

1 Dogs, but not wolves, lose their sensitivity towards novelty with 2 age

3
4
5 Christina Hansen Wheat^{1*}, Wouter van der Bijl¹ & Hans Temrin¹
6
7 ¹*Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden*
8 *Correspondence: Christina Hansen Wheat, christina.hansen@zoologi.su.se
9

10 11 **Abstract**

12 Selection on behavioural traits holds a prominent role in the domestication of animals, with
13 reductions in fear behaviour considered to be a key component. Specifically, there is a
14 general assumption that domesticated species express reduced fear and reactivity towards
15 novel stimuli compared to their ancestral species. However, very few studies have explicitly
16 tested this proposed link between domestication and reduced fear responses. Of the limited
17 number of studies experimentally addressing the alterations of fear during domestication, the
18 majority have been done on canids. Previous work in foxes, wolves and dogs has led to the
19 suggestion that decreased expression of fear in domesticated animals is linked to a
20 domestication driven delay in the first onset of fearful behaviour during early ontogeny.
21 Thus, wolves are expected to express exaggerated fearfulness earlier during ontogeny
22 compared to dogs. However, while adult dogs are less fearful towards novelty than adult
23 wolves and wolf-dog hybrids, consensus is lacking on when differences in fear expression
24 arise in wolves and dogs. Here we present the first extended examination of fear development
25 in hand-raised dogs and European grey wolves, using repeated novel object tests from six to
26 26 weeks of age. Contrary to expectations, we found no evidence in support of an increase in
27 fearfulness in wolves with age or a delayed onset of fear response in dogs compared to
28 wolves. Instead, we found that dogs strongly reduced their fear response in the period
29 between six and 26 weeks of age, resulting in a significant species difference in fear
30 expression towards novelty at 26 weeks. Critically, as wolves did not differ in their fear
31 response towards novelty over time, the detected species difference was caused solely by a
32 progressive reduced fear response in dogs. Our results thereby suggest that species
33 differences in fear of novelty between wolves and dogs are not caused by a domestication
34 driven shift in the first onset of fear response. Instead, we suggest that a loss of sensitivity
35 towards novelty with age in dogs causes the difference in fear expression towards novelty in
36 wolves and dogs.
37

38
39 **40 Key words:** *Fear, domestication, sensitive period, behavioural ontogeny, neophobia, dogs,*
41 *wolves*

42
43
44
45
46
47
48
49
50
51

52 **Introduction**

53 Humans have successfully domesticated a wide range of plants and animals and abundant
54 evidence demonstrates how domesticated species express dramatically altered phenotypes
55 compared to their wild counterparts (Driscoll et al. 2009). In animals, selection on
56 behavioural traits had a prominent role in creating the domesticated phenotype (Belyaev et al.
57 1985; Trut 1999). In wild animal populations, fear is a key behaviour as a timely and proper
58 response to novelty (e.g. flight response versus exploration) has direct fitness consequences
59 (Boissy 1995; Weidenmayer 2009). In contrast, in domesticated animals living in human-
60 controlled environments, strong fear responses and high reactivity towards novelty are
61 undesirable traits (Leiner and Fendt 2011), and selection for docility (i.e. tameness) and
62 against fearfulness was likely a key component in the successful domestication of animals
63 (Belyaev et al. 1985; Trut 1999). Consequently, there is now a general assumption that
64 domesticated species express reduced flight distances and reactivity towards novel stimuli
65 (Zeder 2012) compared to their ancestral species. However, though good evidence exists that
66 cortisol secretion and brain structures associated with fear responses have been significantly
67 reduced in domesticated animals (Kruska 1988; Trut et al. 2009), excessive fear behaviour
68 prevails in various domesticated species (Hemsworth et al. 1996), including rabbits (Csatádi
69 et al. 2005), chickens (Jones and Waddington 1992), dogs (Döring et al. 2009) and horses
70 (Christensen et al. 2008). These discrepancies impair our understanding of how the
71 expression of fear has changed during animal domestication and this shortcoming is further
72 complicated by the fact that very few studies have explicitly tested the proposed link between
73 domestication and reduced fear responses.

74

75 In wild populations appropriate fear responses are formed and modified throughout ontogeny,
76 during which juvenile animals gradually combine individual experience and social
77 information, thereby developing the ability to discriminate between threatening and neutral
78 stimuli (Scott and Fuller 1965; Griffin 2004; Weidenmayer 2009). Ontogeny has been
79 modified in several ways during domestication and compared to ancestral species,
80 domesticated animals express altered developmental rates, a phenomenon known as
81 heterochrony (Goodwin et al. 1997; Price 1999; Dobney and Larson 2006). Specifically,
82 domesticated animals express accelerated and/or delayed onsets of various ontogenetic
83 stages, such as earlier sexual maturation and the retention of juvenile traits into adulthood
84 (Morey 1994; Price 1999; Coppinger et al. 1987; Crockford 2002). Heterochrony has been
85 suggested to affect behavioural ontogeny by prolonging the sensitive period (Martin 1978;
86 Belyaev et al. 1985; Gariépy et al. 2001; Wilkins et al. 2014), an important period during
87 behavioural development in which the juvenile animal is particularly sensitive to imprint on
88 and form social bonds with conspecifics (Scott 1962; Scott and Fuller 1965; Freedman et al.
89 1961; Coppinger and Coppinger 2001). During the sensitive period juvenile animals show
90 increased exploratory behaviour, as they readily approach novel stimuli and thereby learn
91 about and socialize with their environment (Morrow et al. 2015). Importantly, the end of the
92 sensitive period is marked by a progressive increase in fear and decreased exploration of
93 novelty (Freedman et al. 1961; Belyaev et al. 1985). Based primarily on the findings in a
94 long-term selection study on silver foxes (*Vulpes vulpes*), it has been suggested that
95 domestication causes a shift in the sensitive period resulting in a delayed onset of fearful
96 response in domesticated compared to non-domesticated animals (Belyaev et al. 1985; Trut,
97 et al. 2004) (but see also Coppinger and Coppinger, 2001). While this might indicate that
98 differences in fear expression between domesticated and non-domesticated animals arise
99 already during early ontogeny, only a very limited body of studies have experimentally
100 compared the ontogeny of fear in wild and domestic species under controlled conditions and
101 with ambiguous results (Bilkó and Altbäcker 2000; Lord 2013). Therefore, it remains largely
102 an open question whether the ontogeny of fear and the sensitive period have been altered by
103 domestication.

104

105 The domestic dog (*Canis familiaris*) is an excellent study species when addressing questions
106 about how domestication has affected behavioural ontogeny. Domestication of the dog from
107 the grey wolf (*Canis lupus*) occurred at least 15,000 years ago (Driscoll et al. 2009), making
108 the dog the first domesticated species and with the ancestral species extant, the opportunities
109 for comparisons are ideal (Price 2002). Studies of behavioural ontogeny in dogs have largely
110 focused on the sensitive period, and fear of novelty in the dog puppy has traditionally been
111 reported to manifest at eight weeks of age and continually increase onward (Scott and
112 Marston 1950; Scott 1958; Freedman et al. 1961; Scott and Fuller 1965). However, recent
113 evidence suggests that the development of fear might be highly breed-specific and subject to
114 considerable variation (Morrow et al. 2015), thereby highlighting substantial gaps in our
115 knowledge of the ontogeny of fear in dogs. In wolves, consensus on when fear behaviour is
116 established is lacking, with the onset of fearful response reported to occur as varied as four to
117 eight weeks of age across studies (Scott and Marston 1950; Fentress 1967; Wooply and
118 Ginsburg 1967; Fox 1972; Zimen 1987; Lord 2013). The ambiguity of these wolf studies is
119 further complicated by the fact that the majority of them were conducted over a short period
120 of time and/or focused on isolated individuals or single litters, thereby limiting our ability to
121 generalize from these findings. Additionally, a recent study found no difference in fear
122 related behaviours or the latency to make contact with a novel object in six and eight week
123 old wolves and dogs (Marshall-Pescini et al. 2017), thereby suggesting that wolves might not
124 express fear towards novelty at an earlier age than dogs. Thus, while adult wolves (Moretti et
125 al. 2015) and wolf-dog hybrids (Hansen Wheat et al. 2018) are more fearful of novelty than
126 dogs, the question of when during development species differences in fear expression is
127 established remains unresolved. Furthermore, both juvenile and adult wolves explore and
128 interact with novel objects more than similar aged dogs (Moretti et al. 2015; Marshall-Pescini
129 et al. 2017), and adult dogs have been reported to be less likely to approach a novel object
130 than wolves (Moretti et al. 2015). While these findings have been interpreted as less interest
131 in novelty, and not fear, in dogs compared to wolves (Moretti et al. 2015), more studies are
132 needed to tease these components apart and provide more detailed insight into how, and at
133 which developmental stage, domestication changes fear expression in wolves and dogs.

