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Abstract

Kymographs are graphical representations of spatial position over time, which are often used
in biology to visualise the motion of fluorescent particles, molecules, vesicles, or organelles
moving along a predictable path. Although in kymographs tracks of individual particles are
qualitatively easily distinguished, their automated quantitative analysis is much more
challenging. Kymographs often exhibit low signal-to-noise-ratios (SNRs), and available tools
that automate their analysis usually require manual supervision. Here we developed
KymoButler, a Deep Learning-based software to automatically track dynamic processes in
kymographs. We demonstrate that KymoButler performs as well as expert manual data
analysis on kymographs with complex particle trajectories from a variety of different
biological systems. The software was packaged in a web-based "one-click" application for
use by the wider scientific community. Our approach significantly speeds up data analysis,
avoids unconscious bias, and represents another step towards the widespread adaptation of

Machine Learning techniques in biological data analysis.
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Introduction

Many processes in living cells are highly dynamic, and molecules, vesicles, and organelles
diffuse or are transported along complex trajectories. Particle tracking algorithms represent
powerful approaches to track the dynamics of such particles ((Jagaman et al. 2008;
Shalzarini & Koumoutsakos 2005; Lee & Park 2018)). However, particularly in scenarios
where patrticles follow a stationary path and move much faster than the confounding cell
(e.g., as in molecular transport along neuronal axons and dendrites, retrograde actin flow, or
cilia transport), kymographs provide an elegant solution to the visualisation and analysis of
particle dynamics. Kymographs are generated by stacking the intensity profile along a
defined path for each time point of a movie. In the resulting space-time image, each (usually
fluorescently) labelled particle is shown as a line, whose slope, for example, represents the

velocity of that particle (Figure 1A).

In many biological processes, multiple particles move along the same stationary path with
little to no deviations, making kymographs a very useful representation of their dynamics.
Hence, kymographs have been widely employed to visualise biological processes across
different length scales, ranging from diffusion and transport of single molecules to whole cell
movements (Twelvetrees et al. 2016; Barry et al. 2015). The analysis of these kymographs
only requires tracing lines in 2D images, a rather simple task compared to the more general
approach of particle tracking, where one has to identify the centre of the particles in each

frame, and then correctly assign these coordinates to corresponding particles across frames.

Publicly available kymograph analysis software simplifies the tedious and time-consuming
task of tracing kymographs, but most of these solutions require manual supervision, and
they are mainly applicable to particles that follow a unidirectional motion, i.e. do not change
their direction or velocity (Figure 1C, example 2) (Neumann et al. 2017; Mangeol et al. 2016;
Chenouard et al. 2010; Zala et al. 2013). This category includes, for example, the dynamics

of growing microtubule +ends and F-actin dynamics in retrograde actin flow (Lazarus et al.
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2013; del Castillo et al. 2015; Alexandrova et al. 2008; Babich et al. 2012). In many other
biological contexts, however, particles can stop moving, change direction, merge, cross each
other’s path, or disappear for a few frames. The kymographs obtained from these processes
exhibit ‘bidirectional’ motion (Figure 1C, example 1); this category includes cellular transport
processes, for example molecular or vesicle transport in neuronal axons and dendrites (Faits
et al. 2016; Tanenbaum et al. 2013; Koseki et al. 2017). Thus, the problem of automatically
and reliably tracking dynamic processes in kymographs is still largely unresolved, and given
the limitations of currently available kymograph analysis software, most kymographs are still

analysed by hand, which is slow and gives rise to unconscious bias.

In recent years, Machine Learning (ML), and particularly Deep Neural Networks, have been
very successfully introduced to data processing in biology and medicine (Mathis et al. 2018;
Weigert et al. 2017; Florian et al. 2017; Guerrero-Pena et al. 2018; Falk et al. 2019; Bates et
al. 2017). ML-based image analysis has several advantages over other approaches: it is less
susceptible to bias than manual annotation, it takes a much shorter time to analyse large
datasets, and, most importantly, it comes closer to human performance than conventional

algorithms (Mathis et al. 2018).

Most ML approaches to image analysis utilise Fully Convolutional Deep Neural Networks
(FCNs) that were shown to excel at object detection in images (Dai et al. 2016; Szegedy et
al. 2014; LeCun et al. 2008; Falk et al. 2019). Through several rounds of optimisation, FCNs
select the best possible operations by exploiting a multitude of hidden layers. These layers
apply image convolutions using kernels of different shapes and sizes, aiming to best match
the output of the neural network to the provided training data labels, which were previously
derived from manual annotation. This means that the network learns to interpret the images
based on the available data, and not on a priori considerations. This approach has become
possible due to the incredible improvements in computation times of modern CPUs and the
adoption of GPUs that can execute an enormous number of operations in parallel. Currently,

the most successful architecture for biological and medical image analysis is the U-Net,
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80  which takes an input image to generate a binary map that highlights objects of interest based

81 onthe training data (Ronneberger et al. 2015).

82  Here we present KymoButler, a new stand-alone FCN software based on the U-Net

83  architecture, to automatically and reliably extract particle tracks from kymographs. The

84  software was packaged into an easy-to-use web interface and a downloadable software
85 package, and it was benchmarked against traditional software and manual annotation on
86  synthetic (i.e., ground truth) data. We show that KymoButler performs very well on

87 challenging bidirectional kymographs, where particles disappear, reappear, merge, cross
88 each other’s path, move in any direction, change speed, immobilise, and reverse direction.
89  KymoButler thus represents a substantial improvement in the automation of kymograph
90 tracing, speeding up the experimental workflow, while preserving the accuracy of manual

91  annotations.

92 Results

93 The KymoButler software package

94  For our FCN-based kymograph analysis software, we implemented a customised
95 architecture based on the U-Net (Ronneberger et al. 2015). We first trained the FCN to
96 segment kymographs, i.e. binarize the image into regions with particle tracks (foreground)
97 and noise (background). Our training data consisted of manually annotated tracks in 487
98 unidirectional and 79 bidirectional kymographs (unpublished data from our group and other
99 laboratories, see Materials and Methods and Acknowledgements for details). Since no
100 ground truth was available in the manually annotated kymographs, we also generated 221
101  synthetic unidirectional and 21 synthetic bidirectional kymographs that were used for training

102  (see Figure 1-figure supplement 3 for examples).
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103  Our network takes an input kymograph to generate 2D maps that assign a “trackness” value
104  between 0 and 1 to each pixel of the input image, with higher values representing a higher
105 likelihood of pixels being part of a track. The training was performed with pixel-wise cross-
106  entropy loss (see Methods for details) and implemented in Mathematica

107  (http://www.wolfram.com/mathematica). We furthermore took advantage of the intrinsic

108 differences in the appearance of unidirectional and bidirectional kymographs and trained two
109 separate specialised networks, a unidirectional segmentation module, and a bidirectional

110 segmentation module (Figure 1-figure supplement 1 and Figure 1-figure supplement 2).

111  The unidirectional segmentation module generates separate trackness maps for tracks with
112  negative and positive slopes (which could, for example, correspond to tracks of anterograde
113 and retrograde transport processes, respectively), to remove line crossings from the output
114  (Figure 1-figure supplement 1). The trackness maps are then binarized and morphologically
115 thinned to yield separated lines in a skeletonized map (Figure 1-figure supplement 1). We
116  found the binarization threshold to depend on the biological application and on the signal to
117 noise ratio of the input image. For our synthetic data, we used a value of 0.2 and generally
118 observed consistent results for both segmentation modules between 0.1-0.3 (Figure 1-figure

119  supplement 4).

