

1 Identification of a genetic element required for spore killing in *Neurospora*
2
3 Nicholas A. Rhoades*, Austin M. Harvey*,¹, Dilini A. Samarajeewa*,¹, Jesper Svedberg[†],
4 Aykhan Yusifov*, Anna Abusharekh*, Pennappa Manitchotpisit*, Daren W. Brown[‡], Kevin J.
5 Sharp*, David G. Rehard^{§.***}, Joshua Peters*, Xavier Ostolaza-Maldonado*, Jackson
6 Stephenson*, Patrick K. T. Shiu[§], Hanna Johannesson[†], and Thomas M. Hammond*,²
7

8 *School of Biological Sciences, Illinois State University, Normal, Illinois, 61790

9 [†]Department of Organismal Biology, Uppsala University, Uppsala, Sweden

10 [‡]Mycotoxin Prevention and Applied Microbiology, National Center for Agricultural Utilization
11 Research, U.S. Department of Agriculture, Agricultural Research Service, Peoria, Illinois 61604

12 [§]Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211

13 **Department of Biology, University of Iowa, Iowa City, Iowa 52242

14

15 ¹These authors contributed equally to this work.

16

17 ²Corresponding author:

18 Thomas M. Hammond

19 346 Science Laboratory Building

20 Illinois State University

21 Normal, IL 61790

22 Phone: 309-438-2602

23 Email: tmhammo@ilstu.edu

24 Running title

25 A spore killing gene in *Neurospora*

26

27 KEYWORDS

28 meiotic drive, transmission ratio distortion, spore killing, MSUD

29

30 ²Corresponding author: Illinois State University, School of Biological Sciences, 346 Science

31 Laboratory Building, Normal, IL 61790. E-mail: tmhammo@ilstu.edu.

32

33

34 **ABSTRACT**

35 Meiotic drive elements like *Spore killer-2* (*Sk-2*) in *Neurospora* are transmitted through sexual
36 reproduction to the next generation in a biased manner. *Sk-2* achieves this biased transmission
37 through spore killing. Here, we identify *rfk-1* as a gene required for the spore killing mechanism.
38 The *rfk-1* gene is associated with a 1,481 bp DNA interval (called *AH36*) near the right border of
39 the 30 cM *Sk-2* element, and its deletion eliminates the ability of *Sk-2* to kill spores. The *rfk-1*
40 gene also appears to be sufficient for spore killing because its insertion into a non-*Sk-2* isolate
41 disrupts sexual reproduction after the initiation of meiosis. Although the complete *rfk-1*
42 transcript has yet to be defined, our data indicate that *rfk-1* encodes a protein of at least 39 amino
43 acids and that *rfk-1* has evolved from a partial duplication of gene *ncu07086*. We also present
44 evidence that *rfk-1*'s location near the right border of *Sk-2* is critical for the success of spore
45 killing. Increasing the distance of *rfk-1* from the right border of *Sk-2* causes it to be inactivated
46 by a genome defense process called meiotic silencing by unpaired DNA (MSUD), adding to
47 accumulating evidence that MSUD exists, at least in part, to protect genomes from meiotic drive.

48

49

50 INTRODUCTION

51 In eukaryotic organisms, genetic loci are typically transmitted through sexual reproduction to the
52 next generation in a Mendelian manner. However, some loci possess the ability to improve their
53 own transmission rate through meiosis at the expense of a competing locus. These "selfish" loci
54 are often referred to as meiotic drive elements (Zimmering *et al.* 1970). The genomic conflict
55 caused by meiotic drive elements may impact processes ranging from gametogenesis to
56 speciation (Lindholm *et al.* 2016). Meiotic drive elements are found across the eukaryote tree of
57 life (Burt and Trivers 2008; Bravo Núñez *et al.* 2018) and classic examples include *SD* in fruit
58 flies (Larracuente and Presgraves 2012), the *t*-complex in mice (Lyon 2003; Sugimoto 2014),
59 and *Ab10* in *Zea mays* (Rhoades 1952; Kanizay *et al.* 2013). In the fungal kingdom, the known
60 meiotic drive elements achieve biased transmission through spore killing (Raju 1994) and a
61 handful of spore killer systems have been studied in detail. While the prion-based spore killing
62 mechanism of *het-s* in *Podospora anserina* is the best characterized (Dalstra *et al.* 2003; Saupe
63 2011), the mechanisms by which other fungal meiotic drive elements kill spores are mostly
64 unknown (e.g., see Grognet *et al.* 2014; Hu *et al.* 2017; Nuckolls *et al.* 2017).

65

66 Two fungal meiotic drive elements have been identified in the fungus *Neurospora*
67 *intermedia* (Turner and Perkins, 1979). This species is closely related to the genetic model
68 *Neurospora crassa* (Davis 2000), and the mating processes in both fungi are essentially identical.
69 Mating begins with fertilization of an immature fruiting body called a protoperithecium by a
70 mating partner of the opposite mating type. After fertilization, the protoperithecium develops
71 into a mature fruiting body called a perithecium. The nuclei from each parent multiply within the
72 developing perithecium, and a single nucleus from each parent is sequestered into a tube-like

73 meiotic cell (Raju 1980). Meiosis begins with fusion of the parental nuclei and ends with
74 production of four recombinant daughter nuclei. Each recombinant nucleus proceeds through a
75 single round of mitosis, resulting in a total of eight nuclei in the meiotic cell. A process known as
76 ascosporogenesis then constructs cell walls and membranes around each nucleus to produce
77 sexual spores called ascospores. Maturing ascospores accumulate a dark pigment and develop
78 the shape of a spindle; thus, at the end of ascosporogenesis, the mature meiotic cells appear to
79 contain eight miniature black American footballs (Figure 1A). The meiotic cells also serve as
80 ascospore sacs (asci) and a single perithecium can produce hundreds of ascii, each derived from a
81 unique meiotic event.

82

83 During an effort in the 1970s to collect and characterize *Neurospora* isolates from around
84 the world, Turner and Perkins discovered pairs of compatible mating partners that did not
85 produce ascii with eight viable ascospores (Perkins 1974; Turner and Perkins 1979). This
86 outcome was more common when crosses were performed between isolates from widely
87 separated populations, and in some cases the abnormal ascii were attributed to heterozygosity of
88 chromosome rearrangements between mating partners. However, for a few isolates of *N.*
89 *intermedia*, ascii with atypical phenotypes were due to chromosomal factors called *Spore killer-2*
90 (*Sk-2*) and *Spore killer-3* (*Sk-3*). *Sk-2* and *Sk-3* are not single genes; rather, they are complexes of
91 genes that span approximately 30 cM of chromosome III, and they are transmitted through
92 meiosis as single units due to a recombination suppression mechanism thought to be enforced by
93 inversions (Turner and Perkins 1979; Campbell and Turner 1987; Hammond *et al.* 2012; Harvey
94 *et al.* 2014). Unlike standard genetic elements, which display a Mendelian transmission rate of
95 50% through sexual reproduction, *Sk-2* and *Sk-3* are transmitted at levels approaching 100%

96 (Turner and Perkins 1979). This biased transmission occurs because *Sk-2* and *Sk-3* kill
97 ascospores that do not inherit resistance to spore killing (Raju 1979; Turner and Perkins 1979).
98 For example, in *Sk-2* × *Spore killer*-sensitive (*Sk^S*) crosses, asci with four black ascospores and
99 four clear (“white”) ascospores are produced (Figure 1A). This phenotype can be symbolized as
100 4B:4W. The four black ascospores are typically viable and nearly always of the *Sk-2* genotype,
101 while the four white ascospores are inviable and presumed to be of the *Sk^S* genotype. The same
102 phenomenon occurs in *Sk-3* × *Sk^S* crosses, except the four black ascospores are of the *Sk-3*
103 genotype.

104

105 Although spore killers have not yet been detected in wild isolates of *N. crassa*, *Sk-2* and
106 *Sk-3* have been introgressed into this species for genetic analysis. Introgression of *Sk-2* and *Sk-3*
107 has allowed the discovery of resistance to spore killing in natural populations of *N. crassa*
108 (Turner and Perkins 1979; Turner 2001). One of the *Sk-2*-resistant isolates (FGSC 2222) carries
109 a resistant version of a gene whose function is best described by its name: *resistant to Spore*
110 *killer* (*rsk*). Crosses of *rsk^{LA}* × *Sk-2*, where *rsk^{LA}* is the Louisiana allele of *rsk* carried by FGSC
111 2222, produce asci with an 8B:0W phenotype because ascospores inherit either *rsk^{LA}* or *Sk-2*, and
112 both are sufficient for resistance to *Sk-2*-based spore killing (Hammond *et al.* 2012). Discovery
113 of *rsk^{LA}* made identifying other *rsk* alleles possible, some of which do not provide resistance to
114 the known spore killers. For example, the Oak Ridge *rsk* allele (*rsk^{OR}*), typical of most laboratory
115 strains, is resistant to neither *Sk-2* nor *Sk-3*. Additionally, some *rsk* alleles confer resistance to
116 *Sk-3* but not *Sk-2*. An example is *rsk^{PF5123}*, which exists in an *N. intermedia* isolate from French
117 Polynesia. *Sk-2* and *Sk-3* also carry resistant versions of *rsk*, referred to as *rsk^{Sk-2}* and *rsk^{Sk-3}*,
118 respectively. Crosses homozygous for *Sk-2* (*i.e.*, *Sk-2* × *Sk-2*) or *Sk-3* produce asci with an

119 8B:0W phenotype because each ascospore inherits a resistant *rsk* allele. Furthermore,
120 heterozygous crosses between different spore killers (e.g., *Sk-2* × *Sk-3*) produce asci with a
121 0B:8W phenotype (Turner and Perkins 1979) because each ascospore inherits either *rsk*^{Sk-2} or
122 *rsk*^{Sk-3} but not both (and *rsk*^{Sk-2} ascospores are killed by *Sk-3* while *rsk*^{Sk-3} ascospores are killed by
123 *Sk-2*).

124

125 The Killer-Neutralization (KN) model has been proposed to explain how *Sk-2* and *Sk-3*
126 achieve biased transmission through sexual reproduction (Hammond *et al.* 2012). The KN model
127 holds that *Sk-2* and *Sk-3* each use a resistance protein and a killer protein (or nucleic acid) and
128 both proteins are active throughout meiosis and ascosporegenesis. During the early stages of
129 meiosis, in an *Sk^S* × *Sk-2* (or *Sk-3*) cross, both the resistance protein and the killer protein are
130 hypothesized to diffuse throughout the meiotic cell. This unrestricted movement allows the
131 resistance protein to neutralize the killer protein wherever the latter protein may be found.
132 However, once ascospores are separated from the cytoplasm, the resistance protein becomes
133 restricted to those ascospores that produce it (e.g., *Sk-2* ascospores), and ascospores that do not
134 carry a resistant version of *rsk* (e.g., *Sk^S* ascospores) are subsequently killed. This model requires
135 the killer protein to move between ascospores after ascospore delimitation or to have a long
136 half-life that allows it to remain functional in sensitive ascospores.

137

138 Evidence for the KN model is seen in the outcome of *Sk^S* × *Sk-2* *rsk*^{ΔSk-2} crosses, where
139 the latter strain has been deleted of its *rsk* allele. These crosses do not produce ascospores;
140 instead, they produce asci that abort meiosis before ascospore production (Hammond *et al.*
141 2012). Meiotic cells of these crosses lack a resistant RSK, which likely causes the killing process

142 to begin early in meiosis (at the ascus level) rather than during ascosporogenesis (at the
143 ascospore level). The KN model is also supported by the existence of different *rsk* alleles.
144 Previous studies have demonstrated the sequence of RSK to be the most important factor towards
145 determining which killer it neutralizes (Hammond *et al.* 2012), suggesting that RSK and the
146 killer may interact by a “lock and key” mechanism. To test this hypothesis, the killer must first
147 be identified.

