measures. A prior macaque study
209  suggests the validity of streamline counts as an indicator of fiber connection strength, with the
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210 number of streamlines significantly correlating with tract-tracing strength in the macaque brain
211  (van den Heuvel et al., 2015a).

212

213 Machine Learning Classification

214  Given our goal to compare the classifiers trained on the distinct multimodal brain

215 phenotypes ,rather than to find a novel machine learning algorithm, we used the following three
216  standard algorithms that have been extensively used in the literature(Abraham et al., 2014;

217  Dimitriadis et al., 2018; Pellegrini et al., 2018): random forest, logistic regression (LR) with L1
218 and L2 regularization, and support vector machine (SVM) with a linear kernel. Also, given the
219  majority of the prior machine learning classification studies in the AD literature are based on
220  binary classification (Pellegrini et al., 2018), we chose binary classification for better

221  comparison. Machine learning models were trained and cross-validated within each dataset. As
222  acommon preprocessing step for machine learning estimators, we standardized the imaging
223  derived phenotypes by removing the median and scaling them according to the quantile range
224 (i.e., between the 1%t and the 3™ quartile); this method is known to be robust to outliers. Model
225 training and validation were done using nested cross-validation to avoid overfitting due to bias to
226  training data (Cawley and Talbot, 2010; Varoquaux et al., 2017). Nested cross-validation uses a
227  series of train/validation/test set splits: In the inner loop, we trained the model and selected a set
228  of hyperparameters using the training set, then optimized the model with validation set; In the
229  outer loop, we estimated generalization error of the underlying model using test sets. For

230 feature selection, we used the ‘'forests of randomized trees' method, an ensemble method to
231 combine the predictions of base estimators built with a learning algorithm, and then tested

232  whether additional PCA-based dimensionality reduction improved the model or not. For hyper-
233  parameter optimization, we used the grid search method, varying C parameter for SVM and LR
234  classifier, and varying the number of estimators and the minimum samples per leaf for random
235 forest classifier. We used nested, k-fold, stratified cross-validation with ten iterations. To avoid
236 information leakage during cross-validation, our nested cross-validation scheme used a series
237 of train/validation/test set splits. First, in the inner loop, feature selection was performed, and the
238 model was trained in a train set, and the model performance was maximized via hyper-

239 parameter optimization in a validation set. Secondly, in the outer loop, the model performance
240 was evaluated in a test set, and generalization error was estimated by averaging test set scores
241  across cross-validation splits. To measure model performance, we used accuracy, sensitivity,
242  specificity, F1 score, and Area Under the Curve in receiver operating characteristic (AUC ROC).
243 In diagnostic classification, we tested six different binary classifications, AD (coded as 1) vs.
244  SMC (coded as 0), AD vs. MCI, MCI vs. SMC, AD only vs. AD with small vessel diseases, AD
245  only vs. MCI, AD only vs. SMC. All the ML analyses were done using scikit-learn, a python

246 library for machine learning (Abraham et al., 2014).

247

248 Benchmark models

249  We used existing biomarkers as benchmark models. First, white matter hyperintensity in the
250  Korean NHIS-IH cohort, and CSF biomarkers in the ADNI-2 cohort. White matter hyperintensity
251 measures were estimated from T2-weighted FLAIR images using Wisconsin White Matter

252  Hyperintensities Segmentation Toolbox (Ithapu et al., 2014). This method uses supervised

253  machine learning methods to segment hyperintense regions and generates normalized effective
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254  white matter hyperintensity volume. Second, in ADNI-2 data, we used CSF biomarkers

255  (phosphorylated tau, total tau, AB, ratio of phosphorylated tau/AB, ratio of total tau/AB), whose
256 utility as biomarkers for diagnosis of AD (Olsson et al., 2016), MCI, and progression to AD from
257  MCI (Hansson et al., 2006) has been studied. Furthermore, CSF biomarkers are reported to
258  precede symptom onset of MCI (Moghekar et al., 2013).

259

260
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261 RESULTS

262

263 Classification of AD and MCI

264  Inthe NHIS-IH Cohort, we tested machine learning classification using white matter structural
265 connectomes and morphometric estimates in 211 elders at the dementia clinic at the Korean
266  National Health Insurance Service llsan Hospital. Age and sex alone showed moderate

267  accuracies: AD/SMC: accuracy = 0.77; MCI/SMC: accuracy = 0.63; AD/MCI: accuracy = 0.72.
268  White matter hyperintensity (WMH) served as a benchmark model, for it has been widely tested
269 in the literature.

