

1

2 Diagnosis and Prognosis of Alzheimer's Disease Using Brain 3 Morphometry and White Matter Connectomes

4

5 Yun Wang¹, Chenxiao Xu², Ji-Hwan Park², Seonjoo Lee³,
6 Yaakov Stern⁴, Shinjae Yoo⁵, Jong Hun Kim⁶, Hyoung Seop Kim⁷, Jiook Cha¹, The
7 Alzheimer's Disease Neuroimaging Initiative^a

8

- 9 1. Department of Psychiatry, Columbia University Medical Center, New York, NY, USA;
- 10 2. Department of Applied Mathematics, Stony Brook University, Stony Brook, NY, USA;
- 11 3. Department of Biostatistics, School of Public Health, Columbia University Medical Center,
12 New York, NY, USA;
- 13 4. Department of Neurology, Columbia University Medical Center, New York, NY, USA;
- 14 5. Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, USA;
- 15 6. Department of Neurology, National Health Insurance Service Ilsan Hospital, Goyang,
16 Republic of Korea
- 17 7. Department of Physical Medicine and Rehabilitation, National Health Insurance Service
18 Ilsan Hospital, Goyang, Republic of Korea

19
20
21
22 Corresponding to:

23 Jiook Cha, PhD

24 1051 Riverside Dr. New York, NY, 10032

25 Jiook.cha@nyspi.columbia.edu

26 Hyoung Seop Kim, MD

27 100 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10444 South Korea

28 rehappydoc@gmail.com

29
30
31
32
33
34
35 a. Data used in the preparation of this article were obtained from the Alzheimer's Disease
36 Neuroimaging Initiative (ADNI) database (<http://www.loni.ucla.edu/ADNI>). As such, the
37 investigators within the ADNI contributed to the design and implementation of ADNI and/or
38 provided data but did not participate in analysis or writing of this report. ADNI investigators
39 include (complete listing available at http://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Author
40 [ship list.pdf](#)).

41 **ABSTRACT**

42

43 Accurate, reliable prediction of risk for Alzheimer's disease (AD) is essential for early, disease-
44 modifying therapeutics. Multimodal MRI, such as structural and diffusion MRI, is likely to contain
45 complementary information of neurodegenerative processes in AD. Here we tested the utility of
46 the multimodal MRI (T1-weighted structure and diffusion MRI), combined with high-throughput
47 brain phenotyping—morphometry and structural connectomics—and machine learning, as a
48 diagnostic tool for AD. We used, firstly, a clinical cohort at a dementia clinic (National Health
49 Insurance Service-Ilsan Hospital [NHIS-IH]; N=211; 110 AD, 64 mild cognitive impairment [MCI],
50 and 37 cognitively normal with subjective memory complaints [SMC]) to test the diagnostic
51 models; and, secondly, Alzheimer's Disease Neuroimaging Initiative (ADNI)-2 to test the
52 generalizability. Our machine learning models trained on the morphometric and connectome
53 estimates (number of features=34,646) showed optimal classification accuracy (AD/SMC: 97%
54 accuracy, MCI/SMC: 83% accuracy; AD/MCI: 97% accuracy) in NHIS-IH cohort, outperforming
55 a benchmark model (FLAIR-based white matter hyperintensity volumes). In ADNI-2 data, the
56 combined connectome and morphometry model showed similar or superior accuracies (AD/HC:
57 96%; MCI/HC: 70%; AD/MCI: 75% accuracy) compared with the CSF biomarker model (t-tau, p-
58 tau, and Amyloid β , and ratios). In predicting MCI to AD progression in a smaller cohort of ADNI-
59 2 (n=60), the morphometry model showed similar performance with 69% accuracy compared
60 with CSF biomarker model with 70% accuracy. Our comparison of classifiers trained on
61 structural MRI, diffusion MRI, FLAIR, and CSF biomarkers show the promising utility of the
62 white matter structural connectomes in classifying AD and MCI in addition to the widely used
63 structural MRI-based morphometry, when combined with machine learning.

64

65 **Keywords:** Alzheimer's disease; Multimodal MRI; DWI; Machine Learning

66 **Highlights**

67

68 • We showed the utility of multimodal MRI, combining morphometry and white

69 matter connectomes, to classify the diagnosis of AD and MCI using machine

70 learning.

71 • In predicting the progression from MCI to AD, the morphometry model showed

72 the best performance.

73 • Two independent clinical datasets were used in this study: one for model

74 building, the other for generalizability testing.

75

76 INTRODUCTION

77

78 There is an urgent, unmet need for clinically useful biomarkers of risk for Alzheimer's disease
79 (AD) based on non-invasive and affordable measures suited for routine examination of
80 individuals with subthreshold symptoms. Studies have focused on brain MRI-derived markers.
81 Cortical thinning and reduced hippocampal volumes based on structural MRI are known for
82 markers for AD, but these structural estimates alone are insufficient for implementation at
83 clinical settings because of insufficient accuracy and generalizability (Teipel et al., 2015).

84

85 It is conceptualized that biomarkers of A β deposition become abnormal early, and then markers
86 of neuronal neurodegeneration or dysfunction show abnormality later in AD (Jack et al., 2010).
87 These markers of neurodegeneration, rather than those of A β or Tau proteinopathy, appear
88 directly related to cognitive symptoms (Jack et al., 2010). Neurobiology of AD relates to axonal
89 and neuronal degeneration followed by fibrillar lesions triggered by amyloid precursor protein
90 (APP)-initiated death-receptor mechanism and activation of tau (Holtzman et al., 2011; Nikolaev
91 et al., 2009). Initial axonal degeneration may lead to grey matter tissue changes and finally to
92 neuronal loss or atrophy resulting in cognitive and functional impairment. Since diffusion MRI
93 uses water molecules as an endogenous tracer to probe tissue microstructure or properties
94 (Beaulieu, 2002), it can detect subtle changes in microstructure tissue properties in AD.
95 Previous studies have shown that decreased white matter integrity is associated with AD
96 (Acosta-Cabronero et al., 2010; Douaud et al., 2011; Zhang et al., 2009).

97

98 A potentially powerful application of diffusion MRI to AD research is assessing axonal white
99 matter tracts using tractography. Tractography is a computational reconstruction of white matter
100 tracts using biophysical modeling of fiber orientations (Johansen-Berg and Behrens, 2006;
101 Seehaus et al., 2013). Recent advances in computational methods have enabled more rigorous
102 estimation of white matter tracts (Azadbakht et al., 2015; Ciccarelli et al., 2008; Shi and Toga,
103 2017; Sporns, 2011). In AD, human imaging of APP and tau shows widespread topography.
104 Given this, when tractography is applied at the connectome level, this structural connectome
105 data could be useful for assessing axonal or white matter abnormalities across the entire
106 connectome. A few studies using tractography at the connectome level have noted abnormal
107 topological organization of structural connectome in AD (Dai and He, 2014; Lo et al., 2010).
108 However, it remains untested whether and to what extent the structural connectome carries
109 additional information that structural MRI and morphometry analysis do not present.

