

1 Simulations suggest a constrictive force is required for Gram-negative bacterial cell

2 division

4 Lam T. Nguyen¹, Catherine M. Oikonomou¹, H. Jane Ding¹, Mohammed Kaplan¹, Qing Yao¹, Yi-Wei
5 Chang^{1,a}, Morgan Beeby^{1,b}, Grant J. Jensen^{1,2,*}

¹ Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California
Bld., Pasadena, CA 91125

10 ² Howard Hughes Medical Institute, 1200 E. California Blvd., Pasadena, CA 91125

¹¹ ^a Present address: Department of Biochemistry & Biophysics, Perelman School of Medicine, University
¹² of Pennsylvania, 422 Curie Blvd. Philadelphia, PA 19104

13 ^b Present address: Department of Life Sciences, Imperial College London, South Kensington Campus,
14 London, SW7 2AZ, UK

15 * Correspondence: jensen@caltech.edu

18 **Abstract**

19 To divide, Gram-negative bacterial cells must remodel their peptidoglycan cell wall to a smaller and
20 smaller radius at the division site, but how this process occurs remains debated. While the tubulin
21 homolog FtsZ is thought to generate a constrictive force, it has also been proposed that cell wall
22 remodeling alone is sufficient to drive membrane constriction, possibly via a make-before-break
23 mechanism in which new hoops of cell wall are made inside the existing hoops (make) before bonds in
24 the existing wall are cleaved (break). Previously, we constructed software, REMODELER 1, to simulate
25 cell wall remodeling in rod-shaped bacteria during growth. Here, we used this software as the basis for
26 an expanded simulation system, REMODELER 2, which we used to explore different mechanistic
27 models of cell wall division. We found that simply organizing the cell wall synthesis complexes at the
28 midcell was not sufficient to cause wall invagination, even with the implementation of a make-before-
29 break mechanism. Applying a constrictive force at the midcell could drive division if the force was
30 sufficiently large to initially constrict the midcell into a compressed state before new hoops of relaxed
31 cell wall were incorporated between existing hoops. Adding a make-before-break mechanism could
32 drive division with a smaller constrictive force sufficient to bring the midcell peptidoglycan into a
33 relaxed, but not necessarily compressed, state.

34

35 **Introduction**

36 Bacterial cells are protected from turgor pressure by a peptidoglycan (PG) cell wall that is composed of
37 long glycan strands crosslinked by short peptides (Vollmer et al., 2008). This relatively rigid sacculus
38 allows cells to adopt specialized shapes, such as the rod shape of many Gram-negative bacteria. In order
39 for the cell to change size or shape during growth and division, the pressurized sacculus must be
40 carefully remodeled. This is accomplished by a set of cell wall remodeling enzymes including
41 transglycosylases, transpeptidases, and endopeptidases. Experimental insights into the exact molecular
42 mechanisms of these remodeling enzymes and how their functions are coordinated remain limited.
43 Previously, we gained insight into these questions by building simulation software, REMODELER 1, to
44 study cell wall synthesis during cell elongation (Nguyen et al., 2015). In this software, a cylindrical cell
45 wall is coarse-grained as chains of tetrasaccharide beads running circumferentially around the cylinder
46 and connected by peptide crosslinks. The functions of transglycosylases, transpeptidases, and
47 endopeptidases are explicitly modeled as beads. Using this software, we found that in order to maintain
48 the integrity and rod shape of the cell, these remodeling enzymes have to coordinate with one another
49 locally in synthetic complexes, but that no long-range coordination of the independent complexes is
50 required. We also found that these complexes must contain a lytic transglycosylase to remove long,
51 uncrosslinked glycan tails to clear the path for enzyme movement (Nguyen et al., 2015). (Such an
52 enzyme was independently identified experimentally (Cho et al., 2014).)

53

54 During cell elongation, the diameter of a rod-shaped cell is conserved. In contrast, during division, the
55 diameter of the cell wall at the division site must become smaller and smaller. How the cell overcomes
56 turgor pressure to remodel its cell wall to a smaller diameter remains unclear (Osawa and Erickson,
57 2018). It is unlikely to be due to a fundamentally different mode of synthesis, since (a) partially

58 overlapping and homologous sets of enzymes mediate remodeling in cell growth and division (Egan and
59 Vollmer, 2012); (b) these PG synthesis enzymes were shown to move around the cell's circumference
60 during both elongation (Domínguez-Escobar et al., 2011; Garner et al., 2011) and division (Bisson-Filho
61 et al., 2017; Yang et al., 2017); and (c) in purified sacculi, glycan strands exhibit similar circumferential
62 orientation throughout the length of the cell (Gan et al., 2008; Turner et al., 2018).

63

64 The protein FtsZ, a tubulin homolog found in nearly all bacteria and many archaea, forms filaments at
65 the midcell during cell division (Bi and Lutkenhaus, 1991; Li et al., 2007; Szwedziak et al., 2014; Yao et
66 al., 2017). It has been proposed that these filaments exert a constrictive force on the membrane and serve
67 as a scaffold for the cell wall synthesis machinery (Erickson et al., 2010). Based on cryo-electron
68 microscopy images of dividing cells, it has been proposed that GTP-hydrolyzing FtsZ filaments can
69 generate a constrictive force either by switching conformation from straight to curved (Li et al., 2007) or
70 by overlapping to form a closed ring which then tightens to constrict the membrane (Szwedziak et al.,
71 2014). Alternatively, a recent study posited that FtsZ simply serves as a scaffold and that the constrictive
72 force on the membrane is provided by the inward growing cell wall (Coltharp et al., 2016). This model
73 was suggested by the observation that the rate of inward cell wall growth is limited by the rate of cell
74 wall synthesis but not by the GTP hydrolysis rate of FtsZ.

75

76 In order to explore these different conceptual models, we modified our coarse-grained simulation
77 software for the Gram-negative bacterial cell wall, REMODELER 1, to create REMODELER 2, which
78 allowed us to test different mechanistic hypotheses of how inward cell wall growth might occur during
79 division. We found that simply restricting the enzyme complexes to the midcell resulted in elongation
80 without constriction, even with a make-before-break mechanism of PG remodeling, suggesting that cell

81 wall growth alone is not sufficient to drive Gram-negative bacterial cell division. We found that a
82 constrictive force at the midcell did result in cell wall division when the force was sufficiently large to
83 initially constrict the midcell past the diameter of the unpressurized sacculus. If the constrictive force
84 was slightly less, sufficient to constrict the midcell sacculus into a relaxed state, the addition of a make-
85 before-break mechanism was now effective in facilitating division. These results are summarized in
86 [Movie S1](#). Due to the difficulty of describing dynamic 3D processes in words and static images, we
87 recommend readers watch the movie in full before proceeding.

88

89

90 **Results**

91 **Cell wall synthesis at the midcell**

92 To adapt REMODELER 1 ([Nguyen et al., 2015](#)) into REMODELER 2 to study cell division, we added
93 several features: (1) PG synthesis complexes were organized at the midcell, (2) a constrictive force
94 could be implemented, and (3) the enzymes could build a multi-layered cell wall.