270

271 In classification of AD vs. SMC, optimal classification performance was shown in

272  “morphometry+connectome” model (accuracy = 0.97, 95% CI=0.95-0.98) and “connectome”
273  model (accuracy = 0.97, 95% CI=0.96-0.98) (Table 2; Figure 1A). These two models

274  outperformed “morphometry” (accuracy = 0.87, 95% CI=0.85-0.88) and WMH benchmark

275 models (accuracy = 0.73, 95% CI=0.71-0.75). In classification of MCI vs. SMC, similar

276 classification performance was observed in “morphometry+connectome” (accuracy = 0.82, 95%
277  CI=0.80-0.85) and “connectome” models (accuracy = 0.83, 95% CI=0.81-0.85), compared with
278 lower performance of “morphometry” (accuracy = 0.59, 95% CI=0.57-0.60) and the WMH

279  benchmark models (accuracy = 0.57, 95% CI1=0.54-0.60). In classification of AD vs. MClI,

280  “morphometry+connectome” models showed a best accuracy (accuracy=0.97, 95% CI=0.96-
281  0.98), followed by “connectome” model (accuracy = 0.96, 95% CI=0.95-0.97), “morphometry”
282  model ( accuracy = 0.83, 95% CI=0.80-0.86), and the WMH benchmark models (accuracy =
283  0.66, 95% CI=0.64-0.69). Throughput all classifications, connectomes and morphometry

284  showed greater diagnostic accuracies compared with the WMH benchmark.

285

286  Testing generalizability

287  We next tested the generalizability of the same multimodal brain imaging-based machine

288  learning using ADNI-2 data. We included participants in ADNI-2 data whose structural and

289  diffusion MRI (baseline) were both collected . To compare the performance of our classifiers, we
290 used the invasive CSF biomarkers (p-tau, t-tau, AB42, p-tau/ AB42, t-tau/ AB42) as a benchmark
291 model. In the classification of AD vs. HC, all the MRI-based models showed similarly optimal
292  performance around 0.88 accuracy (Table 2; Figure 1B), outperforming the CSF benchmark
293  model (accuracy = 0.75, 95% CI=0.73-0.77). In classification MCI vs. HC, all the MRI-based
294  models showed similar performance with accuracies ranging from 0.64-0.67, outperforming the
295  CSF benchmark (accuracy = 0.62, 95% CI=0.59-0.65). In classification AD vs. MCI, all the MRI-
296 based models showed similar performance with accuracy ranging from 0.66-0.71, outperforming
297  the CSF benchmark (accuracy = 0.54, 95% CI=0.52-0.57) which is barely above chance. This
298 generalizability data showed, firstly, morphometry and connectome estimates showed equally
299 good performance consistently exceeding the invasive CSF biomarkers in classifying

300 AD/MCI/HC; secondly, unlike the NHIS-IH results, synergistic effects of combined morphometry
301 and connectomes were not observed using our machine learning framework.

302

303

304  Testing utility for prognosis

10
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305  Of the ADNI-2 data, we further tested the utility of our approach in predicting the disease

306 trajectory. Data from 60 elders were used, whose baseline diagnosis was MCI and who were
307 followed for at least two years. Machine learning models trained on the same five CSF

308 benchmarks were used as a benchmark. In predicting progression from MCI to AD,

309 “morphometry” model showed a highest accuracy (accuracy = 0.69, 95% CI=0.65-0.73) among
310 MRI-based models, similar to the CSF benchmark model (accuracy = 0.70, 95% CI=0.66-0.75).
311 (Table 5, Figure 2). “Connectome” model showed a lower, but statistically meaningful accuracy
312 (accuracy = 0.57, 95% CI=0.53-0.61). Combining the two modalities of morphometry and

313 connectomes (“morphometry+connectome”) did not improve the prognosis accuracy (accuracy
314 =0.59, 95% CI=0.56-0.62), compared with “morphometry” model.

