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Abstract

To explore the molecular processes underlying some biological theme of interest
based on public data, gene lists are used herein as input for the construction of
annotated pathway maps, employing Cytoscape apps, and then high-throughput
(“omics”) gene expression data are overlaid onto these maps. Seeded with a
published set of marker genes of the senescence-associated secretory phenotype
and the genes of the cellular senescence KEGG pathway, a gene/protein interaction
network and annotated clusters (a “pathway map”) of cellular senescence are
derived. The map can be amended, by adding some application-specific genes, and
overlaid with gene expression data describing cellular senescence of fibroblasts and
with disease-related gene expression data associated with prostate and pancreatic
cancer, and with ischemic stroke, allowing insights into the role of cellular
senescence in disease. Some gene expression data are derived from the “Biomarker
Benchmark repository”. The pathway map approach can be followed in principle for
any biological theme of interest, fostering much-needed independence from the
investigator-biased expert networks usually used for overlaying gene expression
data.

1


https://doi.org/10.1101/404525
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/404525; this version posted September 24, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

Introduction

High-throughput data do not usually yield biological or medical insight just by
themselves. Enrichment analyses are arguably the most popular way of generating
insight, but they do not usually consider the mechanistic details of gene-protein
interaction and regulation, as pathways and interaction networks do. Thus, there is a
need for a flexible, easy to follow route to detailed insight, which does not limit the
researcher to a specific fixed set of genes to begin with (like, KEGG pathways), nor
to the expert knowledge as it is ingrained in a pathway database. Moreover, such a
route to detailed insight should be simple and straightforward. Also, the route to
detailed insight should be as robust as possible, and this property is not easy to fulfill.
In this work, robustness specifically refers to a high degree of stability of the clusters
into which the network unfolds, with respect to modifications of the input gene list.
Without such clustering, we are left with interaction networks in the form of
unstructured “hairballs” that enable fewer insights®. However, if we shy away from the
commonplace utilization of more or less immutable expert pathways (from KEGG,
WikiPathways, Ingenuity, etc.), we need to obtain the pathway or network interaction
information based on other sources, which are necessarily non-expert-curated
interaction data. These are available in large amounts, but these are also inherently
noisy and based on a mix of experimental or computational source interactions
generated in a variety of contexts. Thus, we must expect automated clustering to lack
robustness. Nevertheless, by an appropriate choice of interaction data, we here
demonstrate that it is possible to generate pathway maps based on gene lists in an
automated fashion. Moreover, we show that these pathway maps can be sufficiently
stable such that small perturbations of the input gene list, e.g. the addition of a few
genes, do not trigger sweeping changes in the pathway map, even if we insist on
non-overlapping clusters, for easy comprehension and visualization. Using the MCL
clustering and annotations based on wordcloud-assisted processing of GO gene
annotations as provided by Cytoscape apps (for details see below), in this paper we
assemble a plausible pathway map that is describing cellular senescence in a highly
unbiased fashion. We furthermore amend the pathway map by adding a few genes
based on application-specific interest. For senescence- and disease-related data, we
then show how the pathway maps make it easier to extract insights from high-
throughput gene expression datasets.

The focus of our interest for establishing such an automated workflow is on cellular
senescence. 50 years ago it was discovered that human diploid fibroblasts have a
finite replicative potential in culture after which the cells enter a state of irreversible
replicative arrest®. Today it is clear that in addition also various types of stress, like
reactive oxygen species or DNA damaging agents, can induce cellular senescence,
suggesting that it is a special stress response state of the cell®. Transcriptional
changes include an up-regulation of tumor suppressor and anti-apoptotic genes and
a down-regulation of cell-cycle promoting genes. In addition, senescent cells secrete
an inflammatory mix of cytokines, growth factors and matrix metalloproteinases,
which form the senescence-associated secretory phenotype (SASP). This paracrine
signaling has a range of negative effects involving tissue remodeling, aging and
tumorigenesis. Molecular identification of senescent cells is not trivial, since the
senescent state induced by different triggers in different tissues is heterogeneous®.
Still, key markers are a large and flat cell morphology, a senescence-associated form
of B-galactosidase, and expression of tumor suppressors such as CDKN1A (p16™¢*).
Senescent cells are involved in the initiation and progression of various diseases.
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Although cellular senescence generally acts as a tumor suppressor mechanism, it
can also promote cancerogenesis and fibrosis via the SASP°. Such (antagonistic)
pleiotropy includes fibrotic processes important for wound healing® and in the liver’.
Cellular senescence is also implicated in diseases such as cancer, stroke,
atherosclerosis, osteoarthritis and metabolic disorders®. A causal relationship is
supported by studies that showed that transplanting senescent cells into young
animals caused physical dysfunction® and removing senescent cells increases health
and lifespan®*°.