95

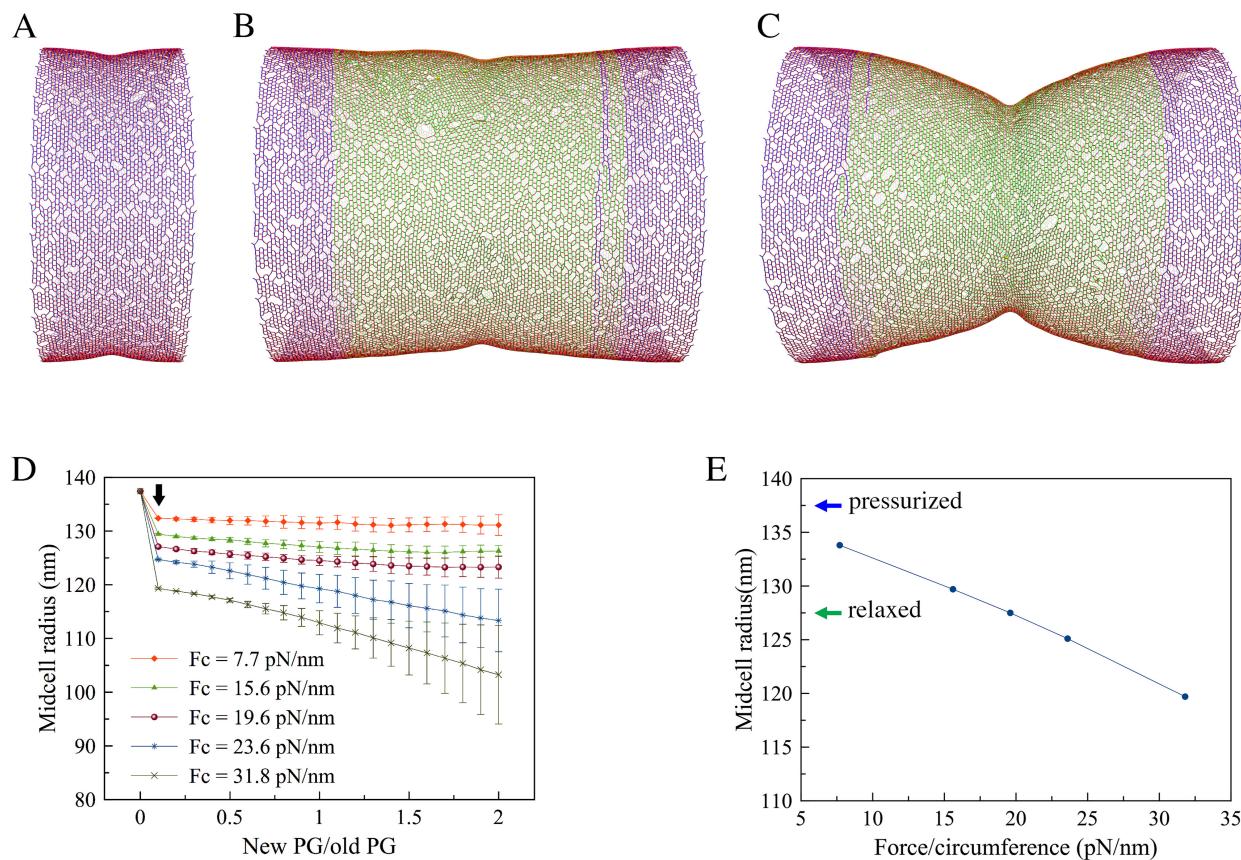
96 To simulate PG insertion during cell division, we built a starting PG sacculus and initiated four PG
97 synthesis enzyme complexes randomly around the circumference within 10 nm of the midcell. To
98 reduce the computational cost, we simulated a short cylindrical section (a midcell) of a miniaturized cell
99 wall. Specifically, the starting PG cylinder was composed of 40 glycan hoops with each hoop consisting
100 of 400 beads, representing 400 tetrasaccharides ([Fig. 1A](#)). The average strand length was set to be 14
101 tetrasaccharides, which is within the range of 11–16 tetrasaccharides reported experimentally ([Glauner](#)
102 [et al., 1988](#); [Harz et al., 1990](#)). As the distance between adjacent tetrasaccharides was $L_g = 2$ nm
103 ([Nguyen et al., 2015](#)), the unpressurized PG cylinder had a radius of 127.5 nm ([Fig. 1A](#)). Under a turgor
104 pressure $P_{tg} = 3$ atm, the cylinder expanded to a radius of 137.5 nm ([Fig. 1B](#)). To minimize any
105 potential effects of changing the glycan strand length on the sacculus radius, new glycan strands were
106 also constrained to 14 tetrasaccharides on average when they were incorporated into the existing PG
107 network. As in our previous simulations of PG remodeling ([Nguyen et al., 2015](#)), here we also assumed
108 that the PG synthesis enzyme complexes insert new glycan strands in pairs ([Fig. S1](#)) and that the enzyme
109 complexes can only act on PG substrates in their close vicinities, and cannot stretch the new pair of
110 strands or pull them forward to crosslink them to distal peptides. At this stage of our model, we tested
111 the hypothesis that simply organizing the PG synthesis complexes at the midcell can cause constriction
112 ([Meier and Goley, 2014](#); [Eun et al., 2015](#)). In our simulations, however, insertion of new PG only

113 elongated the cylinder without changing its radius (Fig. 1C-D), suggesting that additional factors are
114 needed to induce division.

115

116

117 **Figure 1:** Cell wall synthesis at the midcell. Existing glycan strands are visualized in blue, new strands in green, peptide
118 crosslinks in red. The same color scheme is used for all other figures containing simulation snapshots. (A) A snapshot of the
119 starting PG cylinder in a relaxed state. The cylinder was composed of 40 hoops of glycan strands with 400 tetrasaccharides
120 per hoop and had a relaxed radius of 127.5 nm. (B) A snapshot of the pressurized PG cylinder which was expanded to a
121 radius of 137.5 nm under a turgor pressure of 3 atm. The arrows indicate PG synthesis enzyme complexes placed randomly at
122 the midcell. (C) A snapshot of the PG cylinder after elongation to three times its original length by insertion of new PG. (D)
123 The profile of the midcell radius with respect to the amount of new PG inserted, showing that PG synthesis at the midcell
124 alone only elongated the cylinder without constricting it. The average of 4 simulations is shown. Error bars indicate standard
125 deviation.