315

316

11
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317 DISCUSSION

318

319 Inthis study, we used large-scale MRI-derived brain phenotypes (morphometry and white

320 matter structural connectomes) with machine learning techniques to test AD and MCI diagnosis
321 intwo independent Alzheimer’s disease datasets. We also predicted disease progression to AD
322  from MCI. For high-throughput imaging analysis, we used a well-established automated

323  pipeline for morphometry and a pipeline to estimate rigorously individualized white matter

324  structural connectomes. Firstly, the models trained on morphometry and connectomes showed
325 the best accuracy in classifying AD, MCI, and SMC or HC in the single-site data (ranging from
326  90% to 99% in AUC ROC; NHIS-IH, South Korea) as well as the multi-site (ranging from 70% to
327 97% in AUC ROC; ADNI-2, USA) “reproducibility” data. The models outperformed the

328 benchmark models significantly (e.g., white matter hyperintensity or CSF biomarkers) and

329 demographic model (including age, sex, and education). Second, the model trained on

330 connectome or morphometric estimates showed moderate accuracies (ranging from 57% to
331  79%; AUC) in predicting progression to AD in 60 elders with MCI in ADNI-2 data. These results
332  show the utility of white matter structural connectomes in addition to morphometry in detecting
333 the abnormal brain aging process in AD pathology.

334

335 A novel aspect of this study is to assess the utility of the dMRI-based white matter structural
336  connectomes in predictive modeling of AD in a sufficiently large sample (n=211) and to validate
337 itin anindependent cohort (n=179). In the NHIS-IH data, the “connectome” model and

338  “connectome and morphometry” model similarly show the optimal classification of AD or MCI,
339  outperforming the benchmark model of white matter hyperintensity. Likewise, in the ADNI-2
340 generalizability data, both “connectome” and “connectome and morphometry” models show
341  optimal classification accuracy, outperforming the CSF benchmark model. This finding is in line
342  with the literature showing the associations of structural connectomes with potential AD

343  pathology (e.g., topological disturbance based on graph theory) (Pereira et al., 2017) and with
344  healthy aging (Perry et al., 2015). Also, prior studies show the potential utility of connectomics
345  estimates in predicting risk for AD, but with a caveat of limited samples sizes (n<30 (Wee et al.,
346  2012; Zhu et al., 2014)). Our study thus further demonstrate the potential practical utility and
347  generalizability of the unbiased brain analytic approach combined with data-driven machine
348 learning, leveraging two independent data with greater sample sizes.

349

350 The classification results in the NHIS-IH data may further suggest an important implication. The
351 morphometry model fails to classify MCI from SMC, whereas the connectome or combined

352 model shows optimal classification of 0.90 AUC. The gain of the connectome estimates in

353 classification is more pronounced in MCI/SMC classification than in AD/SMC classification.

354  This might suggest a greater sensitivity of the white matter connectivity estimates in detecting
355  AD-related neurodegeneration compared with grey matter morphometry. Literature shows the
356  capability of diffusion MRI-derived measures to detect subtle microscopic changes in tissue
357 properties or integrity (Acosta-Cabronero et al., 2010; Beaulieu, 2002; Douaud et al., 2011;

358 Zhang et al., 2009), whereas structural MR is typically used to estimate macroscopic

359  properties, namely volumes. However, this pattern is not seen in the ADNI-2 multi-site data; this
360 leads to an issue of data harmonization to deal with site effects of MRI-derived estimates.
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361

362  The connectome or combined model shows ~10% decrease in model performance in the ADNI-
363 2 multi-site data compared with the NHIS-IH single-site data. It is possible that it is related to the
364  site variability in the dMRI data. Indeed, prior studies show persistent inter-site variability in

365  diffusion data even when using similar types of scanners, pulse sequences or same field

366  strength (Fox et al., 2012; Mirzaalian et al., 2016). This is a non-trivial problem because there
367 are hardly any objective ways to assess harmonization of dMRI data (e.g., a dynamic phantom
368  optimized for dMRI). One potential way to mitigate this variability issue across multiple data

369  sources is an analytical solution. A recent study suggests an elegant Bayesian method for post-
370  acquisition harmonization of dMRI (Fortin et al., 2017). In our study, however, this method could
371  not be applied to our raw dMRI or fiber orientation distribution maps for probabilistic

372  tractography.

373

374  One potential approach to MRI harmonization is domain-invariant machine learning.

375  Arecent seminal study (Ghafoorian et al., 2017) of white matter hyperintensity segmentation in
376  the brain shows a successful application of “multi-source domain adaption”. That is, a

377  convolutional neural network trained on data from a single domain (i.e., from a single scanner
378  with a single acquisition protocol) was successfully applied (retrained) to the same task with

379 independent MRI from different domains (i.e., different acquisition protocols and image

380 dimension from the same scanner). Given the recent rapid development of the deep learning
381 algorithms, Artificial Intelligence-based domain adaptation might be a promising way towards
382 the generalizable and reproducible MRI-based analytics.