148

149 As described above, *Sk^S* × *Sk-2 rsk^{ΔSk-2}* crosses produce abortive asci. We recently used
150 this characteristic to screen for mutations that disrupt spore killing (Harvey *et al.* 2014).
151 Specifically, we fertilized an *Sk^S* mating partner with mutagenized *Sk-2 rsk^{ΔSk-2}* conidia (asexual
152 spores that also function as fertilizing propagules). We reasoned that only an *Sk-2 rsk^{ΔSk-2}*
153 conidium mutated in a gene “required for spore killing” (*rfk*) would produce viable ascospores
154 when crossed with *Sk^S*. The screen allowed us to isolate six *rfk* mutants (ISU-3211 through
155 ISU-3216). Complementation analysis of each mutant strain suggested all to be mutated at the
156 same locus, which was subsequently named *rfk-1* and mapped to a 45 kb region within *Sk-2* on
157 chromosome III. Here, we report the identification of *rfk-1* as a gene encoding a protein of at
158 least 39 amino acids. In addition to identifying *rfk-1*, we have found that the cellular process of
159 meiotic silencing by unpaired DNA places limits on the location of *rfk-1* within *Sk-2*. The
160 implications of this finding with respect to meiotic drive element evolution are discussed.

161

162 **MATERIALS AND METHODS**

163 **Strains, media, and crossing conditions**

164 The strains used in this study are listed along with genotype information in Table 1. Vogel's
165 minimum medium (Vogel 1956), with supplements as required, was used to grow and maintain
166 all strains. Hygromycin B and nourseothricin sulfate (Gold Biotechnology) were used at a
167 working concentration of 200 µg / ml and 45 µg / ml, respectively. Synthetic crossing medium
168 (pH 6.5) with 1.5% sucrose, as described by Westergaard and Mitchell (1947), was used for
169 crosses. Crosses were unidirectional and performed on a laboratory benchtop at room
170 temperature under ambient lighting (Samarajeewa *et al.* 2014). After fertilization, crosses were
171 allowed to mature for 12-16 days before perithecial dissection in 25 or 50% glycerol and ascospores
172 were examined with a standard compound light microscope and imaging system. Ascus
173 phenotype designations were based on qualitative observations. More than 90% of the ascospores from
174 a cross had to display the same phenotype to receive one of the following designations: 8B:0W,
175 4B:4W, or aborted.

176

177 **Genetic modification of *N. crassa*, genotyping, and sequence confirmations**

178 A technique called double-joint PCR was used to construct all deletion vectors (Yu *et al.* 2004;
179 Hammond *et al.* 2011). Transgene-insertion vectors were designed to insert transgenes along
180 with a hygromycin resistance cassette (*hph*) next to *his-3* on chromosome I. Construction details
181 for deletion and insertion vectors are provided in Supporting Information (Tables S1–S4).
182 Transformations of *N. crassa* were performed by electroporation of conidia (Margolin *et al.*
183 1997). Homokaryons were derived from heterokaryotic transformants with a microconidium
184 isolation technique (Ebbele and Sachs, 1990) or by crossing the transformants to standard

185 laboratory strains (F2-23 or F2-26) to obtain homokaryotic ascospores. Site-directed mutagenesis
186 was performed essentially as described for the QuikChange II Site-Directed Mutagenesis Kit
187 (Revision E.01, Agilent Technologies) and details for its use are provided in Table S5. All
188 genotypes were confirmed by polymerase chain reaction (PCR) assays on genomic DNA isolated
189 from lyophilized (freeze-dried) mycelia with IBI Scientific's Mini Genomic DNA Kit
190 (Plant/Fungi). Sanger sequencing was used to confirm sequences and/or identify mutations in
191 PCR products and plasmids.

192

193 **Data availability**

194 All strains and plasmids generated during this study are available upon request. Supplemental
195 files available at FigShare.

196 **RESULTS**

197 **Deletion of a DNA interval spanning most of *Sk-2*^{INS1} eliminates spore killing**

198 The annotated 45 kb *rfk-1* region contains 14 protein-coding genes, two pseudogenes (denoted
199 with an asterisk), an inverted sequence (*Sk-2*^{INV1}), an inversion breakpoint, and an 11 kb
200 insertion sequence (*Sk-2*^{INS1}; GenBank: KJ908288.1; Figure 1B). To refine the location of *rfk-1*
201 within this 45 kb region, intervals *v3*, *v4*, and *v5* (Figure 1B and Table 2) were deleted and
202 replaced with *hph* and the resulting deletion strains were crossed with an *Sk*^S mating partner. We
203 found that while deletion of interval *v3* or *v4* had no effect on spore killing (asci are 4B:4W;
204 Figure 1, C and D), deletion of *v5* eliminated it (asci are 8B:0W; Figure 1E).

205

206 **A DNA interval between *ncu07838** and *ncu06238* is required for spore killing**

207 Interval *v5* spans most of *Sk-2*^{INS1} (Figure 2, A and B). To further refine the position of *rfk-1*
208 within *Sk-2*^{INS1}, we constructed nine additional deletion strains and crossed each one with an *Sk*^S
209 mating partner (Figure 2B and Table 2). Surprisingly, deletion of the annotated genes and
210 pseudogenes within *Sk-2*^{INS1} did not interfere with spore killing (Figure 3, A–D). In contrast,
211 deletion of the intergenic region between *ncu07838** and *ncu06238* eliminated spore killing
212 (Figure 3, E–I).

213

214 **An ascus aborting element exists between *ncu07838** and *ncu06238***

215 The above results suggest that *rfk-1* is found within the intergenic region between *ncu07838** and
216 *ncu06238* and that *rfk-1* is required for spore killing. But, is *rfk-1* also sufficient for spore
217 killing? To answer this question, we genetically-modified eight *Sk*^S strains to carry different
218 intervals of *Sk-2*^{INS1} (Figure 2C and Table 2) and found that each strain produced normal ascii

219 when crossed with an Sk^S mating partner (Figure S1). The reason for this finding can be traced to
220 a silencing process called meiotic silencing by unpaired DNA (MSUD; Hammond 2017;
221 Aramayo and Selker 2013). In a standard cross, where only one mating partner carries an ectopic
222 transgene (*e.g.*, an interval of $Sk-2^{INS1}$), MSUD identifies the transgene as unpaired and silences
223 it for the duration of meiosis. Therefore, to detect a phenotype that requires the expression of an
224 unpaired transgene during meiosis, it is often necessary to suppress MSUD. MSUD suppression
225 can be achieved by deleting a gene called *sad-2* from one mating partner of a cross (Shiu *et al.*
226 2006). With this technique, we found that some $Sk-2^{INS1}$ intervals have no effect on ascus
227 development, while others abort it. For example, normal ascis are produced by strains carrying
228 intervals $AH4^{Sk-2}$, $AH6^{Sk-2}$, $AH14^{Sk-2}$, or $AH32^{Sk-2}$ (Figure 4, A–C and H), while aborted ascis are
229 produced by strains carrying intervals $AH30^{Sk-2}$, $AH31^{Sk-2}$, $AH36^{Sk-2}$, or $AH37^{Sk-2}$ (Figure 4, D–G).
230 The ascus abortion phenotype can be explained by the presence of *rfk-1* without the presence of a
231 resistant version of *rsk*. Taken together, these findings suggest that intervals $AH30^{Sk-2}$, $AH31^{Sk-2}$,
232 $AH36^{Sk-2}$, and $AH37^{Sk-2}$ contain *rfk-1* and that *rfk-1* is sufficient for spore killing.
233

234 **The *AH36* interval from an *rfk-1* strain does not cause ascus abortion**

235 The shortest abortion-inducing interval identified by the above experiments is *AH36*, located
236 between positions 27,899 and 29,381 of the 45 kb *rfk-1* region (Figure 2C and Table 2). Because
237 the research path that led us to *AH36* began with mapping the position of *rfk-1* in strain
238 ISU-3211 (Harvey *et al.* 2014), *AH36* in ISU-3211 (referred to as $AH36^{3211}$) should harbor at
239 least one mutation that disrupts *rfk-1* function. To test this hypothesis, we transferred $AH36^{3211}$ to
240 an Sk^S genetic background and crossed the resulting strain with an Sk^S *sad-2 Δ* mating partner. As
241 expected, we found that Sk^S *sad-2 Δ* \times Sk^S $AH36^{3211}$ crosses produce normal ascis (Figure 5).

242

243 **The G28326A mutation disrupts the ascus-aborting ability of *AH36*^{Sk-2}**

244 The different phenotypes associated with *AH36*^{Sk-2} and *AH36*³²¹¹ suggest that they differ at the
245 sequence level. Indeed, sequencing of these two alleles allowed us to identify seven guanine to
246 adenine transition mutations in *AH36*³²¹¹ (Figure 6A; G27904A, G27945A, G27972A, G28052A,
247 G28104A, G28300A, and G28326A). To determine if one (or more) of these mutations is
248 responsible for the inability of *AH36*³²¹¹ to cause ascus abortion, we examined six of the seven
249 mutations by site-directed mutagenesis. For each mutation, this involved mutating the base in a
250 clone of interval *AH36*^{Sk-2}, placing the mutated interval (*e.g.*, *AH36*^{Sk-2[G27945A]}) in an *Sk*^S strain, and
251 crossing the transgenic strain to an *Sk*^S *sad-2*^Δ mating partner. Through this procedure, we found
252 that only one of the six mutations examined (*i.e.*, G28326A) eliminates the ascus-aborting ability
253 of *AH36*^{Sk-2} (Figure 7).

254

255 We also identified a 46–48 bp tandem repeat (7.17 repeats) between positions 28,384 and
256 28,722 (Figure 6, A and B). The sequences of *AH36*^{Sk-2} and *AH36*³²¹¹ are identical between these
257 positions and thus the biological significance of the tandem repeats with respect to spore killing
258 is currently unknown.

259

260 **A putative start codon for RFK-1 is located within *AH36***

261 The G28326A mutation is 62 bp to the right of a putative start codon at position 28,264 (Figure
262 6). To test if this “ATG” could serve as the start codon for RFK-1, we constructed two deletion
263 vectors: v199 and v200 (Figure 8A). Vector v199 deletes the interval between 28,131 and 28,264
264 and replaces it with *hph* and the promoter of the *N. crassa* *ccg-1* gene, thereby inserting

265 *hph-ccg-1*(P) directly upstream of the ATG at position 28,264 (Figure 8B). As a control, we used
266 vector v200 to place *hph-ccg-1*(P) directly upstream of position 28,354, located 90 bases to the
267 right of the proposed *rfk-1* start codon. When inserted directly upstream of 28,264, *hph-ccg-1*(P)
268 has no effect on spore killing (Figure 8, C and D). In contrast, when inserted 90 bases to the right
269 of this position, *hph-ccg-1*(P) disrupts spore killing (Figure 8E). These findings demonstrate that
270 the ATG at position 28,264 could serve as the *rfk-1* start codon. Furthermore, they suggest that
271 placement of *hph-ccg-1*(P) directly upstream of position 28,354 interrupts the *rfk-1* coding
272 region.