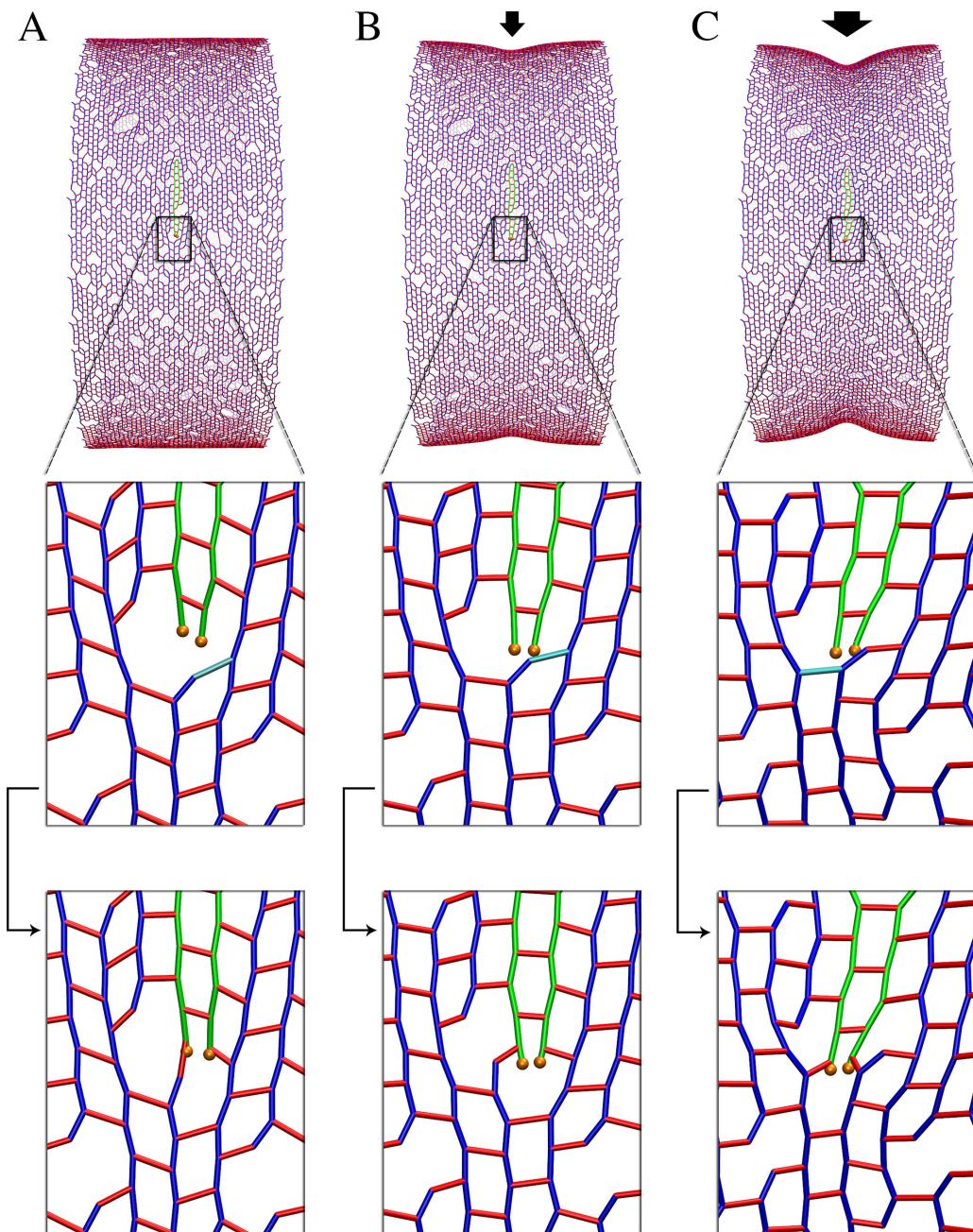

126

127 **PG remodeling under a constrictive force**

128 Since FtsZ filaments have been proposed to exert a constrictive force on the membrane, we implemented
129 a constrictive force at the midcell to see if this allowed new PG to be incorporated in smaller hoops at
130 the constriction site (see [Methods/Constriction force](#)). Initially, the constrictive force made the midcell
131 smaller before new PG was inserted (Fig. 2A). As new PG was inserted, further reduction of the midcell
132 radius did not occur if F_c , the constrictive force divided by the sacculus circumference, was smaller than
133 20 pN/nm (Fig. 2B, 2D). The midcell did continue to reduce in size if F_c was larger than 20 pN/nm (Fig.
134 2C, 2D). We found that at the transition point $F_c \sim 20$ pN/nm, the force initially constricted the midcell

135 into a relaxed state where its radius was equivalent to that of an unpressurized cell, 127.5 nm (Fig. 2E).
136 Therefore, a constrictive force alone can drive division if it is sufficiently large to initially bring the
137 midcell into a compressed state, i.e. reduce the midcell radius to less than that of a relaxed sacculus.
138 Note also that our findings were limited to F_c less than ~32 pN/nm since a larger force buckled the cell
139 wall, making the simulation unstable.

140


141

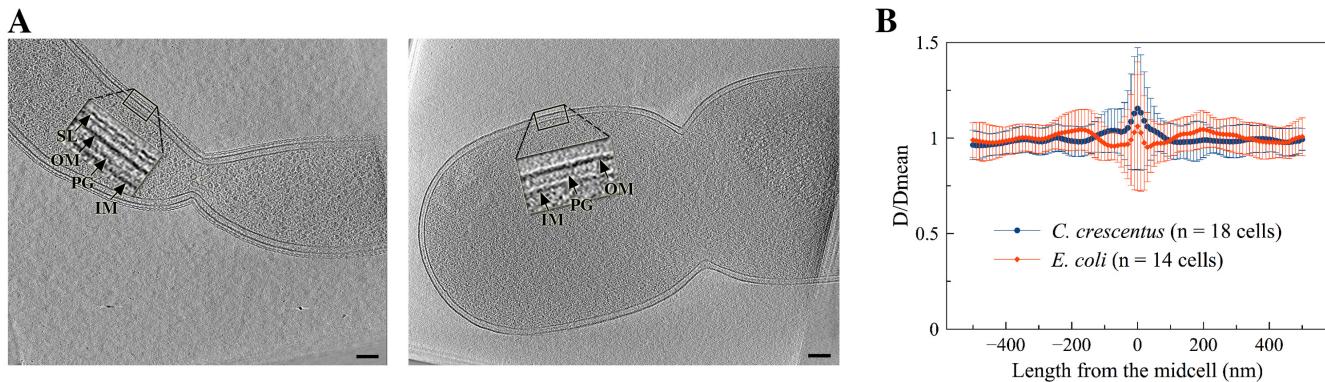
142 **Figure 2:** Cell wall synthesis under constrictive force. (A) A snapshot of the PG cylinder showing that the force caused an
143 initial constriction at the midcell before insertion of new PG. (B) A snapshot of the sacculus after new PG was inserted
144 showing that when the force per circumference was $F_c = 15.6$ pN/nm, further constriction did not occur as new PG was
145 inserted. (C) When $F_c = 31.8$ pN/nm, constriction occurred as new PG was inserted. (D) Profiles of the midcell radius with
146 respect to the amount of new PG inserted show that PG insertion-induced constriction occurred only if F_c was larger than
147 19.6 pN/nm. The arrow indicates the initial constriction by the force before new PG insertion started. Each trace presents the

148 average of 4 simulations. Error bars indicate standard deviation. (E) The dependence of the midcell radius on the force before
149 new PG was inserted shows that the midcell became relaxed at $F_c = 19.6$ pN/nm. The blue arrow indicates the radius before
150 the force was applied. The green arrow indicates the radius of a relaxed cell wall.

151

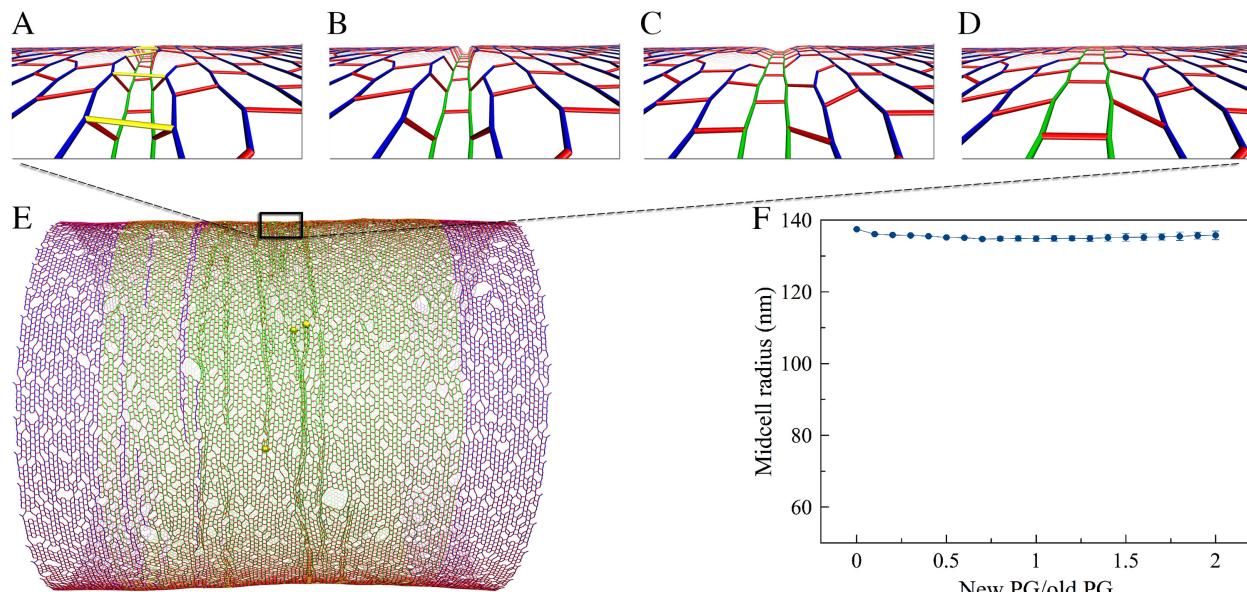
152 We next analyzed in detail how a constrictive force might drive cell wall division. Without the
153 constrictive force, the cell wall radius was maintained as new glycan beads were perfectly matched one-
154 to-one with the existing template (Fig. 3A). Applying a small constrictive force ($F_c < 20$ pN/nm)
155 squeezed the midcell and pulled the enzymes and the two new strand tips closer to the default template
156 crosslink, but this did not interrupt the one-to-one template matching between the new beads and the
157 existing beads and therefore did not reduce the midcell radius (Fig. 3B). On the other hand, in the
158 presence of a large force ($F_c > 20$ pN/nm), the enzymes were pulled past the default template crosslink,
159 skipping it and crosslinking the two new beads to a new template that was upstream of the skipped
160 template (Fig. 3C). Due to these skipping events, the two new PG hoops had fewer PG beads than the
161 existing hoops, making the midcell radius smaller.