134

135 The lack of consensus across studies comparing wolves and dogs to uncover implications of
136 domestication illustrates a fundamental challenge in this field, namely the combination of
137 limited animal availability and the enormous effort necessary to hand-raise, socialize and test
138 acquired animals. These challenges inherently lead to small sample sizes rarely exceeding N
139 = 11 for wolves and N = 13 for dogs in contemporary studies where animals are hand-raised
140 under identical conditions for species comparisons (Miklósi et al. 2003; Marshall-Pescini et
141 al. 2017; Gácsi et al. 2005; Moretti et al. 2015; Range et al. 2015; Topál et al. 2005; Udell et
142 al. 2012; Udell et al. 2008). Hand-raising wolves and dogs under similar conditions is
143 imperative, as behavioural development is highly influenced by environmental factors
144 (Zimen 1987). Thus, because we heavily rely on these studies, with small sample sizes, to
145 further increase our understanding of the domestication driven behavioural changes from
146 wolf to dog, the importance of standardizing and reporting variation found across studies
147 comparing wolves and dogs becomes critical. Furthermore, wolves used in studies to uncover
148 the behavioural implications of domestication are predominantly North American wolves
149 (Udell et al. 2008; Udell et al. 2012; Moretti et al. 2015; Range et al. 2015; Marshall-Pescini
150 et al. 2017), and implementing standardized studies also on other sub-species of wolves
151 might therefore add significant value to wolf-dog comparisons.

152

153 Here we examine the development of fear towards novelty in European grey wolves and dogs
154 during the first six months of life, using standardized methods for both hand-raising,
155 socializing (Klinghammer and Goodman 1987; Range and Virányi 2011; Udell et al. 2008)

156 and testing (Marshall-Pescini et al. 2017; Moretti et al. 2015). We tested three litters of
157 wolves (N = 13) and two litters of dogs (N = 12), hand-raised under identical conditions, at
158 six, 10, 14, 18, 22 and 26 weeks of age, i.e. before sexual maturity, in repeated novel object
159 tests. We used a new novel object in each of the six tests, choosing vastly different objects
160 between tests to avoid the risk of habituation (van Oers et al. 2005; Noer et al. 2015). Novel
161 objects were of different shape, size, colour and texture, and some objects included the
162 element of sound and/or movement, similar to objects that have previously been used in
163 novel object tests on dogs and wolves (Moretti et al. 2015; Marshall-Pescini et al. 2017). The
164 novel object test is an established method to quantify fear and exploration of novelty and has
165 been used on numerous species (Bremner-Harrison et al. 2004; Boogert et al. 2006;
166 Mainwaring et al. 2011; Moretti et al. 2015; Marshall-Pescini et al. 2017). As is commonly
167 applied in novel object tests, we used latency to approach and contact the novel object to
168 quantify fear (Boissy 1995; Malmkvist and Hansen 2002; Meehan and Mench 2002; Ley et
169 al. 2007; Moretti et al. 2015). Our longitudinal design allowed us to assess fear development
170 and expression in juvenile wolves and dogs over an unprecedented period of time, and
171 address our overall goal to test the hypothesis that domestication has altered fear responses in
172 dogs compared to wolves. Based on studies reporting delayed onset of fear behaviour in
173 domestic species (Martin and Fitzgerald 2005; Belyaev et al. 1985), including dogs and
174 wolves (Coppinger and Coppinger 2001; Lord 2013), we expected wolves to express
175 exaggerated fearfulness compared to dogs already at six to ten weeks of age by increased
176 latency to approach the novel object and decreased exploratory behaviour. Furthermore, we
177 predicted that domestication has lowered the interest of novelty in dogs (Brust and Guenther
178 2014; Moretti et al. 2015; Marshall-Pescini et al. 2017), and dogs therefore would express
179 decreased interest in investigating and manipulating the novel object compared to wolves
180 throughout the testing period.

181

182 **Materials and Methods**

183 *Ethical statement*

184 Daily care and all experiments were performed in accordance with relevant guidelines and
185 regulations under national Swedish Law. The experimental protocols in this study were
186 approved by the Ethical Committee in Uppsala, Sweden (approval number: C72/14).
187 Facilities and daily care routines were approved by the Swedish National Board of
188 Agriculture (approval number: 5.2.18-12309/13).

189

190 *Study animals*

191 During 2014 – 2016 two litters of Alaskan huskies (N = 12) and three litters of European grey
192 wolves (N = 13) were hand-raised and extensively socialized under similar conditions from
193 the age of 10 days. This set-up was chosen to minimize environmental bias, including
194 maternal effects, which is well-documented to affect the development of behavioural patterns
195 (Wilsson and Sundgren 1998; Bray et al. 2017; Clark and Galef 1982). The Alaskan husky is
196 a not a registered dog breed, but a type of dog specifically bred for dog sledding, consisting
197 of a blend of registered dog breeds including Siberian Husky, Alaskan Malamute, Greenland
198 Dog and various pointer breeds. Besides the issue of availability, Alaskan husky was our dog
199 type of choice based on the morphological similarities with wolves (i.e. erect ears, similar
200 size, long snouts etc.). This study was part of a bigger project to investigate domestication-
201 driven changes in behavioural ontogeny in dogs, including social behaviour such as
202 dominance. Thus, it was important to ensure that wolves and dogs had the same
203 morphological basis providing them with equal opportunities to perform the same
204 behavioural repertoires. Our choice of European grey wolves stands out as the majority of
205 wolf-dog comparisons are based on North American wolves (Udell et al. 2008; Udell et al.
206 2012; Moretti et al. 2015; Range et al. 2015; Marshall-Pescini et al. 2017). The dog litter
207 from 2014 consisted of five males and one female and the 2015 litter of three males and three

208 females. The three wolf litters consisted of three females and two males in 2014, two males in
209 2015 and four males and two females in 2016.

210
211 Puppies were raised within litters and socialization involved 24-hour presence of human
212 caregivers for the first two months. From two months of age, caregiver presence was
213 decreased with a few hours a day until three months of age and then further decreased during
214 every other night at four months of age. At six months of age, caregivers spent four to six
215 hours with the puppies a day. All wolf and dog litters were kept separate, but reared under
216 standardized conditions. From the age of 10 days to five weeks, puppies were reared in
217 identical indoor rooms and here after given access to smaller roofed outdoor enclosures. After
218 a week of habituation to the roofed outdoor enclosure, puppies were given access to a larger
219 fenced grass enclosure at six weeks of age. Hereafter the puppies had free access to all three
220 enclosures during the day and access to the indoor room and the roofed enclosure during the
221 night. When the puppies where three months old they were moved to large outdoor
222 enclosures (2,000 square meters), in which they remained for the rest of the study period. We
223 started behavioural observations at 10 days of age and behavioural testing was initiated at six
224 weeks of age. Testing procedures and exposure to the new environments were standardized
225 over all three years. As required by national law, all hand-raisers were ethically certified and
226 trained to handle animals. Furthermore, rules were implemented to assure that rearing was
227 standardized across all caregivers. This included that puppies were never disciplined, trained
228 or forced to have contact with their caregivers. From the age of eight weeks, puppies were
229 gradually exposed to strangers through the fence with the support of one or more human
230 caregivers.

231
232 *Experimental design*
233 To investigate the ontogeny of fear expression in wolves and dogs, we designed a
234 longitudinal experiment with novel object testing once a month starting at six weeks of age
235 and ending at 26 weeks of age. The reason we chose to start testing at six weeks of age was
236 to ensure that the puppies' senses were fully developed (Lord 2013). Novel object tests were
237 hereafter performed on a monthly basis at 10, 14, 18, 22 and 26 weeks of age using protocols
238 similar to previous studies subjecting wolves and dogs to novel object tests (Marshall-Pescini
239 et al. 2017; Moretti et al. 2015). To avoid environmental bias and disturbances by testing
240 wolves and dogs in their out door home enclosures, we chose to conduct our tests in an
241 indoor testing arena, which was familiar to both wolves and dogs. The equal familiarity
242 among wolves and dogs with the test room also ensured that animals would focus on the
243 novel object and not a novel environment (Moretti et al. 2015). In the test room (5x5 meters)
244 a novel object was presented, placed opposite of where the puppy would enter the room,
245 approximately four meters away from the door. This placement of the novel object ensured
246 that puppies would actively have to approach the object to investigate and interact with it.
247 Puppies were lead into the room by a caregiver, who quickly left the room and closed the
248 door. The duration of a trial was 10 minutes and trials were always monitored. Some trials (N
249 = 11, all wolves) were stopped prematurely to avoid destruction of the novel object. All test
250 were filmed with two mounted GoPro cameras (model 3-4, GoPro Inc.) on opposite sides of
251 the room.

252
253 *Novel objects*
254 Due to the repeated exposure to novel objects in our experimental design, we chose vastly
255 different objects between tests to avoid the risk of habituation (van Oers et al. 2005; Noer et
256 al. 2015). We therefore chose novel objects of different shape, size, colour and texture,
257 similar to objects that have previously been used for novel object tests on dogs and wolves
258 (Moretti et al. 2015). Increasing the complexity of the novel object, such as adding sound or
259 movement, has previously been used to avoid maturity and/or experience effects on

260 habituation in novel object tests (Malmkvist et al. 2012). Thus, as a way of implementing
261 complexity in later tests (week 22 and 26) we added movement and/or sound to the novel
262 object, i.e. a mechanical dog and a moving bed sheet, respectively. Moving objects are well
263 known to elicit fear responses (Boissy 1995) and mechanical toys have previously been used
264 in novel object tests on wolves and/or dogs (Marshall-Pescini et al. 2017; Goddard and
265 Beilharz 1984; Plutchik 1971; King et al. 2003). As we wished to test the response towards a
266 fear eliciting stimuli in general, including social fear (Gray 1987), we opted to use a mirror as
267 a novel object in week 14. While mirrors have previously been used in novel object tests to
268 mimic a novel social context (Noer et al. 2015), we acknowledge that the use of a mirror to
269 quantify fear responses might be considered controversial, and we therefore analysed our data
270 both with and without the test at week 14 (see Statistical methods below).