383

384  In predicting MCI-to-AD progression in the ADNI-2 data, the morphometry model outperforms
385  both connectome and combined models. This may first suggest that grey matter morphometry
386  provides more useful information in predicting the AD trajectory than the connectome measures.
387  However, given the smaller sample size (N=60) compared with AD/MCI classification (N=119),
388 in this analysis we suspect that machine learning training and feature selection may be

389  suboptimal for the connectome model than for the morphometry model, because of the

390 significantly large number of features in the former (N=33,698) than the latter (N=948). Similarly,
391  while the morphometry model and connectome model respectively showed statistically

392 meaningful (above chance) predictions, when combined, there was little improvement in model
393 performance. This indicates more rigorous methods to combine models trained across

394  multimodal brain imaging-derived phenotypes may be required, such as ensemble methods

395 (Zhang et al., 2011).

396

397 Limitations related to the NHIS-IH data include the significantly greater age in the AD group

398 compared with the MCI or SMC groups. It is possible that a greater aging effect embedded on
399 the brain phenotypes may have made the classification of AD easier. However, in ADNI data
400  with the age-matched samples, classification performance (AUC=0.97) was only slightly less
401 than the NHIS-IH data (AUC=0.99). This suggests that the patterns extracted from morphometry
402  and white matter connectomes may be specific to AD rather than an age-related bias. Another
403 limitation is the lack of healthy controls in the NHIS-IH cohorts. In this retrospective cohort at the
404  dementia clinic, individuals with Subjective Memory Complaints are cognitively normal.
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405 Nevertheless, this group might not be equivalent to healthy controls as in the ADNI data. For
406  example, there might be subtle differences in brain health status between health individuals and
407  cognitively normal individuals with subjective memory complaints. Our study provides no data to
408 address this. Nevertheless, given the fact that in clinical settings, individuals seek for clinical
409  service usually when they suspect symptoms, our results of classifying AD and MCI from

410 individuals with SMC may have a unique clinical utility in addition to the comparisons of AD and
411  MCI with healthy controls in the ADNI data.

412

413  In sum, this study lends support for the individualized white matter structural connectomes,

414  estimated from multimodal MRI (structural and diffusion), in combination with machine learning
415  techniques, as a useful method to detect accurately AD-related neurodegeneration across the
416  whole brain in a data-driven manner.

417
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Tables
Table 1. Participant Demographics
NHIS-IH Cohort
AD MCI SMC Test P value
(N=110) (N=62) (N=36) Statistics
Age,Mean (SD) 79.95 (6.61) 71.42(8.62) 72.25(6.99) F=32.72 P<0.001
Sex
Female 74 38 32 y?=8.56 P =0.014
Male 36 24 4
Education 6.7 (5.2) 9.8 (4.6) 7.6 (4.9) F=6541 P=0.011
MMSE 18.1 (0.53) 25.1 (0.36) 26.3 (0.37) F=1519 P<0.001
CDR 1.03 (0.57) 0.54 (0.13) 0.50 (0.112) F=79.38 P<0.001
ADNI-2 Cohort
AD MCI HC Test P value
(N=48) (N=60) (N=71) Statistics
Age,Mean (SD) 74.96 (8.59) 72.57(6.62) 72.55(5.66) F=3.11 P =0.08
Sex
Female 20 20 43 x?=10.28 P =0.006
Male 28 40 28
Education 15.31(2.87) 16.08 (2.68) 16.28s(2.72) F=6.541 P =0.07
CDR 0.82 (0.24) 0.50 (0.00) 0 F=663.1 P <0.001

NHIS-IH, National Health Insurance Service llsan Hospital; SD, standard deviation; MMSE,
Mini Mental State Examination; CDR, the clinical Dementia Rating; ADNI-2, Alzheimer’s

disease neuroimaging Initiative.
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472
Table 2. AUC Performances of Machine Learning Classifier using Structural
Connectomes, Morphometric Brain Features, and benchmarks.
NHIS-IH Cohort
AD MCI AD
VS VS VS
SMC SMC MCI
Morphosmetry 0.99(0.99-1.00) o 0.90(0.87-0.92) a 0.99(0.98-1.00) &
+ Connectome
Connectome only 0.99(0.99-1.00) o 0.90(0.88-0.92) a 0.99(0.99-1.00) A
Morphometry only 0.88(0.86-0.90) 0.48(0.45-0.50) 0.85(0.82-0.88)
Benchmark only
(White Matter 0.67(0.64-0.70) 0.45(0.42-0.49) 0.61(0.57-0.64)
Hyperintensity)
ADNI-2 Cohort
AD MCI AD
VS VS VS
HC HC MCI
Morphometry 0.96(0.94-0.97) 0.70(0.67-0.73) 0.75(0.72-0.78)
+ Connectome
Connectome only 0.95(0.94-0.96) 0.72(0.69-0.75) & 0.75(0.73-0.78)
Morphometry only 0.97(0.96-0.98)a  0.71(0.67-0.74) 0.79(0.76-0.81) a
Benchmark only
: 0.79(0.77-0.82 0.65(0.62-0.68 0.56(0.53-0.59
(CSF Biomarkers) ( ) ( ) ( )
473