Prostate and pancreatic cancer are on opposite ends in terms of survival prospects
at time of diagnosis. Prostate cancer is a heterogenous disease ranging from well
differentiated and hardly progressive low-grade cancer to highly aggressive and life-
threatening high grade disease. In the United States, prostate cancer that is local or
regional at the time of diagnosis has a 5-year survival rate of nearly 100%, while
those with distant metastases have a 5-year survival rate of 29%**. In contrast, in the
less than 20% of cases of pancreatic adenocarcinoma with a diagnosis of localized
small cancerous growth (less than 2 cm in Stage T1), about 20% of Americans
survive to five years. Cellular senescence can suppress both prostate and
pancreatic cancer, and cancerous proliferation in general, but it also triggers tumor
progression by the SASP'3  Also, cellular senescence contributes to
atherosclerosis and thromboembolism, and after the ischemic stroke it can attenuate
recovery™'®’ Moreover, cancer and stroke are linked by components of the SASP,
specifically PAI1 (aka SERPINE1)'. Patients with pancreatic cancer show an
especially high incidence of thromboembolic complication®®. In the following, we
specifically explore such molecular commonalities by mapping high-throughput data
to senescence-related pathway maps.
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Results

Construction and exploration of senescence pathway maps

In the following, we will first explore a canonical map (based on SASP-related and
cellular senescence genes), overlaying public high-throughput data that were
specifically generated to characterize cellular senescence. We will then explore the
canonical map with disease-related data. We also add genes of interest to explore
specific senescence pathway maps for specific disease applications.

Applying GeneMANIAY and AutoAnnotate®® to the 189 SASP and cellular
senescence genes*?! (see Suppl. Table 1 in Suppl. File 1), with default parameters
(except for the limitation of interaction data to co-localization, genetic and protein
interactions, see Methods), we obtained the pathway map of Fig. 1 and Table 1.
GeneMANIA added 20 closely interacting genes towards a total of 209 genes. In Fig.
1, the nodes in the pathway are colored using three gene expression data sets of
Ras-induced senescence®®** as described below. The clusters from Fig. 1 that
include more than two genes are presented in Table 1, where the numbering
matches the one in the figure, starting top-left. All clusters and full lists of genes are
provided in Suppl. Table 2 in Suppl. File 1. The Cytoscape file is provided in Suppl.
File 2. Finally, the pathway map can be explored interactively at
http://functional.domains/senescence/.

In a bird’s-eye view, the canonical map of Fig. 1 consists of 28 clusters. The two
largest clusters/pathways on the top left feature most of the cell-cycle genes,
including CDKNs (cyclin-dependent kinase inhibitors), CDKs (cyclin-dependent
kinases) and CCNs (cyclins). The SASP is mostly featured in the 6-gene cluster near
the top right (cluster 7, red arrow), and in the 3-gene cluster bottom-left (cluster 18,
blue arrow). The bottom-right circular structure includes all genes not assigned to any
cluster. Table 1 provides a list of the larger clusters; we will refer to this detailed
breakdown of clusters/pathways in the presentations that follow. By construction, the
clustering rests on nothing else but co-localization, protein and genetic interaction
data, and the annotation of these clusters rests on nothing else but the GO
annotations of the genes in each cluster. Thus, the pathway map required no specific
expert intervention except for the individual layout of the clusters, which placed the
genes roughly in an upstream/downstream fashion (see Discussion).
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Fig. 1: Canonical senescence pathway map, based on the SASP and the KEGG
cellular senescence genes. The same pathway map is shown with annotations
from three different experiments. The size of a gene node is proportional to its
GeneMANIA score, which indicates the relevance of the gene with respect to the
original list of genes to which GeneMANIA, based on the network data, added
another 20 genes. Genes upregulated in senescence (GSE19899, ref?, top,
GSE61130, ref®, middle, E-MTAB-5403, ref*, bottom) are shown in red,
downregulated genes are shown in blue, and grey denotes genes for which no
expression values were available. Clusters with genes known for their association
with the SASP are indicated by an arrow. The color of an edge refers to the source of
the edge in the underlying network, that is physical interactions (red), co-localization
(blue), and genetic interactions (green). The thickness of an edge is proportional to
its GeneMANIA “normalized max weight”, based on the network data. The pathway
maps can be explored interactively at http://functional.domains/senescence.
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Table 1. Senescence-related clusters/pathways of Fig. 1, sorted by size. Suppl. Table 2 in Suppl. File
1 provides a full list of clusters (including clusters of size 2), and the full list of genes per cluster.