271
272 According to procedures in previous novel object tests on wolves and dogs (Moretti et al.
273 2015), objects were handled as little as possible and always with freshly washed hands to
274 avoid food smells transferring to the objects and possibly affecting the puppy's behaviour
275 towards the object. Novel objects chosen were at six weeks: a rolled up mattress, 10 weeks: a
276 wheelbarrow (up-side down), 14 weeks: a mirror mounted to the wall, 18 weeks: a stuffed
277 wolverine toy, 22 weeks: a moving mechanical dog and 24 weeks: a moving bed sheet
278 (attached to a string).

279
280 *Behavioural scoring*
281 As reported in other studies quantifying fear in dogs using novel objects (Stellato et al. 2017),
282 the occurrence of subtle behaviours such as auto-grooming, vocalization, tail wagging and
283 yawning was limited and we therefore chose to not include these behaviours in our analyses.
284 The same was true for startle responses and piloerection, which were rarely expressed across
285 tests. Differences in body posture are sometimes used as an indication of fear expression in
286 dogs (Stellato et al. 2017; King et al. 2003). However, dogs can express altered body posture
287 in neutral test conditions (i.e. no novel object present, (Stellato et al. 2017)). Thus, though
288 dogs and wolves in our study were tested in a familiar room, we cannot rule out that
289 confinement in an isolated room did not affect individuals differently. Therefore, to avoid
290 potential bias by assessing body postures across individuals in two different species, we
291 chose to use avoidance and approach (i.e. latency) behaviours related exclusively to the novel
292 object to quantify fear. Avoidance behaviour and latency to approach a novel object is
293 commonly applied to quantify fearfulness in various animal species (Boissy 1995; Malmkvist
294 and Hansen 2002; Meehan and Mench 2002), including dogs and wolves (Ley et al. 2007;
295 Moretti et al. 2015).

296
297 Behavioural scoring was carried out using the software BORIS v. 5.1.3. (Friard and Gamba
298 2016) based on an ethogram (Table 1). We chose our behavioural categories based on clear,
299 non-overlapping segregation between behaviours directed at the novel object and behaviours
300 not directed at the novel object, with prioritization of behaviours directed at the novel object.
301 For instance, if the puppy was looking at the novel object while moving around the test room
302 this was scored as *looking at novel object* and not *active behaviour*. We also attempted to
303 graduate the behaviours directed at the novel object based on the puppies' distance from the
304 novel object. For example, we differentiated between the categories of *investigating novel*
305 *object* and *looking at novel object*, based on how close the puppy was to the novel object
306 (Table 1). Behaviours were logged in a non-overlapping way as durations, i.e. seconds (Table
307 S1, S2 and S3). Similar to previous studies (Moretti et al. 2015), *latency to approach the*
308 *novel object* was measured as the duration from test start to the time the puppy came within 1
309 meters distance of the novel object, and *latency to make contact with the novel object* was
310 measured as the time lag to make physical contact with the novel object for the first time
311 after the novel object had been approached within a distance of 1 meter. Based on cross

312 coding, reliability of the behavioural scoring was calculated using Cohen's kappa and was
313 considered good with a value of 87.4%.

314

315 *Statistical methods*

316 We tested for the effect of species in each behaviour by fitting linear mixed models, with
317 either latency or the time spent on a behaviour as the dependent variable. The fixed effects of
318 interest were species, age, their interaction and sex. Additionally, for the models of time
319 spent, we controlled for variation in the duration of each trial by including duration as a
320 covariate. To account for the repeated measures of individuals and the non-independence of
321 individuals from the same litter, we included random intercepts for both factors. The full
322 model in lme4 syntax: $y \sim \text{species} * \text{age} + \text{sex} + \text{duration} + (1|\text{individual}) + (1|\text{litter})$. Models
323 were then reduced by backwards model selection using AIC (cut-off $\Delta\text{AIC} > 2$, Table S4),
324 where the parameters for species, duration and the random effects were always maintained.

325 Both latencies were \log_{10} transformed, and the time spent looking, investigating and
326 manipulating the novel object were log transformed after adding 1, in order to fulfil the
327 assumption of normality in the model residuals. We centred the age variable to aid
328 interpretation of the species effect in case of an interaction. When the interaction was retained
329 in the model, we additionally fitted a model where age was a discrete variable, and used that
330 to perform post-hoc tests for species differences at each age (Table S5 and S6). All p-values
331 were obtained using Satterwaite's approximation of denominator degrees of freedom. Post-
332 hoc p-values were corrected for multiple comparisons using the Holm method.

333

334 Because there were cases where the total duration of the test was less than 10 minutes, the
335 total test duration was included as a covariate in our models. All but four puppies (dogs: N =
336 2, wolves: N = 2, Table S1) approached the novel object within a distance of 1 meter, and we
337 assigned the total test time as latency to approach for the four puppies that did not approach
338 the novel object. In eight cases (dogs: N = 6, wolves: N = 2) puppies did not make contact
339 with the novel object (Table S1). Because it is inherently problematic for interpretation to
340 assign a value to a non-occurring event, we took two different approaches to address this
341 problem for latency to make contact to the novel object in our analyses. Following Marshall-
342 Pescini et al. 2017, we performed the analysis for latency to make contact with the novel
343 object using missing values for the eight cases where contact was not made (Table 2). We then
344 repeated the analysis, using the lag time from the novel object was approached to the test
345 ended as a measurement for non-occurring contact with the novel object. While the latter
346 approach resulted in an overall species difference in latency to make contact with the novel
347 object (Table S7 and S8), this difference was only significant at 22 weeks and this effect
348 disappeared upon adjusting p-values for multiple comparisons (Holm method, Table S9).
349 Therefore, the results from these two different approaches to analyse latency to make contact
350 to the novel object were qualitatively the same, and we present results from the analyses
351 using missing values for the eight cases where puppies did not make contact with the novel
352 object below (Table 2).

353

354 An alternative way of handling the latency measures is to conduct a survival analyses, since
355 the trials with no observed latency can be handled as censored data. We therefore performed
356 a survival analyses on latency to approach and latency to contact and found that the results
357 were qualitatively the same as the main analyses (Table S10 and S11). We therefore present
358 the main analyses with the transformed latency measures in the Results section.

359

360 To investigate whether the use of a mirror as a novel object in week 14 affected our
361 conclusions, we chose to analyse our data with and without the test at 14 weeks. Upon
362 excluding week 14 from our analyses we found, that while interaction terms for investigating

363 and looking at the novel object disappeared, the results were overall similar to analyses
364 including week 14 (Tables S12 and S13, Figures S1 and S2). Importantly, the exclusion of
365 week 14 did not affect our main conclusion and we have therefore presented our results
366 below based on our complete data set including week 14.

367
368 All statistical analyses were performed in R (v3.4.3, R Core Team 2016), with mixed effects
369 models fitted using *lme4* v. 1.1-15 (Bates et al. 2015), survival analysis using *coxme*
370 (Therneau 2018), Satterwaite's approximation from *lmerTest* v. 2.0-36 (Kuznetsova et al.
371 2017) and post-hoc testing using *emmeans* v. 1.1.2 (Lenth 2016).

372

373

374 **Results**

375 *Latency measures*

376 We found that wolves and dogs developed differently in latency to approach the novel object
377 within 1 meter, where dogs expressed a larger reduction in latency with age compared to
378 wolves ($t = 2.35$, $df = 120.046$, $p = 0.02$, Table 2, Figure 1 and 3). Dogs significantly
379 decreased their latency with time, while wolves did not (see table S6 for slopes per species),
380 resulting in dogs expressing significantly lowered latency to approach at 26 weeks compared
381 to wolves ($t = -3.131$, $df = 18.666$, $p = 0.006$, $p_{adjusted} = 0.034$, Table S5). At younger ages we
382 did not detect significant differences in latency to approach the novel object between dogs
383 and wolves (Table S5).

384

385 For the latency to make contact with the novel object, we found no differences in wolves and
386 dogs ($t = 1.931$, $df = 2.16$, $p = 0.186$, Table 2, Figure 2a and 3), neither did we find evidence
387 of sex differences in either species.

388

389 *Behaviours related to the novel object*

390 We found that wolves and dogs developed differently in looking at the novel object from a
391 distance ($t = -2.058$, $df = 120.667$, $p = 0.042$, Table 1, Figure 2d and 3), but no such
392 differences were detected in the post hoc tests (Table S5). While both wolves and dogs
393 increased their time spent looking at the novel object from a distance with age ($t = 5.848$, $df =$
394 117.899 , $p < 0.001$, Table 2, Figure 2d), dogs expressed a stronger effect of age than wolves
395 (Figure 2d, Table S6).

396

397 Wolves and dogs also showed different developmental trajectories for the time spent
398 investigating the novel object ($t = 1.994$, $df = 139.315$, $p = 0.048$, Table 2, Figure 2e and 3).
399 Post-hoc tests revealed that wolves investigated the novel object for longer at 22 weeks than
400 dogs ($t = -2.831$, $df = 28.029$, $p = 0.008$, $p_{adjusted} = 0.051$, Figure 2e, Table S5). The
401 significant interaction between species and age in investigating the novel object again
402 consisted of stronger effect of age in dogs than in wolves (Figure 1f, Table S6), but with an
403 overall decrease with age in both species ($t = -6.384$, $df = 138.727$, $p < 0.001$, Table 2, Figure
404 2e). Wolves and dogs developed similarly in time spent manipulating the novel object (Table
405 2, Figure 2f and 3). There was no evidence of sex differences in either species.