162


163 **Figure 3:** Detailed effect of the constrictive force. The template crosslink is highlighted in cyan and the arrows between the
164 zoomed-in views in the bottom two rows indicates the time sequence of events. (A) Without the force, new PG was matched
165 one-to-one with the existing template. (B) In the presence of a small force, the midcell was squeezed, pulling the new strand
166 tips closer to the template crosslink, but the new PG was still matched with the default template. (C) In the presence of a
167 large force, the new strand tips were pulled past the default template, therefore skipping it, and an upstream crosslink became
168 the new template. Note that several such template-skipping events occurred along each complete hoop of new PG.

169 **PG remodeling under a make-before-break mechanism**

170 Next, we explored if and how cell wall growth alone could be sufficient to drive cell division without
171 the presence of a constriction force. Conceptually, this can occur with a make-before-break mechanism,
172 in which the cell wall synthesis machinery adds one or several new PG layers that form a temporary
173 septum underneath the existing PG layer (make) before hydrolases cleave the constraining peptide
174 crosslinks above these new PG layers (break). If many layers are built in before any bond on the surface
175 is hydrolyzed, the hoops of PG in the inner layer can potentially be made from fewer PG beads. While it
176 is clear that Gram-positive bacteria divide by making a thick septum across the width of the cell, it has
177 only recently been speculated that Gram-negative bacteria might also adopt this septation scheme, but
178 with a thinner septum (Erickson, 2017). (For clarity, we use septum here to refer to the new PG layers
179 beneath, but not including, the existing layer.)


180

181 To determine if such a septum exists in dividing Gram-negative bacterial cells, we examined 3D
182 electron crytomograms of intact frozen-hydrated cells of six species: *Caulobacter crescentus*,
183 *Escherichia coli*, *Proteus mirabilis*, *Myxococcus xanthus*, *Cupriavidus necator*, and *Shewanella*
184 *oneidensis*. In all cases, we could not discern any thickening of the wall at the dividing midcell that
185 might indicate the existence of a thin septum (Fig. 4A; Fig. S2). We also observed that the distance
186 between the inner and outer membranes remained constant throughout the midcell (Fig. 4B). We
187 therefore concluded that if a thin septum exists at the dividing midcell, it must be thinner than ~4 nm,
188 the resolution of the electron crytomograms (Gan and Jensen, 2012). Accordingly, in our simulations,
189 we limited septum thickness to one layer of PG.

209 the size of the existing hoops (Fig. 5C, 5D), indicating that new hoops were made of a similar number of
210 beads as existing hoops.

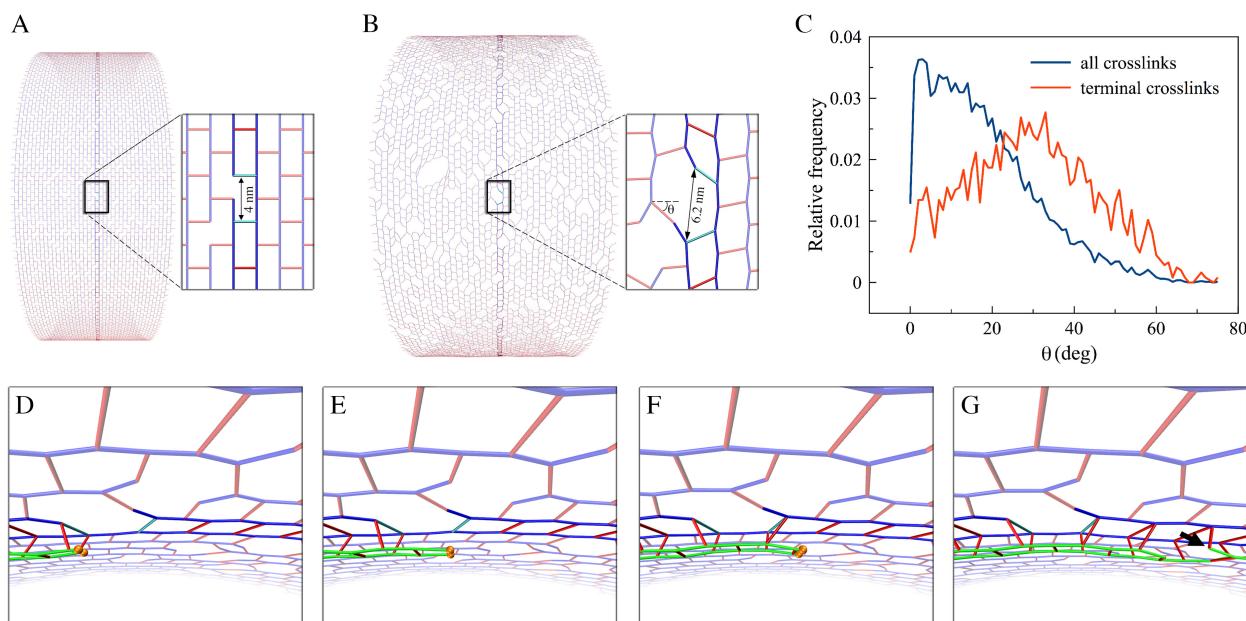
211

212

213 **Figure 5:** Cell wall synthesis with a make-before-break mechanism. (A) – (D) show the make-before-break mechanism
214 occurring in sequence: (A) new cell wall was made underneath the existing network. The peptide crosslinks above the new
215 PG are highlighted in yellow. (B) The highlighted crosslinks were cleaved after complete hoops of new PG were made. (C)
216 and (D) show the relaxation of the network after the cleavage event. (E) A snapshot of the PG cylinder shows that
217 constriction did not occur with insertion of new PG. (F) The profile of the midcell radius with respect to the amount of new
218 PG inserted. The averages of 4 simulations is shown. Error bars indicate standard deviation.

219

220 We then analyzed why this make-before-break model failed. Conceptually, if turgor pressure is not
221 present, all the PG beads are evenly spaced at $L_g = 2$ nm (the length of one tetrasaccharide) on the same
222 hoop. Matching the beads on the smaller hoop to those on the larger hoop would then create mismatches
223 (Fig. S3). With a difference in radius $\Delta r = 2$ nm, the new hoop's circumference would be $2\pi\Delta r = 12.56$
224 nm shorter than that of the existing hoop. Since there are $N_b = 400$ beads on the existing hoop, the
225 average mismatch per bead would be $\Delta s = 2\pi\Delta r/N_b \sim 0.0314$ nm, which is small compared to the


226 distance between the adjacent beads. However, if the first pair of beads on the two new strands (as
227 discussed above, we assumed new strands are synthesized in pairs) are in register with their templates on
228 the existing hoops (Fig. S3B), the second pair of new beads would be positioned ahead of their template
229 by a distance $\Delta s = 0.0314$ nm. After ~ 30 pairs of beads are added to the new strands, the accumulated
230 shifting of the strand tips would become $30\Delta s \sim 1$ nm, about half the distance between adjacent beads
231 (Fig. S3C). At this point reaching backward for the default crosslink template would become
232 unfavorable, so instead the enzymes might skip the default template and reach forward for an upstream
233 crosslink on the adjacent track (Fig. S3D). If such a skip occurred, the new strand tips would now trail
234 their template by a distance of ~ 1 nm. It would then take another 30 beads for the new tips to catch up
235 and once again be in register with their template (Fig. S3E). The cycle would then continue, leading to
236 template skipping every 60 beads and a complete new hoop of only 394 beads, 6 beads less than the
237 existing hoops. This would decrease the diameter of the midcell.