N°  Senescence-related gene Size  Key genes Remarks
cluster (“pathway”), automated
annotation
1 cycle regulation checkpoint 19 GADD45, CDKN1A/B, stress response; cell
mitotic cell CDK1/2/5, CCNA/B/E, cycle focused on S/G2/M
E2F3, TGFB3 phase; growth regulation
2 transcription regulation cell 19 CDK4/6, CCND/E, cell cycle focused on G1
response negative E2F, RB/RBL, MYBL2, phase; E2F/RB; DREAM-
FOXM1, SIRT1, complex-related”;
LMNB, SERPINE1 deacetylation; nuclear
lamina; fibrinolysis & cell
adhesion
3 antigen endoplasmic reticulum 11 HLA, KIR2DL MHC/killer
membrane vesicle immunoglobulin-like
receptor mediated
response to senescence”
4 insertion mitochondrial outer 11 RAD1/9, CCND, DNA damage response;
membrane permeability PPP3, MCU mitochondrion
5 kinase receptor pathway toll- 10 MAP2K, MAPK, (Growth mediated by)
like signaling VDAC3, GATA4, MAP-kinase signaling
IGFBP2
6 repair signal dna regulation 9 RAD50, NRAS, DNA damage response;
damage MDM2, VDAC?2, mitochondrion
SLC25A
7 response regulation leukocyte 6 CXCL5/8/20, IL1B SASP
positive immunity
8 cell growth regulation process 5 TGFB transforming growth factor
metabolic beta regulation
9 g2 transition dna-dependent 5 LIN9/37/52/54, RBPP4 MuvB/DREAM complex
atpase methyltransferase
10  signaling pathway 5 RRAS, PI3K phosphatidylinositol-3-
phagocytosis kinase signaling
phosphatidylinositol receptor
11  muscle development skeletal 4 MMP1, TIMP2 (extracellular matrix)
fiber striated
12  host morphology physiology 3 -/- -/-
organism secretion
13  divalent metal ion cation 3 TRP TRP channels
calcium
14 methyltransferase triglyceride 3 PPP1 Calcineurin
catabolic neutral acylglycerol
15 peptidyl-serine phosphorylation 3 IL11 (inflammation)
peptidyl-tyrosine extracellular
hormone
16  morphogenesis regulation 3 FGF2, CHEK2 (proliferation)
blood cell migration
17  transduction p53 dna 3 ATR, ATM DNA damage response
checkpoint damage
18  multicellular organismal 3 MMP3/10 SASP, metallopeptidase
macromolecule extracellular
matrix
19 development response skeletal 3 MTOR, CCNB3 (cellular proliferation)

muscle signaling
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Exploring microarray data on cellular senescence

The gene expression data on Ras-induced senescence of IMR90 fibroblasts
displayed in Fig. 1 (top) were published as part of a study of the role of the Rb
(retinoblastoma) protein family in senescence®. The authors reported that a
“disruption of a p21-mediated cell-cycle checkpoint” could be due to loss of the tumor
suppressor Rb that usually attenuates cellular proliferation. Accordingly, in the
situation of senescence as described in Fig. 1 (top), we find that p21 (CDKN1A) is
the only strongly upregulated gene in the cluster/pathway 1, and the most strongly
downregulated genes are the cyclins (CCNs) A2 and B1, reflecting that the S/G2/M
phases are most affected (Vermeulen et al, 2003). In cluster/pathway 2, we find that
other parts of the cell cycle (G1 phase) are not affected as much. Most prominently,
downregulation of Lamin B is observed here. Lamin B happens to be allocated to
cluster/pathway 2, even though its downregulation is a general feature of cellular
senescence. The two clusters/pathways most closely associated to the SASP
(pathways 7 and 18, next-to-top-right and bottom-left of the map, red and blue arrow)
feature the expected upregulation of their members, in particular of IL1B and of
cytokines, and of matrix metalloproteinases 3 and 10. In cluster/pathway 11, MMP1
is found upregulated as well, and its inhibitor TIMP1 is downregulated. Ras-induced
senescence is reflected in the map by upregulation of HRAS, which is however part
of the circular structure of genes not allocated to any cluster/pathway. Finally, the
members of the Rb family** only feature a negligible fold-change, suggesting that
their regulation is not mediated by the amount of transcript, but likely by
phosphorylation, as is also the case for the CDKs. The E2F transcription factors do
not feature much fold-change either; their downregulation in case of senescence is
plausible though, as they are considered tumor drivers that are inhibited by the Rb
proteins. Finally, CCNE1 (cyclin E1) as the key target of Rb is uPreguIated and this
unexpected observation is discussed extensively in Chicas, et al. %

