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 ABSTRACT 41 

 42 

Accurate, reliable prediction of risk for Alzheimer’s disease (AD) is essential for early, disease-43 

modifying therapeutics. Multimodal MRI, such as structural and diffusion MRI, is likely to contain 44 

complementary information of neurodegenerative processes in AD. Here we tested the utility of 45 

the multimodal MRI (T1-weighted structure and diffusion MRI), combined with high-throughput 46 

brain phenotyping—morphometry and structural connectomics—and machine learning, as a 47 

diagnostic tool for AD. We used, firstly, a clinical cohort at a dementia clinic (National Health 48 

Insurance Service-Ilsan Hospital [NHIS-IH]; N=211; 110 AD, 64 mild cognitive impairment [MCI], 49 

and 37 cognitively normal with subjective memory complaints [SMC]) to test the diagnostic 50 

models; and, secondly, Alzheimer’s Disease Neuroimaging Initiative (ADNI)-2 to test the 51 

generalizability. Our machine learning models trained on the morphometric and connectome 52 

estimates (number of features=34,646) showed optimal classification accuracy (AD/SMC: 97% 53 

accuracy, MCI/SMC: 83% accuracy; AD/MCI: 97% accuracy) in NHIS-IH cohort, outperforming 54 

a benchmark model (FLAIR-based white matter hyperintensity volumes). In ADNI-2 data, the 55 

combined connectome and morphometry model showed similar or superior accuracies (AD/HC: 56 

96%; MCI/HC: 70%; AD/MCI: 75% accuracy) compared with the CSF biomarker model (t-tau, p-57 

tau, and Amyloid β, and ratios). In predicting MCI to AD progression in a smaller cohort of ADNI-58 

2 (n=60), the morphometry model showed similar performance with 69% accuracy compared 59 

with CSF biomarker model with 70% accuracy. Our comparison of classifiers trained on 60 

structural MRI, diffusion MRI, FLAIR, and CSF biomarkers show the promising utility of the 61 

white matter structural connectomes in classifying AD and MCI in addition to the widely used 62 

structural MRI-based morphometry, when combined with machine learning.  63 

 64 

Keywords: Alzheimer’s disease; Multimodal MRI; DWI; Machine Learning  65 
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Highlights 66 

 67 

• We showed the utility of multimodal MRI, combining morphometry and white 68 

matter connectomes, to classify the diagnosis of AD and MCI using machine 69 

learning. 70 

• In predicting the progression from MCI to AD, the morphometry model showed 71 

the best performance.  72 

• Two independent clinical datasets were used in this study: one for model 73 

building, the other for generalizability testing. 74 

75 
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INTRODUCTION 76 

 77 

There is an urgent, unmet need for clinically useful biomarkers of risk for Alzheimer’s disease 78 

(AD) based on non-invasive and affordable measures suited for routine examination of 79 

individuals with subthreshold symptoms. Studies have focused on brain MRI-derived markers. 80 

Cortical thinning and reduced hippocampal volumes based on structural MRI are known for 81 

markers for AD, but these structural estimates alone are insufficient for implementation at 82 

clinical settings because of insufficient accuracy and generalizability (Teipel et al., 2015).  83 

 84 

It is conceptualized that biomarkers of Aβ deposition become abnormal early, and then markers 85 

of neuronal neurodegeneration or dysfunction show abnormality later in AD (Jack et al., 2010). 86 

These markers of neurodegeneration, rather than those of Aβ or Tau proteinopathy, appear 87 

directly related to cognitive symptoms (Jack et al., 2010). Neurobiology of AD relates to axonal 88 

and neuronal degeneration followed by fibrillar lesions triggered by amyloid precursor protein 89 

(APP)-initiated death-receptor mechanism and activation of tau (Holtzman et al., 2011; Nikolaev 90 

et al., 2009). Initial axonal degeneration may lead to grey matter tissue changes and finally to 91 

neuronal loss or atrophy resulting in cognitive and functional impairment. Since diffusion MRI 92 

uses water molecules as an endogenous tracer to probe tissue microstructure or properties 93 

(Beaulieu, 2002), it can detect subtle changes in microstructure tissue properties in AD. 94 

Previous studies have shown that decreased white matter integrity is associated with AD 95 

(Acosta-Cabronero et al., 2010; Douaud et al., 2011; Zhang et al., 2009). 96 

 97 

A potentially powerful application of diffusion MRI to AD research is assessing axonal white 98 

matter tracts using tractography. Tractography is a computational reconstruction of white matter 99 

tracts using biophysical modeling of fiber orientations (Johansen-Berg and Behrens, 2006; 100 