120 In bidirectional kymographs, tracks show more complex morphologies, since they can

121  change direction and cross each other multiple times. The bidirectional segmentation

122  module therefore generates a single trackness map, which needs to be further processed in
123  order to obtain individual particle tracks. After thresholding and morphologically thinning the
124  trackness map, we obtained a skeletonised image with multiple track crossings (Figure 1—
125 figure supplement 1). In these images, we detected starting points of tracks by

126  morphological operations (Figure 1-figure supplement 1B) and moved along each line from
127  one row (time point) to the next. Then, whenever a crossing point was encountered (with two
128  or more possible pixels to advance to), the software calls a decision module to resolve the

129  crossing. The decision module, again based on a modified version of the U-Net, is
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130 specialised in solving these crossings and trained on our bidirectional kymograph data

131  (Figure 1-figure supplement 1B and Figure 1-figure supplement 2). The inputs of the

132  module consist of three 48 by 48 pixel crops: (1) the input kymograph, (2) the skeletonised
133 trackness map, and (3) the skeleton of the current track (Figure 1-figure supplement 1B).
134  The output of the module is a map that assigns a score between 0 and 1 to each pixel of the
135 skeletonised trackness map (2). Then, the most likely skeleton segment to continue the
136  current track (3) is selected from the decision score map and the average score saved as a
137  measure for track confidence. If the predicted path is less than 3 pixels long, the track is
138 resolved and terminated. Once all the tracks with starting points are resolved, they are

139 removed from the skeletonised trackness map, which is then scanned again for starting
140 points, and the steps above are repeated until no further starting points are found.

141  Furthermore, long overlaps between tracks are assigned to the track with the highest

142  confidence so that no large overlapping regions between tracks are found in the final result

143  (see Materials and Methods).

144  Finally, we implemented the class module, a simple convolutional network that classifies
145 input kymographs into unidirectional or bidirectional classes (Figure 1-figure supplement 1B
146  and Figure 1-figure supplement 2A). The class module was trained on both unidirectional
147  and bidirectional data until the error rate on a validation dataset, which contained 72

148  kymographs and their classes, became persistently 0%. We linked the class module to the
149 unidirectional and bidirectional segmentation modules as well as to the decision module
150 (Figure 1-figure supplement 1B), and packaged them into KymoButler, an easy-to-use, drag
151 & drop browser-based app for quick and fully automated analysis of individual kymographs

152 (http://kymobutler.deepmirror.ai).

153 The only free parameter in KymoButler is the threshold for trackness map segmentation. The
154  default threshold is 0.2, but users can freely adjust it between 0.1 and 0.3 (+1 and -1 in the
155 cloud interface) for their specific application. After the computation, which only takes 1-20

156  seconds per kymograph (depending on complexity), KymoButler generates several files
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157 including a dilated overlay image highlighting all the tracks found in different colours, a CSV
158 file containing all track coordinates, and another summary file with post processing data,
159  such as average velocities and directionality (Figure 1B). Finally, we tested KymoButler on
160 previously published kymographs from a variety of different biological data (Figure 1C and

161  Figure 1-figure supplement 1A) and on unpublished data from collaborators (not shown).

162 Performance on unidirectional Kymographs

163  We quantitatively evaluated the performance of KymoButler on unidirectional kymographs,
164 i.e. particles that move with mostly uniform velocities and with no change in direction (Figure
165 1C, Figure 2, Figure 1-figure supplement 1A). The unidirectional module of KymoButler was
166  compared to an existing kymograph analysis software, which is based on Fourier filters, and
167  which provided the best performance among publicly available software in our hands

168 (KymographDirect package (Mangeol et al. 2016)). Additionally, we traced kymographs by

169 hand to obtain a control for the software packages.

170  First, we generated 10 synthetic movies depicting unidirectional particle dynamics with low
171  signal-to-noise ratio (~1.2, see Materials and Methods) and extracted kymographs from
172  those movies using the KymographClear (Mangeol et al. 2016) Fiji plugin. Each of the

173  kymographs was then analysed by Fourier-filtering (KymographDirect), KymoButler, and by
174  hand, and the identified trajectories overlaid with the ground truth (i.e., the known dynamics

175  of the simulated data) (Figure 2A).

176  We then quantified the quality of the predicted traces. We first determined the best predicted
177  track for each ground truth track (in case several segments were predicted to cover the

178 same track) and then calculated the fraction of the length of the ground truth track that was
179  correctly identified by that predicted track (“track recall”) (Figure 2B). Additionally, we

180 determined the best overlapping ground truth track for each predicted track and then

181 calculated the fraction of the length of the predicted track that was overlapping with the
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182  ground truth track (“track precision”). Examples of low/high precision and low/high recall are
183  shown in Figure 2B. We then calculated the geometric mean of the average track recall and
184  the average track precision (the “track F1 score”, see methods) for each kymograph (Figure
185 2E). The median F1 score of the manual control was 0.90, KymoButler achieved 0.93, while
186  Fourier filtering achieved a significantly lower F1 score of 0.63 (p = 4 - 107>, Kruskal-Wallis
187  Test, Tukey post-hoc: manual vs KymoButler p = 0.6, manual vs Fourier Filteringp = 3 -

188  1073).

189  Our synthetic data also included gaps of exponentially distributed lengths (see Materials and
190 Methods), allowing us to quantify the ability of KymoButler to bridge gaps in kymograph

191 tracks (Figure 2C, F), which are frequently encountered in kymographs extracted from

192 fluorescence data (Applegate et al. 2011). Both KymoButler and manual annotation

193 consistently bridged gaps that belonged to the same trajectory, while Fourier filtering was
194  less accurate (89% of all gaps correctly bridged by KymoButler, 88% by manual, and 72%
195 by Fourier filter analysis; median of all 10 synthetic kymographs, p = 10~*, Kruskal-Wallis
196  Test, Tukey post-hoc: manual vs KymoButler p = 0.9, manual vs Fourier Filteringp = 2 -

197 1073, Figure 2F).

198 We also quantified the ability of KymoButler to resolve track crossings. Again, both

199  KymoButler and manual annotation performed significantly better than Fourier filtering (88%
200 KymoButler, 86% manual, 60% Fourier filter; median percentage of correctly resolved

201  crossings of all 10 synthetic kymographs, p = 10™*, Kruskal-Wallis Test, Tukey post-hoc:
202  manual vs KymoButler p = 0.9, manual vs Fourier Filtering p = 1- 1073, Figure 2G). In

203  summary, KymoButler was able to reliably track particle traces in kymographs at low SNR,
204 and it clearly outperformed currently existing software, while being as consistent as manual

205  expert analysis.
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206 KymoButler performance on bidirectional Kymographs

207  As in many kymographs obtained from biological samples trajectories are not unidirectional,
208 we also tested the performance of KymoButler on complex bidirectional kymographs, i.e. of
209 particles with wildly different sizes, velocities, and fluorescence intensities that frequently
210 change direction, may become stationary and then resume motion again (see Figure 1B, C,
211  Figure 3A, Figure 1-figure supplement 1A for examples). Available fully automated software
212  that relied on edge detection performed very poorly on our synthetic kymographs (Figure 3-
213  figure supplement 1). Therefore, we implemented a custom-written wavelet coefficient

214  filtering algorithm in order to compare our FCN-based approach to a more traditional non-ML
215  approach (Figure 3A, Figure 3-figure supplement 1, Materials and Methods). In short, the
216  wavelet filtering algorithm generates a trackness map, similar to KymoButler, by applying a
217  stationary wavelet transform to the kymograph to generate so-called “coefficient images” that
218  highlight horizontal or vertical lines. These coefficient images are then overlaid and binarized
219  with a fixed value (0.3), skeletonised, and fed into the KymoButler algorithm without the

220  decision module, i.e. crossings are resolved by linear regression prediction.

221  We generated 10 kymographs from our synthetic movies with the KymographClear package
222  (average signal-to-noise ratio was 1.4, since any lower signal generally obscured very faint
223  and fast tracks). Each of the kymographs was then analysed by wavelet coefficient filtering,
224 KymoButler, and manual annotation, and the predicted traces overlaid with the ground truth
225  (Figure 3A). While the wavelet approach and KymoButler were able to analyse the 10

226  kymographs in less than one minute, manual annotation by an expert took about 1.5 hours.
227  Moreover, whereas the manual annotation and KymoButler segmentation overlaid well with

228  the ground truth, the wavelet approach yielded numerous small but important deviations.