273

274 **The arrangement of *rfk-1* within *Sk-2* protects it from MSUD**

275 The right border of *Sk-2* is found at position 29,151 (Figure 9A, dotted line; Table 2; Harvey *et*
276 *al.* 2014). To the right of this position, the sequences of *Sk-2* and *Sk^S* strains are very similar. For
277 example, a simple ClustalW alignment (Thompson *et al.* 1994; Hall 1999) finds that *Sk-2*
278 positions 29,152 through 35,728 are 94.4% identical to the corresponding positions within *Sk^S*
279 (GenBank: CM002238.1, positions 2,011,073 to 2,017,662). In contrast, the sequences to the left
280 of the *Sk-2* border are unrelated between *Sk-2* and *Sk^S* strains (Figure 9A). Interestingly, most of
281 *AH36* is found to the left of the *Sk-2* border, and thus most of *AH36*, including *rfk-1*, is unpaired
282 during meiosis in *Sk^S* × *Sk-2* crosses. If so, how does *rfk-1* avoid inactivation by MSUD? While
283 the molecular details of how MSUD detects unpaired DNA are unknown, we considered the
284 possibility that the distance of *rfk-1* from a “paired” sequence allows it to avoid MSUD (*e.g.*, see
285 the *ncu06238* genes in *Sk-2* and *Sk^S*, Figure 9A). To test this hypothesis, we inserted *hph*
286 immediately to the right of *AH36* in a standard *Sk-2* strain (Figure 9A). We refer to this particular
287 allele as *v140^Δ::hph*. The *v140^Δ::hph* allele increases the distance of *rfk-1* from paired sequences

288 by a length of 1391 bp (the length of *hph* minus the 21 bp that were deleted by v140). As
289 predicted, we found that spore killing is absent in *Sk^S × Sk-2 v140^Δ::hph* crosses (Figure 9B). To
290 confirm that the lack of spore killing is a result of the increased distance of *rfk-1* from paired
291 DNA during meiosis, we inserted *hph* at the corresponding location in an *Sk^S* strain (Figure 9A).
292 We refer to this allele as *v150^Δ::hph*. When an *Sk^S v150^Δ::hph* strain is crossed with an *Sk-2*
293 *v140^Δ::hph* strain, spore killing is normal (Figure 9C). Thus, the proximity of *rfk-1* to paired
294 DNA helps it avoid inactivation by MSUD. As a final test of this hypothesis, we crossed *Sk^S*
295 *sad-2^Δ* and *Sk-2 v140^Δ::hph* mating partners and found that spore killing is also normal in this
296 cross (Figure 9D), most likely because *sad-2^Δ* suppresses MSUD, which makes the distance of
297 *rfk-1* from paired sequences irrelevant to the expression of *rfk-1* during meiosis.

298

299 **The *rfk-1* gene does not include *ncu06238***

300 To confirm that *ncu06238*, the gene to the right of *rfk-1* (as depicted in Figure 10A), is not
301 required for spore killing, we deleted *ncu06238* from both *Sk^S* and *Sk-2* and analyzed ascus
302 phenotypes in crosses involving *ncu06238* deletion strains. However, we found that *Sk^S*
303 *ncu06238^Δ × Sk^S* crosses produce asci with varying numbers of fully developed ascospores
304 (Figure 10A). Therefore, we could not use ascus phenotype to determine if spore killing is
305 functional in *Sk^S ncu06238^Δ × Sk-2 ncu06238^Δ* crosses (Figure 10B). Instead, we calculated the
306 percentage of progeny with an *Sk-2* genotype produced by a cross between *Sk^S ncu06238^Δ* and
307 *Sk-2 ncu06238^Δ* mating partners. We found that 46 of 47 progeny had the *Sk-2* genotype (data
308 not shown). Therefore, because meiotic drive functions without *ncu06238*, the *rfk-1* coding
309 region does not overlap or include positions occupied by *ncu06238*.

310

311 **Replacement of *AH36*³²¹¹ with *AH36*^{Sk-2} restores spore killing to an *rfk-1* mutant**

312 The *rfk-1* mutant strain ISU-3211 carries seven mutations within its *AH36* interval (Figure 6). To
313 confirm that at least one of these mutations (presumably G28326A) is responsible for
314 ISU-3211's inability to kill ascospores, we replaced *AH36*³²¹¹ in a descendant of ISU-3211
315 (strain ISU-3222) with *AH36*^{Sk-2}::*hph* (Figure 11A and Table S4). Because the presence of an
316 *hph* marker to the right of *AH36* disrupts spore killing in an MSUD-dependent manner (Figure
317 9B), we performed our test crosses with both a standard *Sk*^S mating partner and an *Sk*^S
318 *v150*^Δ::*hph* mating partner. As expected, we found that replacing *AH36*³²¹¹ with *AH36*^{Sk-2}
319 restores spore killing to a spore killing-deficient strain (Figure 11, B–G). These results
320 demonstrate that the *AH36*³²¹¹ interval is responsible for the loss of spore killing in ISU-3211 and
321 its *rfk-1* descendants.

322

323 **The RFK-1 protein contains (at least) 39 amino acids**

324 Assuming that the start codon for RFK-1 begins at position 28,264, and that the pre-mRNA for
325 *rfk-1* includes no introns (see discussion), we can propose the following hypothesis: RFK-1 is a
326 39 amino acid protein encoded by DNA located between positions 28,263 and 28,384 (Table 2
327 and Figure 12A). We found support for this hypothesis by sequencing the *AH36* intervals in
328 strains ISU-3211 through ISU-3216 (Figure 12A), which are the six *Sk-2* *rfk-1* isolates obtained
329 by our initial screen for spore killing-deficient mutants (Harvey *et al.* 2014). Specifically, we
330 found that *AH36*³²¹¹ contains the previously discussed G28326A mutation, which changes the
331 21st codon from a tryptophan codon to a stop codon; *AH36*³²¹² contains an extra thymine within a
332 run of six thymines between positions 28,281 and 28,288, which causes a frameshift mutation in
333 the 9th *rfk-1* codon; and *AH36*³²¹³ contains a G28348A mutation, which changes the 29th codon

334 from an alanine codon to a threonine codon. In addition, we found that the sequences of
335 *AH36*³²¹⁴, *AH36*³²¹⁵, and *AH36*³²¹⁶, are all identical to the sequence of *AH36*³²¹¹, suggesting that
336 ISU-3211, ISU-3214, ISU-3215, and ISU-3216 were all “fathered” by the same mutagenized
337 conidium. In all, we identified at least one potential codon-altering mutation between positions
338 28,263 and 28,384 in each of the six known *rfk-1* mutants. This strongly suggests that the
339 interval between positions 28,263 and 28,384 contains at least part, if not all, of the RFK-1
340 coding sequence.

341

342 **RFK-1 is related to NCU07086**

343 To investigate the origin of *rfk-1*, we downloaded a list of predicted *N. crassa* proteins from the
344 National Center for Biotechnology Information (NCBI)’s Genome Database (Accession No.
345 GCA_000182925.2) and performed a BLASTP search (Camacho *et al.* 2009) on the list with the
346 hypothetical 39 aa RFK-1 sequence as query (Figure 12A). We found that the most significant
347 match (Expect = 2e-7) to RFK-1 is a hypothetical 362-aa protein called NCU07086 (NCBI
348 Protein Database: XP_960351.1). NCU07086 is encoded by the *ncu07086* gene on *N. crassa*
349 chromosome VI and is predicted to contain four introns (Figure 12B, I1 through I4; NCBI Gene
350 Database, 3876500). A search of NCBI’s conserved domain database (CDD v3.16;
351 Marchler-Bauer *et al.* 2015) with the predicted sequence of NCU07086 identified a region with a
352 low-scoring match to the AtpF Superfamily (Expect=2.32e-3; Figure 12B). Interestingly, RFK-1
353 is highly similar to the first 39 amino acids of NCU07086 (Figure 12C), and it appears that the
354 46–48 bp repeat within *AH36* (Figure 6) expanded from a single 47 bp sequence within
355 *ncu07086*’s first intron (Figure 12D). These findings suggest that *rfk-1* evolved from a partial
356 duplication of the *ncu07086* gene.

357 **DISCUSSION**

358 The biological mechanism used by the *Neurospora* Spore killers to achieve biased transmission
359 is believed to require the action of a resistance protein and a killer protein. In a previous work,
360 we isolated six *rfk* mutants (ISU-3211 through ISU-3216) and provided evidence that each is
361 mutated at the same locus, subsequently named *rfk-1* (Harvey *et al.* 2014). The *rfk-1* locus in
362 ISU-3211 was mapped to a 45 kb region of *Sk-2*. We began this study with the goal of
363 identifying *rfk-1*. At first, we intended to use three point crossing assays to further refine the
364 position of *rfk-1* within the 45 kb *rfk-1* region. These assays were to be performed with *hph*
365 markers inserted between genes *ncu06192* and *ncu06191* (with vector *v3*) and between genes
366 *ncu06239* and *ncu06240* (with vector *v4*); therefore, deletion vectors *v3* and *v4* were designed to
367 delete relatively small intervals from the *rfk-1* region (25 bp and 261 bp, respectively; Table 2)
368 and they were not expected to influence spore killing. Accordingly, they had no effect on spore
369 killing (Figure 1, C and D). In contrast, *v5* was designed to delete a 10,718 bp interval, spanning
370 most of the *Sk-2^{INS1}* sequence, in hopes that *rfk-1* would be found somewhere within it (Table 2).
371 Fortunately, deletion of interval *v5* (intervals are named after the deletion vectors designed to
372 delete them) was successful and its removal from *Sk-2* eliminated *Sk-2*'s ability to kill ascospores
373 (Figure 1E). We were thus able to focus our efforts on deleting subintervals of *v5*, which allowed
374 us to track *rfk-1* to the intergenic region between *ncu07238** and *ncu06238* (Figures 2, 3, and
375 10).

376

377 We also tested various subintervals of *v5* for the presence of *rfk-1* by transferring them to
378 an *Sk^S* strain and performing test crosses with an *Sk^S sad-2^Δ* mating partner (Figure 4). For this
379 assay to yield positive results, *rfk-1* must be sufficient for spore killing. Indeed, we found this to

380 be the case when we identified four intervals (*AH30*, *AH31*, *AH37*, and *AH36*) that trigger ascus
381 abortion. These four intervals all have the 1481 bp of *AH36* in common, and the ascus abortion
382 phenotype associated with each interval is likely due to the presence of *rfk-1* without a
383 compatible resistance gene. For example, the KN model holds that the resistance protein (RSK)
384 and the killer are both active during early stages of meiosis (Hammond *et al.* 2012). Lack of a
385 resistant version of RSK, along with expression of the killer, may cause asci to abort meiosis
386 before ascospore delimitation. This phenomenon explains the abortion phenotypes of *AH30*,
387 *AH31*, and *AH37*. However, for succinctness, we also referred to the phenotype associated with
388 *AH36* as ascus abortion, although it may be more accurate to refer to it as a “bubble” phenotype.
389 The bubble phenotype was originally described by Raju *et al.* (1987), and it is thought to arise
390 when asci and/or ascospores abort shortly after ascospore delimitation. Therefore, one
391 explanation for the existence of the two phenotypic classes is that ascus development progresses
392 a bit further with *AH36* than it does with *AH30*, *AH31*, and *AH37*. Asci could progress further
393 with *AH36* if *rfk-1* expression is lower from *AH36* than it is from *AH30*, *AH31*, and *AH37*. In
394 line with this reasoning, *AH36* is the shortest of the abortion-inducing intervals, and, as a result,
395 it may lack some of the regulatory sequences needed for full expression of *rfk-1*. It should be
396 possible to address this hypothesis once the complete transcriptional unit of *rfk-1* is identified.
397

398 Although we have yet to identify *rfk-1*’s transcriptional start (+1) site and termination
399 site, or confirm the presence/absence of introns, we have provided strong evidence that the *rfk-1*
400 coding region includes the DNA interval between positions 28,263 and 28,384 (Figure 6). For
401 example, a putative nonsense mutation at position 28,326 disrupts the ascus-aborting ability of
402 interval *AH36* (Figure 7); spore killing functions when a non-native promoter is attached to the

403 putative RFK-1 start codon at position 28,264 (Figure 8); all six of the known *rfk-1* mutants
404 carry putative codon-altering mutations between positions 28,263 and 28,384 (Figure 12A), and
405 insertion of a non-native promoter in the middle of this region disrupts spore killing (Figure 8).
406 However, while our data indicate that the positions between 28,263 and 28,384 are part of the
407 *rfk-1* coding region, they do not eliminate the possibility that the coding sequences for RFK-1
408 include additional positions upstream and/or downstream of 28,263 and 28,384, respectively.
409 Indeed, our preliminary analysis of RNAseq data from *Sk^S* × *Sk-2* crosses (unpublished data)
410 strongly suggests that an intron may exist between positions 28,379 and 28,775. The 5' splice site
411 of this hypothetical intron is related to the 5' splice site of the first intron of *ncu07086* (Figure
412 12D). If this intron does exist within the *rfk-1* pre-mRNA, the RFK-1 stop codon would shift
413 downstream and the length of RFK-1 would increase to 101 aa (assuming position 28,264 is the
414 start codon and no other introns influence the stop codon position). Future work will seek to fully
415 characterize the *rfk-1* coding region by identifying the transcriptional start site, termination site,
416 and any introns that may exist for the primary *rfk-1* transcript, as well as for any biologically
417 significant variants, if they were to exist.