Seehaus et al., 2013). Recent advances in computational methods have enabled more rigorous 101 

estimation of white matter tracts (Azadbakht et al., 2015; Ciccarelli et al., 2008; Shi and Toga, 102 

2017; Sporns, 2011). In AD, human imaging of APP and tau shows widespread topography. 103 

Given this, when tractography is applied at the connectome level, this structural connectome 104 

data could be useful for assessing axonal or white matter abnormalities across the entire 105 

connectome. A few studies using tractography at the connectome level have noted abnormal 106 

topological organization of structural connectome in AD (Dai and He, 2014; Lo et al., 2010). 107 

However, it remains untested whether and to what extent the structural connectome carries 108 

additional information that structural MRI and morphometry analysis do not present.  109 

 110 

In this study, we addressed this issue using rigorous, data-driven machine learning in two 111 

independent datasets of moderate sample sizes (211 elders for the first dataset [Korean 112 

National Health Insurance Service Ilsan Hospital, South Korea] and 179 elders for the second, 113 

generalizability dataset [ADNI-2]). In both data, using multi-modal brain MRI (structural and 114 

diffusion MRI), we performed high-throughput brain phenotyping, including automated 115 

morphometry and white matter structural connectomics (probabilistic tractography) to generate 116 

large-scale multi-modal, multi-parametric imaging-derived phenotypes used as features in 117 

machine learning. A well-established, rigorous analysis pipeline was applied to diffusion MRI to 118 
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estimate robust, individualized structure connectomes. We compared data-driven machine 119 

learning classifiers trained on the individualized brain connectome and morphometric estimates 120 

with benchmark models (white matter hyperintensity) for the first Korean data and CSF 121 

biomarkers for the second reproducibility ADNI-2 data) using existing metrics.   122 
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MATERIALS AND METHODS 123 

 124 

Participants. For the NHIS-IH Cohort, we used data from 211 seniors who visited the dementia 125 

clinic at National Health Insurance Service Ilsan Hospital (NHIS-IH), Goyang, South Korea from 126 

2010 to 2015. This sample is a randomly selected subset of the Ilsan Dementia Cohort, a 127 

retrospective clinical cohort. Neurologists made a diagnosis based on possible AD and 128 

Peterson’s MCI criteria (Petersen, 2004), clinical history, a full battery of neuropsychological 129 

evaluations (Seoul neuropsychological screening battery) and MMSE (Mini-Mental State 130 

Examination). Those with vascular changes were not excluded from the study as long as they 131 

had a diagnosis of AD or MCI. Diagnosis is based on MMSE, CDR, and the neuropsychological 132 

evaluations. Distinction between MCI and SMC was based on the full battery of the 133 

neuropsychological evaluation (Seoul Neuropsychological Screening Battery-Dementia 134 

Version)(Ahn et al., 2010). To meet the diagnosis of MCI, an individual must show a 135 

neuropsychological score 1 SD below the normal range at least one of the nine domains of the 136 

full battery. Thus, all individuals with SMC show neuropsychological scores within the normal 137 

range; they are thus cognitively normal. Those with AD as a primary diagnosis and with small 138 

vessel disease were noted as “AD with small vessel disease”. Participants included 110 with the 139 

diagnosis of Alzheimer's disease (AD; median age=82; interquartile intervals (Q3-Q1)=85-77), 140 

64 with mild cognitive impairment (MCI; median age=73; Q3-Q1=77-66), and 37 subjective 141 

memory complaints (SMC; median age=74; Q3-Q1=78-72) (Table 1). To test the 142 

generalizability of our approach, we also used ADNI-2 (Alzheimer’s Disease Neuroimaging 143 

Initiative), where structural and diffusion MRI was collected. Demographical information is also 144 

provided in Table 1. The institutional review board of our hospital approved this study before 145 

implementation. 146 

 147 

MRI acquisition. National Health Insurance Service Ilsan Hospital (NHIS-IH): We collected the 148 

following multimodal MRI from all participants: T1- MPRAGE: TE, 4.6 ms; matrix, 310 × 480× 149 

480; voxel size, 0.5 × 0.5 × 0.5 mm. T2-FLAIR; matrix = 320 × 240 × 240; voxel size = 0.56 x 150 

1.04 x 1.04. Diffusion MRI: matrix = 112 × 112 × 70; voxel size = 1.9 × 1.9 × 2.0 mm; the series 151 

included one image acquired without diffusion weighting and with diffusion weighting along 40 152 

non-collinear directions (b = 600 s/m−2). ADNI-2:  T1-weighted anatomical MRI and diffusion 153 

MRI. T1-MPRAGE: TE, min full echo; matrix, 208 × 240× 256; voxel size, 1 × 1 × 1 mm. 154 