238

239 In the presence of turgor pressure, however, the cell wall expanded as peptide crosslinks were stretched
240 and tilted away from the long axis of the cylinder (Fig. 6). As a result, beads were no longer evenly
241 spaced on the same hoop. At breaks between glycan strands in the hoop, the gap between the adjacent
242 peptide crosslinks expanded from $2L_g = 4$ nm (Fig. 6A) to ~ 6.2 nm (Fig. 6B) as terminal peptides tilted
243 an average of 30° ($SD = 15^\circ$) (Fig. 6C). We observed that right before encountering a glycan break on
244 the existing strands, which occurred every ~ 14 beads, the new strand tips had gotten ahead of their
245 templates by an accumulated distance $s_a = 14\Delta s = 0.44$ nm (Fig. 6D). At the glycan break, though,
246 this small progress was more than offset by the 2.2-nm turgor pressure-induced expansion of the gap
247 (Fig. 6E). At this stage, the new strand tips even fell behind their templates (Fig. 6F). This lag did not
248 accumulate, however, because new strands also terminated, at which point the next new strands were

249 pulled forward (Fig. 6G). This meant that template beads were not skipped, the new hoops had the same
250 number of beads as the existing hoops, and constriction did not occur.

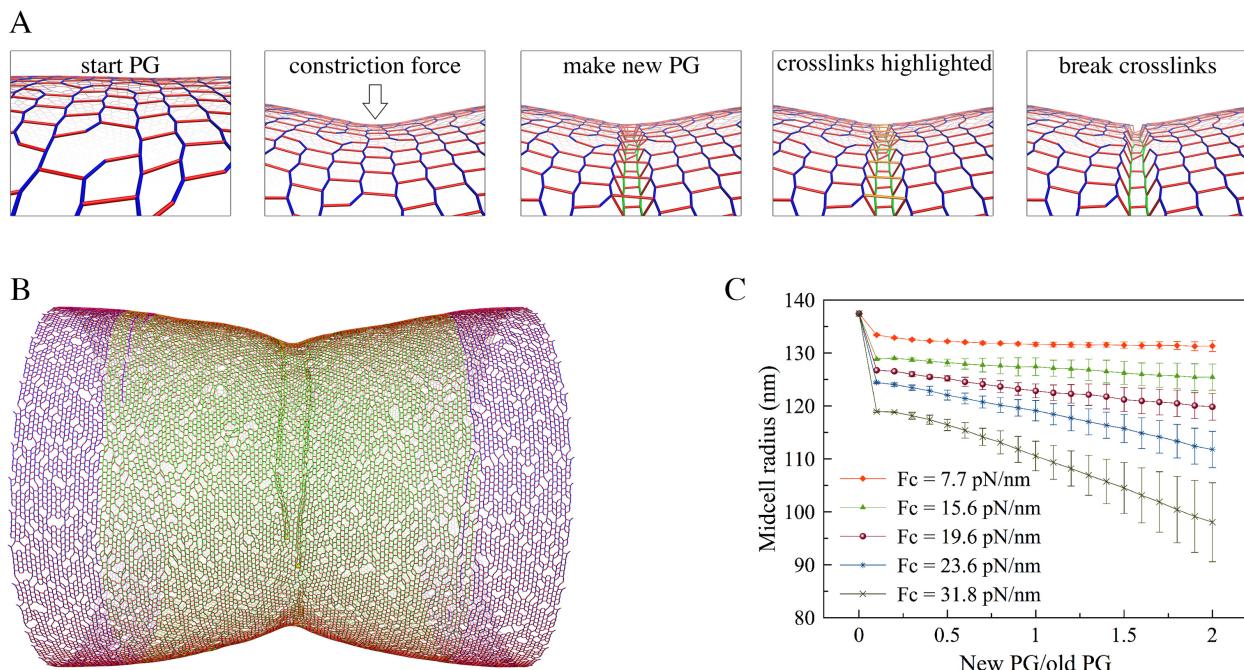
251

253 **Figure 6:** Effect of turgor pressure on the make-before-break mechanism. Two adjacent peptide crosslinks at a glycan break
254 in a hoop are highlighted in cyan for visualization. (A) Without turgor pressure, the PG was well-ordered and the distance
255 between the highlighted crosslinks was 4 nm. (B) Under turgor pressure, the cylinder expanded, peptides tilted, and the
256 distance between the highlighted crosslinks increased to ~6.2 nm. θ depicts the tilting angle of a peptide crosslink. (C)
257 Histogram of the tilting angles of all the peptide crosslinks (blue) and those connecting glycan termini (red). (D) An oblique
258 view showing insertion of two new glycan strands in a make-before-break mechanism. When the new strand tips reach the
259 first highlighted crosslink, they get ~0.4 nm ahead of their templates. (E) At the second highlighted crosslink, this small gain
260 is offset by the additional 2.2 nm enlargement of the distance between the two crosslinks. (F) After the second highlighted
261 crosslink, the strand tips fall behind their templates. (G) A break in the new glycan strands (indicated by the arrow) pulls the
262 new strands forward, preventing them from falling behind their templates.

263

264 Since cell expansion due to turgor pressure varies with cell size (Fig. S4A), the difference in radius of
265 the cell wall Δr between a relaxed cell and a pressurized cell can be negligible for cells of sufficiently

266 small sizes. For example, for cells with circumference of fewer than 150 tetrasaccharides (corresponding
267 to a diameter of ~100 nm), Δr would be smaller than 2 nm, which is the assumed thickness of one PG
268 layer (Fig. S4B). In this case, a make-before-break mechanism could plausibly drive division in the
269 absence of a constrictive force. In addition to cell width, turgor pressure may vary between cells. While
270 most studies report turgor pressure in the range of 2–4 atm in Gram-negative bacteria (Reed and
271 Walsby, 1985; Koch and Pinette, 1987; Cayley et al., 2000), a turgor pressure as low as 0.3 atm has been
272 reported (Deng et al., 2011). At this low turgor pressure, cells of circumference smaller than 300
273 tetrasaccharides would expand less than 2 nm in radius (Fig. S4B). Still, for a make-before-break
274 mechanism to be effective in a cell the size of an *E. coli* (~1500 tetrasaccharides in circumference), the
275 turgor pressure would need to be on the order of 0.03 atm to make the radius expansion negligible (Fig.
276 S4C).


277

278 **Make-before-break in the presence of a constrictive force**

279 Our observations suggested that in order for the make-before-break PG remodeling mechanism to be
280 effective in constriction, the midcell must be in a relaxed state. We reasoned that a constrictive force
281 squeezing the midcell could create this condition by restoring the gaps between adjacent peptide
282 crosslinks at glycan breaks from ~6.2 nm to their relaxed size of ~4 nm (Fig. 7A). Implementing a
283 constrictive force per circumference length F_c smaller than ~20 pN/nm resulted in an initial constriction
284 that did not completely relax the midcell. Predictably, in this scenario, insertion of new PG with a make-
285 before-break mechanism did not cause further constriction (Fig. 7C). When F_c was $\gtrsim 20$ pN/nm, the
286 midcell was completely relaxed or even squeezed to a smaller radius than the unpressurized cell (Fig.
287 2E). As we expected, in this condition make-before-break PG remodeling could now reduce the midcell
288 radius (Fig. 7B, 7C). Note that while the constriction force alone could drive division if the magnitude of

289 F_c was larger than 20 pN/nm, reducing the midcell to a compressed state (Fig. 2E), in the presence of the
290 make-before-break mechanism, division started to occur at $F_c = 20$ pN/nm since reducing the midcell to
291 a relaxed state was sufficient.