229  Similarly to the unidirectional case, we quantified track precision and recall (Figure 3B, E)
230 and calculated the resolved gap fraction (Figure 3C, F) and crossing fraction (Figure 3D, G).

231  The median of the track F1 scores per kymograph for manual annotation (0.82) was similar

10
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232  to KymoButler (0.80), while the wavelet filter approach only gave 0.60 (p = 8- 1075,

233  Kruskal-Wallis Test, Tukey post-hoc: manual vs KymoButler p = 0.7, manual vs wavelet

234  filtering p = 10~*, Figure 3E). While gaps were resolved by KymoButler and manual

235 annotation in 89% and 95% of cases, respectively, only 74% were resolved by the wavelet
236  algorithm (median of all 10 synthetic kymographs, p = 3 - 10~*, Kruskal-Wallis Test, Tukey
237  post-hoc: manual vs KymoButler p = 0.4, manual vs wavelet filtering p = 2 - 10~*, Figure 3F).
238  Crossings were rarely resolved correctly by the wavelet algorithm (12%) but much more

239 reliably by KymoButler (61%) and manual annotation (76%) (median of all 10 synthetic

240  kymographs, p = 3-107°, Kruskal-Wallis Test, Tukey post-hoc: manual vs KymoButler

241  p = 0.4, manual vs wavelet filtering p = 2 - 1075, Figure 3G).

242  Overall, these results showed that KymoButler performs well on both unidirectional and
243  bidirectional kymographs, outperforms currently available automated analysis of kymographs,
244  and it performs as well as manual tracing, while being much faster and not prone to

245 unconscious bias.

246 Discussion

247  In this work, we developed software based on Deep Learning technigues to automate the
248  tracking of dynamic particles along a stationary path in a noisy cellular environment.

249  Convolutional neural networks (CNNs) are nowadays widely applied for image recognition.
250 Since tracking is a priori a visual problem, we built a modular software utilising CNNs for

251  identifying tracks in kymographs. We deployed our networks as KymoBultler, a software

252  package that takes kymographs as inputs and outputs all tracks found in the image in a

253  matter of seconds. The network outperforms standard image filtering techniques on synthetic
254  data as well as on kymographs from a wide range of biological processes, while being as

255  precise as expert manual annotation.

11
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256  The KymoButler software has only one adjustable parameter that is left to the user: a

257  sensitivity threshold that, if low, allows more ambiguous tracks to be recognised, and if high
258  discards them. For our synthetic data, the best value for the threshold lay between 0.1 and

259 0.3 (Figure 1-figure supplement 4), and we observed a similar range for a variety of

260  kymographs from published data. However, the threshold depends on the SNR of the input
261 images, so that the correct threshold has to be chosen based on each biological application
262  andimaging conditions. We strongly recommend to visually inspect the output of

263  KymoButler for each new application, and to compare the output to manual annotation.

264  Most of the publicly available kymograph analysis software requires manual labelling to

265  extract quantitative data (Chenouard et al. 2010; Neumann et al. 2017; Zala et al. 2013).
266  Some automated approaches have been published in the context of specific biological

267  questions, but since these programs are currently not publicly available it is not clear how
268  well they would perform on kymographs from other applications (Mukherjee et al. 2011; Reis
269 et al. 2012). Other approaches do not extract individual tracks but only macroscopic

270 quantities, as for example velocities (Chan & Odde 2008). As KymoButler is fully automated
271 and able to reliably analyze kymographs from a wide range of biological applications, it fills
272  animportant gap. Here we showed that KymoButler is able to quantify mitochondria

273  movement in neuronal dendrites, microtubule growth dynamics in axons, and in vitro

274  dynamics of single cytoplasmic dynein proteins (Figure 1 and Figure 1-figure supplement 1).
275  We predict that it can furthermore be applied to most if not all other kymographs obtained

276  from time-lapse fluorescence microscopy without the need of any modifications.

277  KymoButler outperformed Fourier filtering, edge detection, and customised wavelet

278  coefficient selection on synthetic kymographs. While Fourier filtering ‘only’ performed ~30%
279  worse than KymoButler on unidirectional kymographs, edge detection on bidirectional

280  kymographs suffered greatly from background fluctuations and low SNR to such an extent
281 that the extracted data was unusable (see Figure 3-figure supplement 1 for one example).

282  Therefore, we designed a filtering algorithm based on wavelet coefficient image selection to

12
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283  analyse complex bidirectional kymographs specifically for our synthetic data. KymoButler still
284  performed 25% better than this approach (Figure 3). The main problem with either filtering
285 approach compared to KymoButler was their inability to bridge track gaps and resolve line
286  crossings, both of which occur frequently in biological data (Figure 2C, D and 3C, D). These
287  challenges are met by KymoButler, which performed as well as expert annotation, but within

288 a much shorter time (Figure 2 and 3).

289  Our results show that KymoButler is able to correctly identify individual full-length tracks in
290 kymographs with an average track F1 score (geometric mean of track precision and recall)
291  of 92% on unidirectional tracks and 80% on complex bidirectional tracks, without suffering
292  from inconsistency, bias, and laborious tracing, that plague manual tracking. While

293  KymoButler is already performing very well, we aim to significantly improve it over future
294  iterations. Every time a researcher uses our webform, the corresponding kymograph is

295  anonymously uploaded to our cloud. Once a large number of diverse kymographs is

296  uploaded, these kymographs will be added to our training data, improving KymoButler even

297 further.

298 The ultimate challenge will be to expand our approach to 2D or even 3D tracking problems.
299  Here, we defined a 1D region of interest in 2D time-lapse movies, extracted 2D (space and
300 time) images (kymographs), and finally tracked 2D lines in those images. A similar, albeit
301 computationally heavier, approach could stack the frames of a 2D/3D movie on top of each
302 other to generate a 3D/4D kymogram (2D space and time, or 3D space and time). Previously
303 generated kymograms have led to intriguing results on whole-cell particle tracking problems
304  with high SNR (Racine et al. 2007). The use of higher dimensional FCNs in the future has
305 great potential to yield human-like performance on any biological and medical tracking

306  problems.

307

13
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308 Material and Methods

309  All code was written in the wolfram language in Mathematica

310 https://wolfram.com/mathematica and, if not stated otherwise, can be found online under our

311 GitHub: https://github.com/deepmirror/KymoButler

312 The KymoButler software package

313 The KymoButler software was implemented in Mathematica to take advantage of easy web
314  form deployment and distribution. The workflow is shown in Figure 1-figure supplement 1B.
315  Our approach was to first segment kymograph pixels that are part of particle tracks from
316  pixels that were part of the background with our segmentation modules. From previous work
317  we knew that kymographs that depict unidirectional movement only, can be filtered into
318 tracks that have positive slope and those that have negative slope (Chenouard et al. 2010),
319  while no such assumptions can be made about bidirectional kymographs. Hence, we

320 decided to take advantage of this simplification of unidirectional kymograph analysis by
321 training two modules: one that is specialized to segment unidirectional kymographs and
322  another one that segments bidirectional ones. Note that the bidirectional module is able to
323 analyze any kymograph, including unidirectional ones, but since it is not specialized it

324  performs slightly worse than the unidirectional module on unidirectional kymographs. To
325 further simplify software usability, we prepended a class module that classifies input

326  kymographs as bidirectional or unidirectional, and then applies the corresponding

327  segmentation module and decision module (for bidirectional kymographs only). Our

328 downloadable software package on GitHub allows the user to call either segmentation

329  module (unidirectional/bidirectional) directly, if they wish to do so.