406

407 *Behaviours not related to the novel object*

408 We found that both species increased time spent on active behaviour with age ($t = 2.2$, $df =$
409 122.362 , $p = 0.03$, Table 1, Figure 2b), with wolves expressing higher levels of activity than
410 dogs ($t = 4.26$, $df = 2.977$, $p = 0.024$, Table 2, Figure 2b, Table S5). Passive behaviour
411 decreased with age in both wolves and dogs ($t = -4.268$, $df = 121.140$, $p < 0.001$, Table 2,
412 Figure 2c), and while dogs appeared more passive than wolves the species differences was
413 not significant. We found no evidence of sex differences.

414

415 **Discussion**

416 Decreased expression of fear is considered a key behavioural alteration in domesticated
417 animals, and it has further been suggested that domestication drives altered developmental
418 rates delaying the initial onset of fear response (Belyaev et al. 1985). However, few studies
419 have actually tested this experimentally and for wolves and dogs specifically, it remains
420 unclear if and how a developmental shift during early ontogeny affects the continued
421 development and expression of fear in either species. Here we present the first extended
422 examination of the development of fear behaviour within the juvenile period in wolves and
423 dogs. Contrary to expectations, we found no evidence in support of an increase in fearfulness
424 in wolves with age or a delayed onset of fear response in dogs compared to wolves during
425 early stages of development. Instead we found that dogs strongly reduced their fear response
426 to a novel object in the period between six and 26 weeks of age. Critically, wolves did not
427 differ in their fear response towards novelty over time, and the detected species difference
428 was caused solely by a progressive reduced fear response in dogs. Furthermore, dogs and
429 wolves did on average not differ in their interaction with the novel object. Together our
430 results suggest that species differences in fear of novelty between wolves and dogs are not
431 caused by a domestication driven shift in the first onset of fear response. Instead, we suggest
432 that a loss of sensitivity towards novelty with increasing age in dogs causes the difference in
433 fear expression towards novelty in wolves and dogs.

434

435 Fearfulness has previously been quantified by the latency to approach and explore novelty,
436 and novel stimuli such as objects, arenas and people have been used to detect the timing of
437 the initial onset of fear response in both wolves and dogs (Scott and Marston 1950; Freedman
438 et al. 1961; Scott and Fuller 1965; Belyaev et al. 1985; Lord 2013; Morrow et al. 2015).
439 However, while there is a general expectation that domestication has caused a delay in the
440 sensitive period in dogs, resulting in later onset of fear behaviour compared to wolves (Scott
441 and Fuller 1965; Fox 1970; Zimen 1987; Coppinger and Coppinger 2001; Lord 2013), we
442 detected no species differences in fear expression during early development. This finding is
443 in agreement with a recent study comparing exploration of novelty in six and eight weeks old
444 wolves and dogs, which found no species differences in fear behaviours or the latency to
445 make contact with a novel object (Marshall-Pescini et al. 2017). Yet, it has been reported that
446 adult wolves express increased latency to make contact to a novel object compared to dogs
447 (Moretti et al. 2015), thereby suggesting that species differences in fear expression might
448 arise later in development than previously thought. Thus, our finding that a species difference
449 in latency to approach a novel object occurred at 26 weeks of age represents the first
450 indication of when a quantifiable difference in fear towards novelty arises in wolves and
451 dogs. We do, however, caution against an overly strong confidence in the exact timing of a
452 species difference occurring at 26 weeks of age as it is possible that species differences
453 emerge in the weeks prior, but that the current sample size is insufficient for earlier detection.
454 Nonetheless, it is clear that a difference between species progressively develops towards the
455 later end of the time period measured, and that we have captured the transition from equal
456 expression of fear towards novelty in wolves and dogs to a clear species difference at 26
457 weeks of age. Importantly, the species difference in fear towards novelty did not occur
458 because wolves became more fearful with age, as expected, but rather because dogs
459 decreased their time to approach the novel object, which suggests that dogs, but not wolves
460 lose their sensitivity towards novelty with age.

461

462 Upon subjecting individuals to repeated novel object tests, though objects differ between
463 trials, there is a risk of habituation to novelty itself (Réale et al. 2007), and such a
464 generalization of novelty *per se* can affect the potential to interpret fear responses from
465 novel object tests. As such, one could speculate whether the decreased latency time to
466 approach the novel object in dogs with age is a sign of habituation to the test situation itself.

467 Furthermore, habituation to novelty itself can also be reflected in a decreased motivation to
468 interact with a novel object (Zimmermann et al. 2001). Indeed, previous studies have
469 demonstrated that while dogs and wolves show equal interest in approaching and exploring
470 novel objects at 3-4 weeks of age (Gácsi et al. 2005), dogs seem to loose interest in
471 investigating and interacting with novel objects with age (Moretti et al. 2015; Marshall-
472 Pescini et al. 2017). While we do find an overall interaction between species and age in time
473 spend investigating and looking at the novel object, wolves and dogs only differ in their
474 investigation of the novel object at week 22 (the mechanical dog). Both wolves and dogs
475 decrease the time they spend investigating the novel object with age, but increase the time
476 they spend looking at the novel object with age, thereby suggesting that an interest in the
477 novel object remains with age. Furthermore, the interaction effects seen in the investigation
478 of and looking at the novel object does not extend to time spent on manipulating the novel
479 object, in which neither wolves nor dogs differ with age. Thus, in our study wolves and dogs
480 overall show equal interest in interacting with the novel object and we therefore find it
481 unlikely that habituation to novelty in the dogs is driving our results.
482

483 The species difference we found in the latency to approach the novel object is not clearly
484 reflected in differences in interaction with the same novel object. While fear of novelty was
485 expressed immediately, through a delayed approach in wolves, once the novel object was
486 approached this initial fearfulness appears to no longer affect behavioural responses in either
487 species. This is reflected in wolves and dogs not differing in their latency to make contact
488 with or interact with the novel object. While the latency to approach the novel object and the
489 time spent being active and passive while in the test room showed consistent linear
490 development over time in both wolves and dogs, the pattern in looking at, investigating and
491 manipulating the novel object appeared variable across trials. This variability was most
492 likely caused by the different novel objects that were used in the study, i.e. behaviours that
493 are more closely related to the object itself show more variability across tests. It is possible
494 that this increased variance may have prohibited detection of additional species differences
495 in behavioural measures directly related to the novel object, such as increased exploration
496 and manipulation of novel objects as reported in both juvenile and adult wolves compared to
497 dogs (Marshall-Pescini et al. 2017; Moretti et al. 2015). Importantly, the linear development
498 in latency to approach the novel object in both wolves dogs appeared to be less affected by
499 the choice of novel object, indicating that latency to approach was more influenced by
500 novelty itself.
501

502 Wolves develop physically faster than dogs (Frank and Frank 1982), and it has been
503 suggested that wolves express increased activity at an earlier age than dogs due to this
504 difference in developmental pace of motor patterns (Frank and Frank 1982; Marshall-Pescini
505 et al. 2017). However, while we do find a species difference in how much time is spent on
506 active behaviour during tests, this species difference is consistent across age and not
507 restricted to early ontogeny alone. This indicates that wolves, on a general scale, are more
508 active when in the test room than dogs. While it cannot be ruled out that active behaviour is
509 affected by the presence of a novel object, it is a less likely explanation for our finding as we
510 measured behaviours in a non-overlapping way with priority of behaviours related to the
511 novel object. Thus, the measurement of activity does not include looking at, manipulating or
512 approaching the novel object, but only time spent on active behaviour with no attention to the
513 novel object. Instead the higher activity in wolves might reflect an increased reactivity of
514 being separated from littermates and being confined in the test room compared to dogs.
515

516 Domestication has caused a general acceleration of sexual maturity in animals (Price 1999).
517 Earlier sexual maturity in dogs (Morey 1994; Goodwin et al. 1997) could explain the steeper
518 behavioural change observed in dogs compared to wolves across some of the behaviours

519 related to the novel object in our study. However, while reproduction in wild living wolf
520 packs is restricted to the breeding couple, it is currently unresolved if the lack of sexual
521 activity in non-reproducing pack members is caused by delayed sexual maturity, behavioural
522 suppression or restricted access to nutrition (Packard et al. 1985; Medjo and Mech 1976;
523 Mech 1999). Nevertheless, it has been demonstrated that captive wolves removed from social
524 constraints sexually mature as early as nine months of age (Medjo and Mech 1976). Thus, it
525 is unclear if we should expect behavioural ontogeny to be affected by a shift in
526 developmental pace caused by earlier sexual maturity when comparing wolves and dogs
527 living in captive, non-reproductive groups. Our study was conducted before sexual maturity
528 occurred in either wolves or dogs and as we found no effect of sex on the expression of
529 behaviour, we suggest that the steeper development of some behaviours in dogs are instead
530 related to the loss of sensitivity towards novelty.