Exploring RNA-Seq data on cellular senescence

For comparison, we overlaid the RNA-Seq based expression data of Herranz, et al.
% which were used to study Ras-induced senescence in IMR90 fibroblasts, see Fig.
1 (middle). For this dataset, the change in gene expression (log fold change, logFC)
could be calculated for 205 of the 209 genes in the senescence pathway map; this
number is the largest one available of all public datasets considered by Hernandez-
Segura, et al. . We note the high concordance between Fig. 1 top and middle; in
cluster/pathway 1, the Herranz dataset is different only in that CXCL2 is upregulated,
while in cluster 2, SERPINEL is up-regulated instead of down-regulated, but Lamin B
is downregulated as in the first IMR90 senescence dataset. The SASP in clusters 7
and 18 is also upregulated, and the SASP-related antagonism of MMP1 and TIMP1
in cluster 11 is visible. The SASP factor CSF2?° (cluster 25) is upregulated much
stronger here; in fact it is the strongest-upregulated gene in Fig. 1 (middle) but it is
not further discussed in Herranz, et al. . Also, IL11 (cluster 15) is strongly
upregulated.

We also explored the datasets generated by Hernandez-Segura, et al. ¢, along which
our list of SASP genes was published. We focused on the HCA2 human foreskin
fibroblast data of radiation-induced senescence (disregarding keratinocyte and
melanocyte data) to allow for the most meaningful comparison with the other
fibroblast data we investigated, using the 20-day post radiation data set that reflects
cell-cycle arrest best according to the paper. This data set also has the highest
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number of genes (of the canonical senescence pathway map) for which fold changes
are available (160 out of 209). Reassuringly, the gene expression landscape (Fig. 1,
bottom) closely resembles the one observed before, e.g. for clusters/pathways 1 and
2 (except that CDK6 and CCNEL1 feature higher expression). In cluster 4, CCND2 is
upregulated strongly. The SASP is again upregulated, and in cluster 25, CSF2 is
upregulated here as it is in the Herranz dataset (Fig. 1, compare middle to bottom).

Exploration of cancer, stroke and mitochondrial dysfunction data

Prostate cancer. We utilized the “Biomarker Benchmark repository” of Golightly, et
al. 7, based, for prostate cancer, in turn on Erho, et al. *® (GSE46691), and we used
the repository’s gene expression data in R?® to derive log fold change data describing
prostate cancer disease progression (logFC from Gleason grade 7 to 8-10, which is
prognostic for metastasis, as suggested by the repository’s
“Prognostic__Metastasis_Analysis.txt” file). For mapping to the senescence pathway
map, we inverted the colors in this case, as disease progression towards metastasis
is opposite to tumor-suppression by cellular senescence. Reassuringly, SASP genes
are then turning red (that is, up in senescence, down in metastasis) in clusters 7 and
18 (and also in cluster 1, affecting CXCL2), and cell cycle genes in clusters 1 and 2
are turning blue (Fig. 2, top). The secretion of CXCL2 as a pro-inflammatory cytokine
was found when investigating the stromal-epithelial interactions in the early stages of
prostate cancer, in an in-vitro setting® .