418

419 While this work represents a significant step towards understanding the mechanism of
420 *Sk-2*-based spore killing, many questions remain unanswered. For example, although it appears
421 that RFK-1 evolved from NCU07086, does RFK-1 interfere with NCU07086 function as part of
422 the spore killing mechanism? NCU07086 contains a region with slight homology to the AtpF
423 Superfamily (Figure 12D). Interestingly, the *atpF* gene in *E. coli* (also known as *uncF*; NCBI
424 Gene ID 948247) encodes subunit b of the F-type ATP synthase complex (Walker *et al.* 1984;
425 Dunn 1992; McLachlin and Dunn 1997; Revington *et al.* 1999). This hints that RFK-1 could

426 mediate spore killing by targeting eukaryotic F-type ATP synthases, which are associated with
427 mitochondrial membranes in eukaryotes (Stewart *et al.* 2014). However, NCU07086 in *N. crassa*
428 has not been investigated and a much more likely candidate for the b subunit of *N. crassa*'s F-
429 type ATP synthase is found in NCU00502 (KEGG oxidative phosphorylation pathway:
430 ncr00190, release 87.0, Kanehisa and Goto 2000; Kanehisa *et al.* 2016). Thus, at this point in
431 time, a role for RFK-1 in disrupting mitochondrial function as part of the spore killing process is
432 purely speculative.

433

434 Although the primary goal of this work was to identify *rfk-1*, the identity of which has
435 been of interest to meiotic drive researchers since the discovery of *Sk-2* nearly four decades ago,
436 we unexpectedly discovered the strongest evidence to date that genomes in some, if not all,
437 lineages of eukaryotic organisms possess elaborate defense processes to protect themselves from
438 meiotic drive. With respect to *Neurospora* genomes, this defense process appears to be MSUD.
439 The first hint that MSUD defends *Neurospora* genomes from meiotic drive appeared in 2007,
440 when it was discovered that *Sk-2* and *Sk-3* are weak MSUD suppressors (Raju *et al.* 2007). Next,
441 in 2012, it was found that the position of *rsk* within *Sk-2* allows it to pair with *rsk* in the *Sk^S*
442 genome during *Sk-2* × *Sk^S* crosses. If *rsk* is not paired during these crosses (e.g., if it is deleted
443 from the *Sk^S* mating partner), it is silenced by MSUD and the entire ascus is killed by the killer
444 protein, which we now know to be RFK-1. In the current work, we found that the position of
445 *rfk-1* within *Sk-2* is also critical for the success of meiotic drive because it allows *rfk-1* to escape
446 inactivation by MSUD. However, unlike *rsk*, *rfk-1* is only found in *Sk-2* strains and it cannot be
447 paired in *Sk-2* × *Sk^S* crosses. Evolution appears to have found a way to circumvent this problem
448 by positioning *rfk-1* close to sequences that are paired during meiosis (*i.e.* close to *ncu06238* in

449 Figure 10). Our data indicate that the proximity of *rfk-1* to paired sequences allows it to escape
450 inactivation by MSUD, which is critical for the success of spore killing. Overall, our findings
451 add to accumulating evidence that MSUD antagonizes the evolution of meiotic drive elements by
452 placing significant constraints on the arrangement of critical genes within the elements.
453 Furthermore, our findings suggest that eukaryotic genomes like those of *Neurospora* fungi have
454 evolved elaborate defense mechanisms to protect themselves from meiotic drive.

455

456

457 **ACKNOWLEDGEMENTS**

458 We are grateful to members of the Brown, Hammond, Johannesson, and Shiu laboratories for
459 assistance with various technical aspects of this work. We are pleased to acknowledge use of
460 materials generated by P01 GM068087 “Functional Analysis of a Model Filamentous Fungus”.
461 We are also grateful to the Fungal Genetics Stock Center, whose preservation and distribution of
462 *Neurospora* isolates helped make this work possible (FGSC; McCluskey *et al.* 2010). This
463 project was supported by a grant from the National Science Foundation (MCB# 1615626)
464 (T.M.H.). P.K.T.S was supported by the National Science Foundation (MCB# 1715534) and the
465 University of Missouri Research Board and Research Council. H.J. was supported by the
466 European Research Council grant under the program H2020, ERC-2014-CoG, project 648143,
467 and the Swedish Research Council. Mention of trade names or commercial products in this
468 article is solely for the purpose of providing specific information and does not imply
469 recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal
470 opportunity provider and employer.

471

472 **LITERATURE CITED**

473 Aramayo, R., and E. U. Selker, 2013 *Neurospora crassa*, a model system for epigenetics
474 research. *Cold Spring Harb. Perspect. Biol.* 5: a017921.

475 Bravo Núñez, M. A., N. L. Nuckolls, and S. E. Zanders, 2018 Genetic villains: killer meiotic
476 drivers. *Trends Genet.* 34: 424–433.

477 Burt, A., and R. Trivers, 2008 *Genes in Conflict: The Biology of Selfish Genetic Elements*.
478 Belknap Press of Harvard University Press.

479 Campbell, J. L., and B. C. Turner, 1987 Recombination block in the Spore killer region of
480 *Neurospora*. *Genome Natl. Res. Counc. Can.* 29: 129–135.

481 Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos *et al.*, 2009 BLAST+:
482 architecture and applications. *BMC Bioinformatics* 10: 421.

483 Dalstra, H. J. P., K. Swart, A. J. M. Debets, S. J. Saupe, and R. F. Hoekstra, 2003 Sexual
484 transmission of the [Het-S] prion leads to meiotic drive in *Podospora anserina*. *Proc.*
485 *Natl. Acad. Sci. U. S. A.* 100: 6616–6621.

486 Davis, R. H., 2000 *Neurospora: Contributions of a Model Organism*. Oxford University Press,
487 USA.

488 Dunn S. D., 1992 The polar domain of the b subunit of *Escherichia coli* F₁F₀-ATPase forms an
489 elongated dimer that interacts with the F₁ sector. *J. Biol. Chem.* 267: 7630–7636.

490 Ebbole, D., and M. Sachs, 1990 A rapid and simple method for isolation of *Neurospora crassa*
491 homokaryons using microconidia. *Fungal Genet. Newslett.* 37: 17–18.

492 Groynet, P., H. Lalucque, F. Malaagnac, and P. Silar, 2014 Genes that bias mendelian
493 segregation. *PLoS Genet* 10: e1004387.

494 Hall, T. A., 1999 BioEdit: a user-friendly biological sequence alignment editor and analysis
495 program for Windows 95/98/NT. Nucleic Acid Symp Ser 41: 95–98.

496 Hammond, T. M., 2017 Sixteen years of meiotic silencing by unpaired DNA. Adv. Genet. 97:1–
497 42.

498 Hammond, T. M., D. G. Rehard, H. Xiao, and P. K. T. Shiu, 2012 Molecular dissection of
499 Neurospora Spore killer meiotic drive elements. Proc. Natl. Acad. Sci. U. S. A. 109:
500 12093–12098.

501 Hammond, T. M., H. Xiao, D. G. Rehard, E. C. Boone, T. D. Perdue *et al.*, 2011 Fluorescent
502 and bimolecular-fluorescent protein tagging of genes at their native loci in *Neurospora*
503 *crassa* using specialized double-joint PCR plasmids. Fungal Genet. Biol. 48: 866–873.

504 Harvey, A. M., D. G. Rehard, K. M. Groskreutz, D. R. Kuntz, K. J. Sharp *et al.*, 2014 A critical
505 component of meiotic drive in *Neurospora* is located near a chromosome rearrangement.
506 Genetics 197: 1165–1174.

507 Hu, W., Z. D. Jiang, F. Suo, J. X. Zheng, W. Z. He, and L. L. Du, 2017 A large gene family in
508 fission yeast encodes spore killers that subvert Mendel's law. ELife Sciences 6, e26057.

509 Kanizay, L. B., T. Pyhäjärvi, E. G. Lowry, M. B. Hufford, D. G. Peterson *et al.*, 2013 Diversity
510 and abundance of the abnormal chromosome 10 meiotic drive complex in *Zea mays*.
511 Heredity 110: 570–577.

512 Kanehisa M., Goto S., 2000 KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids
513 Res. 28: 27–30.

514 Kanehisa M., Sato Y., Kawashima M., Furumichi M., Tanabe M., 2016 KEGG as a reference
515 resource for gene and protein annotation. Nucleic Acids Res. 44: D457–462.

516 Larracuente, A. M., and D. C. Presgraves, 2012 The selfish *Segregation Distorter* gene
517 complex of *Drosophila melanogaster*. *Genetics* 192: 33–53.

518 Lindholm, A. K., K. A. Dyer, R. C. Firman, L. Fishman, W. Forstmeier *et al.*, 2016 The ecology
519 and evolutionary dynamics of meiotic drive. *Trends Ecol. Evol.* 31: 315–326.

520 Lyon, M. F., 2003 Transmission ratio distortion in mice. *Annu. Rev. Genet.* 37: 393–408.

521 Marchler-Bauer, A., M. K. Derbyshire, N. R. Gonzales, S. Lu, F. Chitsaz *et al.*, 2015 CDD:
522 NCBI's conserved domain database. *Nucleic Acids Res.* 43: D222–226.

523 Margolin, B. S., M. Freitag, and E. U. Selker, 1997 Improved plasmids for gene targeting at the
524 *his-3* locus of *Neurospora crassa* by electroporation. *Fungal Genet. Newsl.* 44: 34–36.

525 McCluskey, K., A. Wiest, and M. Plamann, 2010 The Fungal Genetics Stock Center: a
526 repository for 50 years of fungal genetics research. *J. Biosci.* 35: 119–126.

527 McLachlin D. T., Dunn S. D., 1997 Dimerization interactions of the b subunit of the *Escherichia*
528 *coli* F₁F₀-ATPase. *J. Biol. Chem.* 272: 21233–21239.

529 Nuckolls, N.L., M. A. B. Núñez, M. T. Eickbush, J. M. Young, J. J. Lange *et al.*, 2017. *wtf* genes
530 are prolific dual poison-antidote meiotic drivers. *ELife Sciences* 6: e26033.

531 Perkins, D. D., 1974 The manifestation of chromosome rearrangements in unordered asci of
532 *Neurospora*. *Genetics* 77: 459–489.

533 Raju, N. B., 1979 Cytogenetic behavior of Spore killer genes in *Neurospora*. *Genetics* 93: 607–
534 623.

535 Raju, N. B., 1980 Meiosis and ascospore genesis in *Neurospora*. *Eur. J. Cell Biol.* 23: 208–223.

536 Raju, N. B., D. D. Perkins, and D. Newmeyer, 1987 Genetically determined nonselective
537 abortion of asci in *Neurospora crassa*. *Can. J. Bot.* 65:1539–1549.

538 Raju, N. B., 1994 Ascomycete Spore killers: Chromosomal elements that distort genetic ratios
539 among the products of meiosis. *Mycologia* 86: 461–473.

540 Raju, N. B., R. L. Metzenberg, and P. K. T. Shiu, 2007 *Neurospora* spore killers *Sk-2* and *Sk-3*
541 suppress meiotic silencing by unpaired DNA. *Genetics* 176: 43–52.

542 Revington M., McLachlin D. T., Shaw G. S., Dunn S. D., 1999 The dimerization domain of the b
543 subunit of the *Escherichia coli* F(1)F(0)-ATPase. *J. Biol. Chem.* 274: 31094–31101.

544 Rhoades, M., 1952 Preferential Segregation in Maize, pp. 66–80 in Heterosis: a record of
545 researches directed towards explaining and utilizing the vigor of hybrids, edited by J. W.
546 Gowen. Iowa State College Press, Ames Iowa USA.