474  AUC, area under curve; NHIS-IH, National Health Insurance Service llsan Hospital; ADNI-2,
475  Alzheimer’s Disease Neuroimaging Initiative 2; SMC, subjective memory complaints; MCI, mild
476  cognitive impairment; AD, Alzheimer’s disease; HC, healthy control. *All results show mean and
477  standard deviation as mean and 95% confidence interval in this table. & indicates the best
478 models for this classification. For all three classifications, random forest performed as the best
479  classifier, therefore, we only put random forest classifier performance results into this table.

480
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481
482

Table 3. Performance in Predicting MCI to AD Progressien

Morphometry + Connectome
(Best: LR + PCA+10 fold CV)

in ADNI-2 484
MCI-AD vs. Stable MCI jid
Morphometry only 487
(Best: LR + PCA+20 fold CV) 488
Accuracy 0.69 (0.65-0.73)* 489
Sensitivity 0.79 (0.74-0.83) Z;;’
Specificity 0.69 (0.64-0.74) 409
AUC 0.79 (0.74-0.84) 493
Connectomes only 494
(Best: LR + PCA+20 fold CV) 495
Accuracy 0.57 (0.53-0.61) i
Sensitivity 0.64 (0.58-0.69) ;ég_
Specificity 0.53 (0.47-0.59)
AUC 0.62 (0.56-0.68)

Accuracy 0.59 (0.56-0.62)
Sensitivity 0.60 (0.56-0.63)
Specificity 0.68 (0.56-0.79)
AUC 0.65 (0.59-0.71)

Benchmark: CSF biomarkers
(Best: RF + no PCA+10 fold CV)

Accuracy 0.70 (0.66-0.75)
Sensitivity 0.76 (0.72-0.81)
Specificity 0.71 (0.64-0.78)
AUC 0.76 (0.70-0.81)

18
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ADNI-2, Alzheimer’s Disease
Neuroimaging Initiative 2;
MCI, mild cognitive
impairment; AD, Alzheimer’s
disease; LR, logistic
regression; PCA, principal
component analysis; CV,
cross-validation. *All results
show Mean and standard
deviation as mean and 95%
confidence interval in this
table.


https://doi.org/10.1101/407601
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/407601; this version posted May 2, 2019. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

499

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

aCC-BY-NC-ND 4.0 International license.

Wang, et al.

Figures

Figure 1. Classification of baseline diagnosis using connectomes and morphometric
estimates. Panel (A), classification performances in the NHIS-IH Cohort (Korean National
Health Insurance llsan Hospital data).lt showed higher diagnostic accuracy (area under the
curve of the receiver-operator characteristics or AUC ROC) of the machine learning model
trained on combined connectome and morphometric estimates consistently, compared with the
benchmark model trained on white matter hyperintensity. Out of three machine learning
algorithms (random forest, support vector machine, and logistic regression), best models were
shown. Panel (B), classification performances in the ADNI-2 Cohort. It showed reproducible
results of diagnostic accuracy of connectomes and morphometry. The combined models show
better performance in predicting AD from healthy controls and AD from MCI, and similar in
predicting MCI from HC. Best models were shown. Compared with the NHIS-IH Cohort, the
reproducibility data shows less diagnostic accuracy presumably due to multiple sites and stricter
inclusion and exclusion criteria in ADNI. WMH, white matter hyperintensity; Demo,
demographics including sex, age, and education.
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521  Figure 2. Prediction of progression to AD from MCI using connectomes and

522 morphometric estimates. Using ADNI-2 data that has follow-up data after baseline MRI scan,
523  machine learning models were tested using connectome and morphometry estimates to predict
524  MRI-to-AD progression in 60 elders with MCI (mean follow-up years in stable MCI, 3.76 + 0.98;
525 range, 2.18-5.32). Morphometry model showed similar performance to CSF benchmark model.
526  Both the combined model and connectome model showed lower but meaningful accuracy.

527
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