Pancreatic cancer. Overlaying gene expression data of carcinoma-associated
fibroblasts (GSE81368)% onto the canonical senescence pathway map, in the first
pathway (cluster 1) we observe downregulation of most cell-cycle genes, specifically
of cyclins A2, B1 and B2, matching the observation of a reduced number of S-phase
cells reported by the authors (see Fig. 2, middle). The upstream stress signaling by
GADD45 is upregulated, as is the downstream SASP-related factor CXCL2. In
cluster 2, which is more closely connected to the G1 phase, there is no consistent
pattern. SASP genes in clusters 7 and 18 are upregulated, most prominently CXCL8
(also known as IL8) and MMP3, both as noted in the paper. Still, cyclin D variants, in
form of CCNDL1 (in cluster 20), CCND2 (in cluster 4) and CCND3 (in cluster 2), are
upregulated, suggesting some G1l-phase activity. Next, we overlaid gene expression
data describing that senescence driven by KDM6B, a tumor-suppressing mediator of
KRAS-induced senescence, attenuated aggressiveness of PDAC cells
(GSE28155)*, onto an amended senescence pathway map, following our map
construction recipe except for adding KDM6B and its downstream target CEBPA
(also known as C/EBPa) to the list of input genes. The amended senescence
pathway map in Fig. 2 bottom was thus generated de novo, and it is displayed
without any manual layout. The clustering, however, is essentially the same as in the
canonical pathway map. Again, clusters 1 and 2 feature most of the cell cycle genes.
While gene expression of KDM6B (grey arrow) was not measured, CEBPA (red
arrow) is downregulated as expected. However, the cell cycle gene featured in the
paper, CDKN2A/p16, is not differentially expressed as would be expected, the other
cell cycle genes are regulated in an inconsistent fashion, and the SASP genes are
unexpectedly downregulated (cluster 7).
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Fig. 2: Senescence in disease, prostate and pancreatic cancer. The canonical
senescence pathway map (top and middle), based on the SASP and the KEGG
cellular senescence genes, and an amended one (bottom), adding two genes of
interest and omitting any manual layout. Genes upregulated in disease (GSE46691
Erho, et al. %, top, GSE81368, ref*’, middle, GSE28155, ref*?, bottom) are shown in
red, downregulated genes are shown in blue, and grey denotes genes for which no
expression values are available. See Fig. 1 for further explanations.
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Stroke. Overlaying the differential data provided by comparing ischemic stroke
patients to controls®® (GSE22255) reveals that senescence-associated processes
can indeed be found in peripheral blood mononuclear cells (PBMCs) after stroke.
Specifically, in cluster 1, CDKN1A is upregulated, and, correspondingly, CCNAZ2 is
downregulated, though most cell cycle genes are regulated in no consistent fashion.
The SASP genes in cluster 7 are upregulated, as is interleukin 6 (IL6; found in the
circular structure bottom right). IL6 is not only an important part of SASP, but can
also be linked with angiogenesis after infarction®*. Furthermore, it is discussed as a
biomarker for the risk and outcome for ischemic stroke®>*°.

Cancer and Stroke. Co-morbidity has been described for stroke and pancreatic
cancer®’, based in part on cancer associated hypercoagulation. We added the four
extra SASP factors from Valenzuela, et al. '8, their Table 1 (“Senescence-associated
secretory phenotype (SASP) factors with potential effect on platelets aggregation and
the fibrinolytic system”), that are not already included in the canonical map (that is,
MMP2, FN1, THPO and CSF3). We then constructed a revised pathway map, which
is mostly stable with respect to the canonical one except that clusters 1 and 2 are
merged. In this revised pathway map, inconsistently regulated cell-cycle genes are
thus forming the resulting top-left cluster, while the SASP factors are found
upregulated in cluster 9, second row to the left. In the revised map, these include the
upregulated IL6. Another upregulated SASP factor, IL1B, is found in cluster 19, third
row. The other SASP factors involved in coagulation, including the ones that were
added (red arrows), display only some moderate upregulation.

Mitochondrial dysfunction in mice. We recently contributed to an investigation of
the effects of mitochondrial heteroplasmy in mice, based on a conplastic adenine-
repeat variation (9 to 13A) in the origin of light-strand DNA replication of the
mitochondrial genome, which causes shorter lifespan in female mice®. Overlaying
the corresponding gene expression data onto the canonical senescence pathway
map (Fig. 3, bottom) demonstrates no clear pattern except in cluster 2, where
specifically the downstream genes (SIRT1, LMNB1, SERPINE1l, TFDP2) are
regulated as expected in cellular senescence; in fact, the SASP factor SERPINE1
(also known as PAIl) is the gene with the strongest upregulation in the entire
pathway map.