547 Samarajeewa, D. A., P. A. Sauls, K. J. Sharp, Z. J. Smith, H. Xiao *et al.*, 2014 Efficient
548 detection of unpaired DNA requires a member of the Rad54-like family of homologous
549 recombination proteins. *Genetics* 198: 895–904.

550 Saupe, S. J., 2011 The [Het-s] prion of *Podospora anserina* and its role in heterokaryon
551 incompatibility. *Semin. Cell Dev. Biol.* 22: 460–468.

552 Shiu, P. K. T., D. Zickler, N. B. Raju, G. Ruprich-Robert, and R. L. Metzenberg, 2006 SAD-2
553 is required for meiotic silencing by unpaired DNA and perinuclear localization of SAD-1
554 RNA-directed RNA polymerase. *Proc. Natl. Acad. Sci. U. S. A.* 103: 2243–2248.

555 Stewart A. G., Laming E. M., Sobti M., Stock D., 2014 Rotary ATPases--dynamic molecular
556 machines. *Curr. Opin. Struct. Biol.* 25: 40–48.

557 Sugimoto, M., 2014 Developmental genetics of the mouse *t*-complex. *Genes Genet. Syst.* 89:
558 109–120.

559 Thompson, J. D., D. G. Higgins, and T. J. Gibson, 1994 CLUSTAL W: improving the
560 sensitivity of progressive multiple sequence alignment through sequence weighting,

561 position-specific gap penalties and weight matrix choice. *Nucleic Acids Res.* 22: 4673–
562 4680.

563 Turner, B. C., 2001 Geographic distribution of *Neurospora* Spore killer strains and strains
564 resistant to killing. *Fungal Genet. Biol.* 32: 93–104.

565 Turner, B. C., and D. D. Perkins, 1979 Spore killer, a chromosomal factor in *Neurospora* that
566 kills meiotic products not containing it. *Genetics* 93: 587–606.

567 Vogel, H. J., 1956 A convenient growth medium for *Neurospora* (Medium N). *Microb. Genet.*
568 *Bull.* 13: 42–43.

569 Walker J. E., M. Saraste, and N. J. Gay, 1984 The unc operon. Nucleotide sequence, regulation
570 and structure of ATP-synthase. *Biochim. Biophys. Acta* 768: 164–200.

571 Westergaard, M., and H. K. Mitchell, 1947 *Neurospora* V. A synthetic medium favoring sexual
572 reproduction. *Am. J. Bot.* 34: 573–577.

573 Yu, J. H., Z. Hamari, K. H. Han, J. A. Seo, Y. Reyes-Domínguez *et al.*, 2004 Double-joint
574 PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. *Fungal*
575 *Genet. Biol.* 41: 973–981.

576 Zimmering, S., L. Sandler, and B. Nicoletti, 1970 Mechanisms of meiotic drive. *Annu. Rev.*
577 *Genet.* 4: 409–436.

578

579 **Figure Legends**

580 **Figure 1** $Sk-2^{INS1}$ harbors a genetic element required for spore killing. (A) The diagram
581 illustrates phenotypic differences between spore killing and normal ascus development. Asci that
582 have undergone spore killing contain four black and four white ascospores. Viable ascospores
583 may appear tan, brown, or black, depending on their level of maturity. (B) Annotation of the
584 $rfk-1$ region as described by Harvey *et al.* (2014). Genes and pseudogenes are depicted as black
585 rectangles. Gene names (*e.g.*, 6197) are listed above the rectangles. Pseudogene names are
586 appended with an asterisk. Labels $v3$, $v4$, and $v5$ mark DNA intervals of the $rfk-1$ region that
587 were deleted and replaced with an hph selectable marker. (C–E) The images depict asci from
588 crosses between Sk^S and $Sk-2$ strains lacking different intervals of $Sk-2^{INS1}$. The predominant
589 phenotype of the asci produced by each cross is listed above each image. Crosses are as follows:
590 (C) F2-23 × ISU-3023, (D) F2-23 × ISU-3017, and (E) F2-23 × ISU-3029.

591

592 **Figure 2** Deletion and insertion maps. (A) A diagram of $Sk-2^{INS1}$. (B) Ten intervals of $Sk-2^{INS1}$
593 were deleted and replaced with hph . For convenience, each interval is named according to its
594 deletion vector (*e.g.*, interval $v5$ is named after deletion vector v5). Orange rectangles mark
595 intervals that disrupt spore killing upon deletion. Green rectangles mark intervals that do not
596 disrupt spore killing when deleted. (C) Eight intervals of $Sk-2^{INS1}$ were transferred to the $his-3$
597 locus of an Sk^S strain. Intervals were named according to the name of the plasmid used for
598 cloning of the interval (*e.g.*, interval AH4 is named after plasmid pAH4). Red and blue open
599 rectangles mark killer (*i.e.*, abortion-inducing) and non-killer intervals, respectively.

600

601 **Figure 3** Deletion of a genetic element between pseudogene 7838* and the right border of
602 $Sk-2^{INS1}$ eliminates spore killing. (A–I) The images depict asci from crosses between an Sk^S
603 strain and an $Sk-2$ mating partner lacking a specific interval of $Sk-2^{INS1}$. Crosses are as follows:
604 (A) F2-26 × ISU-3311, (B) F2-26 × ISU-3313, (C) F2-23 × ISU-3315, (D) F2-26 × ISU-3318,
605 (E) F2-23 × ISU-3321, (F) F2-26 × ISU-3478, (G) F2-26 × ISU-3482, (H) F2-26 × ISU-3483,
606 and (I) F2-26 × ISU-3485.

607

608 **Figure 4** A genetic element within $Sk-2^{INS1}$ causes ascus abortion upon its transfer to an Sk^S
609 strain. (A–H) Images depict asci from crosses between an Sk^S $sad-2^\Delta$ strain and an Sk^S mating
610 partner carrying a specific interval of $Sk-2^{INS1}$. Crosses are as follows: (A) ISU-3037 ×
611 ISU-3224, (B) ISU-3037 × ISU-3228, (C) ISU-3036 × ISU-3243, (D) ISU-3037 × ISU-3656, (E)
612 ISU-3037 × ISU-3658, (F) ISU-3036 × ISU-4269, (G) ISU-3037 × ISU-4271, and (H) ISU-3037
613 × ISU-3660.

614

615 **Figure 5** The $AH36$ interval from an $rfk-1$ mutant does not cause ascus abortion. Images depict
616 asci from crosses between an Sk^S $sad-2^\Delta$ strain and an Sk^S strain carrying either the $AH36$ interval
617 from (A) F2-19 ($rfk-1^+$) or (B) ISU-3211 (an $rfk-1$ mutant). Crosses are as follows: (A) ISU-3037
618 × ISU-4273 and (B) ISU-3037 × ISU-4275.

619

620 **Figure 6** The $AH36$ interval from an $rfk-1$ mutant contains seven point mutations. (A) The 1481
621 bp sequence of $AH36^{Sk-2}$ is shown. A region containing 7.17 repeats of a 46–48 bp sequence is
622 highlighted with red and blue fonts. The colors alternate with each iteration of the repeated
623 sequence. The $AH36^{3211}$ sequence contains seven G to A transition mutations. The position of

624 each mutation is marked by a white character on a black background with the non-mutated
625 character shown. The mutations in *AH36*³²¹¹ are (from left to right): G27904A, G27945A,
626 G27972A, G28052A, G28104A, G28300A, and G28326A. A non-native promoter was placed
627 directly upstream of a putative RFK-1 start codon (white font, green background) with vector
628 v199. A non-native promoter was also placed directly upstream of a TTT triplet (white font, blue
629 background) with vector v200. (B) Alignment of the repetitive sequences highlighted in panel A.
630

631 **Figure 7** A point mutation within *AH36* eliminates its ability to abort ascus development. Six of
632 the seven point mutations in *AH36*³²¹¹ were examined for a potential role in ascus abortion. Each
633 mutation was placed individually in *AH36*^{Sk-2} by site-directed mutagenesis. (A–G) Images depict
634 asci from crosses between an *Sk*^S *sad-2*^Δ strain and an *Sk*^S mating partner carrying *AH36*^{Sk-2} or
635 one of its mutated derivatives. Crosses are as follows: (A) ISU-3037 × ISU-4273, (B) ISU-3037
636 × ISU-4551, (C) ISU-3037 × ISU-4552, (D) ISU-3037 × ISU-4553, (E) ISU-3037 × ISU-4554,
637 (F) ISU-3037 × ISU-4555, (G) ISU-3037 × ISU-4556.

638

639 **Figure 8** A putative start codon for RFK-1 exists within *AH36*. (A) A DNA construct consisting
640 of *hph* and the promoter for the *N. crassa* *ccg-1* gene was used to make two transformation
641 vectors. (B) Vector 199 (v199) was designed to replace 133 bp of *AH36* while fusing *ccg-1*(P) to
642 a putative ATG codon at position 28,264 (Figure 6), thereby creating the *v199*⁴::*hph-ccg-1*(P)
643 allele. Similarly, vector 200 (v200) was designed to replace 223 bp of *AH36* while fusing
644 *ccg-1*(P) to position 28,354 (Figure 6), thereby creating the *v200*⁴::*hph-ccg-1*(P) allele. (C–E)
645 Crosses were performed to determine the effect of each allele on spore killing. Images depict asci

646 from the following crosses (C) F2-26 × P15-53, (D) F2-26 × ISU-4557, and (E) F2-26 ×
647 ISU-4558.

648

649 **Figure 9** The native arrangement of *rfk-1* protects it from MSUD. (A) Interval *AH36* spans the
650 right border of *Sk-2* (marked by a black dotted line). An *hph* selectable marker was placed
651 immediately to the right of *AH36* in an *Sk-2* strain (with vector v140) to create the *v140^Δ::hph*
652 allele and at the corresponding location in an *Sk^S* strain (with vector v150) to create the
653 *v150^Δ::hph* allele. (B–D) Crosses were performed to determine the effect of each allele on spore
654 killing. Images depict asci from the following crosses: (B) F2-23 × ISU-4344, (C) ISU-4348 ×
655 ISU-4344, and (D) ISU-3036 × ISU-4344.

656

657 **Figure 10** The *ncu06238* gene is not required for spore killing. (A) Asci from a cross between
658 two *Sk^S* strains (ISU-4559 × P8-43), where one of the strains has had its *ncu06238* coding
659 sequences deleted. While some normal asci are detected, many asci are abnormal and some
660 mimic the spore killer phenotype (red arrows). (B) Asci from a cross between an *Sk^S* strain and
661 an *Sk-2* strain (ISU-4559 × ISU-4561), where both strains have been deleted of their *ncu06238*
662 coding sequences. Nearly all viable progeny isolated from this cross have the *Sk-2* genotype (47
663 out of 48, data not shown).

664

665 **Figure 11** Replacement of *AH36³²¹¹* with *AH36^{Sk-2}* restores spore killing to an *rjk-1* mutant. (A)
666 Strain ISU-4526 was constructed by replacing *AH36³²¹¹* in ISU-3222 (upper diagram, red box)
667 with *nat1* (using vector v160; ISU-3222 is a descendant of ISU-3211). Strain ISU-4563 was then
668 constructed by replacing *AH36^{Δ::nat1}* in ISU-4562 with *AH36^{Sk-2::hph}* (lower diagram, red box

669 and green rectangle). The locations of the two recombination flanks used to replace *AH36^A::nat1*
670 with *AH36^{Sk-2}::hph* are indicated with black crosses and red-dotted lines. (B–D) Asci are from
671 crosses between F2-23 and (B) ISU-3222, (C) ISU-4562, and (D) ISU-4563. (E–G) Asci are
672 from crosses between ISU-4348 and (E) ISU-3222, (F) ISU-4562, and (G) ISU-4563.