292

538

540 **Figure 7:** Cell wall synthesis in the presence of both a constrictive force and the make-before-break mechanism. (A)
541 Representative snapshots of a simulation sequence: the constriction force caused an initial constriction, and new PG was
542 made underneath the existing network in complete hoops before crosslinks (highlighted in orange) above the new hoops were
543 cleaved. (B) A snapshot of the sacculus showing that constriction occurred upon insertion of new PG when the force per
544 circumference $F_c = 23.6$ pN/nm. (C) Profiles of the midcell radius with respect to the inserted amount of new PG. Each trace
545 shows the average of 4 simulations. Error bars indicate standard deviation.

546

547

302 **Discussion**

303 Together, our results demonstrate how 3D modeling of molecular details can provide insights into
304 complex symmetry-breaking processes such as cell division. By simulating how rod-shaped Gram-
305 negative bacteria could divide their cell walls, we found that a constrictive force is the key factor driving
306 constriction, while cell wall remodeling by a make-before-break mechanism can only facilitate the
307 process. We note, however, that our results are limited by three assumptions: (1) PG synthesis enzymes
308 only act on substrates locally in a complex, (2) a force generator (presumably FtsZ) provides a
309 constrictive force at the midcell during cell division, and (3) the cell can remodel its cell wall by a make-
310 before-break mechanism in which new hoops of PG are made inside the existing hoops before peptide
311 crosslinks on the old hoops are cleaved. Note that the original make-before-break model was proposed
312 for individual glycan strands, not complete hoops of strands (Koch, 1990; Höltje, 1993). While
313 experiments are needed to validate or refute these assumptions, our work provides, to our knowledge,
314 the first *in silico* insights into how cells might employ different driving forces to divide their cell walls.

315

316 **Conceptual models of cell wall division**

317 To decrease the radius of the midcell, the cell needs to add smaller and smaller hoops of new PG.
318 Conceptually, this can occur by three models. (1) Because existing PG hoops are stretched by turgor
319 pressure, if by some unknown mechanism new PG hoops are stretched even further at the time they are
320 incorporated between existing hoops, the new hoops would have fewer PG beads and therefore become
321 smaller as the system relaxes. (2) If a mechanism exists to initially compress existing hoops at the
322 midcell and new, relaxed PG hoops are incorporated between these existing hoops, the new hoops would
323 have fewer beads and become smaller upon relaxation. (3) If a mechanism exists to initially relax
324 existing hoops at the midcell and new, also relaxed, PG hoops are made inside existing PG hoops, the

325 new hoops would again have fewer beads. Here we showed that Model 2 is plausible with a constriction
326 force alone and Model 3 is plausible with a combination of a constriction force and a make-before-break
327 mechanism. We did not simulate Model 1 as we judge it unlikely to occur in real cells. Nevertheless, we
328 cannot currently rule out the possibility that an unknown force pulls the enzymes forward, stretching the
329 new glycan strands before incorporating them. Nor can we rule out the possibility that cells might divide
330 by a completely different mechanism that has not yet been discussed in the literature.

331

332 **The role of a constrictive force**

333 FtsZ filaments have been shown to be able to constrict liposomes ([Osawa and Erickson, 2013](#)), but it is
334 unclear if they exert a constrictive force on the membrane *in vivo* and if this force is required for cell
335 division. Here we found *in silico* that to make new PG hoops smaller than existing hoops, the midcell
336 needs to be initially constricted to at least a relaxed state, with further constriction occurring only after
337 new PG is inserted. In this model, the constriction rate is limited by the slower of either the force
338 generator (presumably FtsZ) or the PG synthesis rate. Therefore, the finding by Coltharp et al. that the
339 inward growth rate of the cell wall is limited by the rate of PG synthesis but did not change even when
340 the GTP hydrolysis rate of FtsZ was reduced 90% ([Coltharp et al., 2016](#)) might simply reflect that the
341 PG synthesis rate is much slower than the action of FtsZ. Indeed, it has been reported that an FtsZ
342 mutant with a GTP hydrolysis rate 3% that of wild type FtsZ resulted in very slow growth of colonies
343 ([Redick et al., 2005](#)).

344

345 In our model, the total initial constriction force needed to be at least \sim 15 nN (corresponding to a force
346 per circumference $F_c \sim$ 20 pN/nm) to enable cell wall division. Assuming that the constrictive force is
347 generated by FtsZ, each monomer of which has been estimated by molecular dynamics simulations to

348 generate 30 pN (Hsin et al., 2012), our estimated force is equivalent to the action of 500 FtsZ monomers,
349 which could form a continuous filament \sim 2.2 μ m long or 15 filaments of an average length of 150 nm.
350 This is reasonable, considering an estimated \sim 5-7,000 FtsZ molecules per cell measured in *E. coli*
351 (Erickson et al., 2010) and the fact that our simulated sacculus is a third the size of an *E. coli* cell. Note
352 that it has recently been speculated that excess membrane synthesis might also generate a constrictive
353 force (Osawa and Erickson, 2018).

354

355 **Can cell wall growth alone drive constriction?**

356 While cell wall growth has been speculated to partially or primarily drive constriction during cell
357 division (Meier and Goley, 2014; Coltharp et al., 2016), our simulations showed that cell wall growth
358 via a make-before-break mechanism failed to cause cell division in the absence of a constriction force.
359 We found that for the make-before-break mechanism to have an effect, the new PG hoops must be made
360 inside relaxed existing hoops and therefore a constriction force is needed to initially relax the midcell. In
361 theory, the need for a constriction force could be bypassed if the enzymes could make a multi-layered
362 septum. Once the septum thickness was equal to or larger than the difference in radius between the
363 pressurized cell and the relaxed cell, the innermost layer of the septum would be in a relaxed state,
364 allowing the next PG layer to be made of hoops containing fewer PG beads (Fig. S5). For this scenario
365 to occur, in the case of our modeled cell wall, which had a radius of 127.5 nm when relaxed and 137.5
366 nm when pressurized, the septum would have to contain at least five PG layers (assuming each layer is 2
367 nm thick). By this logic, a cell the size of an *E. coli*, whose circumference is \sim 1500 tetrasaccharides,
368 would need a septum \sim 65 nm thick for this mechanism to drive division (Fig. S4A-B). However, we saw
369 no such septa in our electron cryotomograms of dividing cells. We therefore think it unlikely that this
370 mechanism is the primary driver of cell division.

371 **Methods**

372 **Simulation of cell wall synthesis**

373 Here we only briefly describe our simulation system. For a more detailed description, please see our
374 previous paper ([Nguyen et al., 2015](#)).

375

376 **Cell wall**

377 We coarse-grained the cell wall such that each glycan strand is represented as a chain of beads, each
378 bead represents one tetrasaccharide, and the peptides attached to the beads alternate between the left and
379 right sides. Adjacent glycan beads are connected by springs of a relaxed length $l_g = 2$ nm and a spring
380 constant $k_g = 5.57$ nN/nm. The bending stiffness of the strand is $k_b = 8.36 \cdot 10^{-20}$ J and the relaxed
381 angle at the beads is $\theta_0 = 3.14$ rad. We modeled peptide crosslinks as worm-like chains such that if the
382 peptide end-to-end extension x is larger than $x_0 = 1.0$ nm the following force is applied:

$$383 F(x) = k_{WLC} \left[\frac{L_c - x_0}{4\{1 - (x - x_0)/(L_c - x_0)\}^2} - \frac{L_c - x_0}{4} + x - x_0 \right]$$

384 where $L_c = 4.8$ nm is the contour length of the peptide crosslink and $k_{WLC} = 15.0$ pN/nm is the force
385 constant.