110

111 In this study, we addressed this issue using rigorous, data-driven machine learning in two
112 independent datasets of moderate sample sizes (211 elders for the first dataset [Korean
113 National Health Insurance Service Ilsan Hospital, South Korea] and 179 elders for the second,
114 generalizability dataset [ADNI-2]). In both data, using multi-modal brain MRI (structural and
115 diffusion MRI), we performed high-throughput brain phenotyping, including automated
116 morphometry and white matter structural connectomics (probabilistic tractography) to generate
117 large-scale multi-modal, multi-parametric imaging-derived phenotypes used as features in
118 machine learning. A well-established, rigorous analysis pipeline was applied to diffusion MRI to

119 estimate robust, individualized structure connectomes. We compared data-driven machine
120 learning classifiers trained on the individualized brain connectome and morphometric estimates
121 with benchmark models (white matter hyperintensity) for the first Korean data and CSF
122 biomarkers for the second reproducibility ADNI-2 data) using existing metrics.

123 MATERIALS AND METHODS

124

125 **Participants.** For the NHIS-IH Cohort, we used data from 211 seniors who visited the dementia
126 clinic at National Health Insurance Service Ilsan Hospital (NHIS-IH), Goyang, South Korea from
127 2010 to 2015. This sample is a randomly selected subset of the Ilsan Dementia Cohort, a
128 retrospective clinical cohort. Neurologists made a diagnosis based on possible AD and
129 Peterson's MCI criteria (Petersen, 2004), clinical history, a full battery of neuropsychological
130 evaluations (Seoul neuropsychological screening battery) and MMSE (Mini-Mental State
131 Examination). Those with vascular changes were not excluded from the study as long as they
132 had a diagnosis of AD or MCI. Diagnosis is based on MMSE, CDR, and the neuropsychological
133 evaluations. Distinction between MCI and SMC was based on the full battery of the
134 neuropsychological evaluation (Seoul Neuropsychological Screening Battery-Dementia
135 Version)(Ahn et al., 2010). To meet the diagnosis of MCI, an individual must show a
136 neuropsychological score 1 SD below the normal range at least one of the nine domains of the
137 full battery. Thus, all individuals with SMC show neuropsychological scores within the normal
138 range; they are thus cognitively normal. Those with AD as a primary diagnosis and with small
139 vessel disease were noted as "AD with small vessel disease". Participants included 110 with the
140 diagnosis of Alzheimer's disease (AD; median age=82; interquartile intervals (Q3-Q1)=85-77),
141 64 with mild cognitive impairment (MCI; median age=73; Q3-Q1=77-66), and 37 subjective
142 memory complaints (SMC; median age=74; Q3-Q1=78-72) (**Table 1**). To test the
143 generalizability of our approach, we also used ADNI-2 (Alzheimer's Disease Neuroimaging
144 Initiative), where structural and diffusion MRI was collected. Demographical information is also
145 provided in **Table 1**. The institutional review board of our hospital approved this study before
146 implementation.

147

148 **MRI acquisition.** National Health Insurance Service Ilsan Hospital (NHIS-IH): We collected the
149 following multimodal MRI from all participants: T1- MPRAGE: TE, 4.6 ms; matrix, 310 × 480×
150 480; voxel size, 0.5 × 0.5 × 0.5 mm. T2-FLAIR; matrix = 320 × 240 × 240; voxel size = 0.56 ×
151 1.04 × 1.04. Diffusion MRI: matrix = 112 × 112 × 70; voxel size = 1.9 × 1.9 × 2.0 mm; the series
152 included one image acquired without diffusion weighting and with diffusion weighting along 40
153 non-collinear directions (b = 600 s/m⁻²). ADNI-2: T1-weighted anatomical MRI and diffusion
154 MRI. T1-MPRAGE: TE, min full echo; matrix, 208 × 240× 256; voxel size, 1 × 1 × 1 mm.
155 Diffusion MRI: matrix = 256 × 256 × 46; voxel size = 1.36 × 1.36 × 2.7 mm; the series included 5
156 image acquired without diffusion weighting and with diffusion weighting along 41 non-collinear
157 directions (b = 1000 s/m⁻²).

158

159 **MRI Analysis-Structural MRI.**

160 The high-throughput computational analysis was conducted. First, we estimated morphometric
161 estimates using the Freesurfer image analysis pipeline (Fischl, 2012) (v6) from T1 and T2-
162 FLAIR images. Morphometric measures (N=948 per subject) include volumes of the
163 hippocampal subdivisions, and thickness, surface area, and volume of cortical/subcortical
164 regions using two different atlases available in Freesurfer (Desikan-Killiany atlas and Destrieux
165 atlas; <https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation>). The technical details of
166 these procedures are described in previous studies (Desikan et al., 2006; Destrieux et al., 2010;

167 Fischl and Dale, 2000; Fischl et al., 1999). In brief, the image processing includes motion
168 correction, removal of non-brain tissue, Talairach transformation, segmentation, intensity
169 normalization, tessellation of the gray matter-white matter boundary, topology correction, and
170 surface deformation. Deformation procedures use both intensity and continuity information to
171 produce representations of cortical thickness. The maps produced are not restricted to the voxel
172 resolution and are thus capable of detecting submillimeter differences between groups.
173

174 ***MRI Analysis-Diffusion MRI***

175 We estimated structural connectome from structural and diffusion MRI. Structural MRI was used
176 to define seed and target nodes of the connectome in each brain. We used the diffusion MRI
177 analysis pipeline, MRtrix 3 (Tournier et al., 2004). The connectome measures (33,698 features
178 per subject) include counts of streamlines, a surrogate measure of structural connectivity (Cha
179 et al., 2015; Cha et al., 2017; Cha et al., 2016), and mean length of streamlines given any two
180 brain regions based on multiple atlases. Diffusion-weighted magnetic resonance imaging (DWI)
181 was preprocessed using the following pipeline in MRtrix 3. DWI was first denoised using a novel
182 algorithm based on random matrix theory that permits data-driven, non-arbitrary threshold for
183 Principal Component Analysis denoising; this method enhances the DWI quality for quantitative
184 and statistical interpretation (Veraart et al., 2016). Denoised images then underwent eddy
185 current and motion correction (Andersson and Sotiroopoulos, 2016), brain extraction from three
186 non-diffusion-weighted images (taking their median), and bias field correction using N4
187 algorithm (N4ITK), an improved N3 method, in Advanced Normalization Tools (ANTs) (Tustison
188 et al., 2010). We then estimated fiber orientation distributions from each preprocessed image
189 using 2nd-order integration over fiber orientation distributions (iFOD2). Based on the FODs,
190 probabilistic tractography was performed using constrained spherical deconvolution (CSD). We
191 used a target streamline count of 10 million across the whole brain. The tractograms were
192 filtered using spherical-deconvolution informed filtering of tractograms (SIFT) with a target
193 streamline count of 3 million. After a primary statistical analysis using these filtered tractograms,
194 we tested whether the effects of interest were robust to the tractography and filtering
195 parameters, such as the target streamline count for tractography, SIFT, or a ratio between them.
196 This method permits mapping to streamline estimation back to individual's DWI and updating a
197 reconstruction to improve model fit. This approach renders the streamline counts connecting
198 two brain regions proportional to the total cross-sectional area of the white matter fibers
199 connecting those regions, enhancing streamline counts as a biologically plausible quantity,
200 representing "structural connectivity". This was done by repeating tractography and SIFT with a
201 set of extreme parameters (100 million and 5 million target streamlines, respectively) with a
202 filtering factor of 20 (100/5). Finally, from the filtered tractograms, we generated a connectivity
203 matrix in each participant using brain parcellation and segmentation obtained from structural
204 MRI from the same person. In this way, our structural connectome estimates reflect
205 individualized connectomes. We used two different atlases in Freesurfer (Desikan-Killiany atlas
206 (Desikan et al., 2006) and Destrieux atlas (Destrieux et al., 2010). We used streamline counts
207 as the primary connectivity metric in this study as in a recent human infant imaging study (van
208 den Heuvel et al., 2015b), as well mean length as secondary measures. A prior macaque study
209 suggests the validity of streamline counts as an indicator of fiber connection strength, with the

210 number of streamlines significantly correlating with tract-tracing strength in the macaque brain
211 (van den Heuvel et al., 2015a).