330 When the kymograph is classified as unidirectional by the class module, the unidirectional
331 segmentation module generates two trackness score maps for particles with negative or

332  positive slope (Figure 1-figure supplement 1B). Since the particles move with roughly the
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333  same velocity, the resulting maps mostly do not exhibit any crossings. Thus, we binarize the
334  maps with a threshold between 0.1-0.3 (see benchmarking section for more information

335 about the threshold). The resulting binary maps are then thinned iteratively so that each
336 trace is only one pixel wide at any point and pruned so that branches that are shorter than 3
337 pixels are deleted. Subsequently, each trace is segmented and selected only if they are at
338 least 3 frames long. In the final step, pixels that lie in the same row of the kymograph are

339 averaged over so that the final track has only one entry per frame.

340 For bidirectional kymographs the software generates a trackness map, applies a binarization
341 threshold (0.1-0.3, see benchmarking for more details), iterative thinning, and pruning

342  (minimum length 3 pixels). However, since the resulting skeletonised map had a substantial
343  number of crossings, and could not be easily segmented to yield individual tracks, we

344  implemented a further module in the software. First, all lines in the skeletonised map are
345  shortened so that each white pixel at a track end only has neighbouring pixels in different

346  rows (time dimension). This was done so that we could detect track starting points (“seeds”)

-1 -1 -1
347  with a Hit-Miss transformation with kernel: (—1 1 —1). Application of this kernel yielded
0 0 0

348 a binary map with 0 everywhere except at track seeds (Figure 1-figure supplement 1B, red
349 dots). These seeds were then used to start tracing individual tracks in the kymograph by
350 always advancing to the next white pixel. Once more than one potential future pixel is

351 encountered, the decision module is called. The module generates three 48x48 crops of (1)
352 the input kymograph, (2) the skeletonised trackness map, and (3) the skeleton of the current
353 track and predicts a trackness map that has high values on the skeleton segment of the

354  most likely future track (Figure 1-figure supplement 1B). This map is binarized with threshold
355 0.5 and thinned. The precise threshold had little effect on the final output, so we fixed it at
356 0.5 for all applications. Next, the largest connected component in the map is selected as the
357  most likely future path and appended to the track if longer than 2 pixels. The average

358 trackness value of this component (from the decision module prediction) is saved as a
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359 measure of decision “confidence”. This process is repeated until no further possible pixels
360 are found or no future path is predicted which is when the track is terminated. Once all seeds
361 are terminated, the software subtracts all the found paths from the skeletonised trackness
362 map and again looks for new seeds which are then again tracked in the full skeletonised

363 image. The process is repeated until no further seeds are found, and then all tracks are

364  averaged over their timepoints (rows in the kymograph image). Subsequently the software
365  deletes tracks that are shorter than 5 pixels or part of another track and assigns overlaps

366 that are longer than 10 pixels to the track with the highest average decision confidence.

367  Both the unidirectional and the bidirectional module output a coloured overlay in which each
368 track is drawn in a different randomly assigned colour and dilated with factor 1 for better
369  visibility (see Figure 1B-C and Figure 1-figure supplement 1A). Additionally, the software
370 generates one CSV file that contains all the track coordinates and a summary CSV file that

371 gives derived quantities, such as track direction and average speed.

372  The software was deployed from Mathematica as a cloud based interface

373  (http://kymobutler.deepmirror.ai) and a Mathematica package

374 (https://github.com/deepmirror/KymoButler)

375 Network architectures

376  Our networks were built from convBlocks (a convolutional layer with 3x3 kernel size, padding,
377 and arbitrary number of output channels followed by a batch normalisation layer and a ‘leaky’
378 ramp (leakyReLU) activation function (leakyReLU(x):= max(x,0) — 0.1 max(—x, 0)). Batch
379 normalisation is useful to stabilise the training procedure as it rescales the inputs of the

380 activation function (leakyRelLu), so that they have zero mean and unit variance. The

381 leakyReLu prevents the so-called “dead ReLu’s” by applying a small gradient to values

382  below 0. These building blocks were previously used for image recognition tasks in Google’s

383 inception architecture and in the U-Net architecture (Szegedy et al. 2014; Falk et al. 2019).
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384  The module architectures we settled on are shown in Figure 1-figure supplement 1-2. All
385  modules used the same core building blocks while having different input and output ports.
386  The classification module takes a resized kymograph of size 64x64 pixels and generates two
387  output values that correspond to the class probabilities for unidirectional/bidirectional

388  kymographs (Figure 1-figure supplement 2A). The unidirectional segmentation module takes
389  one input kymograph and generates two output images that correspond to the trackness

390 scores of particles with positive or negative slopes (Figure 1-figure supplement 2B). The
391 bidirectional segmentation module takes one input kymograph and generates one trackness
392  score map highlighting any found patrticle tracks (Figure 1-figure supplement 2C). Finally,
393 the decision module takes three inputs of size 48x48 pixels to generate one trackness map
394  (Figure 1-figure supplement 2D). All modules share the same core network that is

395 essentially a U-Net with padded convolutions and with 64 (in the top level) to 1024 (in the
396 lowest level) feature maps. We experimented with more complex architectures (parallel

397  convolution modules instead of blocks, different number of feature maps) but could only

398 observe minor increase in accuracy at a large expense in computation time. Due to the U-
399 Net architecture, each dimension of the inputs to the segmentation modules needs to be a
400 multiple of 16. Thus, inputs were resized when they did not match the dimension

401 requirements, and then the binarized output images from the segmentation modules were

402  resized to the original input image size before proceeding further.

403  Network training

404  To train the networks we quantified the difference between their output o and the desired
405  target output t through a cross entropy loss layer (CEloss(t,0) = —(t - In(o) + (1 —t) -
406 In(1-0)). The loss was averaged over all output entries (pixels and classes) of each
407  network. While we tried other loss functions, specifically weighted cross entropy loss and
408 neighbour dependent loss as described in (Bates et al. 2017), we persistently obtained

409 higher precision and recall with the basic cross entropy loss above.
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410  Our training data comprised a mixture of synthetic data and manually annotated unpublished
411  kymographs, kindly provided by the research groups mentioned in the acknowledgements.
412 Most of the manual annotation was done by M. A. H. J. and A. D. In total, we used 487

413  (+200 synthetic) unidirectional, and 79 (+21 synthetic) bidirectional kymographs, with 95% of
414  the data used for network training, and ~5% of retained for network validation. All network

415  training was performed on a workstation, using a nVidia 1080 Ti or a nVidia 1070 GPU.

416  The class module depicted in Figure 1-figure supplement 2A was trained with batches of
417  size 50 (with 25 unidirectional and 25 bidirectional kymographs to counter class imbalance)
418  with random image transformations that included image reflections, rotations, resizing,

419  colour negation, gaussian noise, random noise, and random background gradients. The final
420 input image was randomly cropped to 64x64 pixels (see examples Figure 1-figure

421  supplement 3A) and the class module was trained using stochastic gradient descent (ADAM
422  optimiser (Kingma & Optimization n.d.), initial learning rate 0.001), until the validation set

423  error rate was consistently 0%.

424  The unidirectional segmentation module (Figure 1-figure supplement 2B) was trained with
425  batches comprising 20 randomly selected kymographs from our training set (example in
426  Figure 1-figure supplement 3B). We applied the following image transformations: Random
427  reflections along either axis, random 180-degree rotations, random cropping to 128x80

428  pixels (approximately the size of our smallest kymograph), random gaussian and uniform
429 noise, and random background gradients. Note that we did not apply any resizing to the raw
430  kymograph since that generally decreased net performance. Additionally, we added Dropout
431  Layers (10-20%) along the contracting path of our custom U-Net to improve regularisation.
432  Each kymograph in this training set was generated by hand with KymographTracker

433  (Chenouard et al. 2010), but to increase dataset variability we took the line profiles from
434  KymographTracker and generated kymographs with a custom Mathematica script that

435  applied wavelet filtering to the plotted profiles. The resulting kymographs have a slightly

436  different appearance than the ones created with KymographTracker and are thus useful to
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437  regularize our training process. Several modules were trained until convergence and the
438  Dbest performing one (according to the validation score) was selected (ADAM optimiser, initial

439 learning rate of 0.001, learning rate schedule = If[batch < 4000,1, .5]).