673

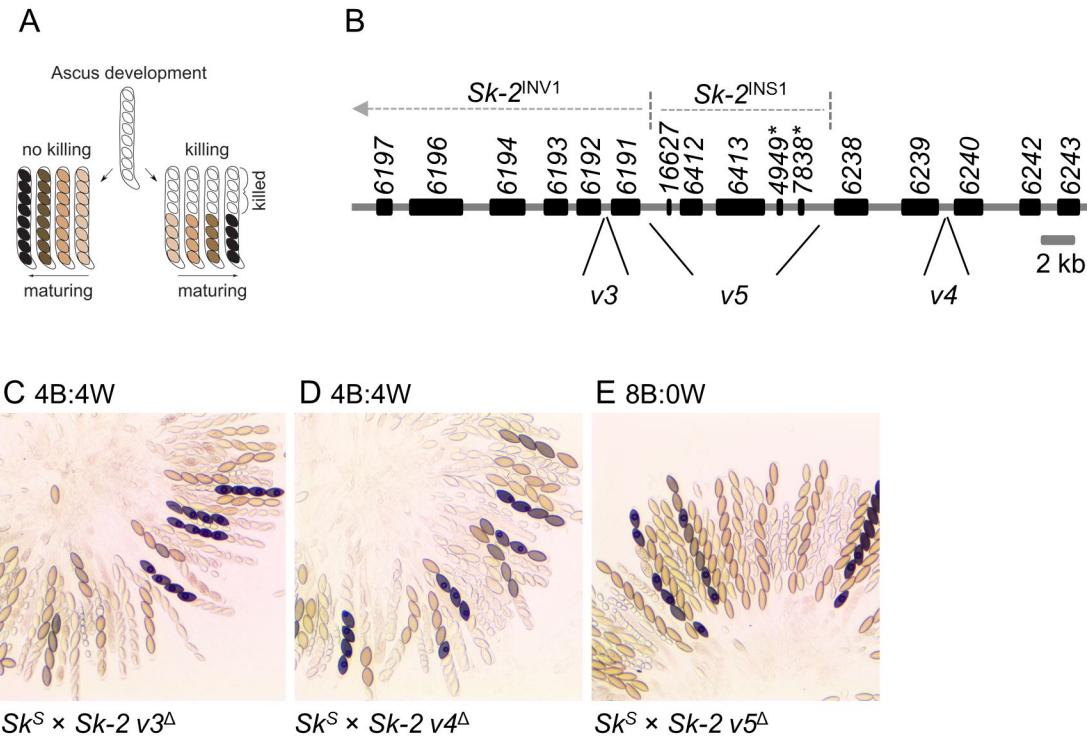
674 **Figure 12** RFK-1 is related to NCU07086. (A) All known *rfk-1* mutations alter the predicted
675 amino acid sequence of RFK-1. (B) A coding region of 2105 bp is predicted for gene *ncu07086*
676 (from start codon to stop codon, including introns). Predicted introns are labeled I1 through I4.
677 An AtpF Superfamily domain (NCBI CDD, Accession No. cl28522) can be identified within the
678 N-terminal end of the NCU07086 protein sequence. (C) The first 39 amino acids of RFK-1 and
679 NCU07086 are similar. (D) The repetitive sequence identified within *AH36* (see Figure 6)
680 appears to have originated from within the first intron of *ncu07086*. The first intron of *ncu07086*
681 is predicted to be 141 nucleotides long (NCBI Gene ID: 3876500), and only the first 84
682 nucleotides are shown. In contrast, the entire *AH36* repeat region is shown along with an
683 additional four nucleotides upstream of “repeat A”. These four nucleotides include the stop
684 codon for the hypothetical 39 amino acid version of RFK-1.