212

213 **Machine Learning Classification**

214 Given our goal to compare the classifiers trained on the distinct multimodal brain
215 phenotypes ,rather than to find a novel machine learning algorithm, we used the following three
216 standard algorithms that have been extensively used in the literature(Abraham et al., 2014;
217 Dimitriadis et al., 2018; Pellegrini et al., 2018): random forest, logistic regression (LR) with L1
218 and L2 regularization, and support vector machine (SVM) with a linear kernel. Also, given the
219 majority of the prior machine learning classification studies in the AD literature are based on
220 binary classification (Pellegrini et al., 2018), we chose binary classification for better
221 comparison. Machine learning models were trained and cross-validated within each dataset. As
222 a common preprocessing step for machine learning estimators, we standardized the imaging
223 derived phenotypes by removing the median and scaling them according to the quantile range
224 (i.e., between the 1st and the 3rd quartile); this method is known to be robust to outliers. Model
225 training and validation were done using nested cross-validation to avoid overfitting due to bias to
226 training data (Cawley and Talbot, 2010; Varoquaux et al., 2017). Nested cross-validation uses a
227 series of train/validation/test set splits: In the inner loop, we trained the model and selected a set
228 of hyperparameters using the training set, then optimized the model with validation set; In the
229 outer loop, we estimated generalization error of the underlying model using test sets. For
230 feature selection, we used the 'forests of randomized trees' method, an ensemble method to
231 combine the predictions of base estimators built with a learning algorithm, and then tested
232 whether additional PCA-based dimensionality reduction improved the model or not. For hyper-
233 parameter optimization, we used the grid search method, varying C parameter for SVM and LR
234 classifier, and varying the number of estimators and the minimum samples per leaf for random
235 forest classifier. We used nested, k-fold, stratified cross-validation with ten iterations. To avoid
236 information leakage during cross-validation, our nested cross-validation scheme used a series
237 of train/validation/test set splits. First, in the inner loop, feature selection was performed, and the
238 model was trained in a train set, and the model performance was maximized via hyper-
239 parameter optimization in a validation set. Secondly, in the outer loop, the model performance
240 was evaluated in a test set, and generalization error was estimated by averaging test set scores
241 across cross-validation splits. To measure model performance, we used accuracy, sensitivity,
242 specificity, F1 score, and Area Under the Curve in receiver operating characteristic (AUC ROC).
243 In diagnostic classification, we tested six different binary classifications, AD (coded as 1) vs.
244 SMC (coded as 0), AD vs. MCI, MCI vs. SMC, AD only vs. AD with small vessel diseases, AD
245 only vs. MCI, AD only vs. SMC. All the ML analyses were done using scikit-learn, a python
246 library for machine learning (Abraham et al., 2014).

247

248 **Benchmark models**

249 We used existing biomarkers as benchmark models. First, white matter hyperintensity in the
250 Korean NHIS-IH cohort, and CSF biomarkers in the ADNI-2 cohort. White matter hyperintensity
251 measures were estimated from T2-weighted FLAIR images using Wisconsin White Matter
252 Hyperintensities Segmentation Toolbox (Ithapu et al., 2014). This method uses supervised
253 machine learning methods to segment hyperintense regions and generates normalized effective

254 white matter hyperintensity volume. Second, in ADNI-2 data, we used CSF biomarkers
255 (phosphorylated tau, total tau, AB, ratio of phosphorylated tau/AB, ratio of total tau/AB), whose
256 utility as biomarkers for diagnosis of AD (Olsson et al., 2016), MCI, and progression to AD from
257 MCI (Hansson et al., 2006) has been studied. Furthermore, CSF biomarkers are reported to
258 precede symptom onset of MCI (Moghekar et al., 2013).

259

260

261 **RESULTS**

262

263 ***Classification of AD and MCI***

264 In the NHIS-IH Cohort, we tested machine learning classification using white matter structural
265 connectomes and morphometric estimates in 211 elders at the dementia clinic at the Korean
266 National Health Insurance Service Ilsan Hospital. Age and sex alone showed moderate
267 accuracies: AD/SMC: accuracy = 0.77; MCI/SMC: accuracy = 0.63; AD/MCI: accuracy = 0.72.
268 White matter hyperintensity (WMH) served as a benchmark model, for it has been widely tested
269 in the literature.

270

271 In classification of AD vs. SMC, optimal classification performance was shown in
272 “morphometry+connectome” model (accuracy = 0.97, 95% CI=0.95-0.98) and “connectome”
273 model (accuracy = 0.97, 95% CI=0.96-0.98) (**Table 2; Figure 1A**). These two models
274 outperformed “morphometry” (accuracy = 0.87, 95% CI=0.85-0.88) and WMH benchmark
275 models (accuracy = 0.73, 95% CI=0.71-0.75). In classification of MCI vs. SMC, similar
276 classification performance was observed in “morphometry+connectome” (accuracy = 0.82, 95%
277 CI=0.80-0.85) and “connectome” models (accuracy = 0.83, 95% CI=0.81-0.85), compared with
278 lower performance of “morphometry” (accuracy = 0.59, 95% CI=0.57-0.60) and the WMH
279 benchmark models (accuracy = 0.57, 95% CI=0.54-0.60). In classification of AD vs. MCI,
280 “morphometry+connectome” models showed a best accuracy (accuracy=0.97, 95% CI=0.96-
281 0.98), followed by “connectome” model (accuracy = 0.96, 95% CI=0.95-0.97), “morphometry”
282 model (accuracy = 0.83, 95% CI=0.80-0.86), and the WMH benchmark models (accuracy =
283 0.66, 95% CI=0.64-0.69). Throughput all classifications, connectomes and morphometry
284 showed greater diagnostic accuracies compared with the WMH benchmark.

285

286 ***Testing generalizability***

287 We next tested the generalizability of the same multimodal brain imaging-based machine
288 learning using ADNI-2 data. We included participants in ADNI-2 data whose structural and
289 diffusion MRI (baseline) were both collected . To compare the performance of our classifiers, we
290 used the invasive CSF biomarkers (p-tau, t-tau, A β 42, p-tau/ A β 42, t-tau/ A β 42) as a benchmark
291 model. In the classification of AD vs. HC, all the MRI-based models showed similarly optimal
292 performance around 0.88 accuracy (**Table 2; Figure 1B**), outperforming the CSF benchmark
293 model (accuracy = 0.75, 95% CI=0.73-0.77). In classification MCI vs. HC, all the MRI-based
294 models showed similar performance with accuracies ranging from 0.64-0.67, outperforming the
295 CSF benchmark (accuracy = 0.62, 95% CI=0.59-0.65). In classification AD vs. MCI, all the MRI-
296 based models showed similar performance with accuracy ranging from 0.66-0.71, outperforming
297 the CSF benchmark (accuracy = 0.54, 95% CI=0.52-0.57) which is barely above chance. This
298 generalizability data showed, firstly, morphometry and connectome estimates showed equally
299 good performance consistently exceeding the invasive CSF biomarkers in classifying
300 AD/MCI/HC; secondly, unlike the NHIS-IH results, synergistic effects of combined morphometry
301 and connectomes were not observed using our machine learning framework.