531

532 Here we have compared behavioural development in wolves and dogs using standardized
533 methods in both hand-raising, socialization (Klinghammer and Goodman 1987; Range and
534 Virányi 2011; Udell et al. 2008) and testing (Marshall-Pescini et al. 2017; Moretti et al.
535 2015), thereby making our study comparable to some of the previous findings on fear
536 development in the two species. Subsequently, our reporting of previously undetected
537 variation in the development of fear expression is highly relevant for the on-going discussion
538 of behavioural implications of domestication in dogs. In sum, our study shows that wolves
539 and dogs do not differ in their fear towards novelty before late in the juvenile period.
540 Importantly, the species difference does not occur because wolves become more fearful with
541 age, but because dogs become less fearful with age. While it is possible that our novel results
542 are reflected in our choice of European grey wolves, as the majority of studies on wolf dog
543 comparison uses North American wolves, it emphasizes that different sub-species of wolves
544 might reveal diverse behavioural variation. With more than 400 registered dog breeds in the
545 world today (Lindblad-Toh et al. 2005), standardization of dog breeds used across studies
546 comparing behaviours in wolves and dogs is less clear. Various dog breeds such as Poodle
547 (Feddersen-Petersen 1991), Alaskan Malamute (Frank and Frank 1985) and German
548 Shepherd, Siberian Husky, Alaskan Malamute, Czechoslovakian Wolfdog (Hansen Wheat et
549 al. 2018) as well as mixed breeds (Range et al. 2015) have been used to uncover the
550 behavioural implications of domestication from wolves, and with dogs being bred to fulfil
551 highly specialized behavioural niches (Coppinger and Coppinger 2001; Mehrkam and Wynne
552 2014; Svartberg 2006), results will inevitably vary across studies (Morrow et al. 2015; Scott
553 and Fuller 1965). However, detection of differences between wolves and dogs, no matter the
554 breed of dog or subspecies of wolf, is of great importance to the continued discussion of the
555 paradigm of domestication driven changes in behaviour. In conclusion, because of the small
556 sample sizes inherently available in studies comparing behaviour in wolves and dogs, it is
557 critical that continued, standardized studies on wolf dog comparisons are encouraged to
558 further uncover the resolution in behavioural variation during domestication.

559

560

561 Acknowledgements

562 We wish to thank the Department of Zoology, Stockholm University, for funding this study,
563 our hand-raisers Patricia Berner, Anna Björk, Marjut Pokela, Linn Larsson, Charles Gent,
564 Åsa Lycke, Erika Grasser, Joanna Schinner, Yrsa Andersson, Christoffer Sernert and Mija
565 Jansson, and the staff at Tovetorp Zoological Research Station.

566

567 Author contribution

568 CHW and HT designed the study, conducted the experiments and prepared data for analyses.
569 WVDB and CHW planned how to analyse the data and WVDB analysed the data. CHW

570 wrote the manuscript with input from HT and WVDB. All authors reviewed the manuscript
571 prior to submission.

572

573 **Conflict of interest**

574 The authors declare no conflict of interest.

575

576

577

578

579 **References**

580 Bates Douglas, Mächler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models
581 Using Lme4. *Journal of Statistical Software* 67 (1). doi:10.18637/jss.v067.i01.

582 Belyaev, D K, Plyusnina I Z, Trut L N. 1985. Domestication in the Silver Fox (*Vulpes*
583 *Fulvus Desm*): Changes in Physiological Boundaries of the Sensitive Period of Primary
584 Socialization. *Applied Animal Behaviour Science* 13: 359–70. doi:10.1016/0168-
585 1591(85)90015-2.

586 Bilkó Á, Altbäcker V. 2000. Regular Handling Early in the Nursing Period Eliminates Fear
587 Responses Toward Human Beings in Wild and Domestic Rabbits. *Developmental
588 Psychobiology* 36: 78–87. doi:10.1002/(SICI)1098-2302(200001)36:1

589 Boissy A. 1995. Fear and Fearfulness in Animals. *The Quarterly Review of Biology* 70: 165–
590 91.

591 Boogert N J, Reader S M, Laland K N. 2006. The Relation Between Social Rank,
592 Neophobia and Individual Learning in Starlings. *Animal Behaviour* 72: 1229–39.
593 doi:10.1016/j.anbehav.2006.02.021.

594 Bray E E, Sammel M D, Cheney D L, Serpell J A, Seyfarth R M. 2017. Effects of Maternal
595 Investment, Temperament, and Cognition on Guide Dog Success. *PNAS* 114 (34):
596 9128–33. doi:10.1073/pnas.1704303114.

597 Bremner-Harrison, S, Prodohl P A, Elwood R W. 2004. Behavioural Trait Assessment as a
598 Release Criterion: Boldness Predicts Early Death in a Reintroduction Programme of
599 Captive-Bred Swift Fox (*Vulpes Velox*). *Animal Conservation* 7 (3): 313–20.
600 doi:10.1017/S1367943004001490.

601 Brust V, Guenther A. 2014. Domestication Effects on Behavioural Traits and Learning
602 Performance: Comparing Wild Cavies to Guinea Pigs. *Animal Cognition* 18 (1): 99–
603 109. doi:10.1016/0169-5347(94)90134-1.

604 Christensen J W, Zharkikh T, Ladewig J. 2008. Do Horses Generalise Between Objects
605 During Habituation? *Applied Animal Behaviour Science* 114 (3-4): 509–20.
606 doi:10.1016/j.applanim.2008.03.007.

607 Weidenmayer C P. 2009. Plasticity of Defensive Behavior and Fear in Early Development.
608 *Neuroscience & Biobehavioral Reviews* 33 (3): 1447–57.
609 doi:10.1016/j.neubiorev.2008.11.004.

610 Clark M M, Bennet G G Jr. 1982. Environmental Effects on the Ontogeny of Exploratory and
611 Escape Behaviors of Mongolian Gerbils. *Developmental Psychobiology* 15 (2): 121–29.
612 doi:10.1002/dev.420150205.

613 Coppinger R, Coppinger L. 2001. *Dogs: a Startling New Understanding of Canine Origin,
614 Behavior & Evolution*. The University of Chicago Press

615 Coppinger R, Glendinning J, Torop E, Matthay C, Sutherland M, Smith C. 1987. Degree of
616 Behavioural Neoteny Differentiates Canid Polymorphs. *Ethology* 75: 89–108.

617 Crockford S J. 2002. *Animal Domestication and Heterochronic Speciation: the Role of
618 Thyroid Hormone*. The Johns Hopkins University Press, 122–53.

619 Csatádi K, Kustos K, Eiben C, Bilkó Á, Altbäcker V. 2005. Even Minimal Human Contact
620 Linked to Nursing Reduces Fear Responses Toward Humans in Rabbits. *Applied Animal
621 Behaviour Science* 95 (1-2): 123–28. doi:10.1016/j.applanim.2005.05.002.

622 Dobney K, Larson G. 2006. Genetics and Animal Domestication: New Windows on an
623 Elusive Process. *Journal of Zoology* 269 (0): 261–71. doi:10.1111/j.1469-
624 7998.2006.00042.x.

625 Döring D, Roscher A, Scheipl F, Küchenhoff H, Erhard M H. 2009. Fear-Related Behaviour
626 of Dogs in Veterinary Practice. *The Veterinary Journal* 182 (1). Elsevier Ltd: 38–43.
627 doi:10.1016/j.tvjl.2008.05.006.

628 Driscoll C A, Macdonald D W, O'Brien S J. 2009. From Wild Animals to Domestic Pets, an
629 Evolutionary View of Domestication. *PNAS* 106 (1): 9971–78.

630 Feddersen-Petersen D. 1991. The Ontogeny of Social Play and Agonistic Behaviour in
631 Selected Canid Species. *Bonn. Zool. Beitr.* 2 (42): 97–114.

632 Fentress J C. 1967. Observations on the Behavioural Developement of a Hand-Reared Male
633 Timber Wolf. *American Zoologist* 7 (2): 339–51.

634 Fox M W. 1970. A Comparative Study of the Development of Facial Expressions in Canids;
635 Wolf, Coyote and Foxes. *Behaviour* 36 (1/2): 49–73.

636 Fox M W. 1972. Socio-Ecological Implications of Individual Differences in Wolf Litters : a
637 Developmental and Evolutionary Perspective. *Behaviour* 41 (3): 298–313.
638 doi:10.1163/156853972X00077.

639 Frank H, Frank M G. 1982. Comparison of Problem-Solving Performance in Six-Week-Old
640 Wolves and Dogs. *Animal Cognition* 30: 95–98.

641 Frank H, Frank M G. 1985. Comparative Manipulation-Test Performance in Ten-Week-Old
642 Wolves (*Canis Lupus*) and Alaskan Malamutes (*Canis Familiaris*): a Piagetian
643 Interpretation. *Journal of Comparative Psychology* 99 (3): 266–74.

644 Freedman D G, King J A, Elliot O. 1961. Critical Period in the Social Development of Dogs.
645 *Science* 31 (January): 1016–62.

646 Friard O, Gamba M. 2016. BORIS: a Free, Versatile Open-Source Event-Logging Software
647 for Video/Audio Coding and Live Observations. Edited by Richard Fitzjohn. *Methods in
648 Ecology and Evolution* 7 (11): 1325–30. doi:10.1006/anbe.1993.1127.

649 Gariépy J-L, Bauer D J, Cairns R B. 2001. Selective Breeding for Differential Aggression in
650 Mice Provides Evidence for Heterochrony in Social Behaviours. *Animal Behaviour* 61
651 (5): 933–47. doi:10.1006/anbe.2000.1700.