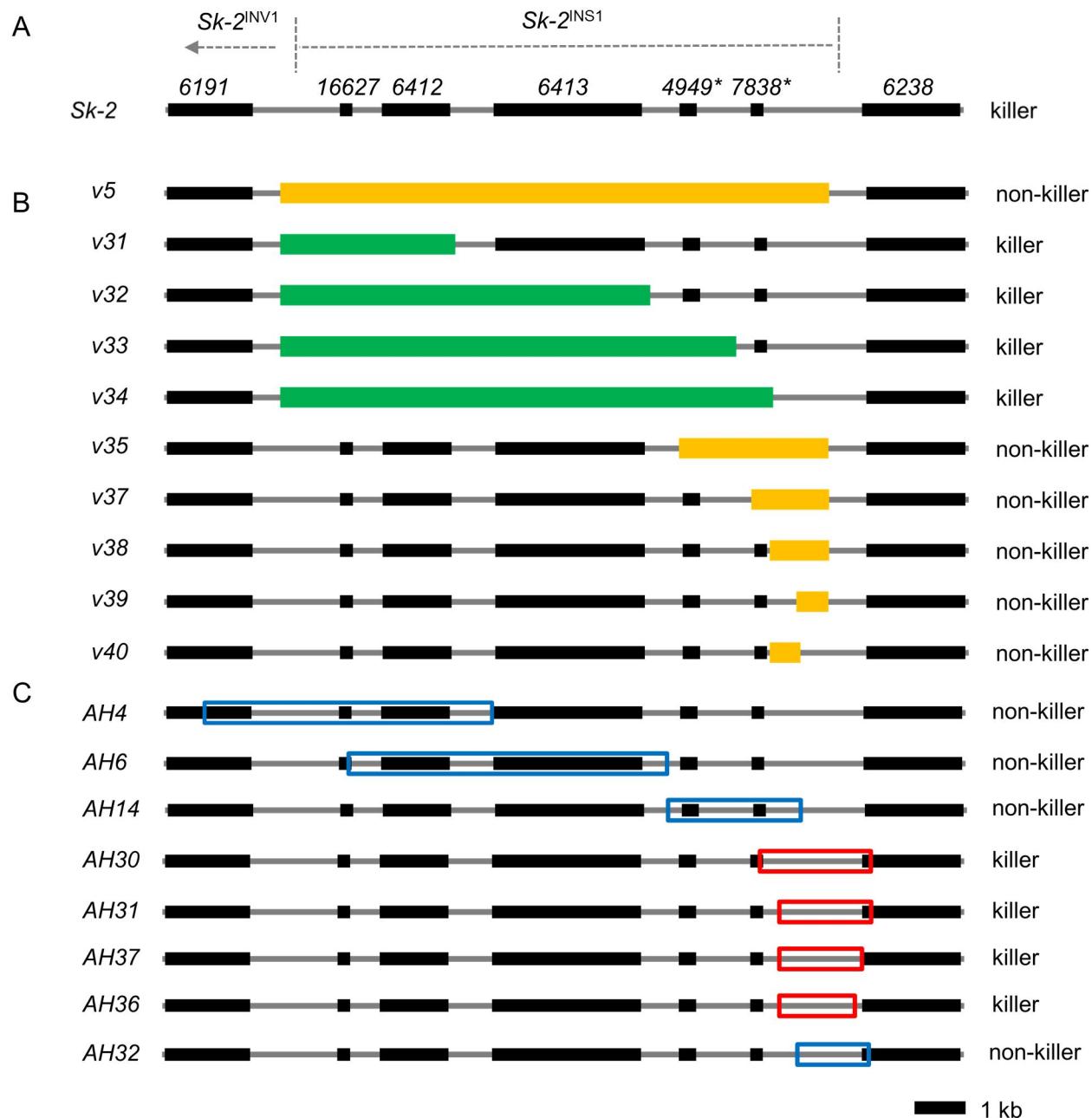
685

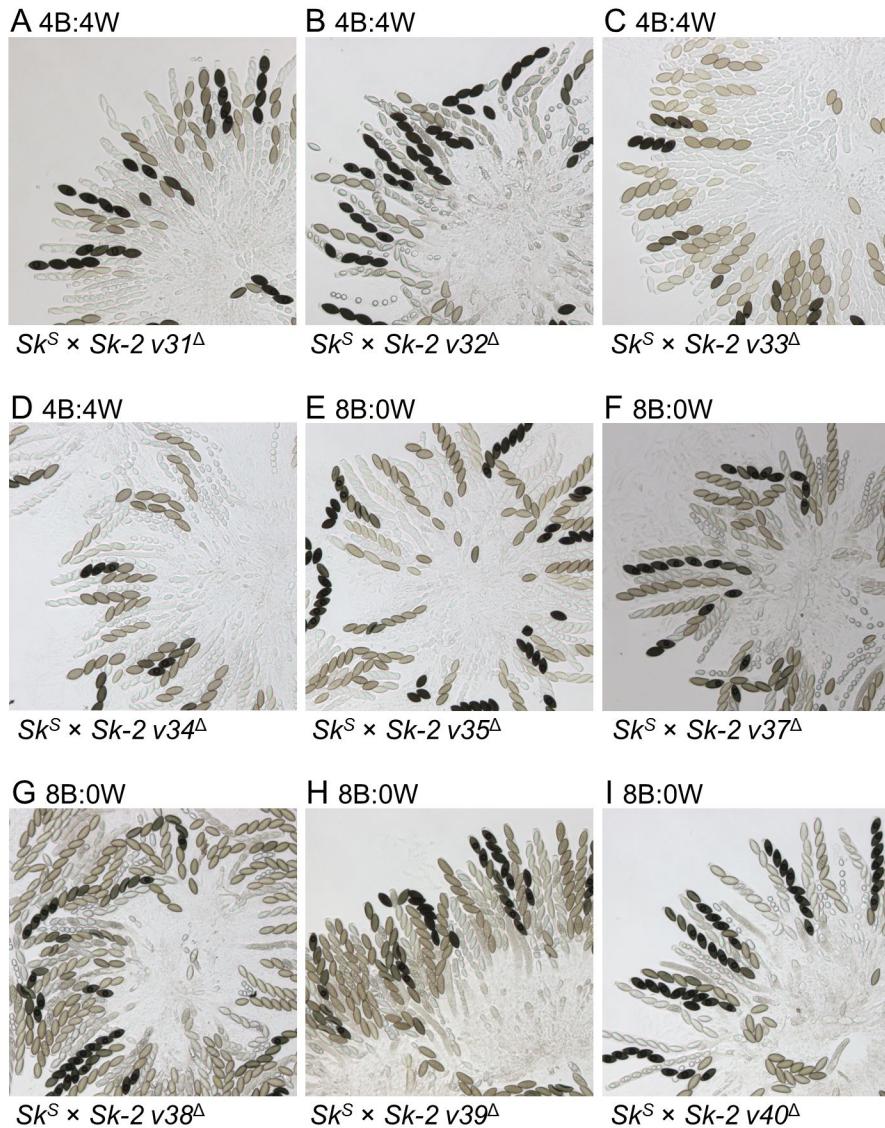
Table 1 Strains used in this study

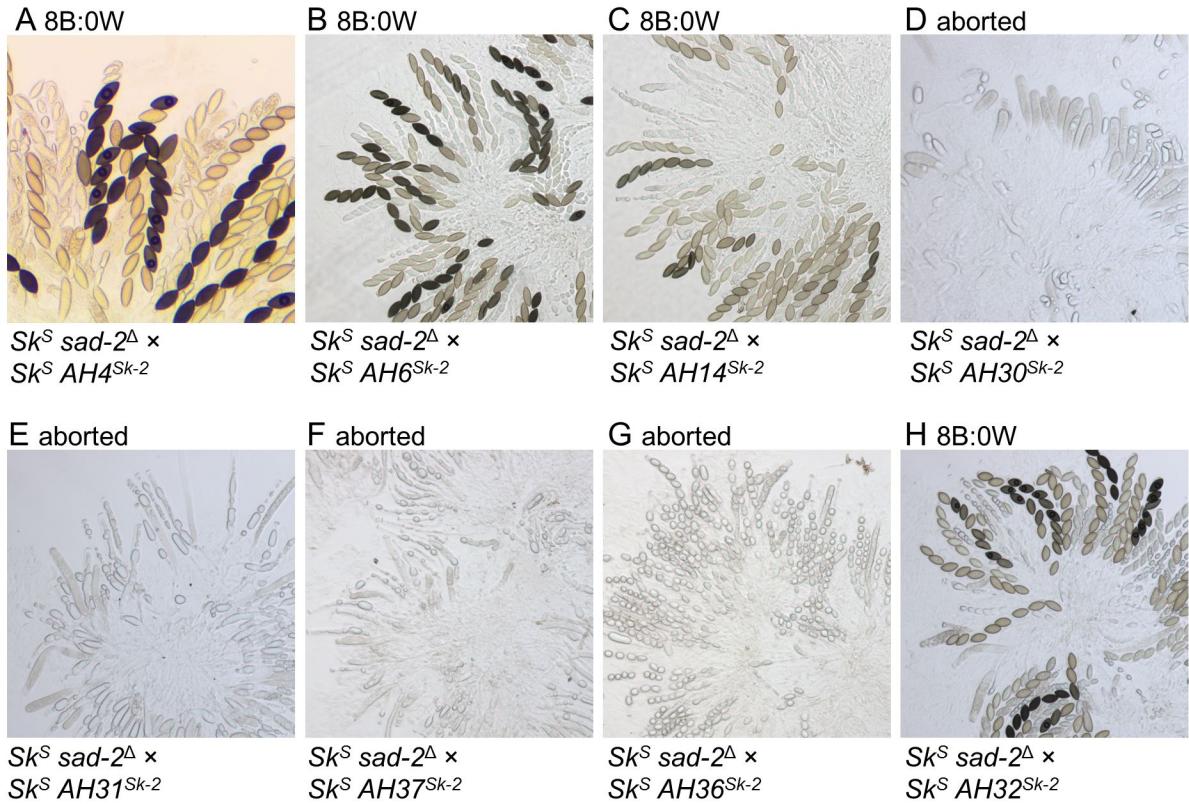
Name (alias)	Genotype ^a
F2-19	<i>rid; fl; Sk-2; A</i>
F2-23 (RTH1005.1)	<i>rid; fl A</i>
F2-26 (RTH1005.2)	<i>rid; fl a</i>
ISU-3017 (RKS2.1.2)	<i>rid[?]; Sk-2 leu-1 v4^Δ::hph; mus-51[?] a</i>
ISU-3023 (RKS1.1.6)	<i>rid[?]; Sk-2 leu-1 v3^Δ::hph; mus-51[?] a</i>
ISU-3029 (RKS3.2.5)	<i>rid; Sk-2 leu-1 v5^Δ::hph; mus-51^Δ::bar a</i>
ISU-3036 (RTH1623.1)	<i>rid; fl; sad-2^Δ::hph A</i>
ISU-3037 (RTH1623.2)	<i>rid; fl; sad-2^Δ::hph a</i>
ISU-3211 (RTH1158.8)	<i>rid; Sk-2 rsk^Δ::hph rfk-I³²¹¹; mus-51^Δ::bar a</i>
ISU-3222 (RTH1249.14)	<i>rid; Sk-2 rfk-I³²¹¹; mus-51^Δ::bar a</i>
ISU-3223 (RTH1294.17)	<i>Sk-2 leu-1; mus-51^Δ::bar A</i>
ISU-3224 (HAH8.1.3)	<i>rid his-3⁺::AH4^{Sk-2}::hph; A</i>
ISU-3228 (HAH10.1.1)	<i>rid his-3⁺::AH6^{Sk-2}::hph; A</i>
ISU-3243 (HAH16.1.1)	<i>rid his-3⁺::AH14^{Sk-2}::hph A</i>
ISU-3311 (RDS1.1)	<i>Sk-2 leu-1 v31^Δ::hph; mus-51^Δ::bar A</i>
ISU-3313 (RDS2.3)	<i>Sk-2 leu-1 v32^Δ::hph; mus-51^Δ::bar A</i>
ISU-3315 (RDS3.9)	<i>Sk-2 leu-1 v33^Δ::hph a</i>
ISU-3318 (RDS4.8)	<i>Sk-2 leu-1 v34^Δ::hph A</i>
ISU-3321 (RDS5.9)	<i>rid; Sk-2 leu-1 v35^Δ::hph; mus-51^Δ::bar a</i>
ISU-3478 (RDS13.9.1)	<i>rid; Sk-2 v37^Δ::hph; mus-51^Δ::bar A</i>
ISU-3482 (RDS14.4.2)	<i>rid; Sk-2 v38^Δ::hph A</i>
ISU-3483 (RDS15.1.1)	<i>rid; Sk-2 v39^Δ::hph A</i>
ISU-3485 (RDS16.4.1)	<i>rid; Sk-2 v40^Δ::hph A</i>
ISU-3656 (HAH42.1)	<i>rid his-3⁺::AH30^{Sk-2}-hph A</i>
ISU-3658 (HAH43.1)	<i>rid his-3⁺::AH31^{Sk-2}-hph A</i>
ISU-3660 (HAH44.1)	<i>rid his-3⁺::AH32^{Sk-2}-hph A</i>
ISU-4269 (RAH64.1.1)	<i>rid his-3⁺::AH37^{Sk-2}-hph; mus-52^Δ::bar a</i>

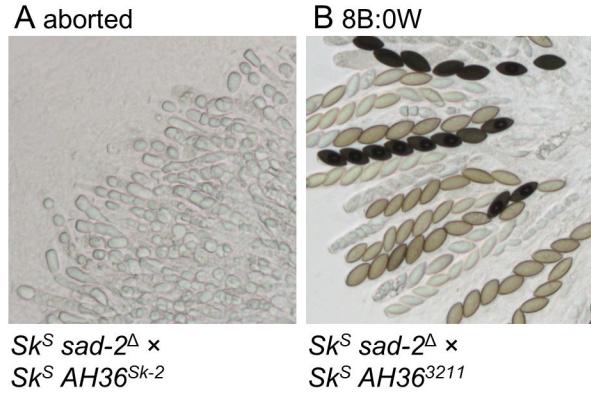
ISU-4271 (RAH63.1.2)	<i>rid his-3⁺::AH36^{Sk-2}-hph; mus-52^Δ::bar A</i>
ISU-4273 (HNR12.6.1)	<i>rid his-3⁺::AH36^{Sk-2}-hph A</i>
ISU-4275 (HNR10.4.2)	<i>rid his-3⁺::AH36³²¹¹-hph A</i>
ISU-4344 (RAY1.13)	<i>rid; Sk-2 v140^Δ::hph; mus-51^Δ::bar A</i>
ISU-4348 (RAY6.5)	<i>rid; fl; v150^Δ::hph a</i>
ISU-4551 (RNR29.1)	<i>rid his-3⁺::AH36^{Sk-2[G27945A]}-hph; mus-52[?] A</i>
ISU-4552 (RNR28.1)	<i>rid his-3⁺::AH36^{Sk-2[G27972A]}-hph; mus-52[?] A</i>
ISU-4553 (RNR27.1)	<i>rid his-3⁺::AH36^{Sk-2[G28052A]}-hph; mus-52[?] A</i>
ISU-4554 (RNR26.1)	<i>rid his-3⁺::AH36^{Sk-2[G28104A]}-hph; mus-52[?] A</i>
ISU-4555 (RNR25.1)	<i>rid his-3⁺::AH36^{Sk-2[G28300A]}-hph; mus-52[?] A</i>
ISU-4556 (RNR30.1)	<i>rid his-3⁺::AH36^{Sk-2[G28326A]}-hph; mus-52[?] A</i>
ISU-4557 (RNR129.1.3)	<i>rid; Sk-2 v199^Δ::hph-ccg-1(P); mus51[?] A</i>
ISU-4558 (RNR130.1.3)	<i>rid; Sk-2 v200^Δ::hph-ccg-1(P); mus51[?] A</i>
ISU-4559 (RNR108.1.12)	<i>rid; fl; ncu06238^Δ::hph mus-52^Δ::bar a</i>
ISU-4561 (RNR109.3.2)	<i>rid; Sk-2 ncu06238^Δ::hph; mus51^Δ::bar A</i>
ISU-4562 (HNR92.1)	<i>rid; Sk-2 v160^Δ::nat1; mus-51^Δ::bar a</i>
ISU-4563 (HNR100.11.1)	<i>rid; Sk-2 v140^Δ::hph; mus-51^Δ::bar a</i>
P8-42	<i>rid; mus-51^Δ::bar a</i>
P8-43	<i>rid; mus-52^Δ::bar A</i>
P15-53 (RTH1122.22)	<i>rid; Sk-2; mus-51^Δ::bar A</i>

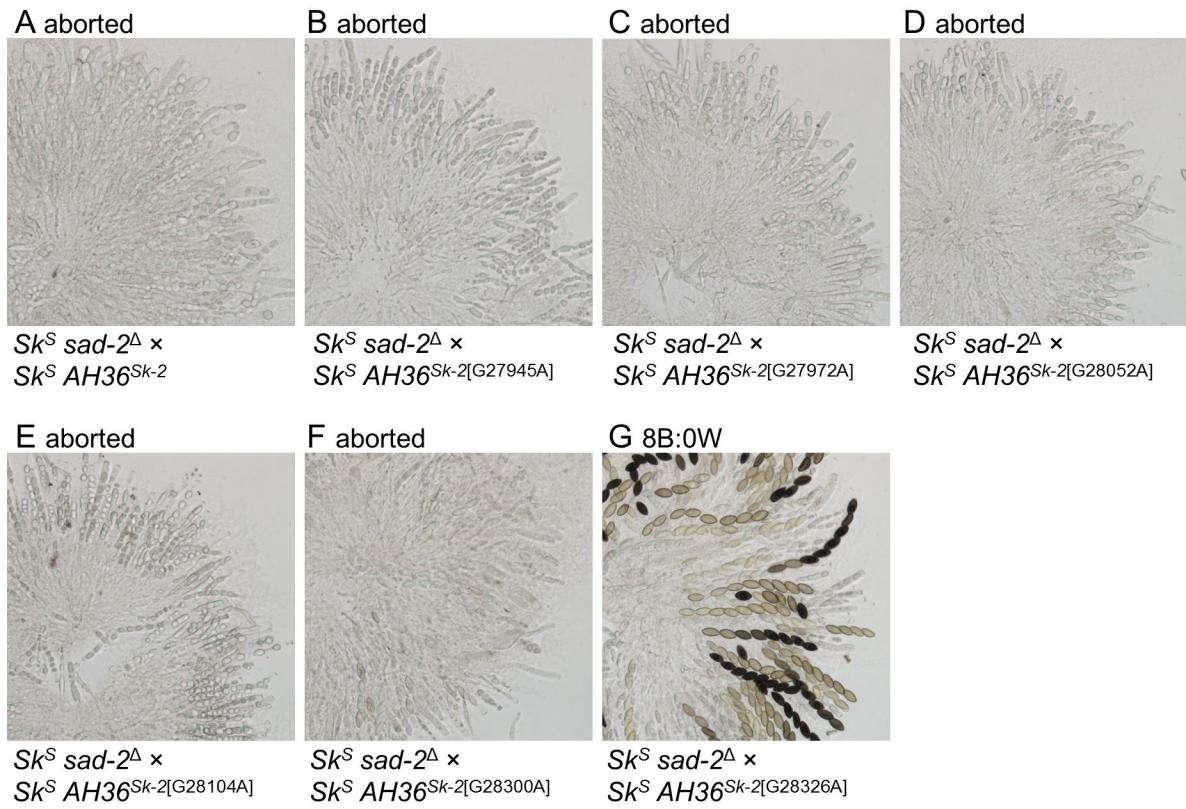

^aThe *rid*[?], *mus-51*[?] and *mus-52*[?] designations are used if the genotype has not been determined for the indicated allele. Genotypes of all key alleles were determined by PCR or lineage analysis.