302

303

304 ***Testing utility for prognosis***

305 Of the ADNI-2 data, we further tested the utility of our approach in predicting the disease
306 trajectory. Data from 60 elders were used, whose baseline diagnosis was MCI and who were
307 followed for at least two years. Machine learning models trained on the same five CSF
308 benchmarks were used as a benchmark. In predicting progression from MCI to AD,
309 “morphometry” model showed a highest accuracy (accuracy = 0.69, 95% CI=0.65-0.73) among
310 MRI-based models, similar to the CSF benchmark model (accuracy = 0.70, 95% CI=0.66-0.75).
311 (**Table 5, Figure 2**). “Connectome” model showed a lower, but statistically meaningful accuracy
312 (accuracy = 0.57, 95% CI=0.53-0.61). Combining the two modalities of morphometry and
313 connectomes (“morphometry+connectome”) did not improve the prognosis accuracy (accuracy
314 = 0.59, 95% CI=0.56-0.62), compared with “morphometry” model.
315
316

317 **DISCUSSION**

318

319 In this study, we used large-scale MRI-derived brain phenotypes (morphometry and white
320 matter structural connectomes) with machine learning techniques to test AD and MCI diagnosis
321 in two independent Alzheimer's disease datasets. We also predicted disease progression to AD
322 from MCI. For high-throughput imaging analysis, we used a well-established automated
323 pipeline for morphometry and a pipeline to estimate rigorously individualized white matter
324 structural connectomes. Firstly, the models trained on morphometry and connectomes showed
325 the best accuracy in classifying AD, MCI, and SMC or HC in the single-site data (ranging from
326 90% to 99% in AUC ROC; NHIS-IH, South Korea) as well as the multi-site (ranging from 70% to
327 97% in AUC ROC; ADNI-2, USA) "reproducibility" data. The models outperformed the
328 benchmark models significantly (e.g., white matter hyperintensity or CSF biomarkers) and
329 demographic model (including age, sex, and education). Second, the model trained on
330 connectome or morphometric estimates showed moderate accuracies (ranging from 57% to
331 79%; AUC) in predicting progression to AD in 60 elders with MCI in ADNI-2 data. These results
332 show the utility of white matter structural connectomes in addition to morphometry in detecting
333 the abnormal brain aging process in AD pathology.

334

335 A novel aspect of this study is to assess the utility of the dMRI-based white matter structural
336 connectomes in predictive modeling of AD in a sufficiently large sample (n=211) and to validate
337 it in an independent cohort (n=179). In the NHIS-IH data, the "connectome" model and
338 "connectome and morphometry" model similarly show the optimal classification of AD or MCI,
339 outperforming the benchmark model of white matter hyperintensity. Likewise, in the ADNI-2
340 generalizability data, both "connectome" and "connectome and morphometry" models show
341 optimal classification accuracy, outperforming the CSF benchmark model. This finding is in line
342 with the literature showing the associations of structural connectomes with potential AD
343 pathology (e.g., topological disturbance based on graph theory) (Pereira et al., 2017) and with
344 healthy aging (Perry et al., 2015). Also, prior studies show the potential utility of connectomics
345 estimates in predicting risk for AD, but with a caveat of limited samples sizes (n<30 (Wee et al.,
346 2012; Zhu et al., 2014)). Our study thus further demonstrate the potential practical utility and
347 generalizability of the unbiased brain analytic approach combined with data-driven machine
348 learning, leveraging two independent data with greater sample sizes.

349

350 The classification results in the NHIS-IH data may further suggest an important implication. The
351 morphometry model fails to classify MCI from SMC, whereas the connectome or combined
352 model shows optimal classification of 0.90 AUC. The gain of the connectome estimates in
353 classification is more pronounced in MCI/SMC classification than in AD/SMC classification.
354 This might suggest a greater sensitivity of the white matter connectivity estimates in detecting
355 AD-related neurodegeneration compared with grey matter morphometry. Literature shows the
356 capability of diffusion MRI-derived measures to detect subtle microscopic changes in tissue
357 properties or integrity (Acosta-Cabronero et al., 2010; Beaulieu, 2002; Douaud et al., 2011;
358 Zhang et al., 2009), whereas structural MRI is typically used to estimate macroscopic
359 properties, namely volumes. However, this pattern is not seen in the ADNI-2 multi-site data; this
360 leads to an issue of data harmonization to deal with site effects of MRI-derived estimates.

361
362 The connectome or combined model shows ~10% decrease in model performance in the ADNI-
363 2 multi-site data compared with the NHIS-IH single-site data. It is possible that it is related to the
364 site variability in the dMRI data. Indeed, prior studies show persistent inter-site variability in
365 diffusion data even when using similar types of scanners, pulse sequences or same field
366 strength (Fox et al., 2012; Mirzaalian et al., 2016). This is a non-trivial problem because there
367 are hardly any objective ways to assess harmonization of dMRI data (e.g., a dynamic phantom
368 optimized for dMRI). One potential way to mitigate this variability issue across multiple data
369 sources is an analytical solution. A recent study suggests an elegant Bayesian method for post-
370 acquisition harmonization of dMRI (Fortin et al., 2017). In our study, however, this method could
371 not be applied to our raw dMRI or fiber orientation distribution maps for probabilistic
372 tractography.
373
374 One potential approach to MRI harmonization is domain-invariant machine learning.
375 A recent seminal study (Ghafoorian et al., 2017) of white matter hyperintensity segmentation in
376 the brain shows a successful application of “multi-source domain adaption”. That is, a
377 convolutional neural network trained on data from a single domain (i.e., from a single scanner
378 with a single acquisition protocol) was successfully applied (retrained) to the same task with
379 independent MRI from different domains (i.e., different acquisition protocols and image
380 dimension from the same scanner). Given the recent rapid development of the deep learning
381 algorithms, Artificial Intelligence-based domain adaptation might be a promising way towards
382 the generalizable and reproducible MRI-based analytics.
383
384 In predicting MCI-to-AD progression in the ADNI-2 data, the morphometry model outperforms
385 both connectome and combined models. This may first suggest that grey matter morphometry
386 provides more useful information in predicting the AD trajectory than the connectome measures.
387 However, given the smaller sample size (N=60) compared with AD/MCI classification (N=119),
388 in this analysis we suspect that machine learning training and feature selection may be
389 suboptimal for the connectome model than for the morphometry model, because of the
390 significantly large number of features in the former (N=33,698) than the latter (N=948). Similarly,
391 while the morphometry model and connectome model respectively showed statistically
392 meaningful (above chance) predictions, when combined, there was little improvement in model
393 performance. This indicates more rigorous methods to combine models trained across
394 multimodal brain imaging-derived phenotypes may be required, such as ensemble methods
395 (Zhang et al., 2011).
396
397 Limitations related to the NHIS-IH data include the significantly greater age in the AD group
398 compared with the MCI or SMC groups. It is possible that a greater aging effect embedded on
399 the brain phenotypes may have made the classification of AD easier. However, in ADNI data
400 with the age-matched samples, classification performance (AUC=0.97) was only slightly less
401 than the NHIS-IH data (AUC=0.99). This suggests that the patterns extracted from morphometry
402 and white matter connectomes may be specific to AD rather than an age-related bias. Another
403 limitation is the lack of healthy controls in the NHIS-IH cohorts. In this retrospective cohort at the
404 dementia clinic, individuals with Subjective Memory Complaints are cognitively normal.