10


https://doi.org/10.1101/404525
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/404525; this version posted September 24, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

. transeri bﬂll‘\ 1 lation cell l'Eﬁ onge nega .
h-cﬁ mb che kinasa recopior pathway tolldike signaling
cycle regulation e%ﬁp%m mﬁgi" cai anE ﬂaa?gm-: Toflouben meghimne ypaicls, . Kt receplor
- it repair signal dna regulation damage

— st G R T O OB T o caenain
I.:.-_ S > —':"'_ .v ")
e . AR — 1) e farage
sigruling patiway nwm;wgmlgrm;?m s == - -~ o =
1 e e T
1.°
N V. LY
rulscebuiar o aresmis mace ey — e i Lo sty L& s
J ot e 3
E -
%, =
o e
A mralatobs
antigen N e o m&ﬂﬂl wgbk&awﬂal outer mqe‘gl?@ajl\y D"'.Irlymr I‘T.‘rhmnnea-dupmoummwm merransierase
protein regulation cycle transition cell =T T - : 2 = A
P o %
= e o A = - ry . R -
LN =3
e b -
L .
Sp— i sitn
- &
LR

it 2 i e A W, vaeca iyt p e

- nseripti i Il NS
cycle regulation THEERBI mrﬁﬁﬁéaégﬂ' i ?3’.39“ 'se,nogative el moprane veice, | Krasa receplor painumy toldbo sigaiing

......... ir signal dna regulation da
Senalinl e R——

sshsas = ¥y Fa T
L4as T 3 &
= - i =
e sed .
S
o st
froil oy e A
o o process MG L e .
sigratng patiremy pragocyions phasphaayinaetal > a—a = B 5 g
L2 — w Toa = o LI = e
i e ——— . -]
P
o ‘.

>
A i s i vy _ e o 3
e b= e g e s sy v e E
: e ics 3
@ A s > - - ——— e S =y i -
Py - -
ES #

S o
o S

Fig. 3: Senescence in stroke and mitochondrial dysfunction. The canonical
senescence pathway map (top and bottom), based on the SASP and the KEGG
cellular senescence genes, and an amended one (middle), adding four genes of
interest and omitting any manual layout. Genes upregulated in disease or dysfunction
(GSE22255, ref®, top and middle, Hirose et al.*® bottom) are shown in red,
downregulated genes are shown in blue, and grey denotes genes for which no
expression values are available. See Fig. 1 for further explanations.
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Discussion

The senescence pathway maps described here were generated in an automated
fashion. Manual fine-tuning was only required for the initial selection of the underlying
network data. This increases our confidence that the same approach can be followed
by researchers who wish to obtain a quick overview of their high-throughput data in
the context of their specific choice of network input genes. The approach also
worked for our recent analyses of genes implicated in human and C. elegans
health®. In all cases, public network data were used to generate a specific network
based on a list of input genes by GeneMANIA, which was then clustered into
“pathways” by AutoAnnotate®, in turn employing ClusterMaker*. Here, the only fine-
tuning came in, as follows. If a large amount of interactions is publicly available for
the input genes, they form a tight “hairball” so that clustering by the default
approaches offered by AutoAnnotate returns a single cluster, or no results at all.
Thus, employing all the default network sources of GeneMANIA, clustering of the
senescence genes that gave rise to the canonical senescence pathway map was
then dominated by a single large cluster. Therefore, we limited the underlying
network information to three of the six available sources (co-localization, genetic and
protein interactions but not co-expression, pathways or shared domains) to obtain the
map as presented in Fig. 1. In case of health genes based on genome-wide
association studies, the default (larger) set of network sources could be used®
without resulting in a tight “hairball”, since many of the genes included there featured
only sparse connectivity as is typical for a gene list based on genome-wide
association.

The annotation of the clusters/pathways based on frequent words in the GO terms of
the pathway genes was completely automated as well (by AutoAnnotate, in turn
employing WordCloud). In the maps presented, we deviated slightly from the default
WordCloud parameters, in setting the “max. number of words per cluster label” to the
maximum of 5, to display as much information as possible, and by setting the
“Adjacent word bonus” to 0; the default “Adjacent word bonus” of 8 triggered the
listing of some rare words adjacent to frequent words, such as “vesicle-mediated
transport” in case of the second-largest cluster, caused by a GO annotation of one
gene (SERPIN1: “regulation of vesicle-mediated transport”’). The layout (the
determination of the exact positioning of the genes) was based on expert knowledge,
but this step is optional, it pleases the eye (by avoiding label overlap) and enables
easier understanding (by placing “upstream” and “downstream” genes into a
presumably right order).