Diffusion MRI: matrix = 256 × 256 × 46; voxel size = 1.36 × 1.36 × 2.7 mm; the series included 5 155 

image acquired without diffusion weighting and with diffusion weighting along 41 non-collinear 156 

directions (b = 1000 s/m−2). 157 

 158 

MRI Analysis-Structural MRI. 159 

The high-throughput computational analysis was conducted. First, we estimated morphometric 160 

estimates using the Freesurfer image analysis pipeline (Fischl, 2012) (v6) from T1 and T2-161 

FLAIR images. Morphometric measures (N=948 per subject) include volumes of the 162 

hippocampal subdivisions, and thickness, surface area, and volume of cortical/subcortical 163 

regions using two different atlases available in Freesurfer (Desikan-Killiany atlas and Destrieux 164 

atlas; https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation). The technical details of 165 

these procedures are described in previous studies (Desikan et al., 2006; Destrieux et al., 2010; 166 
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Fischl and Dale, 2000; Fischl et al., 1999). In brief, the image processing includes motion 167 

correction, removal of non-brain tissue, Talairach transformation, segmentation, intensity 168 

normalization, tessellation of the gray matter-white matter boundary, topology correction, and 169 

surface deformation. Deformation procedures use both intensity and continuity information to 170 

produce representations of cortical thickness. The maps produced are not restricted to the voxel 171 

resolution and are thus capable of detecting submillimeter differences between groups.   172 

 173 

MRI Analysis-Diffusion MRI 174 

We estimated structural connectome from structural and diffusion MRI. Structural MRI was used 175 

to define seed and target nodes of the connectome in each brain. We used the diffusion MRI 176 

analysis pipeline, MRtrix 3 (Tournier et al., 2004). The connectome measures (33,698 features 177 

per subject) include counts of streamlines, a surrogate measure of structural connectivity (Cha 178 

et al., 2015; Cha et al., 2017; Cha et al., 2016), and mean length of streamlines given any two 179 

brain regions based on multiple atlases. Diffusion-weighted magnetic resonance imaging (DWI) 180 

was preprocessed using the following pipeline in MRtrix 3. DWI was first denoised using a novel 181 

algorithm based on random matrix theory that permits data-driven, non-arbitrary threshold for 182 

Principal Component Analysis denoising; this method enhances the DWI quality for quantitative 183 

and statistical interpretation (Veraart et al., 2016). Denoised images then underwent eddy 184 

current and motion correction (Andersson and Sotiropoulos, 2016), brain extraction from three 185 

non-diffusion-weighted images (taking their median), and bias field correction using N4 186 

algorithm (N4ITK), an improved N3 method, in Advanced Normalization Tools (ANTs)(Tustison 187 

et al., 2010). We then estimated fiber orientation distributions from each preprocessed image 188 

using 2nd-order integration over fiber orientation distributions (iFOD2). Based on the FODs, 189 

probabilistic tractography was performed using constrained spherical devolution (CSD). We 190 

used a target streamline count of 10 million across the whole brain. The tractograms were 191 

filtered using spherical-deconvolution informed filtering of tractograms (SIFT) with a target 192 

streamline count of 3 million. After a primary statistical analysis using these filtered tractograms, 193 

we tested whether the effects of interest were robust to the tractography and filtering 194 

parameters, such as the target streamline count for tractography, SIFT, or a ratio between them. 195 

This method permits mapping to streamline estimation back to individual's DWI and updating a 196 

reconstruction to improve model fit. This approach renders the streamline counts connecting 197 

two brain regions proportional to the total cross-sectional area of the white matter fibers 198 

connecting those regions, enhancing streamline counts as a biologically plausible quantity, 199 

representing "structural connectivity". This was done by repeating tractography and SIFT with a 200 

set of extreme parameters (100 million and 5 million target streamlines, respectively) with a 201 

filtering factor of 20 (100/5). Finally, from the filtered tractograms, we generated a connectivity 202 

matrix in each participant using brain parcellation and segmentation obtained from structural 203 

MRI from the same person. In this way, our structural connectome estimates reflect 204 

individualized connectomes. We used two different atlases in Freesurfer (Desikan-Killiany atlas 205 

(Desikan et al., 2006) and Destrieux atlas (Destrieux et al., 2010). We used streamline counts 206 

as the primary connectivity metric in this study as in a recent human infant imaging study (van 207 

den Heuvel et al., 2015b), as well mean length as secondary measures. A prior macaque study 208 

suggests the validity of streamline counts as an indicator of fiber connection strength, with the 209 
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number of streamlines significantly correlating with tract-tracing strength in the macaque brain 210 