405 Nevertheless, this group might not be equivalent to healthy controls as in the ADNI data. For
406 example, there might be subtle differences in brain health status between health individuals and
407 cognitively normal individuals with subjective memory complaints. Our study provides no data to
408 address this. Nevertheless, given the fact that in clinical settings, individuals seek for clinical
409 service usually when they suspect symptoms, our results of classifying AD and MCI from
410 individuals with SMC may have a unique clinical utility in addition to the comparisons of AD and
411 MCI with healthy controls in the ADNI data.

412

413 In sum, this study lends support for the individualized white matter structural connectomes,
414 estimated from multimodal MRI (structural and diffusion), in combination with machine learning
415 techniques, as a useful method to detect accurately AD-related neurodegeneration across the
416 whole brain in a data-driven manner.

417

418 **Acknowledgments**

419 This work used the Extreme Science and Engineering Discovery Environment Stampede 2 at
420 the Texas Advanced Computing Center (TG-IBN170015: Cha) and Argonne National
421 Laboratory Leadership Computing Facility (PI, Cha). This study was supported by NIMH K01
422 MH109836 (Cha), Brain and Behavior Research Foundation NARSAD Young Investigator
423 award (Cha), Korean Scientists and Engineers Association Young Investigator Grant (Cha),
424 National health insurance Ilsan hospital research fund.

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463 Tables

464

Table 1. Participant Demographics

NHIS-IH Cohort					
	AD (N= 110)	MCI (N=62)	SMC (N=36)	Test Statistics	P value
Age,Mean (SD)	79.95 (6.61)	71.42 (8.62)	72.25 (6.99)	F = 32.72	P < 0.001
Sex					
Female	74	38	32	$\chi^2 = 8.56$	P = 0.014
Male	36	24	4		
Education	6.7 (5.2)	9.8 (4.6)	7.6 (4.9)	F = 6.541	P = 0.011
MMSE	18.1 (0.53)	25.1 (0.36)	26.3 (0.37)	F = 151.9	P < 0.001
CDR	1.03 (0.57)	0.54 (0.13)	0.50 (0.11)	F = 79.38	P < 0.001
ADNI-2 Cohort					
	AD (N=48)	MCI (N=60)	HC (N= 71)	Test Statistics	P value
Age,Mean (SD)	74.96 (8.59)	72.57 (6.62)	72.55 (5.66)	F = 3.11	P = 0.08
Sex					
Female	20	20	43	$\chi^2 = 10.28$	P = 0.006
Male	28	40	28		
Education	15.31 (2.87)	16.08 (2.68)	16.28 s(2.72)	F = 6.541	P = 0.07
CDR	0.82 (0.24)	0.50 (0.00)	0	F=663.1	P < 0.001

465 NHIS-IH, National Health Insurance Service Ilsan Hospital; SD, standard deviation; MMSE,
466 Mini Mental State Examination; CDR, the clinical Dementia Rating; ADNI-2, Alzheimer's
467 disease neuroimaging Initiative.

468

469

470

471

472

Table 2. AUC Performances of Machine Learning Classifier using Structural Connectomes, Morphometric Brain Features, and benchmarks.

NHIS-IH Cohort			
	AD vs SMC	MCI vs SMC	AD vs MCI
Morphosmetry + Connectome	0.99(0.99-1.00) ♠	0.90(0.87-0.92) ♠	0.99(0.98-1.00) ♠
Connectome only	0.99(0.99-1.00) ♠	0.90(0.88-0.92) ♠	0.99(0.99-1.00) ♠
Morphometry only	0.88(0.86-0.90)	0.48(0.45-0.50)	0.85(0.82-0.88)
Benchmark only (White Matter Hyperintensity)	0.67(0.64-0.70)	0.45(0.42-0.49)	0.61(0.57-0.64)

ADNI-2 Cohort			
	AD vs HC	MCI vs HC	AD vs MCI
Morphometry + Connectome	0.96(0.94-0.97)	0.70(0.67-0.73)	0.75(0.72-0.78)
Connectome only	0.95(0.94-0.96)	0.72(0.69-0.75) ♠	0.75(0.73-0.78)
Morphometry only	0.97(0.96-0.98) ♠	0.71(0.67-0.74)	0.79(0.76-0.81) ♠
Benchmark only (CSF Biomarkers)	0.79(0.77-0.82)	0.65(0.62-0.68)	0.56(0.53-0.59)

473

474 **AUC**, area under curve; **NHIS-IH**, National Health Insurance Service Ilsan Hospital; **ADNI-2**,
475 Alzheimer's Disease Neuroimaging Initiative 2; **SMC**, subjective memory complaints; **MCI**, mild
476 cognitive impairment; **AD**, Alzheimer's disease; **HC**, healthy control. *All results show mean and
477 standard deviation as **mean** and **95% confidence interval** in this table. ♠ indicates the best
478 models for this classification. For all three classifications, random forest performed as the best
479 classifier, therefore, we only put random forest classifier performance results into this table.
480

481

482

Table 3. Performance in Predicting MCI to AD Progression	
	483
	484
MCI-AD vs. Stable MCI	485
	486
Morphometry only	487
(Best: LR + PCA+20 fold CV)	488
Accuracy	0.69 (0.65-0.73)*
Sensitivity	0.79 (0.74-0.83)
Specificity	0.69 (0.64-0.74)
AUC	0.79 (0.74-0.84)
Connectomes only	494
(Best: LR + PCA+20 fold CV)	495
Accuracy	0.57 (0.53-0.61)
Sensitivity	0.64 (0.58-0.69)
Specificity	0.53 (0.47-0.59)
AUC	0.62 (0.56-0.68)
Morphometry + Connectome	496
(Best: LR + PCA+10 fold CV)	497
Accuracy	0.59 (0.56-0.62)
Sensitivity	0.60 (0.56-0.63)
Specificity	0.68 (0.56-0.79)
AUC	0.65 (0.59-0.71)
Benchmark: CSF biomarkers	498
(Best: RF + no PCA+10 fold CV)	499
Accuracy	0.70 (0.66-0.75)
Sensitivity	0.76 (0.72-0.81)
Specificity	0.71 (0.64-0.78)
AUC	0.76 (0.70-0.81)

ADNI-2, Alzheimer's Disease Neuroimaging Initiative 2; **MCI**, mild cognitive impairment; **AD**, Alzheimer's disease; **LR**, logistic regression; **PCA**, principal component analysis; **CV**, cross-validation. *All results show Mean and standard deviation as **mean** and **95% confidence interval** in this table.