There are three major advantages of our approach, in comparison to the mapping of
high-throughput data onto existing curated pathways such as the ones offered by
KEGG or WikiPathways. For one, our approach works even if there is no expert
pathway available that can be expected to help in understanding a high-throughput
dataset. Also, our approach is not biased by the expert knowledge included in the
structure of existing pathways. And there is flexibility in the selection of the gene list,
here shown by assembling the canonical senescence gene list from two sources to
start with, and later on by adding a few specific genes for application-specific
investigations.

Our approach has limitations. In some scenarios it is possible that the pathway map
defies common sense in grouping together genes whose interaction is based on the
underlying network sources, but the genes are not known to work together based on
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the literature. It may be hard to decide whether such pathways are biologically
meaningful, or whether these only reflect the noise in the underlying public interaction
data. In our case, the canonical cell-cycle genes (CDKNs, CDKs; CCNs i.e. cyclins)
were mostly, but not exclusively, distributed to the two largest
clusters/pathways.Moreover, there are still a number of steps required for the recipe
from the input gene list towards the pathway map, but these could be fully automated
in principle. A final issue is the low dimensionality of any pathway map: in a 2D plane,
and even in 3D space™**, only the most prominent groups of genes can be visualized
as genes that are “working together”. All the other groupings, many of which may act
in parallel, or be realized only in some specific cellular contexts, are reflected in the
large number of edges that connect the genes of the different clusters/pathways. Still,
the plausibility of the resulting pathway maps does not necessarily come as a
surprise. Already some time ago, Dutkowski, et al. ** observed that the GO gene set
hierarchy can, to some degree, be inferred from protein interaction data. Further, the
experience of other researchers with GeneMANIA and AutoAnnotate includes many
meaningful clusterings of networks as described in the original publications as well as
in work citing these.

This work made intense use of the benefits that FAIR principles of scientific data
already offer. Data were found and accessed with GEO and GEOZ2R, and they were
interoperable via GeneMania, AutoAnnotate and Cytoscape, supporting reuse that
enabled new insights into cellular phenotypes. This work shall be extended over time
with data from more diseases to which senescence is considered to contribute. While
the pathway maps themselves were generated in an automated fashion, the
selection of experimental data was not. Thus, we have not yet reached the limits as
to the degree of automation of data analyses, for senescence and other cellular
phenotypes.

Methods

Construction of the canonical senescence pathway map. For the canonical
senescence pathway map, we provided 33 known senescence markers assembled
by Hernandez-Segura et al. * (Fig. S2 therein) together with the 160 genes included
in the human “cellular senescence” KEGG pathway (see Suppl. File 1) to the
Cytoscape application GeneMANIA'®, version 3.4.1, downloaded October 2017. We
used default settings except that we limited the underlying interaction data to co-
localization, genetic and protein interactions, to create a functional interaction
network that is complemented with the GeneMANIA default of 20 connecting genes.
(The overlap between the 33 markers from Hernandez-Segura et al and the 160
KEGG genes consisted of CDKN1A, CDKN2A, CXCL8 and IL6; including the 20
genes added by GeneMANIA, the senescence pathway map thus consists of 209
genes.) For clustering and annotation of the clusters based on the “annotation name”
column of GO annotations collected by GeneMANIA, we used AutoAnnotate® v1.2,
downloaded October 2017, in Quick start modus to enable “layout network to prevent
cluster overlap”, so that a map of disjoint clusters (senescence pathways) was
generated, supplemented by a second advanced annotation step to increase the
“max. number of words per cluster label” to the largest possible value of 5, and
setting the “Adjacent word bonus” to 0. Cluster annotations were generated by
AutoAnnotate based on these parameters using WordCloud® v3.1.1, downloaded
January 2018; using an adjacent word bonus results in cluster annotations with more
words that do not feature an obvious relationship to cellular senescence. Thus, with
13
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two minor modifications, we conducted the same pathway mapping approach as
Méller et al. *°. We performed a manual layout of the clusters/pathways guided by
expert knowledge, placing genes considered “upstream” in senescence-related
signaling on top, and placing genes considered “downstream” (specifically
components of the SASP) further down.