652 Gácsi M, Györi B, Miklósi Á, Virányi Z, Kubinyi E, Topál J, Csányi V. 2005. Species-
653 Specific Differences and Similarities in the Behavior of Hand-Raised Dog and Wolf
654 Pups in Social Situations with Humans. *Developmental Psychobiology* 47 (2): 111–22.
655 doi:10.1002/dev.20082.

656 Goddard, M E, Beilharz R G. 1984. A Factor Analysis of Fearfulness in Potential Guide
657 Dogs. *Applied Animal Behaviour Science* 12: 253–65.

658 Goodwin D, Bradshaw J W S, Wickens S M. 1997. Paedomorphosis Affects Agonistic
659 Visual Signals of Domestic Dogs. *Animal Behaviour* 53: 297–304.

660 Gray J A. 1987. *The Psychology of Fear and Stress*. CUP Archive.

661 Griffin A S. 2004. Social Learning About Predators: a Review and Prospectus. *Learning &
662 Behavior* 32 (1): 131–40. doi:10.3758/BF03196014.

663 Hansen Wheat C, Fitzpatrick J, Tapper I, Temrin H. 2018. Wolf (*Canis Lupus*) Hybrids
664 Highlight the Importance of Human-Directed Play Behavior During Domestication of
665 Dogs (*Canis Familiaris*). *Journal of Comparative Psychology*, 32(4), 373-381.
666 doi:10.1037/com0000119.

667 Hemsworth P H, Price E O, Borgwardt R. 1996. Behavioural Responses of Domestic Pigs
668 and Cattle to Humans and Novel Stimuli. *Applied Animal Behaviour Science* 50: 43–56.

669 Jones R B, Waddington D. 1992. Modification of Fear in Domestic Chicks, *Gallus Gallus
670 Domesticus*, via Regular Handling and Early Environmental Enrichment. *Animal
671 Behaviour, Short Communications* 43: 1021–33.

672 King T, Hemsworth P H, Coleman G J. 2003. Fear of Novel and Startling Stimuli in
673 Domestic Dogs . *Applied Animal Behaviour Science* 188 (1): 45–64.

674 doi:10.1016/j.applanim.2016.12.007.

675 Klinghammer E, Goodman P A. 1987. *Socialization and Management of Wolves in*
676 *Captivity*. In Man and Wolf, edited by Harry Frank. Dordrecht, Netherlands: Dr W Junk
677 Publishers.

678 Kruska D. 1988. Mamalian Domestication and Its Effect on Brain Structure and Behaviour.
679 *Intelligence and Evolutionary Biology* 17: 211–50.

680 Kuznetsova A, Brockhoff P B, Christensen R H B. 2017. lmerTestPackage: Tests in Linear
681 Mixed Effects Models. *Journal of Statistical Software* 82 (13).
682 doi:10.18637/jss.v082.i13.

683 Leiner L, Fendt M. 2011. Behavioural Fear and Heart Rate Responses of Horses After
684 Exposure to Novel Objects: Effects of Habituation . *Applied Animal Behaviour Science*
685 131 (3-4). Elsevier B.V.: 104–9. doi:10.1016/j.applanim.2011.02.004.

686 Lenth R V. 2016. Least-Squares Means: the RPackage Lsmeans. *Journal of Statistical*
687 *Software* 69 (1). doi:10.18637/jss.v069.i01.

688 Ley J, Coleman G J, Holmes R, Hemsworth P H. 2007. Assessing Fear of Novel and
689 Startling Stimuli in Domestic Dogs. *Applied Animal Behaviour Science* 104 (1-2): 71–
690 84. doi:10.1016/j.applanim.2006.03.021.

691 Lindblad-Toh K, Wade C M, Mikkelsen T S, Karlsson E K, Jaffe D B, Kamal M, Clamp M,
692 et al. 2005. Genome Sequence, Comparative Analysis and Haplotype Structure of the
693 Domestic Dog. *Nature* 438 (7069): 803–19. doi:10.1038/nature04338.

694 Lord K. 2013. A Comparison of the Sensory Development of Wolves (*Canis Lupus Lupus*)
695 and Dogs (*Canis Lupus Familiaris*). *Ethology* 119 (2): 110–20. doi:10.1016/0304-
696 3762(83)90109-8.

697 Mainwaring M C, Beal J L, Hartley I R. 2011. Zebra Finches Are Bolder in an Asocial,
698 Rather Than Social, Context. *Behavioural Processes* 87 (2): 171–75.
699 doi:10.1016/j.beproc.2011.03.005.

700 Malmkvist J, Hansen S W. 2002. Generalization of Fear in Farm Mink, Mustela Vison,
701 Genetically Selected for Behaviour Towards Humans. *Animal Behaviour* 64 (3): 487–
702 501. doi:10.1006/anbe.2002.3058.

703 Malmkvist J, Poulsen J M, Luthersson N, Palme R, Christensen J W, Søndergaard E. 2012.
704 Behaviour and Stress Responses in Horses with Gastric Ulceration. *Applied Animal*
705 *Behaviour Science* 142 (3-4): 160–67. doi:10.1016/j.applanim.2012.10.002.

706 Marshall-Pescini S, Virányi Z, Kubinyi E, Range F. 2017. Motivational Factors Underlying
707 Problem Solving: Comparing Wolf and Dog Puppies' Explorative and Neophobic
708 Behaviors at 5, 6, and 8 Weeks of Age. *Frontiers in Psychology* 8: e20231.
709 doi:10.1093/icb/7.2.357.

710 Martin J T. 1978. Embryonic Pituitary Adrenal Axis, Behavior Development and
711 Domestication in Birds. *American Zoologist* 18: 489–99.

712 Martin L B II, Fitzgerald L. 2005. A Taste for Novelty in Invading House Sparrows, *Passer*
713 *Domesticus*. *Behavioral Ecology* 16 (4): 702–7. doi:10.1006/anbe.2000.1725.

714 Mech D L. 1999. Alpha Status, Dominance, and Division of Labor in Wolf Packs. *Can. J.*
715 *Zool.* 77: 1196–1203.

716 Medjo D C, Mech D L. 1976. Reproductive Activity in Nine- and Ten-Month_Old Wolves.
717 *Journal of Mammalogy* 57 (May): 406–8. doi:10.2307/1379708.

718 Meehan C L, Mench J A. 2002. Environmental Enrichment Affects the Fear and Exploratory
719 Responses to Novelty of Young Amazon Parrots. *Applied Animal Behaviour Science* 79:
720 75–88.

721 Mehrkam L R, Wynne C D L. 2014. Behavioral Differences Among Breeds of Domestic
722 Dogs (*Canis Lupus Familiaris*): Current Status of the Science. *Applied Animal*
723 *Behaviour Science* 155: 12–27. doi:10.1016/j.applanim.2014.03.005.

724 Miklósi Á, Kubinyi E, Topál J, Gácsi M, Virányi Z, Csányi V. 2003. A Simple Reason for a
725 Big Difference. *Current Biology* 13 (9): 763–66. doi:10.1016/S0960-9822(03)00263-X.

726 Moretti L, Henstrup M, Kotrschal K, Range F. 2015. The Influence of Relationships on
727 Neophobia and Exploration in Wolves and Dogs. *Animal Behaviour* 107: 159–73.
728 doi:10.1016/j.anbehav.2015.06.008.

729 Morey D F. 1994. The Early Evolution of the Domestic Dog. *American Scientist* 82 (4):
730 336–47.

731 Morrow M, Ottobre J, Ottobre A, Neville P, St-Pierre N, Dreschel N, Pate J L. 2015. Breed-
732 Dependent Differences in the Onset of Fear-Related AVOIDANCE Behaviour in Puppies.
733 *Journal of Veterinary Behavior: Clinical Applications and Research* 10: 286–94.
734 doi:10.1016/j.jveb.2015.03.002.

735 Noer C L, Needham E K, Wiese A-S, Balsby T J S, Dabelsteen T. 2015. Context Matters:
736 Multiple Novelty Tests Reveal Different Aspects of Shyness-Boldness in Farmed
737 American Mink (*Neovison Vison*). *PLoS ONE* 10 (6):
738 e0130474.doi:10.1371/journal.pone.0130474.s002.

739 Packard J M, Seal U S, Mech D L, Plotka E D. 1985. Causes of Reproductive Failure in
740 Two Family Groups of Wolves (*Canis Lupus*). *Zeitschrift Für Tierpsychologie* 68 (1):
741 24–40. doi:10.1111/j.1439-0310.1985.tb00112.x.

742 Plutchik R. 1971. Individual and Breed Differences in Approach and Withdrawal in Dogs.
743 *Behaviour* 40: 302–11.

744 Price E O. 2002. *Animal Domestication and Behavior*. CABI Publishing, CAB Int.

745 Price E O. 1999. Behavioral Development in Animals Undergoing Domestication. *Applied
746 Animal Behaviour Science* 65: 245–71.

747 Range F, Ritter, Viranyi Z. 2015. Testing the Myth: Tolerant Dogs and Aggressive Wolves.
748 *Proceedings of the Royal Society of London B: Biological Sciences* 282 (1807):
749 20150220–20. doi:10.1016/j.rsb.2005.08.009.

750 Range F, Virányi Z. 2011. Development of Gaze Following Abilities in Wolves (*Canis
751 Lupus*). *PLoS ONE* 6 (2): e16888. doi:10.1371/journal.pone.0016888.s002.