499 **Figures**

500

501 **Figure 1. Classification of baseline diagnosis using connectomes and morphometric**
502 **estimates. Panel (A)**, classification performances in the NHIS-IH Cohort (Korean National
503 Health Insurance Ilsan Hospital data). It showed higher diagnostic accuracy (area under the
504 curve of the receiver-operator characteristics or AUC ROC) of the machine learning model
505 trained on combined connectome and morphometric estimates consistently, compared with the
506 benchmark model trained on white matter hyperintensity. Out of three machine learning
507 algorithms (random forest, support vector machine, and logistic regression), best models were
508 shown. Panel **(B)**, classification performances in the ADNI-2 Cohort. It showed reproducible
509 results of diagnostic accuracy of connectomes and morphometry. The combined models show
510 better performance in predicting AD from healthy controls and AD from MCI, and similar in
511 predicting MCI from HC. Best models were shown. Compared with the NHIS-IH Cohort, the
512 reproducibility data shows less diagnostic accuracy presumably due to multiple sites and stricter
513 inclusion and exclusion criteria in ADNI. **WMH**, white matter hyperintensity; **Demo**,
514 demographics including sex, age, and education.

515

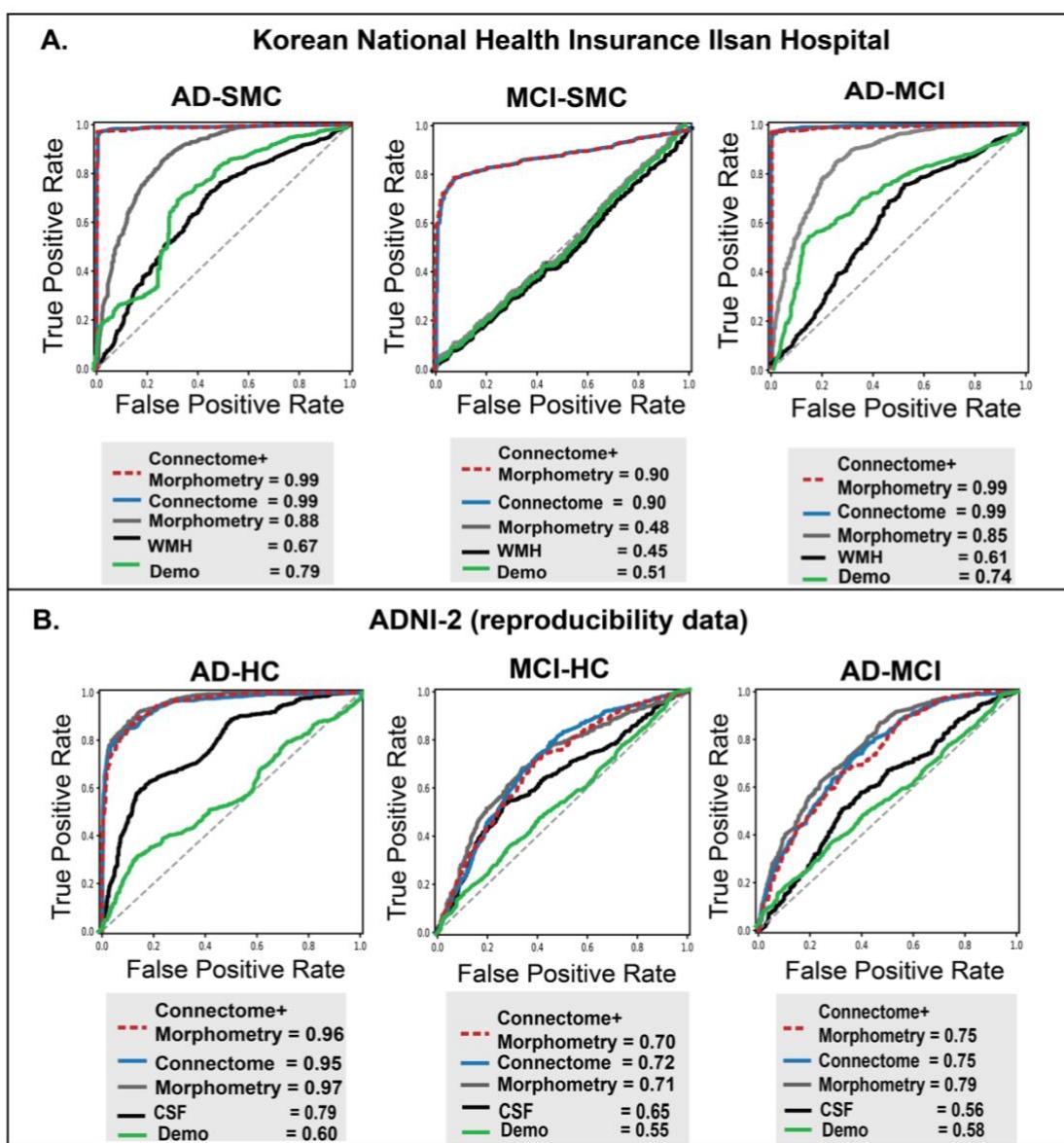
516

517

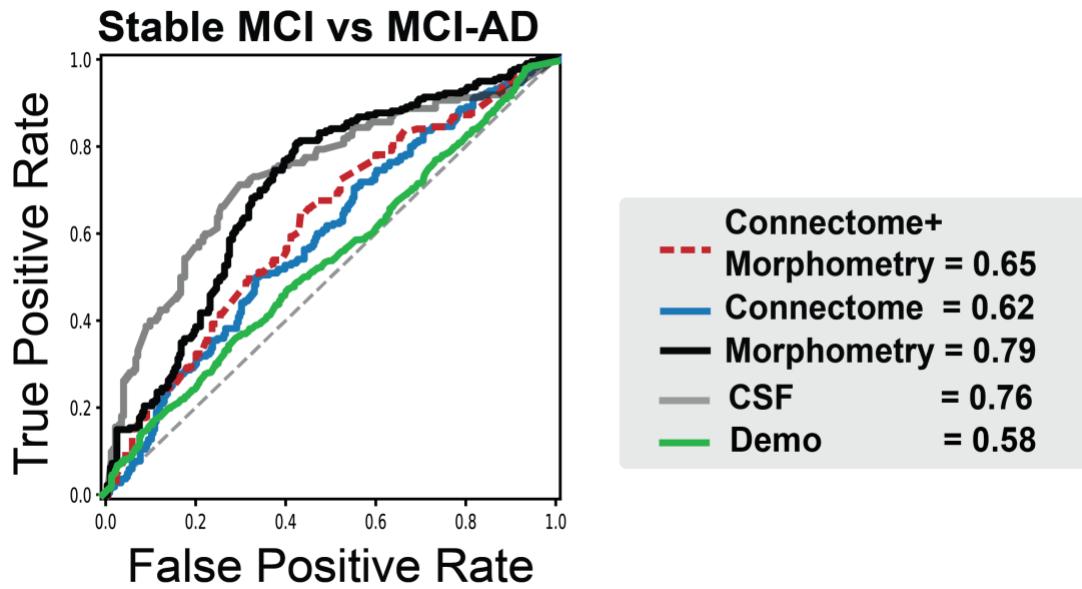
518

519

520



521 **Figure 2. Prediction of progression to AD from MCI using connectomes and**
522 **morphometric estimates.** Using ADNI-2 data that has follow-up data after baseline MRI scan,
523 machine learning models were tested using connectome and morphometry estimates to predict
524 MRI-to-AD progression in 60 elders with MCI (mean follow-up years in stable MCI, 3.76 ± 0.98 ;
525 range, 2.18-5.32). Morphometry model showed similar performance to CSF benchmark model.
526 Both the combined model and connectome model showed lower but meaningful accuracy.
527
528



529

530 **References**

531 Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A.,
532 Thirion, B., Varoquaux, G., 2014. Machine learning for neuroimaging with scikit-learn. *Front*
533 *Neuroinform* 8, 14.