(van den Heuvel et al., 2015a).  211 

 212 

Machine Learning Classification  213 

Given our goal to compare the classifiers trained on the distinct multimodal brain 214 

phenotypes ,rather than to find a novel machine learning algorithm, we used the following three 215 

standard algorithms that have been extensively used in the literature(Abraham et al., 2014; 216 

Dimitriadis et al., 2018; Pellegrini et al., 2018): random forest, logistic regression (LR) with L1 217 

and L2 regularization, and support vector machine (SVM) with a linear kernel. Also, given the 218 

majority of the prior machine learning classification studies in the AD literature are based on 219 

binary classification (Pellegrini et al., 2018), we chose binary classification for better 220 

comparison. Machine learning models were trained and cross-validated within each dataset. As 221 

a common preprocessing step for machine learning estimators, we standardized the imaging 222 

derived phenotypes by removing the median and scaling them according to the quantile range 223 

(i.e., between the 1st and the 3rd quartile); this method is known to be robust to outliers. Model 224 

training and validation were done using nested cross-validation to avoid overfitting due to bias to 225 

training data (Cawley and Talbot, 2010; Varoquaux et al., 2017). Nested cross-validation uses a 226 

series of train/validation/test set splits: In the inner loop, we trained the model and selected a set 227 

of hyperparameters using the training set, then optimized the model with validation set; In the 228 

outer loop, we estimated generalization error of the underlying model using test sets. For 229 

feature selection, we used the 'forests of randomized trees' method, an ensemble method to 230 

combine the predictions of base estimators built with a learning algorithm, and then tested 231 

whether additional PCA-based dimensionality reduction improved the model or not. For hyper-232 

parameter optimization, we used the grid search method, varying C parameter for SVM and LR 233 

classifier, and varying the number of estimators and the minimum samples per leaf for random 234 

forest classifier. We used nested, k-fold, stratified cross-validation with ten iterations. To avoid 235 

information leakage during cross-validation, our nested cross-validation scheme used a series 236 

of train/validation/test set splits. First, in the inner loop, feature selection was performed, and the 237 

model was trained in a train set, and the model performance was maximized via hyper-238 

parameter optimization in a validation set. Secondly, in the outer loop, the model performance 239 

was evaluated in a test set, and generalization error was estimated by averaging test set scores 240 

across cross-validation splits. To measure model performance, we used accuracy, sensitivity, 241 

specificity, F1 score, and Area Under the Curve in receiver operating characteristic (AUC ROC). 242 

In diagnostic classification, we tested six different binary classifications, AD (coded as 1) vs. 243 

SMC (coded as 0), AD vs. MCI, MCI vs. SMC, AD only vs. AD with small vessel diseases, AD 244 

only vs. MCI, AD only vs. SMC. All the ML analyses were done using scikit-learn, a python 245 

library for machine learning (Abraham et al., 2014). 246 

 247 

Benchmark models 248 

We used existing biomarkers as benchmark models. First, white matter hyperintensity in the 249 

Korean NHIS-IH cohort, and CSF biomarkers in the ADNI-2 cohort. White matter hyperintensity 250 

measures were estimated from T2-weighted FLAIR images using Wisconsin White Matter 251 

Hyperintensities Segmentation Toolbox (Ithapu et al., 2014). This method uses supervised 252 

machine learning methods to segment hyperintense regions and generates normalized effective 253 
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white matter hyperintensity volume. Second, in ADNI-2 data, we used CSF biomarkers 254 

(phosphorylated tau, total tau, AB, ratio of phosphorylated tau/AB, ratio of total tau/AB), whose 255 

utility as biomarkers for diagnosis of AD (Olsson et al., 2016), MCI, and progression to AD from 256 

MCI (Hansson et al., 2006) has been studied. Furthermore, CSF biomarkers are reported to 257 

precede symptom onset of MCI (Moghekar et al., 2013). 258 

 259 

  260 
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RESULTS 261 

 262 

Classification of AD and MCI  263 

In the NHIS-IH Cohort, we tested machine learning classification using white matter structural 264 

connectomes and morphometric estimates in 211 elders at the dementia clinic at the Korean 265 

National Health Insurance Service Ilsan Hospital. Age and sex alone showed moderate 266 

accuracies: AD/SMC: accuracy = 0.77; MCI/SMC: accuracy = 0.63;  AD/MCI: accuracy = 0.72. 267 

White matter hyperintensity (WMH) served as a benchmark model, for it has been widely tested 268 

in the literature.  269 

 270 

In classification of AD vs. SMC, optimal classification performance was shown in 271 