440  The bidirectional segmentation module (Figure 1-figure supplement 2C, example data Figure
441  1-figure supplement 3C) was trained in the same way as the unidirectional segmentation
442  module, with the exception of a slightly different learning rate schedule (If[batch < 3000, 1,
443  .5]). Additionally, since we did not have access to many of the original movies from which the
444  kymographs were generated, we could not generate kymographs with different algorithms as

445 done for the unidirectional module.

446  Training data for the decision module (Figure 1-figure supplement 2D) was obtained from the
447  bidirectional (synthetic + real) kymographs by first finding all the branch points in a given

448  ground truth or manually annotated image. Then, each track was separated into multiple

449  segments, that go from its start point to a branching point or its end point. For each

450  branchpoint encountered while following a track, all segments that ended within 3 pixels of
451  the branchpoint were selected. Then, (1) a 48x48 pixel crop of the raw kymograph around
452  the branchpoint, (2) a binary map representing the track segment upstream of the branching
453  point (centred with its end in pixel coordinates 25,25, with image padding applied if the end
454  was close to an image corner), and (3) the corresponding 48x48 pixel region in the binary
455  image representing all possible paths were used as inputs to the decision module. The

456  binary image representing the ground truth or annotated future segment downstream of the
457  branchpoint was used as the target image (see Figure 1-figure supplement 3D for an

458  example training set). Thus, the training set comprised three input images and one output
459  image which we used to train the decision module. To increase the module’s focus on the
460 non-binary raw kymograph crop, we applied 50% dropout to the full skeletonised input and
461 5% dropout to the input segment. As explained above, we used random image augmentation
462  steps like reflections, rotations, gaussian + uniform noise. Additionally, we employed random

463  morphological thinning to the binary input/output images to simulate artefacts. Several
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464  networks were trained until convergence (pixel wise cross entropy loss, ADAM optimiser,
465 initial learning rate 0.001, batch size 50, learning rate schedule If[batch < 8000, 1, .5]), and

466  the best performing one was selected.

467  Synthetic Data

468  Synthetic data was generated by simulating individual particles on a stationary path of length
469 300 pixels for 300 frames to generate 300x300 pixel kymographs. To obtain unidirectional
470 particles we seeded 30+30 particles with negative or positive slope at random

471  timepoints/positions. Next, a random velocity between 1-3 pixels/frame was chosen for all
472  particles in the movie, with a random noise factor to allow slight changes in velocity, and a
473  particle PSF between 3-6 pixels. Each particle was assigned a survival time drawn from an
474  exponential distribution with scale 0.01, after which it would disappear. Gaps of random

475 length (exponentially distributed) were subsequently assigned to each track individually.
476  From these tracks we then generated a kymograph with gaussian noise, used for neural
477  network training, and a 20x300 pixel movie with 300 frames for benchmarking. The resulting
478  kymographs and movies had an average signal-to-noise ratio of 1.2 (calculated as the

479  average intensity of the signal, divided by the average intensity of the background). Finally,

480 we removed tracks that overlapped for the whole duration of their lifetime.

481  To obtain synthetic data of complex bidirectional particle movements, we generated datasets
482  with either 15 tracks (for benchmarking) or 30 tracks (for training) per movie. The maximum
483  velocity was set to 3 pixels/frame, as above this velocity it became hard to manually

484  segment tracks from kymographs. Each movie was assigned a random velocity noise factor
485  between 0 and 1.5 pixels/frame, a random switching probability between 0 and 0.1 (to switch
486  between stationary and directed movement) and a random velocity flipping factor between 0
487 and 0.1 (to flip the direction of the velocity). Individual particles were simulated by first

488  calculating their lifetime from an exponential distribution with scale 0.001. Then, a random

489 initial state, moving or stationary, was selected as well as a random initial velocity and a
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490 particle size between 1-6 pixel. In the simulation, particles could randomly switch between
491  different modes of movement (stationary/directed), flip velocities and were constantly

492  subjected random velocity noise (movie specific). Finally, tracks that were occulted by other
493 tracks were removed, and a movie (used for benchmarking) and a kymograph (used for
494  training) were generated. The resulting kymographs and movies had an average signal-to-

495 noise ratio of 1.4.

496 Benchmarking

497  In order to benchmark the performance of software and manual predictions, we implemented
498 a custom track F1 score which was calculated as the geometric mean of track recall and
499 track precision. To calculate track recall, each ground truth track was first compared to its
500 corresponding predicted track, and the fractional overlap between them was calculated.

501 Since predicted tracks do not necessarily follow the exact same route through a kymograph,
502  but frequently show small deviations from the ground truth (see Figure 3 and Figure 3-figure
503 supplement 1) we allowed for a 3.2-pixel deviation from the ground truth (2 diagonal pixels).
504 The maximum fractional overlap was then selected and stored as the track recall. The recall
505 was thus 1 when the full length of a ground truth track was predicted, and 0 if the track was
506 not found in the prediction. We would like to highlight that this criterion is very strict: if a

507 ground truth track is predicted to be 2 tracks (for example, by failing to bridge a gap along
508 the track), the recall fraction would decrease by up to 50%, even if most of the pixels are

509 segmented correctly and belong to predicted tracks.

510 Track precision was calculated by finding the largest ground truth track that corresponded,
511 i.e. had the largest overlap, to each prediction, and then calculating the fraction of the

512  predicted track that overlapped to the ground truth track. Therefore, a track precision of 1
513 corresponded to a predicted track that was fully part of a ground truth track while a precision

514  of 0 meant that the predicted track was not found in the ground truth. In general, increasing
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515  precision leads to a lower recall and vice versa, so that taking the track F1 score as the

516  geometric mean between the two is a good measure of overall prediction performance.

517  To quantify gap performance, we searched for track segments within 3 pixels of the gap for
518 each frame, to allow for predictions that deviated slightly from the ground truth. Once each
519 frame of the gap was assigned to a corresponding predicted segment, the gap was deemed
520 resolved. If one or more frames of the gap had no overlapping segment to the prediction, the
521  gap was labelled unresolved. Our synthetic tracks had 954 gaps in the 10 kymographs of
522  unidirectional data, and 840 gaps in the 10 kymographs of bidirectional data, and the largest

523  gap size was 6 pixels. For each kymograph, we then calculated the fraction of gaps resolved.

524  To quantify KymoButler performance on crossings, we first generated binary images for

525 each ground truth track and calculated overlaps with other ground truth tracks by multiplying
526  those images with each other. The resulting images had white dots wherever two tracks

527  crossed. Those dots were then dilated by a factor of 16 to generate circles and overlaid with
528 the original single-track binary image to generate binary maps that contain segments of

529  ground truth tracks that cross/merge with other tracks. Next, we generated dilated (factor 1)
530 binary maps for each predicted track and multiplied them with each of those cross segments
531 to obtain the largest overlapping track for each segment. We then visually inspected a few
532 examples and determined that an overlap of 70% corresponds to a correctly resolved

533  crossing and allowed for slight variations in predicted tracks when compared to ground truth.

534  Finally, we calculated the fraction of crossings resolved per kymograph.

535  All statistical analysis was carried out in MATLAB (http://mathworks.com).

536 Module performance evaluation

537  To benchmark the unidirectional segmentation module of KymoButler, we generated 10
538 synthetic movies of the dynamics of particles that move with uniform speed and do not

539 change direction as described in the section about synthetic data generation. We then
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imported these movies into ImageJ (http://imagej.nih.gov ) via the Kymograph Clear package

(Mangeol et al. 2016), drew a profile by hand and generated kymographs from them. These
kymographs were then imported into the KymographDirect software package (also (Mangeol
et al. 2016)), Fourier filtered and thresholded to extract individual particle tracks. This
approach required manual selection of the threshold for each individual kymograph. We
additionally traced the same kymographs by hand in ImageJ to compare software
performance to expert analysis. To find a suitable range of binarization thresholds for our
unidirectional segmentation module we calculated the track wise F1 score on the 10
kymographs for thresholds between 0.05 and 0.5 (Figure 1-figure supplement 4). We
observed the highest scores between 0.1 and 0.3 for both our synthetic data and other
unpublished kymographs and also deemed these thresholds best by visual inspection of
predicted kymograph tracks. Hence, we chose 0.2 as the segmentation map threshold to

benchmark our predictions at.