386

387 Previously, in order to reduce the computational cost, most of our simulations started with a small
388 sacculus with a circumference composed of 100 tetrasaccharides ([Nguyen et al., 2015](#)). In the current
389 simulations, to allow the midcell radius to constrict over time, we used a starting sacculus with a
390 circumference of 400 tetrasaccharides. To reduce the computational cost, since PG remodeling only
391 occurs at the midcell during cell division, we removed the two caps of the starting sacculus and built a
392 cylinder only 40 glycan hoops wide.

393 **PG remodeling enzymes**

394 Four enzyme complexes were added at the midcell. In each complex, three types of PG remodeling
395 enzymes are explicitly represented as beads and a house-keeping enzyme that cleaves the long tails of
396 glycan strands is implicitly implemented. Specifically, there are two transglycosylases that each
397 synthesizes a glycan strand (so two strands emerge from the complex) (Fig. S1). On average, each
398 transglycosylase adds a tetrasaccharide bead every 10^3 time steps. Transglycosylase then translocates to
399 the strand tip to be ready to add another bead. Note that previously we hypothesized that
400 transpeptidation facilitates translocation. Specifically, the probability of translocation is once every $2 \cdot$
401 10^6 time steps if the last-added bead is not crosslinked, but this probability becomes once every $3 \cdot 10^4$
402 time steps after the last-added bead is crosslinked (these numbers were arbitrarily chosen because we
403 were not aware of experimentally-reported enzyme rates) (Nguyen et al., 2015). Considering that the
404 modeled sacculi in our current simulations were 4 times larger than those in our previous simulations, to
405 speed up the current simulations, we increased the probability of transpeptidation-facilitated
406 translocation 10 times to become once every $3 \cdot 10^3$ time steps. To maintain an average glycan strand
407 length of 14 tetrasaccharides, the termination probability of strand elongation is also increased two-fold
408 to once every $2 \cdot 10^6$ time steps. Note also that in our previous simulations, interactions between
409 transglycosylases and outer-membrane lipoproteins LpoA and LpoB were implemented that prevented
410 the transglycosylase-lipoprotein complex from crossing through glycan strands or peptide crosslinks. To
411 enable the make-before-break mechanism, these transglycosylase-lipoprotein interactions were removed
412 from the current model, allowing transglycosylases to freely move across strands and crosslinks.
413
414 One endopeptidase exists in each enzyme complex to cleave existing peptide crosslinks. In our previous
415 simulations, when an endopeptidase diffused across a crosslink, the enzyme cleaved the crosslink with a

416 probability of 0.1. To speed up our current simulations, every 10 time steps, if the distance from the
417 endopeptidase to a crosslink is within 3.0 nm, the enzyme captures then cleaves the crosslink. If there
418 are multiple crosslinks within this reaction distance, the probability of crosslink i being chosen is
419 calculated as

420

$$P_i = \frac{1/d_i^2}{\sum 1/d_i^2}$$

421 where d_i is the distance from the endopeptidase to crosslink i .

422

423 There are three transpeptidases in each complex, one crosslinking the two new strands to one another
424 and the other two crosslinking the pair to the existing network (Fig. S1). Previously, the probability of a
425 transpeptidase capturing a peptide of a PG bead at a distance d was given as $P_{tp} = (1 - d/d_0)^2$, where
426 $d_0 = 2.0$ nm was the reaction distance. To speed up the current simulations, d_0 is increased to 3.0 nm.
427 Note that increasing the modeled rates of the enzymes did not change the principles driving cell wall
428 remodeling in our simulations.

429

430 **Turgor pressure**

431 As in our previous simulations, turgor pressure was chosen to be $P_{tg} = 3.0$ atm. The force on the
432 pressurized saccus of volume V is calculated as $F_{tg} = -\nabla E_{vol}$, where $E_{vol} = -P_{tg}V$ is the work done
433 by turgor pressure to inflate the saccus.

434

435 **Constriction force**

436 When a constriction force is applied at the midcell, it creates an inward pressure P_c satisfying

437

$$F_c = \int P_c dx_m$$

438 where F_c is the constriction force divided by the circumference length and x_m is the distance from the
439 midcell. To model the force, if the absolute value of x_m is less than 50 nm, a constriction pressure
440 $P_c(x_m) = P_0 e^{-x_m^2/\sigma^2}$ is applied, where $\sigma = 10$ nm and P_0 is calculated using the following equation

441

$$P_0 = \frac{F_c}{\int e^{-x_m^2/\sigma^2} dx_m}$$

442

443 Make-before-break mechanism

444 To implement the make-before-break mechanism, existing peptide crosslinks are marked as
445 “constraining crosslinks” once new glycan strands are formed underneath the crosslinks. Cleavage of a
446 constraining crosslink is delayed for 10^6 time steps. After that, cleavage can occur by four scenarios: (a)
447 an endopeptidase is within 2 nm of the constraining crosslink, (b) two PG layers exist beneath the
448 crosslink, (c) a random cleavage with a probability of once every 10^7 time steps, or (d) the constraining
449 crosslink has existed for 10^9 time steps. We found that these probabilities resulted in a septum ~ 1 PG
450 layer thick.

451

452 In real cells, different PG layers would be separated due to the volume exclusion effect. To mimic this
453 effect in our model, if a glycan strand is underneath a constraining crosslink and their separation d is
454 less than the thickness of one PG layer $t_g = 2.0$ nm, a repulsive force $F_r = k_r(t_g - d)$ is exerted on the
455 crosslink and the two PG beads that are closest to the crosslink, where the force constant k_r was
456 arbitrarily chosen to be 200 pN/nm.

457

458

459

460 **Electron cryotomography**

461 Bacterial strains were grown and imaged as described: *Caulobacter crescentus* (Yao et al., 2017);

462 *Escherichia coli* (Pilhofer et al., 2011); *Myxococcus xanthus* (Chang et al., 2016); *Cupriavidus necator*

463 (Beeby et al., 2012); *Shewanella oneidensis* (Kaplan et al., 2018).

464

465 **Measurement of the distance between the inner and outer membranes**

466 A tomographic slice 10 nm thick through a central plane along the long axis of the cell was captured

467 using the IMOD software (Kremer et al., 1996). Each membrane (inner and outer) was manually traced

468 and represented by a set of points evenly spaced along the line. This process was repeated for the

469 membranes on the opposite side of the cell. The location of the midcell was determined by the shortest

470 distance between the two traces of the inner membrane. The distance between the inner and outer

471 membrane on each side was then calculated for points up to 500 nm from the midcell in both directions.

472

473 **Acknowledgments**

474 We thank Martin Pilhofer for sharing the electron cryotomogram of an *E. coli* cell shown in Figure 4,

475 Debnath Ghosal for helpful discussions, and Andrew Jewett for assisting with membrane-tracing

476 software. This work was supported by the National Institutes of Health (grant R35 GM122588 to G.J.J.).

477

478 **References**

479 Beeby, M., Cho, M., Stubbe, J., and Jensen, G.J. (2012). Growth and Localization of
480 Polyhydroxybutyrate Granules in *Ralstonia eutropha*. *J. Bacteriol.* **194**, 1092–1099.

481 Bi, E., and Lutkenhaus, J. (1991). FtsZ ring structure associated with division in *Escherichia coli*.
482 *Nature* **354**, 161–164.

483 Bisson-Filho, A.W., Hsu, Y.-P., Squyres, G.R., Kuru, E., Wu, F., Jukes, C., Sun, Y., Dekker, C., Holden, S.,
484 VanNieuwenhze, M.S., et al. (2017). Treadmilling by FtsZ filaments drives peptidoglycan synthesis
485 and bacterial cell division. *Science* **355**, 739–743.

486 Cayley, D.S., Guttman, H.J., and Record, M.T. (2000). Biophysical characterization of changes in
487 amounts and activity of *Escherichia coli* cell and compartment water and turgor pressure in
488 response to osmotic stress. *Biophys. J.* **78**, 1748–1764.