“morphometry+connectome” model (accuracy = 0.97, 95% CI=0.95-0.98) and “connectome” 272 

model (accuracy = 0.97, 95% CI=0.96-0.98) (Table 2; Figure 1A). These two models 273 

outperformed “morphometry” (accuracy = 0.87, 95% CI=0.85-0.88) and WMH benchmark 274 

models (accuracy = 0.73, 95% CI=0.71-0.75). In classification of MCI vs. SMC, similar 275 

classification performance was observed in “morphometry+connectome” (accuracy = 0.82, 95% 276 

CI=0.80-0.85) and “connectome” models (accuracy = 0.83, 95% CI=0.81-0.85), compared with 277 

lower performance of “morphometry” (accuracy = 0.59, 95% CI=0.57-0.60) and the WMH 278 

benchmark models (accuracy = 0.57, 95% CI=0.54-0.60). In classification of AD vs. MCI, 279 

“morphometry+connectome” models showed a best accuracy (accuracy=0.97, 95% CI=0.96-280 

0.98), followed by “connectome” model (accuracy = 0.96, 95% CI=0.95-0.97), “morphometry” 281 

model ( accuracy = 0.83, 95% CI=0.80-0.86), and the WMH benchmark models (accuracy = 282 

0.66, 95% CI=0.64-0.69). Throughput all classifications, connectomes and morphometry 283 

showed greater diagnostic accuracies compared with the WMH benchmark. 284 

 285 

Testing generalizability  286 

We next tested the generalizability of the same multimodal brain imaging-based machine 287 

learning using ADNI-2 data. We included participants in ADNI-2 data whose structural and 288 

diffusion MRI (baseline) were both collected . To compare the performance of our classifiers, we 289 

used the invasive CSF biomarkers (p-tau, t-tau, Aβ42, p-tau/ Aβ42, t-tau/ Aβ42) as a benchmark 290 

model. In the classification of AD vs. HC, all the MRI-based models showed similarly optimal 291 

performance around 0.88 accuracy (Table 2; Figure 1B), outperforming the CSF benchmark 292 

model (accuracy = 0.75, 95% CI=0.73-0.77). In classification MCI vs. HC, all the MRI-based 293 

models showed similar performance with accuracies ranging from 0.64-0.67, outperforming the 294 

CSF benchmark (accuracy = 0.62, 95% CI=0.59-0.65). In classification AD vs. MCI, all the MRI-295 

based models showed similar performance with accuracy ranging from 0.66-0.71, outperforming 296 

the CSF benchmark (accuracy = 0.54, 95% CI=0.52-0.57) which is barely above chance. This 297 

generalizability data showed, firstly, morphometry and connectome estimates showed equally 298 

good performance consistently exceeding the invasive CSF biomarkers in classifying 299 

AD/MCI/HC; secondly, unlike the NHIS-IH results, synergistic effects of combined morphometry 300 

and connectomes were not observed using our machine learning framework.  301 

 302 

 303 

Testing utility for prognosis  304 
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Of the ADNI-2 data, we further tested the utility of our approach in predicting the disease 305 

trajectory. Data from 60 elders were used, whose baseline diagnosis was MCI and who were 306 

followed for at least two years. Machine learning models trained on the same five CSF 307 

benchmarks were used as a benchmark. In predicting progression from MCI to AD, 308 

“morphometry” model showed a highest accuracy (accuracy = 0.69, 95% CI=0.65-0.73) among 309 

MRI-based models, similar to the CSF benchmark model (accuracy = 0.70, 95% CI=0.66-0.75). 310 

(Table 5, Figure 2). “Connectome” model showed a lower, but statistically meaningful accuracy 311 

(accuracy = 0.57, 95% CI=0.53-0.61). Combining the two modalities of morphometry and 312 

connectomes (“morphometry+connectome”) did not improve the prognosis accuracy (accuracy 313 

= 0.59, 95% CI=0.56-0.62), compared with “morphometry” model. 314 

 315 

  316 
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DISCUSSION 317 

 318 

In this study, we used large-scale MRI-derived brain phenotypes (morphometry and white 319 

matter structural connectomes) with machine learning techniques to test AD and MCI diagnosis 320 

in two independent Alzheimer’s disease datasets. We also predicted disease progression to AD 321 

from MCI.  For high-throughput imaging analysis, we used a well-established automated 322 

pipeline for morphometry and a pipeline to estimate rigorously individualized white matter 323 

structural connectomes. Firstly, the models trained on morphometry and connectomes showed 324 

the best accuracy in classifying AD, MCI, and SMC or HC in the single-site data (ranging from 325 

90% to 99% in AUC ROC; NHIS-IH, South Korea) as well as the multi-site (ranging from 70% to 326 

97% in AUC ROC; ADNI-2, USA) “reproducibility” data. The models outperformed the 327 

benchmark models significantly (e.g., white matter hyperintensity or CSF biomarkers) and 328 

demographic model (including age, sex, and education). Second, the model trained on 329 

connectome or morphometric estimates showed moderate accuracies (ranging from 57% to 330 