In order to benchmark the bidirectional segmentation module and the decision module we
generated 10 synthetic movies of the dynamics of complex bidirectional particles. These
movies were imported into ImageJ with the KymographClear package and kymographs
extracted. We subsequently tried to use the edge detection option in KymographDirect to
extract individual tracks but were unable to obtain meaningful tracks (Figure 3-figure
supplement 1). We also tried other options in the package but could not get good results on
our synthetic data without substantial manual labor for each kymograph, defeating the goal
of a fully automated analysis. Therefore, we wrote a custom script to carry out automated
bidirectional kymograph analysis. We experimented with a few different approaches (for
example fourier-filtering and customized edge detection) and settled on wavelet coefficient
filtering as it gave the highest F1 score on our test dataset. This algorithm applied a
stationary wavelet transformation with Haar Wavelets (Mathematica wavelet package) to
each kymograph to decompose the image into different coefficient images that highlight

different details (for example vertical or horizontal lines). We then selected only those

23


https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/405183; this version posted May 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

567  coefficient images that recapitulated particle traces in our synthetic kymographs. These

568 images are overlaid and thresholded with an optimized threshold to generate binary maps
569 that can be iteratively thinned to obtain a skeletonized “trackness” map similar to the outputs
570 of our segmentation modules. This map was then traced with the same algorithm as in our
571  decision module. However, while the KymoButler decision module used a neural network to
572  predict path crossings, the wavelet filtering algorithm performed simple linear prediction by
573 taking the dilated (factor 1) binary segment of a track and rotating it by 180 degrees. Then
574  the “prediction” was multiplied with the skeletonized trackness map and the largest

575  connected component selected as the future path. In contrast to the original decision module,
576  this approach does not yield any information about decision “confidence”. Thus, to resolve
577  track overlaps at the end of the algorithm, we randomly assigned each overlap to one track
578 and deleted them from the others. Note that the wavelet approach was heavily optimized on
579  our synthetic kymographs and performed poorly on generic real kymographs. We also traced
580 the same 10 kymographs by hand in ImageJ. To find a suitable range of binarization

581 thresholds for our bidirectional segmentation module we calculated the track wise F1 score
582  for thresholds between 0.05 and 0.5 (Figure 1-figure supplement 4) and observed the same
583  optimal range as the unidirectional segmentation module (0.1-0.3) for both our synthetic data
584  and other unpublished kymographs. Hence, we chose 0.2 as the threshold score to

585  benchmark our predictions.

586

587

588 Key resources table

Resource Designation. Source. Identifiers. Additional Information.

Software, MATLAB MATLAB RRID:SCR 0 | Used for statistical
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algorithm 01622 analysis

Software, Fiji Fiji is Just RRID:SCR_0 | Used to generate and

algorithm ImageJ 02285 analyse kymographs with
(https://fiji.sc) KymographClear/Direct

https://sites.google.com/si

te/kymographanalysis/

Software, Wolfram Wolfram RRID:SCR_ | Code available under

algorithm Mathematica Mathematica | 014448 https://github.com/deepmi

rror/KymoButler

589
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software for applications, in case they are not covered by our research. This software may or

may not be made available on deepmirror.ai, depending on our clients’ requests.

Software

Quick and easy cloud platform: http://www.kymobutler.deepmirror.ai

Mathematica notebook with examples on how to use the software offline:

https://github.com/deepmirror/KymoButler

27


https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/405183; this version posted May 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

623 References

624  Alexandrova, A.Y. et al., 2008. Comparative Dynamics of Retrograde Actin Flow and Focal

625 Adhesions: Formation of Nascent Adhesions Triggers Transition from Fast to Slow Flow
626 C.-P. Heisenberg, ed. PloS one, 3(9).

627  Applegate, K.T. et al., 2011. plusTipTracker: Quantitative image analysis software for the
628 measurement of microtubule dynamics. Journal of Structural Biology, 176(2), pp.168—
629 184.

630 Babich, A. et al., 2012. F-actin polymerization and retrograde flow drive sustained PLCy1
631 signaling during T cell activation. The Journal of Cell Biology, 197(6), pp.775-787.

632 Barry, D.J. et al., 2015. Open source software for quantification of cell migration, protrusions,
633 and fluorescence intensities. The Journal of Cell Biology, 209(1), pp.163-180.

634  Bates, R. et al., 2017. Extracting 3D Vascular Structures from Microscopy Images using
635 Convolutional Recurrent Networks. arXiv.org, cs.CV.

636 Chan, C.E. & Odde, D.J., 2008. Traction Dynamics of Filopodia on Compliant Substrates.
637 Science, 322(5908), pp.1687-1691.

638 Chenouard, N. et al., 2010. Curvelet analysis of kymograph for tracking bi-directional
639 particles in fluorescence microscopy images. In 2010 17th IEEE International
640 Conference on Image Processing (ICIP 2010). IEEE, pp. 3657-3660.

641 Dai, J. et al., 2016. R-FCN: Object Detection via Region-based Fully Convolutional Networks.
642 pp.379-387.

643  del Castillo, U. et al., 2015. Interplay between kinesin-1 and cortical dynein during axonal
644 outgrowth and microtubule organization in Drosophila neurons V. Allan, ed. eLife, 4,
645 p.e10140.

646  Faits, M.C. et al., 2016. Dendritic mitochondria reach stable positions during circuit
647 development. eLife, 5, p.e11583.

648 Falk, T. et al., 2019. U-Net: deep learning for cell counting, detection, and morphometry.
649 Nature methods, 16(1), pp.67-70.

650  Florian, F. et al., 2017. Gp-Unet: Lesion detection from weak labels with a 3D regression
651 network.

652  Guerrero-Pena, F.A. et al., 2018. Multiclass Weighted Loss for Instance Segmentation of
653 Cluttered Cells. arXiv.org, cs.CV, pp.2451-2455.

654  Jagaman, K. et al., 2008. Robust single-particle tracking in live-cell time-lapse sequences.
655 Nature methods, 5(8), pp.695-702.

656  Kingma, D.P. & Optimization, J.B.A.A.M.F.S., DP Kingma and J. Ba, Adam: A method for
657 stochastic optimization, arXiv: 1412.6980,

658  Koseki, H. et al., 2017. Selective rabl1 transport and the intrinsic regenerative ability of CNS
659 axons. elLife, 6, p.5546.

28


https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/405183; this version posted May 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

660
661

662
663

664
665

666
667
668

669
670

671
672

673
674

675
676
677

678
679
680

681
682
683
684

685
686

687

688
689

690
691

692
693

694
695

696
697

aCC-BY-NC-ND 4.0 International license.

Lazarus, J.E. et al., 2013. Dynactin subunit p150(Glued) is a neuron-specific anti-
catastrophe factor. D. Pellman, ed. PLoS biology, 11(7), p.e1001611.

LeCun, Y. et al., 2008. Backpropagation Applied to Handwritten Zip Code Recognition.
dx.doi.org, 1(4), pp.541-551.

Lee, B.H. & Park, H.Y., 2018. HybTrack: A hybrid single particle tracking software using
manual and automatic detection of dim signals. Scientific reports, 8(1), p.212.

Mangeol, P., Prevo, B. & Peterman, E.J.G., 2016. KymographClear and KymographDirect:
two tools for the automated quantitative analysis of molecular and cellular dynamics
using kymographs. Molecular biology of the cell, 27(12), pp.1948-1957.

Mathis, A. et al., 2018. Markerless tracking of user-defined features with deep learning.
arXiv.org, cs.CV.