489 Chang, Y.-W., Rettberg, L.A., Treuner-Lange, A., Iwasa, J., Søgaard-Andersen, L., and Jensen, G.J.
490 (2016). Architecture of the type IVa pilus machine. *Science* **351**, aad2001.

491 Cho, H., Uehara, T., and Bernhardt, T.G. (2014). Beta-Lactam Antibiotics Induce a Lethal
492 Malfunctioning of the Bacterial Cell Wall Synthesis Machinery. *Cell* **159**, 1300–1311.

493 Coltharp, C., Buss, J., Plumer, T.M., and Xiao, J. (2016). Defining the rate-limiting processes of
494 bacterial cytokinesis. *Proc. Natl. Acad. Sci. U. S. A.* **113**, E1044–1053.

495 Deng, Y., Sun, M., and Shaevitz, J.W. (2011). Direct measurement of cell wall stress stiffening and
496 turgor pressure in live bacterial cells. *Phys. Rev. Lett.* **107**, 158101.

497 Domínguez-Escobar, J., Chastanet, A., Crevenna, A.H., Fromion, V., Wedlich-Söldner, R., and
498 Carballido-López, R. (2011). Processive Movement of MreB-Associated Cell Wall Biosynthetic
499 Complexes in Bacteria. *Science* **333**, 225–228.

500 Egan, A.J.F., and Vollmer, W. (2012). The physiology of bacterial cell division. *Ann. N. Y. Acad. Sci.*

501 Erickson, H.P. (2017). How bacterial cell division might cheat turgor pressure – a unified
502 mechanism of septal division in Gram-positive and Gram-negative bacteria. *BioEssays* **39**, n/a-n/a.

503 Erickson, H.P., Anderson, D.E., and Osawa, M. (2010). FtsZ in bacterial cytokinesis: cytoskeleton
504 and force generator all in one. *Microbiol. Mol. Biol. Rev. MMBR* **74**, 504–528.

505 Eun, Y.-J., Kapoor, M., Hussain, S., and Garner, E.C. (2015). Bacterial filament systems: towards
506 understanding their emergent behavior and cellular functions. *J. Biol. Chem.*

507 Gan, L., and Jensen, G.J. (2012). Electron tomography of cells. *Q. Rev. Biophys.* **45**, 27–56.

508 Gan, L., Chen, S., and Jensen, G.J. (2008). Molecular organization of Gram-negative peptidoglycan.
509 *Proc. Natl. Acad. Sci.* **105**, 18953–18957.

510 Garner, E.C., Bernard, R., Wang, W., Zhuang, X., Rudner, D.Z., and Mitchison, T. (2011). Coupled,
511 Circumferential Motions of the Cell Wall Synthesis Machinery and MreB Filaments in *B. subtilis*.
512 *Science* *333*, 222–225.

513 Glauner, B., Höltje, J.V., and Schwarz, U. (1988). The composition of the murein of *Escherichia coli*.
514 *J. Biol. Chem.* *263*, 10088–10095.

515 Harz, H., Burgdorf, K., and Höltje, J.-V. (1990). Isolation and separation of the glycan strands from
516 murein of *Escherichia coli* by reversed-phase high-performance liquid chromatography. *Anal.*
517 *Biochem.* *190*, 120–128.

518 Höltje, J.-V. (1993). “Three for one” — a Simple Growth Mechanism that Guarantees a Precise Copy
519 of the Thin, Rod-Shaped Murein Sacculus of *Escherichia coli*. In *Bacterial Growth and Lysis*, M.A. de
520 Pedro, J.-V. Höltje, and W. Löffelhardt, eds. (Springer US), pp. 419–426.

521 Hsin, J., Gopinathan, A., and Huang, K.C. (2012). Nucleotide-dependent conformations of FtsZ
522 dimers and force generation observed through molecular dynamics simulations. *Proc. Natl. Acad.*
523 *Sci. U. S. A.* *109*, 9432–9437.

524 Kaplan, M., Ghosal, D., Subramanian, P., Oikonomou, C.M., Kjaer, A., Pirbadian, S., Ortega, D.R., El-
525 Naggar, M.Y., and Jensen, G.J. (2018). The structural complexity of the Gammaproteobacteria
526 flagellar motor is related to the type of its torque-generating stators. *BioRxiv* 369397.

527 Koch, A.L. (1990). Additional arguments for the key role of “smart” autolysins in the enlargement
528 of the wall of gram-negative bacteria. *Res. Microbiol.* *141*, 529–541.

529 Koch, A.L., and Pinette, M.F. (1987). Nephelometric determination of turgor pressure in growing
530 gram-negative bacteria. *J. Bacteriol.* *169*, 3654.

531 Kremer, J.R., Mastronarde, D.N., and McIntosh, J.R. (1996). Computer visualization of three-
532 dimensional image data using IMOD. *J. Struct. Biol.* *116*, 71–76.

533 Li, Z., Trimble, M.J., Brun, Y.V., and Jensen, G.J. (2007). The structure of FtsZ filaments *in vivo*
534 suggests a force-generating role in cell division. *EMBO J.* *26*, 4694–4708.

535 Meier, E.L., and Goley, E.D. (2014). Form and function of the bacterial cytokinetic ring. *Curr. Opin.*
536 *Cell Biol.* *26*, 19–27.

537 Nguyen, L.T., Gumbart, J.C., Beeby, M., and Jensen, G.J. (2015). Coarse-grained simulations of
538 bacterial cell wall growth reveal that local coordination alone can be sufficient to maintain rod
539 shape. *Proc. Natl. Acad. Sci.* *112*, E3689–E3698.

540 Osawa, M., and Erickson, H.P. (2013). Liposome division by a simple bacterial division machinery.
541 *Proc. Natl. Acad. Sci.* *201222254*.

542 Osawa, M., and Erickson, H.P. (2018). Turgor Pressure and Possible Constriction Mechanisms in
543 Bacterial Division. *Front. Microbiol.* *9*.

544 Pilhofer, M., Ladinsky, M.S., McDowall, A.W., Petroni, G., and Jensen, G.J. (2011). Microtubules in
545 Bacteria: Ancient Tubulins Build a Five-Protofilament Homolog of the Eukaryotic Cytoskeleton.
546 PLOS Biol. 9, e1001213.

547 Redick, S.D., Stricker, J., Briscoe, G., and Erickson, H.P. (2005). Mutants of FtsZ Targeting the
548 Protofilament Interface: Effects on Cell Division and GTPase Activity. J. Bacteriol. 187, 2727–2736.

549 Reed, R.H., and Walsby, A.E. (1985). Changes in turgor pressure in response to increases in
550 external NaCl concentration in the gas-vacuolate cyanobacterium *Microcystis* sp. Arch. Microbiol.
551 143, 290–296.

552 Szwedziak, P., Wang, Q., Bharat, T.A.M., Tsim, M., and Löwe, J. (2014). Architecture of the ring
553 formed by the tubulin homologue FtsZ in bacterial cell division. ELife e04601.

554 Turner, R.D., Mesnage, S., Hobbs, J.K., and Foster, S.J. (2018). Molecular imaging of glycan chains
555 couples cell-wall polysaccharide architecture to bacterial cell morphology. Nat. Commun. 9, 1263.

556 Vollmer, W., Blanot, D., and de Pedro, M.A. (2008). Peptidoglycan structure and architecture. FEMS
557 Microbiol. Rev. 32, 149–167.

558 Yang, X., Lyu, Z., Miguel, A., McQuillen, R., Huang, K.C., and Xiao, J. (2017). GTPase activity-coupled
559 treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. Science 355, 744–
560 747.

561 Yao, Q., Jewett, A.I., Chang, Y.-W., Oikonomou, C.M., Beeby, M., Iancu, C.V., Briegel, A., Ghosal, D., and
562 Jensen, G.J. (2017). Short FtsZ filaments can drive asymmetric cell envelope constriction at the
563 onset of bacterial cytokinesis. EMBO J. e201696235.

564