79%; AUC) in predicting progression to AD in 60 elders with MCI in ADNI-2 data. These results 331 

show the utility of white matter structural connectomes in addition to morphometry in detecting 332 

the abnormal brain aging process in AD pathology.    333 

 334 

A novel aspect of this study is to assess the utility of the dMRI-based white matter structural 335 

connectomes in predictive modeling of AD in a sufficiently large sample (n=211) and to validate 336 

it in an independent cohort (n=179). In the NHIS-IH data, the “connectome” model and 337 

“connectome and morphometry” model similarly show the optimal classification of AD or MCI, 338 

outperforming the benchmark model of white matter hyperintensity. Likewise, in the ADNI-2 339 

generalizability data, both “connectome” and “connectome and morphometry” models show 340 

optimal classification accuracy, outperforming the CSF benchmark model. This finding is in line 341 

with the literature showing the associations of structural connectomes with potential AD 342 

pathology (e.g., topological disturbance based on graph theory) (Pereira et al., 2017) and with 343 

healthy aging (Perry et al., 2015). Also, prior studies show the potential utility of connectomics 344 

estimates in predicting risk for AD, but with a caveat of limited samples sizes (n<30 (Wee et al., 345 

2012; Zhu et al., 2014)). Our study thus further demonstrate the potential practical utility and 346 

generalizability of the unbiased brain analytic approach combined with data-driven machine 347 

learning, leveraging two independent data with greater sample sizes. 348 

 349 

The classification results in the NHIS-IH data may further suggest an important implication. The 350 

morphometry model fails to classify MCI from SMC, whereas the connectome or combined 351 

model shows optimal classification of 0.90 AUC. The gain of the connectome estimates in 352 

classification is more pronounced in MCI/SMC classification than in AD/SMC classification.  353 

This might suggest a greater sensitivity of the white matter connectivity estimates in detecting 354 

AD-related neurodegeneration compared with grey matter morphometry. Literature shows the 355 

capability of diffusion MRI-derived measures to detect subtle microscopic changes in tissue 356 

properties or integrity (Acosta-Cabronero et al., 2010; Beaulieu, 2002; Douaud et al., 2011; 357 

Zhang et al., 2009), whereas structural MRI is typically used to estimate macroscopic 358 

properties, namely volumes. However, this pattern is not seen in the ADNI-2 multi-site data; this 359 

leads to an issue of data harmonization to deal with site effects of MRI-derived estimates.  360 
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 361 

The connectome or combined model shows ~10% decrease in model performance in the ADNI-362 

2 multi-site data compared with the NHIS-IH single-site data. It is possible that it is related to the 363 

site variability in the dMRI data. Indeed, prior studies show persistent inter-site variability in 364 

diffusion data even when using similar types of scanners, pulse sequences or same field 365 

strength (Fox et al., 2012; Mirzaalian et al., 2016). This is a non-trivial problem because there 366 

are hardly any objective ways to assess harmonization of dMRI data (e.g., a dynamic phantom 367 

optimized for dMRI). One potential way to mitigate this variability issue across multiple data 368 

sources is an analytical solution. A recent study suggests an elegant Bayesian method for post-369 

acquisition harmonization of dMRI (Fortin et al., 2017). In our study, however, this method could 370 

not be applied to our raw dMRI or fiber orientation distribution maps for probabilistic 371 

tractography.  372 

 373 

One potential approach to MRI harmonization is domain-invariant machine learning.  374 

A recent seminal study (Ghafoorian et al., 2017) of white matter hyperintensity segmentation in 375 

the brain shows a successful application of “multi-source domain adaption”. That is, a 376 

convolutional neural network trained on data from a single domain (i.e., from a single scanner 377 

with a single acquisition protocol) was successfully applied (retrained) to the same task with 378 

independent MRI from different domains (i.e., different acquisition protocols and image 379 

dimension from the same scanner). Given the recent rapid development of the deep learning 380 

algorithms, Artificial Intelligence-based domain adaptation might be a promising way towards 381 

the generalizable and reproducible MRI-based analytics.  382 

 383 

In predicting MCI-to-AD progression in the ADNI-2 data, the morphometry model outperforms 384 

both connectome and combined models. This may first suggest that grey matter morphometry 385 

provides more useful information in predicting the AD trajectory than the connectome measures. 386 