534

535 Acosta-Cabronero, J., Williams, G.B., Pengas, G., Nestor, P.J., 2010. Absolute diffusivities define
536 the landscape of white matter degeneration in Alzheimer's disease. *Brain* 133, 529-539.

537

538 Ahn, H.J., Chin, J., Park, A., Lee, B.H., Suh, M.K., Seo, S.W., Na, D.L., 2010. Seoul
539 Neuropsychological Screening Battery-dementia version (SNSB-D): a useful tool for assessing
540 and monitoring cognitive impairments in dementia patients. *J Korean Med Sci* 25, 1071-1076.

541

542 Andersson, J.L., Sotiroopoulos, S.N., 2016. An integrated approach to correction for off-
543 resonance effects and subject movement in diffusion MR imaging. *Neuroimage* 125, 1063-1078.

544

545 Azadbakht, H., Parkes, L.M., Haroon, H.A., Augath, M., Logothetis, N.K., de Crespigny, A.,
546 D'Arceuil, H.E., Parker, G.J., 2015. Validation of High-Resolution Tractography Against In Vivo
547 Tracing in the Macaque Visual Cortex. *Cereb Cortex* 25, 4299-4309.

548

549 Beaulieu, C., 2002. The basis of anisotropic water diffusion in the nervous system - a technical
550 review. *NMR Biomed* 15, 435-455.

551

552 Cawley, G.C., Talbot, N.L.C., 2010. On Over-fitting in Model Selection and Subsequent Selection
553 Bias in Performance Evaluation. *Journal of Machine Learning Research* 11, 2079-2107.

554

555 Cha, J., Fekete, T., Siciliano, F., Biezonski, D., Greenhill, L., Pliszka, S.R., Blader, J.C., Roy, A.K.,
556 Leibenluft, E., Posner, J., 2015. Neural Correlates of Aggression in Medication-Naive Children
557 with ADHD: Multivariate Analysis of Morphometry and Tractography.
558 *Neuropsychopharmacology* 40, 1717-1725.

559

560 Cha, J., Guffanti, G., Gingrich, J., Talati, A., Wickramaratne, P., Weissman, M., Posner, J., 2017.
561 Effects of Serotonin Transporter Gene Variation on Impulsivity Mediated by Default Mode
562 Network: A Family Study of Depression. *Cereb Cortex*, 1-11.

563

564 Cha, J., Ide, J.S., Bowman, F.D., Simpson, H.B., Posner, J., Steinglass, J.E., 2016. Abnormal
565 reward circuitry in anorexia nervosa: A longitudinal, multimodal MRI study. *Hum Brain Mapp*
566 37, 3835-3846.

567

568 Ciccarelli, O., Catani, M., Johansen-Berg, H., Clark, C., Thompson, A., 2008. Diffusion-based
569 tractography in neurological disorders: concepts, applications, and future developments. *Lancet*
570 *Neurol* 7, 715-727.

571

572 Dai, Z., He, Y., 2014. Disrupted structural and functional brain connectomes in mild cognitive
573 impairment and Alzheimer's disease. *Neurosci Bull* 30, 217-232.

574

575 Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale,
576 A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J., 2006. An automated labeling
577 system for subdividing the human cerebral cortex on MRI scans into gyral based regions of
578 interest. *Neuroimage* 31, 968-980.

579

580 Destrieux, C., Fischl, B., Dale, A., Halgren, E., 2010. Automatic parcellation of human cortical gyri
581 and sulci using standard anatomical nomenclature. *Neuroimage* 53, 1-15.

582

583 Dimitriadis, S.I., Liparas, D., Tsolaki, M.N., Alzheimer's Disease Neuroimaging, I., 2018. Random
584 forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI
585 measures to discriminate among healthy elderly, MCI, cMCI and alzheimer's disease patients:
586 From the alzheimer's disease neuroimaging initiative (ADNI) database. *J Neurosci Methods* 302,
587 14-23.

588

589 Douaud, G., Jbabdi, S., Behrens, T.E., Menke, R.A., Gass, A., Monsch, A.U., Rao, A., Whitcher, B.,
590 Kindlmann, G., Matthews, P.M., Smith, S., 2011. DTI measures in crossing-fibre areas: increased
591 diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer's disease.
592 *Neuroimage* 55, 880-890.

593

594 Fischl, B., 2012. FreeSurfer. *Neuroimage* 62, 774-781.

595

596 Fischl, B., Dale, A.M., 2000. Measuring the thickness of the human cerebral cortex from
597 magnetic resonance images. *Proc Natl Acad Sci U S A* 97, 11050-11055.

598

599 Fischl, B., Sereno, M.I., Dale, A.M., 1999. Cortical surface-based analysis. II: Inflation, flattening,
600 and a surface-based coordinate system. *Neuroimage* 9, 195-207.

601

602 Fortin, J.P., Parker, D., Tunc, B., Watanabe, T., Elliott, M.A., Ruparel, K., Roalf, D.R.,
603 Satterthwaite, T.D., Gur, R.C., Gur, R.E., Schultz, R.T., Verma, R., Shinohara, R.T., 2017.
604 Harmonization of multi-site diffusion tensor imaging data. *Neuroimage* 161, 149-170.

605

606 Fox, R.J., Sakaie, K., Lee, J.C., Debbins, J.P., Liu, Y., Arnold, D.L., Melhem, E.R., Smith, C.H.,
607 Philips, M.D., Lowe, M., Fisher, E., 2012. A validation study of multicenter diffusion tensor
608 imaging: reliability of fractional anisotropy and diffusivity values. *AJNR Am J Neuroradiol* 33,
609 695-700.

610

611 Ghafoorian, M., Mehrtash, A., Kapur, T., Karssemeijer, N., Marchiori, E., Pesteie, M., Guttmann,
612 C.R., de Leeuw, F.-E., Tempany, C.M., van Ginneken, B., 2017. Transfer learning for domain
613 adaptation in mri: Application in brain lesion segmentation. *International Conference on*
614 *Medical Image Computing and Computer-Assisted Intervention*. Springer, pp. 516-524.