Mukherjee, A. et al., 2011. Automated kymograph analysis for profiling axonal transport of
secretory granules. Medical Image Analysis, 15(3), pp.354-367.

Neumann, S. et al., 2017. KymoAnalyzer: a software tool for the quantitative analysis of
intracellular transport in neurons. Traffic, 18(1), pp.71-88.

Racine, V. et al., 2007. Visualization and quantification of vesicle trafficking on a three-
dimensional cytoskeleton network in living cells. Journal of microscopy, 225(Pt 3),
pp.214-228.

Reis, G.F. et al., 2012. Molecular motor function in axonal transport in vivo probed by
genetic and computational analysis in Drosophila. Y. Zheng, ed. Molecular biology of the
cell, 23(9), pp.1700-1714.

Ronneberger, O., Fischer, P. & Brox, T., 2015. U-Net: Convolutional Networks for
Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted
Intervention — MICCAI 2015. Lecture Notes in Computer Science. Cham: Springer,
Cham, pp. 234-241.

Shalzarini, I.F. & Koumoutsakos, P., 2005. Feature point tracking and trajectory analysis for
video imaging in cell biology. Journal of Structural Biology, 151(2), pp.182—-195.

Szegedy, C. et al., 2014. Going Deeper with Convolutions. arXiv.org, cs.CV.

Tanenbaum, M.E., Vale, R.D. & McKenney, R.J., 2013. Cytoplasmic dynein crosslinks and
slides anti-parallel microtubules using its two motor domains. eLife, 2, p.e00943.

Twelvetrees, A.E. et al., 2016. The Dynamic Localization of Cytoplasmic Dynein in Neurons
Is Driven by Kinesin-1. Neuron, 90(5), pp.1000-1015.

Weigert, M. et al., 2017. Content-Aware Image Restoration: Pushing the Limits of
Fluorescence Microscopy. bioRxiv, p.236463.

Zala, D. et al., 2013. Vesicular glycolysis provides on-board energy for fast axonal transport.
Cell, 152(3), pp.479-491.

29


https://doi.org/10.1101/405183
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/405183; this version posted May 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

698 Figure legends

699  Figure 1: Kymograph generation and KymoButler

700 (A) Schematic of kymograph generation from live imaging data. A cell and four particles are
701  shown at 3 different timepoints (top row). A temporal projection of this cell highlights how
702  each particle moves along a stationary path. It is possible to track the path (magenta line),
703 and then extract the intensity of the particle in subsequent frames in a 2D kymograph image,
704  where the horizontal and vertical axes represent space and time, respectively. Individual
705 lines in a kymograph represent several particles moving along the same path. (B)

706  Functionality of KymoButler. A kymograph, here the motion of mitochondria along neuronal
707  dendrites adapted from (Faits et al. 2016), is uploaded via drag & drop to the cloud interface

708  at http://www.kymobutler.deepmirror.ai, where the noise-dependent sensitivity can be

709  manually adjusted. The outputs are: an overlay highlighting all the tracks found in different
710 (random) colours, a .csv file with the time and space coordinates for each track, and a .csv
711 file containing the summary of the direction and velocity of each track. (C) KymoButler image
712  outputs from two example kymographs. Left: dynamics of fluorescently labelled Rablla in
713  rat cortical axons (adapted from (Koseki et al. 2017), bidirectional movement as Rablla can
714  move both ways in the axon or become stationary). Right: dynamics of fluorescently labelled
715  microtubule plus-ends in mouse dorsal root ganglion axons (adapted from (Lazarus et al.
716  2013), unidirectional movement since microtubule growth is continuous). The top row depicts
717  the raw kymographs as taken from the published manuscripts. The middle row shows the
718 identified tracks as dilated coloured lines. The bottom row depicts an overlay of the raw

719  kymograph with the KymoButler prediction. Further examples from published work are

720  shown in Figure 1-figure supplement 1A.

721  Figure 1-figure supplement 1: Example kymographs and software workflow

722  (A) Three example kymographs from published manuscripts. Example 1: In vitro dynamics of

723  single cytoplasmic dynein proteins adapted from (Tanenbaum et al. 2013). Example 2: EB1-
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724  GFP labelled growing microtubule plus-ends in mouse dorsal root ganglion axons (Lazarus
725 etal. 2013). Example 3: Mitochondria dynamics in mouse retinal ganglion cell dendrites

726  (Faits et al. 2016). Each dilated coloured line depicts an identified track. (B) KymoButler
727  software workflow. First, a classification module is applied to each kymograph to determine
728  whether the kymograph is unidirectional or bidirectional. If the kymograph is deemed

729  unidirectional the unidirectional segmentation module is applied to the image to generate two
730 trackness maps that assign each pixel a score between 0-1, approximating the likelihood
731  that this pixel is part of a track with negative slope (left image) or positive slope (right image).
732  Subsequently, the trackness maps are binarized, skeletonised, and segmented into their
733  respective connected components. Finally, those components are averaged over each row
734  to generate individual tracks, and a dilated representation of each track is plotted in a

735 random colour. If the kymograph is classified as bidirectional, another segmentation module
736 is applied to the kymograph, which generates a trackness map that does not highlight any
737  particular slope. This map is binarized with a user-defined threshold and subsequently

738  skeletonised, resulting in a binary map that exhibits multiple track crossings. To resolve

739 these crossings, we first apply a morphological operation that detects the starting points of
740 tracks in the binary map (red dots). Then, the algorithm tracks each line from its starting

741  point until a crossing is encountered. At each crossing, the decision module is called, whose
742  inputs are (i) the raw kymograph in that region, (ii) the previous track skeleton, and (iii) all
743  possible tracks in that region. The decision module then generates another trackness map
744  that assigns high values to the most likely future path from the crossing. This map is then
745  again binarized and thinned with a fixed threshold of 0.5. If the predicted path is longer than
746 2 pixels, the path tracking continues. Once all starting points have been tracked until an end
747  (either no prediction or no further pixels available), the algorithm again looks for starting

748  points in the skeletonised trackness map excluding the identified tracks, and repeats the
749  steps outlined above until all pixels are occupied by a track. The resulting tracks are then

750 drawn with each track in a random colour.
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Figure 1-figure supplement 2: The software modules in detail

(A) The class module. This module resizes any input kymograph to 64x64 pixels. It
subsequently applies two convBlocks with no padding and 64 output feature maps to the
image. ConvBlocks comprise a convolutional layer with 3x3 kernels followed by a
BatchNormalisation Layer and a leaky Rectified Linear Unit (ReLU) activation function (leak
factor 0.1). The convBlocks are followed by 2x2 max pooling to halve the feature map sizes.
This is repeated another 2 times while steadily increasing the number of feature maps until
the last convBlock generates 256 feature maps of size 9x9. These maps are then pooled
with a final 2x2 max pool operation followed by a 4x4 mean pool operation to generate a
vector of 256 features. These features are then classified with a fully connected layer with
output nodes followed by another leaky Ramp and finally another fully connected layer
generates 2 output values that correspond to the probability of being a
unidirectional/bidirectional kymograph. (B) The unidirectional segmentation module takes
and an input kymograph of arbitrary size. Subsequently two convBlocks with 64 output
feature maps are applied to the image followed by max pooling. This is repeated three times
while doubling the number of feature maps with each pooling operation forming the
“contracting path”. To obtain an image of the same size as the input image the small feature
maps at the lowest level of the network have to be deconvolved 4 times each time halving
the number of feature maps and applying further convBlocks. After each 2x2 deconvolution
the resulting feature maps are catenated with the feature maps of the same size from the
contracting path so that the network only learns residual alterations of the input image. The
final 64 feature maps are linked to two independent convolutional layers that generate
outputs that correspond to the trackness scores for positive and negative sloped lines. (C)
The bidirectional segmentation module has the same architecture as the unidirectional one
but only generates one output that corresponds to the trackness map for any lines in the
image. (D) The decision module architecture is the same as the bidirectional segmentation

module but takes three input images instead of one.
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778  Figure 1-figure supplement 3: Synthetic training data examples

779  (A) Class module training data consisted of 64x64 pixel images that were either classified as
780 unidirectional (example 1) or bidirectional (example 2). (B) Synthetic training data for the
781  unidirectional segmentation module comprised 300x300 pixel kymographs with two binary
782  ground truth maps, corresponding to particle motion with negative and positive slopes. (C)
783  Synthetic bidirectional segmentation module training data comprises 300x300 pixel

784  kymographs with only one ground truth image containing all ground truth tracks. (D) The
785  decision module was trained with 48x48 pixel image crops of the raw kymograph, the

786  previous skeletonised path, and all the skeletonised paths in the cropped region. The ground

787  truth is simply the known future segment of the given path.