However, given the smaller sample size (N=60) compared with AD/MCI classification (N=119), 387 

in this analysis we suspect that machine learning training and feature selection may be 388 

suboptimal for the connectome model than for the morphometry model, because of the 389 

significantly large number of features in the former (N=33,698) than the latter (N=948). Similarly, 390 

while the morphometry model and connectome model respectively showed statistically 391 

meaningful (above chance) predictions, when combined, there was little improvement in model 392 

performance. This indicates more rigorous methods to combine models trained across 393 

multimodal brain imaging-derived phenotypes may be required, such as ensemble methods 394 

(Zhang et al., 2011).  395 

 396 

Limitations related to the NHIS-IH data include the significantly greater age in the AD group 397 

compared with the MCI or SMC groups. It is possible that a greater aging effect embedded on 398 

the brain phenotypes may have made the classification of AD easier. However, in ADNI data 399 

with the age-matched samples, classification performance (AUC=0.97) was only slightly less 400 

than the NHIS-IH data (AUC=0.99). This suggests that the patterns extracted from morphometry 401 

and white matter connectomes may be specific to AD rather than an age-related bias. Another 402 

limitation is the lack of healthy controls in the NHIS-IH cohorts. In this retrospective cohort at the 403 

dementia clinic, individuals with Subjective Memory Complaints are cognitively normal. 404 
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Nevertheless, this group might not be equivalent to healthy controls as in the ADNI data. For 405 

example, there might be subtle differences in brain health status between health individuals and 406 

cognitively normal individuals with subjective memory complaints. Our study provides no data to 407 

address this. Nevertheless, given the fact that in clinical settings, individuals seek for clinical 408 

service usually when they suspect symptoms, our results of classifying AD and MCI from 409 

individuals with SMC may have a unique clinical utility in addition to the comparisons of AD and 410 

MCI with healthy controls in the ADNI data. 411 

 412 

In sum, this study lends support for the individualized white matter structural connectomes, 413 

estimated from multimodal MRI (structural and diffusion), in combination with machine learning 414 

techniques, as a useful method to detect accurately AD-related neurodegeneration across the 415 

whole brain in a data-driven manner.  416 

417 
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 462 

Tables 463 

 464 

Table 1. Participant Demographics 

NHIS-IH Cohort 

 AD 

(N= 110) 

MCI 

(N=62) 

SMC 

(N=36) 

Test 

Statistics 

P value 

Age,Mean (SD) 79.95 (6.61) 71.42 (8.62) 72.25 (6.99) F = 32.72 

 

P < 0.001 

Sex      

Female 74 38 32 2 =8.56 P = 0.014 

Male 36 24 4  

 

 

Education 6.7 (5.2) 9.8 (4.6) 7.6 (4.9) F = 6.541 P = 0.011 

MMSE 18.1 (0.53) 25.1 (0.36) 26.3 (0.37) F = 151.9 P < 0.001 

CDR 1.03 (0.57) 0.54 (0.13) 0.50 (0.11) F = 79.38 P < 0.001 

ADNI-2 Cohort 

 AD 

(N=48 ) 

MCI 

(N=60) 

HC 

(N= 71) 

Test 

Statistics 

P value 

Age,Mean (SD) 74.96 (8.59) 72.57 (6.62) 72.55 (5.66) 

 

F = 3.11 

 

P =0.08 

Sex      

Female 20 20 43 

 

2 =10.28 P =0.006 

Male 28 40 28  

 

 

Education 15.31 (2.87) 16.08 (2.68) 16.28 s(2.72) F = 6.541 P = 0.07 

CDR 0.82 (0.24) 0.50 (0.00) 0 F=663.1 P < 0.001 

NHIS-IH,  National Health Insurance Service Ilsan Hospital; SD, standard deviation; MMSE, 465 

Mini Mental State Examination; CDR, the clinical Dementia Rating; ADNI-2, Alzheimer’s 466 

disease neuroimaging Initiative. 467 
 468 

 469 

 470 

471 
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 472 

Table 2. AUC Performances of Machine Learning Classifier using Structural 

Connectomes, Morphometric Brain Features, and benchmarks. 

NHIS-IH Cohort 

  AD 

vs 

SMC 

MCI 

vs 

SMC 

AD 

vs 

MCI 

Morphosmetry 

+ Connectome 

 0.99(0.99-1.00)  0.90(0.87-0.92)  0.99(0.98-1.00) 

Connectome only  0.99(0.99-1.00)  0.90(0.88-0.92)  0.99(0.99-1.00)  

Morphometry only  0.88(0.86-0.90) 0.48(0.45-0.50) 0.85(0.82-0.88) 

Benchmark only 

(White Matter 

Hyperintensity) 

 

0.67(0.64-0.70) 0.45(0.42-0.49) 0.61(0.57-0.64) 