615

616 Hansson, O., Zetterberg, H., Buchhave, P., Londos, E., Blennow, K., Minthon, L., 2006.
617 Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild
618 cognitive impairment: a follow-up study. *Lancet Neurol* 5, 228-234.
619
620 Holtzman, D.M., Morris, J.C., Goate, A.M., 2011. Alzheimer's disease: the challenge of the
621 second century. *Sci Transl Med* 3, 77sr71.
622
623 Ithapu, V., Singh, V., Lindner, C., Austin, B.P., Hinrichs, C., Carlsson, C.M., Bendlin, B.B., Johnson,
624 S.C., 2014. Extracting and summarizing white matter hyperintensities using supervised
625 segmentation methods in Alzheimer's disease risk and aging studies. *Hum Brain Mapp* 35, 4219-
626 4235.
627
628 Jack, C.R., Jr., Knopman, D.S., Jagust, W.J., Shaw, L.M., Aisen, P.S., Weiner, M.W., Petersen, R.C.,
629 Trojanowski, J.Q., 2010. Hypothetical model of dynamic biomarkers of the Alzheimer's
630 pathological cascade. *Lancet Neurol* 9, 119-128.
631
632 Johansen-Berg, H., Behrens, T.E., 2006. Just pretty pictures? What diffusion tractography can
633 add in clinical neuroscience. *Curr Opin Neurol* 19, 379-385.
634
635 Lo, C.Y., Wang, P.N., Chou, K.H., Wang, J., He, Y., Lin, C.P., 2010. Diffusion tensor tractography
636 reveals abnormal topological organization in structural cortical networks in Alzheimer's disease.
637 *J Neurosci* 30, 16876-16885.
638
639 Mirzaalian, H., Ning, L., Savadjiev, P., Pasternak, O., Bouix, S., Michailovich, O., Grant, G., Marx,
640 C.E., Morey, R.A., Flashman, L.A., George, M.S., McAllister, T.W., Andaluz, N., Shutter, L.,
641 Coimbra, R., Zafonte, R.D., Coleman, M.J., Kubicki, M., Westin, C.F., Stein, M.B., Shenton, M.E.,
642 Rathi, Y., 2016. Inter-site and inter-scanner diffusion MRI data harmonization. *Neuroimage* 135,
643 311-323.
644
645 Moghekar, A., Li, S., Lu, Y., Li, M., Wang, M.C., Albert, M., O'Brien, R., Team, B.R., 2013. CSF
646 biomarker changes precede symptom onset of mild cognitive impairment. *Neurology* 81, 1753-
647 1758.
648
649 Nikolaev, A., McLaughlin, T., O'Leary, D.D., Tessier-Lavigne, M., 2009. APP binds DR6 to trigger
650 axon pruning and neuron death via distinct caspases. *Nature* 457, 981-989.
651
652 Olsson, B., Lautner, R., Andreasson, U., Ohrfelt, A., Portelius, E., Bjerke, M., Holtta, M., Rosen,
653 C., Olsson, C., Strobel, G., Wu, E., Dakin, K., Petzold, M., Blennow, K., Zetterberg, H., 2016. CSF
654 and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-
655 analysis. *Lancet Neurol* 15, 673-684.
656
657 Pellegrini, E., Ballerini, L., Hernandez, M.d.C.V., Chappell, F.M., González-Castro, V., Anblagan,
658 D., Danso, S., Muñoz-Maniega, S., Job, D., Pernet, C., 2018. Machine learning of neuroimaging

659 for assisted diagnosis of cognitive impairment and dementia: A systematic review. *Alzheimer's*
660 & *Dementia: Diagnosis, Assessment & Disease Monitoring* 10, 519-535.

661

662 Pereira, J.B., van Westen, D., Stomrud, E., Strandberg, T.O., Volpe, G., Westman, E., Hansson,
663 O., 2017. Abnormal Structural Brain Connectome in Individuals with Preclinical Alzheimer's
664 Disease. *Cereb Cortex*, 1-12.

665

666 Perry, A., Wen, W., Lord, A., Thalamuthu, A., Roberts, G., Mitchell, P.B., Sachdev, P.S.,
667 Breakspear, M., 2015. The organisation of the elderly connectome. *Neuroimage* 114, 414-426.

668

669 Petersen, R.C., 2004. Mild cognitive impairment as a diagnostic entity. *Journal of internal*
670 *medicine* 256, 183-194.

671

672 Seehaus, A.K., Roebroeck, A., Chiry, O., Kim, D.S., Ronen, I., Bratzke, H., Goebel, R., Galuske,
673 R.A., 2013. Histological validation of DW-MRI tractography in human postmortem tissue. *Cereb*
674 *Cortex* 23, 442-450.

675

676 Shi, Y., Toga, A.W., 2017. Connectome imaging for mapping human brain pathways. *Mol*
677 *Psychiatry* 22, 1230-1240.

678

679 Sporns, O., 2011. The human connectome: a complex network. *Ann N Y Acad Sci* 1224, 109-125.

680

681 Teipel, S., Drzezga, A., Grothe, M.J., Barthel, H., Chetelat, G., Schuff, N., Skudlarski, P., Cavedo,
682 E., Frisoni, G.B., Hoffmann, W., Thyrian, J.R., Fox, C., Minoshima, S., Sabri, O., Fellgiebel, A.,
683 2015. Multimodal imaging in Alzheimer's disease: validity and usefulness for early detection.
684 *Lancet Neurol* 14, 1037-1053.

685

686 Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A., 2004. Direct estimation of the fiber
687 orientation density function from diffusion-weighted MRI data using spherical deconvolution.
688 *Neuroimage* 23, 1176-1185.

689

690 Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C., 2010.
691 N4ITK: improved N3 bias correction. *IEEE Trans Med Imaging* 29, 1310-1320.

692

693 van den Heuvel, M.P., de Reus, M.A., Feldman Barrett, L., Scholtens, L.H., Coopmans, F.M.,
694 Schmidt, R., Preuss, T.M., Rilling, J.K., Li, L., 2015a. Comparison of diffusion tractography and
695 tract-tracing measures of connectivity strength in rhesus macaque connectome. *Hum Brain*
696 *Mapp* 36, 3064-3075.

697

698 van den Heuvel, M.P., Kersbergen, K.J., de Reus, M.A., Keunen, K., Kahn, R.S., Groenendaal, F.,
699 de Vries, L.S., Benders, M.J., 2015b. The Neonatal Connectome During Preterm Brain
700 Development. *Cereb Cortex* 25, 3000-3013.

701

702 Varoquaux, G., Raamana, P.R., Engemann, D.A., Hoyos-Idrobo, A., Schwartz, Y., Thirion, B.,
703 2017. Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines.
704 Neuroimage 145, 166-179.
705
706 Veraart, J., Novikov, D.S., Christiaens, D., Ades-Aron, B., Sijbers, J., Fieremans, E., 2016.
707 Denoising of diffusion MRI using random matrix theory. Neuroimage 142, 394-406.
708
709 Wee, C.-Y., Yap, P.-T., Zhang, D., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A.,
710 Wang, L., Shen, D., 2012. Identification of MCI individuals using structural and functional
711 connectivity networks. Neuroimage 59, 2045-2056.
712
713 Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., Alzheimer's Disease Neuroimaging, I., 2011.
714 Multimodal classification of Alzheimer's disease and mild cognitive impairment. Neuroimage
715 55, 856-867.
716
717 Zhang, Y., Schuff, N., Du, A.T., Rosen, H.J., Kramer, J.H., Gorno-Tempini, M.L., Miller, B.L.,
718 Weiner, M.W., 2009. White matter damage in frontotemporal dementia and Alzheimer's
719 disease measured by diffusion MRI. Brain 132, 2579-2592.
720
721 Zhu, D., Li, K., Terry, D.P., Puente, A.N., Wang, L., Shen, D., Miller, L.S., Liu, T., 2014.
722 Connectome-scale assessments of structural and functional connectivity in MCI. Human brain
723 mapping 35, 2911-2923.
724
725
726
727
728