788  Figure 1-figure supplement 4: Geometric mean of track recall and precision for

789 different trackness thresholds

790  (A) 10 synthetic unidirectional and bidirectional kymographs were analysed with varying
791  trackness thresholds, and recall and precision were calculated. The geometric mean of recall
792  and precision does not exhibit much variation between 0.1 and 0.3 but decreases at lower

793 and higher values.

794

795  Figure 2: Benchmark of KymoButler against unidirectional synthetic data

796  (A) An example synthetic kymograph and its corresponding ground truth, manual control, the
797  prediction by KymoButler, and the prediction by Fourier filtering. The top row depicts

798 individual tracks in different colours and the bottom row shows the prediction overlay

799  (magenta) with the ground truth (green) for all approaches. Discrepancies are thus

800 highlighted in magenta (false positive) and green (false negative), while matching ground
801 truth and prediction appears white. (B) Schematic explaining the concept of recall and

802 precision. The top row depicts the possible deviations of the prediction from the ground truth.
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803  The middle and bottom rows show example overlays, again in green and magenta, from the
804  synthetic data. In the left column, the prediction is larger than the ground truth (magenta is
805 visible) leading to false positive pixels and low track precision, but a small number of false
806 negatives and thus high track recall. An example prediction overlay of the Fourier filter

807 approach is shown, which tends to elongate track ends. The right column shows a shorter
808 prediction than the ground truth, leading to green segments in the overlay. While this

809  prediction has high track precision (low number of false positive pixels), track recall is low
810 due to the large number of false negatives. Again, a cut-out from the Fourier filter prediction
811 is shown, where multiple gaps are introduced in tracks, thus severely diminishing track recall
812  (see Material and Methods for a detailed explanation of recall and precision). The middle
813  column shows the same two cut outs analysed by KymoButler. No magenta or green

814  segments are visible, thus leading to high recall and precision. (C) Synthetic kymograph
815  region with four gaps highlighted (arrow heads): in one or more kymograph image rows the
816  signal was artificially eliminated but kept in the ground truth to simulate real fluorescence
817 data. While KymoButler efficiently connects tracks over gaps, the Fourier filter is unable to
818 do so and breaks up those tracks into segments or incorrectly shortens these tracks (red
819 arrow heads). Yellow arrow heads depict correct gap bridging events. (D) A synthetic

820  kymograph with several line crossings. While KymoButler efficiently resolved all crossings,
821 i.e. lines that cross other lines are not broken up into two segments, the Fourier filter

822  correctly identifies the line crossing at the yellow arrow head but erroneously terminates the
823 red and yellow tracks at the red arrow head. (E) The geometric means of recall and precision
824  (“track F1 score”) for KymoButler, the Fourier filter approach, and manual control. Each dot
825  represents the average track F1 score of one synthetic kymograph (p = 4 - 10~°, Kruskal-
826  Wallis Test, Tukey post-hoc: manual vs KymoButler p = 0.6, manual vs Fourier Filtering
827 p=3-1073). (F) Quantification of gap bridging performance for KymoButler (89%), manual
828  control (88%), and Fourier filter (72%); lines: medians of all 10 synthetic kymographs,

829 p=10"*, Kruskal-Wallis Test, Tukey post-hoc: manual vs KymoButler p = 0.9, manual vs
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Fourier Filtering p = 2 - 1073, (G) The fraction of correctly identified crossings for
KymoButler, manual annotation, and the Fourier filter (88% KymoButler, 86% manual, 60%
Fourier filter; lines: medians of all 10 synthetic kymographs, p = 10™*, Kruskal-Wallis Test,

Tukey post-hoc: manual vs KymoButler p = 0.9, manual vs Fourier Filtering p = 1-1073).

Figure 3: Benchmark of KymoButler against complex bidirectional synthetic data

(A) Example synthetic kymograph and its corresponding ground truth, manual control, the
prediction by KymoButler, and the prediction via wavelet coefficient filtering. The top row
depicts individual tracks in different colours and the bottom row shows the prediction overlay
(magenta) with the ground truth (green) for all approaches. Discrepancies are highlighted in
magenta (false positive) and green (false negative), while the match of ground truth and
prediction appears white. (B) Example recall and precision of KymoButler and wavelet
filtering. While KymoButler shows high recall and high precision, the wavelet filter approach
yields significant deviations from the ground truth (green and magenta pixels). (C) Synthetic
kymograph region with three artificial gaps highlighted (arrow heads). While KymoButler
efficiently connects tracks over gaps, the wavelet filter is unable to do so and breaks up
those tracks into segments (red arrow heads). The yellow arrow heads depict correct gap
bridging events. (D) A synthetic kymograph with several line crossings. While KymoButler
efficiently resolved all crossings, i.e. lines that cross other lines are not broken up into
segments, the wavelet filter only resolves one crossing correctly (yellow arrow head). (E)
The geometric means of track recall and track precision (track F1 score) for KymoButler,
manual control, and the wavelet filter. Each dot represents the average F1 score of one
synthetic kymograph (p = 8 - 10™°, Kruskal-Wallis Test, Tukey post-hoc: manual vs
KymoButler p = 0.7, manual vs wavelet filtering p = 10~*%). (F) Quantification of gap
performance for KymoButler, manual annotation, and wavelet filter (p = 3 - 10~*, Kruskal-

Wallis Test, Tukey post-hoc: manual vs KymoButler p = 0.4, manual vs wavelet filtering
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856 p =2-10"%). (G) The fraction of resolved crossings for KymoButler, manual control, and the
857  wavelet filter (p = 3 - 107>, Kruskal-Wallis Test, Tukey post-hoc: manual vs KymoButler
858 p = 0.4, manual vs wavelet filtering p = 2 - 10~°). KymoButler identifies tracks in complex

859  kymographs as precisely as manual annotation by an expert.

860 Figure 3-figure supplement 1: Performance of different skeletisation techniques on a

861  synthetic bidirectional kymograph

862 (A) Example of a synthetic bidirectional kymograph and its corresponding ground truth, the
863  predictions by manual annotation, KymoButler, wavelet coefficient filtering, and tracks

864  detected through edge filtering. The top row depicts individual tracks in different colours and
865 the bottom row shows the prediction overlay (magenta) with the ground truth (green) for both
866  approaches. Discrepancies are highlighted in magenta (false positive) and green (false

867  negative), while a match of ground truth and prediction appears white.

868  Figure 2-source data 1: Table of presented data. A CSV file that contains: the average
869 track F1 score, the average gap score, and the average crossing score for each

870 unidirectional synthetic kymograph.

871  Figure 2-source data 2: Synthetic kymographs and movies. A ZIP file containing all
872  analysed synthetic unidirectional movies, their kymographs, results from KymographClear

873  based analysis and manually annotated ImageJ rois.

874  Figure 3-source data 1: Table of presented data. A CSV file that contains: the average
875  track F1 score, the average gap score, and the average crossing score for each bidirectional

876  synthetic kymograph.

877  Figure 3-source data 2: Synthetic kymographs and movies. A ZIP file containing all
878 analysed synthetic bidirectional movies, their kymographs, and manually annotated ImageJ

879 rois.

880
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Figure 1 S2
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Figure 1 S3
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Figure 1 S4
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Figure 3 S1
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