Overlaying of expression data onto pathway maps. We searched the GEO (Gene
Expression Omnibus) database in July 2018 for datasets/series with the search term
“cellular senescence”, limited to the type “Expression profiling by array”, sorting by
the number of samples. From the resulting list, we selected GSE19899 as the
second-largest dataset (50 samples); the largest dataset, GSE40489, was very
specific to lymphoma and therefore ignored. The gene expression (GPL570) subset
of the GSE19899 dataset consists of two experiments/batches (the latter one
consisting of the last 6 samples, marked explicitly “E2”), and both experiments
consist of two replicates, A and B. From experiment 1, we took the two “MLP
(Growing)” replicates as control, and the two “MLP (Senescent)’ replicates as
senescent samples, ignoring quiescent samples as well as samples treated with
shRNA (MLP samples are labeled as “Growing cells expressing a vector control”).
From experiment 2, we took the two “(Growing)” replicates as control, and the two
“(Senescent)” replicates as senescent samples. All samples are from human lung
fibroblast IMR-90 cells, featuring control versus Ras-induced senescence.

We also investigated RNA-seq based datasets of cellular senescence. RNAseq data
from one study”™ was obtained from the Gene Expression Omnibus: Herranz et al.
(accession GSE61130; we only contrasted senescent versus non-senescent cells;
any manipulation related to ZFP36L1 was ignored). In addition, RNAseq data from
Hernandez-Segura et al. was downloaded from Array Express (accession E-MTAB-
5403). Data was converted to log2-fold changes, from the normalized data.

To investigate senescence in a variety of disease scenarios, we selected the
following disease datasets based on in-house expertise. Prostate cancer expression
data®® (GSE46691) as prepared in a readily interpretable format?” was read into R
version 3.5.1. Ensembl gene IDs were converted to HUGO gene IDs with biomaRt**,
and mean expression of samples with Gleason score >= 7 minus mean expression
levels of samples with a lower Gleason score was computed as logFC. For
pancreatic cancer, we selected the only GEO hit with the search term ("cellular
senescence" "pancreatic cancer”), GSE81368. We selected all 3 samples with
growth state “non-senescent” as control, and all 6 samples with growth state
“senescent”, independent of the experimental factors gender (male/female) and
protocol (“Peroxide”/“Replication”). A wider search with the term (senescence
"pancreatic cancer") retrieved one more dataset, that is, GSE28155. Here, we
selected all three samples “BxPC3 cells transfected with control vector” as
senescent, and all three samples “BxPC3 cells transfected with vector expressing
shJMJD3” as control, since KDM6B (aka JMJD3) is a tumor-suppressive mediator of
KRAS-induced senescence. For stroke, we found no GEO hit with the search term
("cellular senescence" "ischemic stroke”). Using the search term (“ischemic stroke"
"peripheral blood mononuclear cells”), we took GSE22255, which has the largest
number of samples (i.e. 40). We selected all 20 samples labeled “control” as control,
and all 20 samples labeled “IS patient” for the senescent state, based on the
“Characteristics” column. Finally, mapping liver gene expression data changes from
the C57BL/6J-mtAKR/J strain of mice (compared to control C57BL/6J mice) that
feature heteroplasmy-related dysfunction triggering a lower lifespan and a metabolic
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impairment®®, we directly took the “effect size” column from their “Supplementary File
S1”, and used the gene symbols for mapping directly from mouse to human.

For each GEO array-based dataset, we used the GEO2R tool* to compute fold-

changes using default parameters, inspected the “Values” boxplot, and downloaded
the resulting table, imported it into Numbers (which works similar to Excel, but does
not require changing “General” manually to “Text” column format for the gene
names), and exported to CSV format. Selecting the “Gene.symbol” column as key
column of the table and selecting the “gene name” column created by GeneMANIA
as the “Key column for network”, we established matching gene names in the
GEO2R and GeneMANIA tables as the common reference and then imported the
tables into Cytoscape. In case of GSE81368 (pancreatic cancer), no gene symbols
were available, but we could match the GB_ACC of GEO2R to the RefSeq mRNA ID
in the GeneMANIA table, after removing all trailing version numbers (,.1% ,.2%, ,.3"
etc.) from the GB_ACC. Direct import of the text files from GEO2R is hindered by
guotation marks, which are removed by Numbers. Finally, we created/copied and
adjusted the “Style” of the resulting network so that the logFC values from GEO2R
are mapped continuously to a red-blue color scale with the appropriate max/min
settings, adding a handle to map a logFC of 0 to white.

The accompanying web presentation uses CytoscapeJS to present the pathways.
Genes can be selected via their cluster or by the GeneOntology terms they are
annotated with. Any such selection of genes is referenced to the MEM* and
g:Profiler*” web services.
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