752 Réale D, Reader S M, Sol D, McDougall P T and Dingemanse N J. 2007. Integrating
753 Animal Temperament Within Ecology and Evolution. *Biological Reviews* 82 (2): 291–
754 318. doi:10.1016/S0091-6773(76)90901-9.

755 Scott J P. 1958. Critical Periods in the Development of Social Behavior in Puppies.
756 *Psychosomatic Medicine* 20: 42–54. doi:10.1097/00006842-195801000-00005.

757 Scott J P. 1962. Critical Periods in Behavioural Development. *Science* 138: 949–58.

758 Scott J P, Fuller J L. 1965. *Genetics and the Social Behavior of the Dog - the Classic Study*.
759 University of Chicago Press.

760 Scott J P, Marston M V. 1950. Critical Periods Affecting the Development of Normal and
761 Mal-Adjustive Social Behavior of Puppies. *The Pedagogical Seminary and Journal of
762 Genetic Psychology* 77 (1): 25–60. doi:10.1111/j.1749-6632.1950.tb27330.x.

763 Stellato A C, Flint H E, Widowski T M, Serpell J A, Niel L. 2017. Assessment of Fear-
764 Related Behaviours Displayed by Companion Dogs (*Canis Familiaris*) in Response to
765 Social and Non-Social Stimuli. *Applied Animal Behaviour Science* 188: 84–90.
766 doi:10.1016/j.applanim.2016.12.007.

767 Svartberg K. 2006. Breed-Typical Behaviour in Dogs—Historical Remnants or Recent
768 Constructs? *Applied Animal Behaviour Science* 96 (3-4): 293–313.
769 doi:10.1016/j.applanim.2005.06.014.

770 Therneau T M. 2018. Mixed Effects Cox Models. *Cran*, May, 1–21. <https://CRAN.R-project.org/package=coxme>.

771 Topál J, Gácsi M, Miklósi Á, Virányi Z, Kubinyi E, Csányi V. 2005. Attachment to
772 Humans: a Comparative Study on Hand-Reared Wolves and Differently Socialized Dog
773 Puppies. *Animal Behaviour* 70 (6): 1367–75. doi:10.1016/j.anbehav.2005.03.025.

774 Trut L N, Plyusnina I Z, Oskina I N. 2004. An Experiment on Fox Domestication and
775 Debatable Issues of Evolution of the Dog. *Russian Journal of Genetics* 40 (6): 644–55.
776 doi:10.1023/B:RUGE.0000033312.92773.c1.

778 Trut L N. 1999. Early Canid Domestication: the Farm-Fox Experiment: Foxes Bred for
779 Tamability in a 40-Year Experiment Exhibit Remarkable Transformations That Suggest
780 an Interplay Between Behavioral Genetics and Development. *American Scientist* 87:
781 160–69.

782 Trut L N, Oskina I N, Kharlamova A. 2009. Animal Evolution During Domestication: the
783 Domesticated Fox as a Model. *Bioessays* 31 (3): 349–60. doi:10.1002/bies.200800070.

784 Udell M A R, Spencer J M, Dorey N R, Wynne C D L. 2012. Human-Socialized Wolves
785 Follow Diverse Human Gestures...and They May Not Be Alone. *International Journal
786 of Comparative Psychology* 25: 97–177.

787 Udell M A R, Dorey N R, Wynne C D L. 2008. Wolves Outperform Dogs in Following
788 Human Social Cues. *Animal Behaviour* 76 (6): 1767–73.
789 doi:10.1016/j.anbehav.2008.07.028.

790 van Oers K, Klunder M, Drent P J. 2005. Context Dependence of Personalities: Risk-Taking
791 Behavior in a Social and a Nonsocial Situation. *Behavioral Ecology* 16 (4): 716–23.
792 doi:10.1016/0168-1591(95)00557-9.

793 Wilkins A S, Wrangham R W, Fitch W T. 2014. The ‘Domestication Syndrome’ in
794 Mammals: a Unified Explanation Based on Neural Crest Cell Behavior and Genetics.
795 *Genetics* 197 (3): 795–808. doi:10.1534/genetics.114.165423.

796 Wilsson E, Sundgren P-E. 1998. Behaviour Test for Eight-Week Old Puppies—
797 Heritabilities of Tested Behaviour Traits and Its Correspondence to Later Behaviour.
798 *Applied Animal Behaviour Science* 58: 151–62.

799 Wooply J H, Ginsburg B E. 1967. Wolf Socialization: a Study of Temperament in a Wild
800 Social Species. *American Zoologist* 7 (2): 357–63.

801 Zeder M A. 2012. The Domestication of Animals. *Journal of Anthropological Research* 68:
802 161–90.

803 Zimen E. 1987. *Ontogeny of Approach and Flight Behavior Towards Humans in Wolves,
804 Poodles and Wolf-Poodle Hybrids*. In Man and Wolf, edited by H Frank. Dr. W. Junk
805 Publishers, Dordrecht.

806 Zimmerman A, Stauffacher M, Langhans W, Würbel H. 2001. Enrichment-Dependent
807 Differences in Novelty Exploration in Rats Can Be Explained by Habituation.
808 *Behavioural Brain Research* 121 (1-2): 11–20.

809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829

830 **Tables**

831

832 **Table 1. Ethogram.** Behaviours scored during novel object tests. Behaviours were scored in
833 a non-overlapping way, with prioritization of behaviours related to the novel object. Latency
834 times were measured regardless of the behaviour performed

835

Behaviour	Description
Active behaviour	Moving around in, or interacting with, the test room with no attention to the novel object
Investigating novel object	Sniffing novel object or looking novel object from less than 1 meter
Latency to approach novel object	Time delay to approach the novel object with less than 1 meter
Latency make contact with novel object	Time delay to physically touch the novel object (sniffing) after having approached the object within a distance of less than 1 meter
Looking at novel object	Looking at novel object from a distance of more than 1 meter
Manipulating novel object	Pawing, nosing, scratching, biting, carrying, standing on novel object
Passive behaviour	Standing, sitting or lying passively with no attention to the novel object or the test room, including by the door