ADNI-2 Cohort 

  AD 

vs 

HC 

MCI 

vs 

               HC 

AD 

vs 

MCI 

Morphometry 

+ Connectome 

 0.96(0.94-0.97) 0.70(0.67-0.73) 0.75(0.72-0.78) 

Connectome only  0.95(0.94-0.96) 0.72(0.69-0.75) 0.75(0.73-0.78) 

Morphometry only  0.97(0.96-0.98) 0.71(0.67-0.74) 0.79(0.76-0.81) 

Benchmark only 

(CSF Biomarkers) 

 
0.79(0.77-0.82) 0.65(0.62-0.68) 0.56(0.53-0.59) 

 473 
AUC, area under curve; NHIS-IH,  National Health Insurance Service Ilsan Hospital; ADNI-2, 474 
Alzheimer’s Disease Neuroimaging Initiative 2; SMC, subjective memory complaints; MCI, mild 475 
cognitive impairment; AD, Alzheimer’s disease; HC, healthy control. *All results show mean and 476 

standard deviation as mean and 95% confidence interval in this table.  indicates the best 477 

models for this classification. For all three classifications, random forest performed as the best 478 
classifier, therefore, we only put random forest classifier performance results into this table. 479 

480 
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  481 

 482 

 483 

 484 

ADNI-2, Alzheimer’s Disease 485 
Neuroimaging Initiative 2; 486 
MCI, mild cognitive 487 
impairment; AD, Alzheimer’s 488 
disease; LR, logistic 489 
regression; PCA, principal 490 
component analysis; CV, 491 
cross-validation.  *All results 492 
show Mean and standard 493 
deviation as mean and 95% 494 
confidence interval in this 495 
table.  496 
 497 

498 

Table 3. Performance in Predicting MCI to AD Progression 

in ADNI-2 

MCI-AD vs. Stable MCI  

Morphometry only 

 (Best: LR + PCA+20 fold CV) 

Accuracy 0.69 (0.65-0.73)* 

Sensitivity 0.79 (0.74-0.83) 

Specificity 0.69 (0.64-0.74) 

AUC 0.79 (0.74-0.84) 

Connectomes only 

 (Best: LR + PCA+20 fold CV) 

Accuracy  0.57 (0.53-0.61) 

Sensitivity 0.64 (0.58-0.69) 

Specificity 0.53 (0.47-0.59) 

AUC 0.62 (0.56-0.68) 

Morphometry + Connectome 

  (Best: LR + PCA+10 fold CV) 

Accuracy 0.59 (0.56-0.62) 

Sensitivity  0.60 (0.56-0.63) 

Specificity  0.68 (0.56-0.79) 

AUC 0.65 (0.59-0.71) 

Benchmark: CSF biomarkers  

 (Best: RF + no PCA+10 fold CV) 

Accuracy 0.70 (0.66-0.75) 

Sensitivity  0.76 (0.72-0.81) 

Specificity  0.71 (0.64-0.78) 

AUC 0.76 (0.70-0.81) 
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Figures 499 

 500 

Figure 1. Classification of baseline diagnosis using connectomes and morphometric 501 

estimates. Panel (A),  classification performances in the NHIS-IH Cohort (Korean National 502 

Health Insurance Ilsan Hospital data).It showed higher diagnostic accuracy (area under the 503 

curve of the receiver-operator characteristics or AUC ROC) of the machine learning model 504 

trained on combined connectome and morphometric estimates consistently, compared with the 505 

benchmark model trained on white matter hyperintensity. Out of three machine learning 506 

algorithms (random forest, support vector machine, and logistic regression), best models were 507 

shown. Panel (B), classification performances in the ADNI-2 Cohort. It showed reproducible 508 

results of diagnostic accuracy of connectomes and morphometry. The combined models show 509 

better performance in predicting AD from healthy controls and AD from MCI, and similar in 510 

predicting MCI from HC. Best models were shown. Compared with the NHIS-IH Cohort, the 511 

reproducibility data shows less diagnostic accuracy presumably due to multiple sites and stricter 512 

inclusion and exclusion criteria in ADNI.   WMH, white matter hyperintensity; Demo, 513 

demographics including sex, age, and education. 514 

 515 

 516 

  517 

  518 

 519 
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Figure 2. Prediction of progression to AD from MCI using connectomes and 521 

morphometric estimates. Using ADNI-2 data that has follow-up data after baseline MRI scan, 522 

machine learning models were tested using connectome and morphometry estimates to predict 523 

MRI-to-AD progression in 60 elders with MCI (mean follow-up years in stable MCI, 3.76 ± 0.98; 524 

range, 2.18-5.32). Morphometry model showed similar performance to CSF benchmark model. 525 

Both the combined model and connectome model showed lower but meaningful accuracy.     526 

 527 

 528 

    529 
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