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

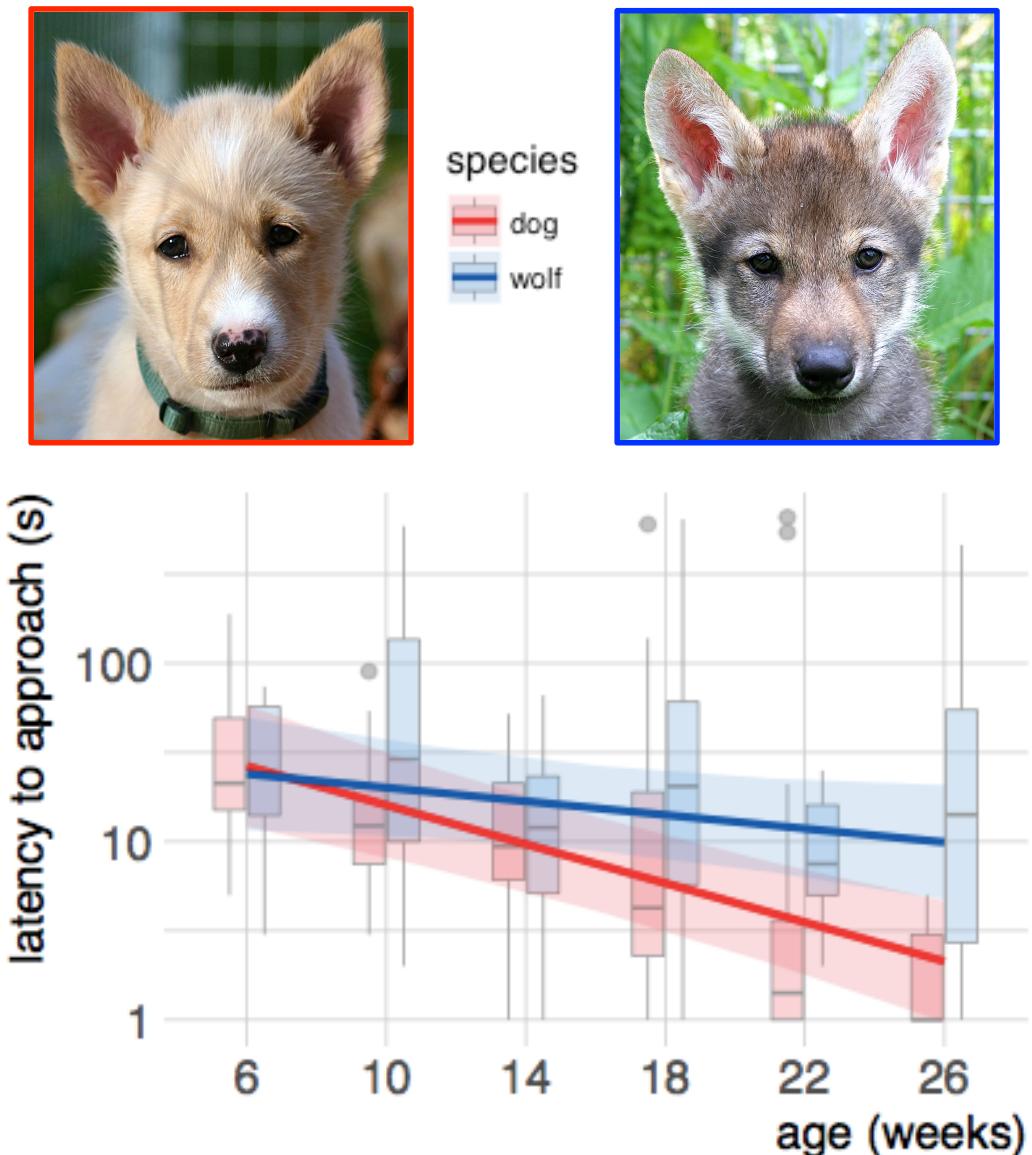
861

862

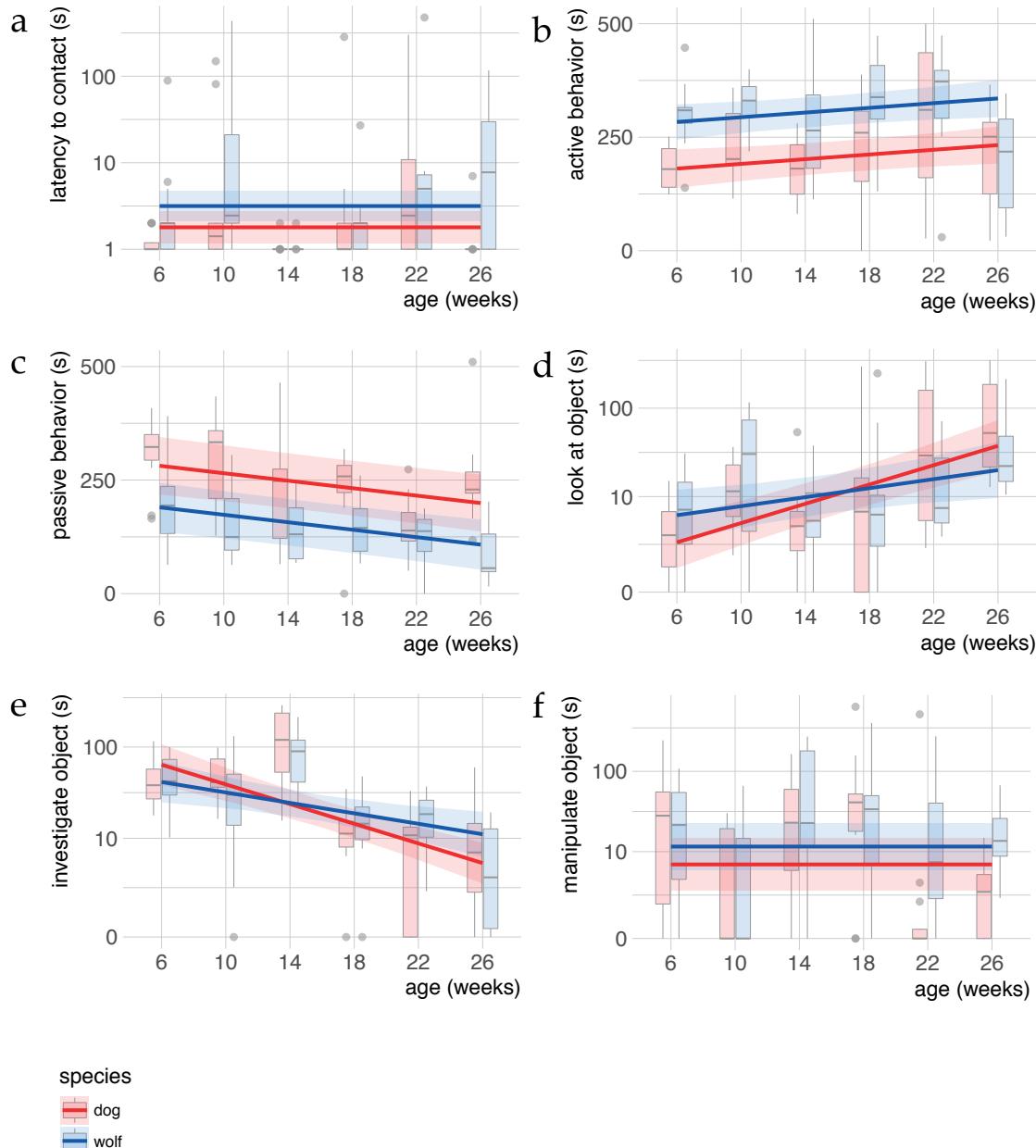
863

864

865

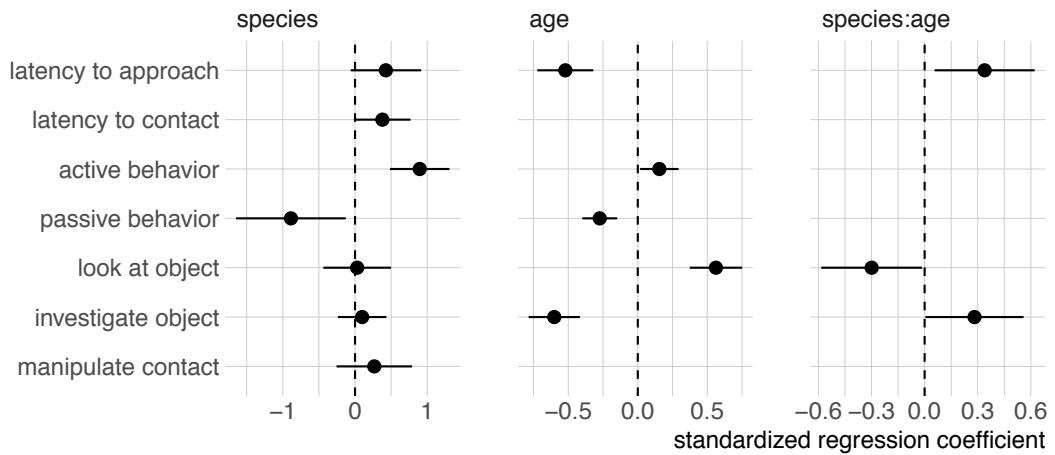

866

867 **Table 2. Model summary.** Results for the best fitted model of repeated measures, with dogs
868 as the reference, on 1) Latency to approach the novel object, 2) Latency to make contact
869 with the novel object, 3) Looking at novel object (NO), 4) Investigating novel object, 5)
870 Manipulating novel object, 6) Active behaviour and 7) Passive behaviour. Estimate,
871 standard error, degrees of freedom, t-value and p-value are given. Significant p-values are
872 marked in bold italic.
873


<i>Behaviour</i>	<i>Term</i>	<i>Estimate</i>	<i>Std. error</i>	<i>df</i>	<i>t</i>	<i>p</i>
Latency, approach	<i>(Intercept)</i>	0.875	0.133	2.240	6.576	0.017
	<i>species</i>	0.312	0.180	2.568	1.737	0.196
	<i>age</i>	-0.055	0.011	118.419	-5.067	<0.0001
	<i>species:age</i>	0.036	0.015	120.046	2.350	0.020
Latency, contact	<i>(Intercept)</i>	0.253	0.094	1.821	2.704	0.126
	<i>species</i>	0.246	0.129	2.164	1.913	0.186
Looking at NO	<i>(Intercept)</i>	2.136	0.827	94.332	2.581	0.011
	<i>species</i>	0.037	0.354	2.939	0.104	0.924
	<i>age</i>	0.121	0.021	117.899	5.848	<0.0001
	<i>duration</i>	0.001	0.001	124.417	0.426	0.671
	<i>species:age</i>	-0.064	0.031	120.667	-2.058	0.042
Investigating NO	<i>(Intercept)</i>	0.416	0.717	126.889	0.580	0.563
	<i>species</i>	0.141	0.234	3.493	0.601	0.585
	<i>age</i>	-0.119	0.019	138.727	-6.384	<0.0001
	<i>duration</i>	0.004	0.001	140.535	3.834	0.0002
	<i>species:age</i>	0.056	0.028	139.315	1.994	0.048
Manipulating NO	<i>(Intercept)</i>	2.812	1.078	90.449	2.610	0.011
	<i>species</i>	0.494	0.494	2.915	1.000	0.393
	<i>duration</i>	-0.001	0.002	141.262	-0.786	0.433
Active behaviour	<i>(Intercept)</i>	-145.265	57.693	97.323	-2.518	0.013
	<i>species</i>	102.697	24.105	2.977	4.260	0.024
	<i>age</i>	2.587	1.176	122.299	2.200	0.030
	<i>duration</i>	0.598	0.090	127.554	6.644	<0.0001
Passive behaviour	<i>(Intercept)</i>	152.645	54.263	25.688	2.813	0.009
	<i>species</i>	-91.478	39.977	3.003	-2.288	0.106
	<i>age</i>	-4.106	0.962	121.459	-4.268	<0.0001
	<i>duration</i>	0.149	0.074	127.572	2.029	0.045

874
875
876
877
878
879
880
881
882
883

884 **Figures**
885



886
887 **Figure 1. Dog – wolf comparisons, latency to approach.** Boxplots shows behavioural
888 scores during a novel object test, comparing dogs and wolves across age. Overlaid are the
889 fits and confidence intervals from the best model, selected by AIC. Boxes indicate the
890 quartiles, and the whiskers reach maximally 1.5 times the interquartile range. Values beyond
891 that are shown as points. An a log(x) scale) was used. Photos: Christina Hansen Wheat
892
893
894
895
896
897
898
899

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914

915

916

917 **Figure 3. Standardized regression coefficients.** Standardized regression coefficients for
918 the best model for each behaviour, selected by AIC. Ranges indicate confidence intervals,
919 computed using the likelihood profile. Missing estimates indicate that the term was not
920 included in the best model.

921

922