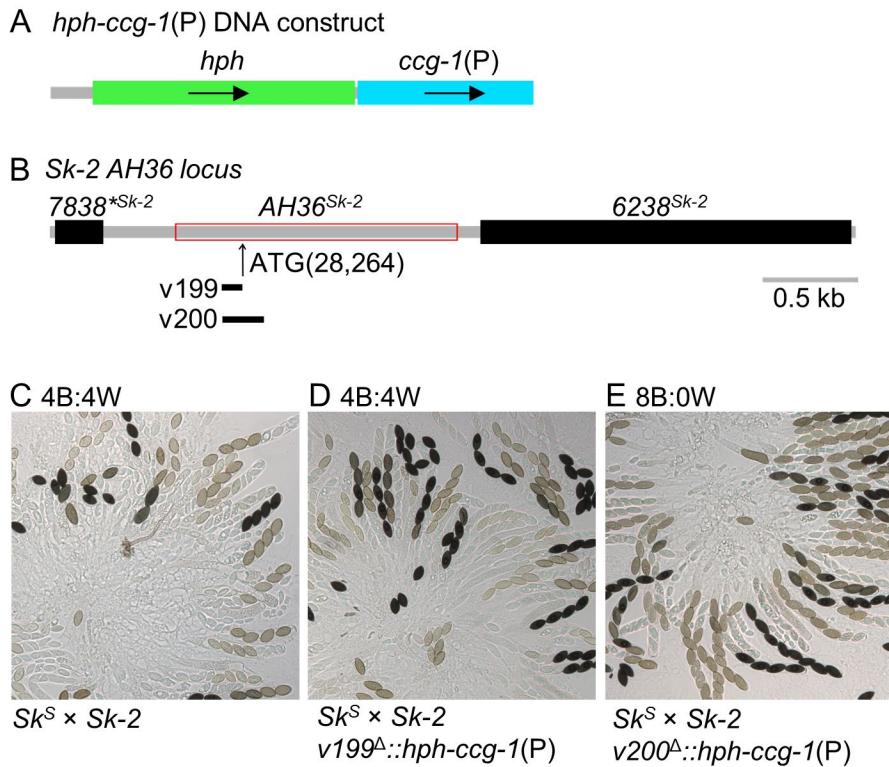


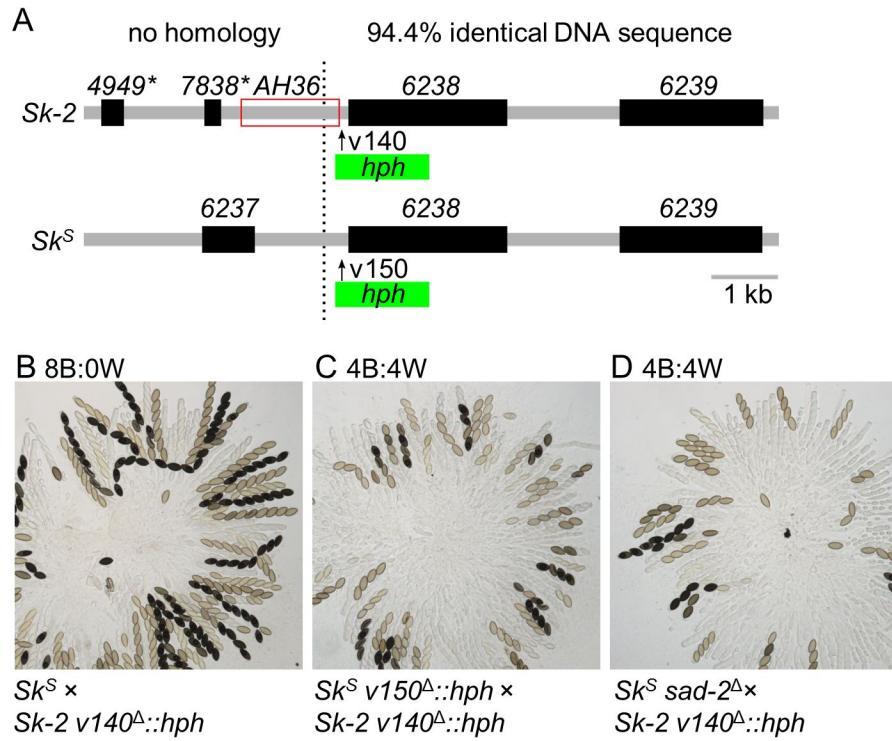

Table 2 Interval positions

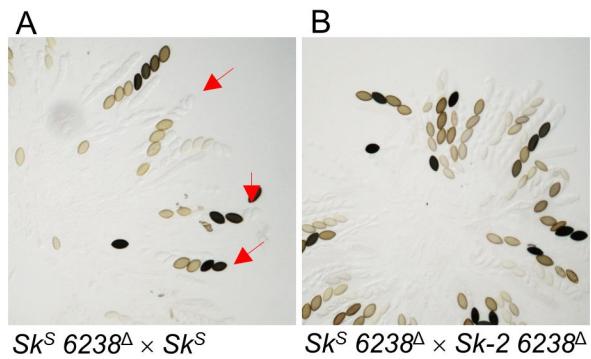

name	start	stop
Miscellaneous intervals of the 45 kb <i>rfk-1</i> region		
<i>Sk-2</i> ^{INS1}	18118	29151
<i>rfk-1</i> coding ^a	28264	28383
repeats ^b	28384	28722
Intervals deleted from the 45 kb <i>rfk-1</i> region		
<i>v3</i>	15640	15664
<i>v4</i>	36166	36426
<i>v5</i>	18042	28759
<i>v31</i>	18042	21464
<i>v32</i>	18042	25268
<i>v33</i>	18042	26951
<i>v34</i>	18042	27667
<i>v35</i>	25837	28759
<i>v37</i>	27242	28759
<i>v38</i>	27602	28759
<i>v39</i>	28126	28759
<i>v40</i>	27602	28198
<i>v140</i>	29381	29401
<i>v160</i>	27740	29401
<i>v175</i>	29489	31883
<i>v199</i>	28131	28263
<i>v200</i>	28131	28353
Intervals transferred from the 45 kb <i>rfk-1</i> region to <i>Sk</i> ^S		
<i>AH4</i>	16579	22209
<i>AH6</i>	19408	25648
<i>AH14</i>	25632	28324
<i>AH30</i>	27528	29702
<i>AH31</i>	27900	29702
<i>AH32</i>	28304	29702
<i>AH36</i>	27900	29380
<i>AH37</i>	27900	29512

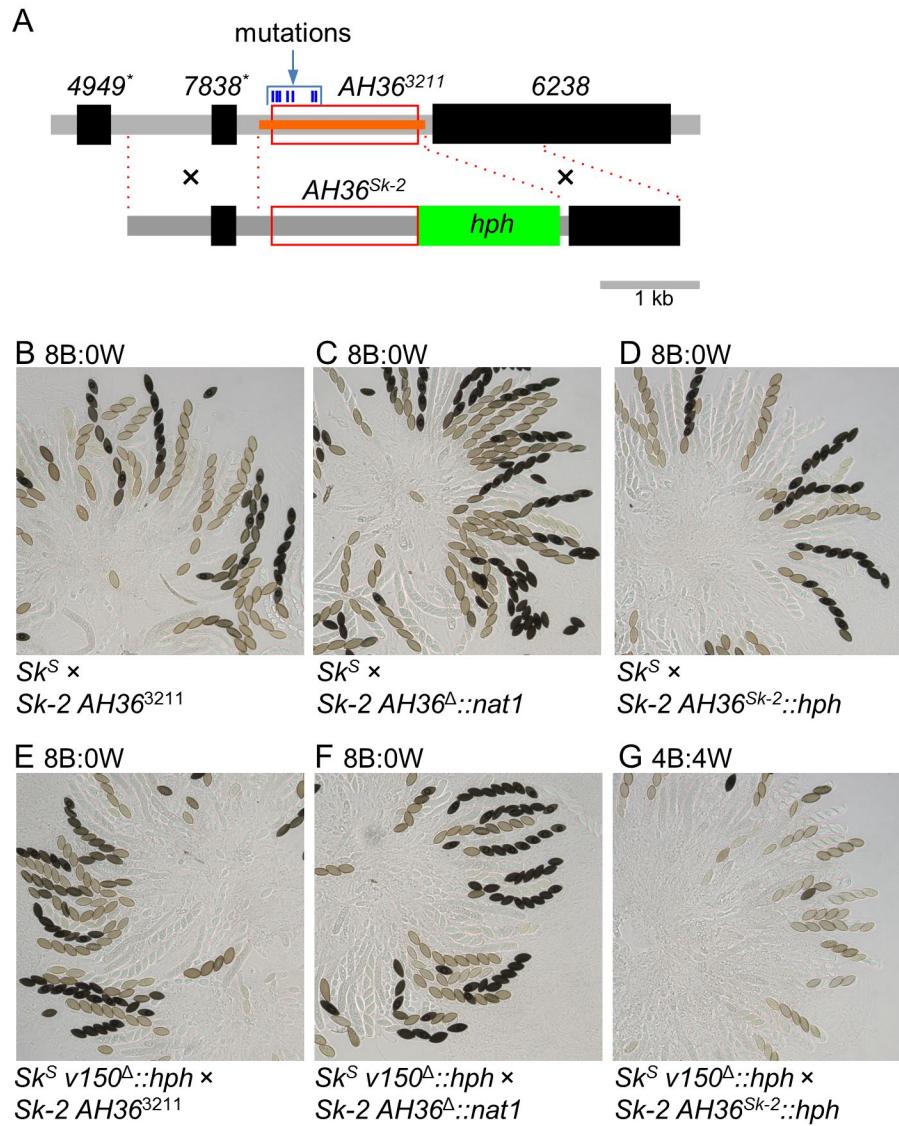

The coordinates of each interval are as defined by GenBank sequence KJ908288.1. ^ahypothetical. ^bcontains repeats of a 47 bp sequence.

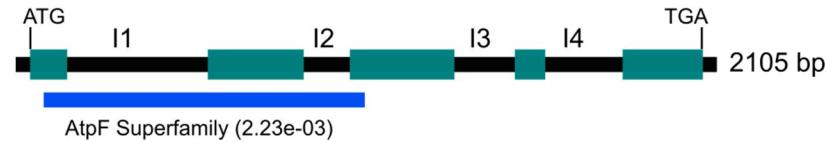





A


B


Repeat A	GTCTCCTTCATGTTCCAATTTCATTTTG	T	TCCTTCTCTTCTC	28430
Repeat B	GTCTCCTTCATGTTCCAATTTCATTTGTTTTT	T	TCCTTCTCTTCTC	28478
Repeat C	GTCTCCTTCATGTTCCAGTTCATTGG	T	TCCTTCTCTTCTC	28525
Repeat D	GTCTCCTTCATGTTCCAATTTCATTTGTTTTT	T	TCCTTCTCTTCTC	28573
Repeat E	GTCTCCTTCATGTTCCAGTTCATTGG	T	TCCTTCTCTTCTC	28260
Repeat F	GTCTCCTTCATGTTCCAATTTCATTTGTTTTT	T	TCCTTCTCTTCTC	28668
Repeat G	GTCTCCTTCATGTTCCAATTTCATTTT	T	TCCTTCTCTTCTC	28714
Repeat H	GTCTCCTT			28722



A

RFK-1	MACPTGFFTALFGKLLTIPPIWVLVFVNALFVFPRFWVW*	40
RFK-1 ³²¹¹	MACPTGFFTALFSKLLTIPPI*VLVFVNALFVFPRFWVW*	40
RFK-1 ³²¹²	MACPTGFFYRSFWQTPHPHILGVGVCIQCSVCLPPVLGLV	40
RFK-1 ³²¹³	MACPTGFFTALFGKLLTIPPIWVLVFVNLFVFPRFWVW*	40

B

ncu07086

C

RFK-1	MACPTGFFTALFGKLLTIPPIWVLVFVNALFVFPRFWVW*	40
NCU07086	MTCLNAFLTALFGKVLSAFIWLGVFAWNVYFVWPGWPLLN	40

D

	stop codon for 39 aa RFK-1 model	
	↓	
	Repeat A	Repeat B
<i>rfk-1</i> 7086	GTAAGTCTCCTTCATGTTCCAATTCAATTTCATTTTGTTTTCCCTTTCTCTCGTCTCCTTCATGTTCCAATT	28449
	GTAAGTCTACTATATTCCAATTCAATTTCATTTTGTTTTCCGTTCTCTTC	51
	Repeat C	
<i>rfk-1</i> 7086	TCAATTTCATTTTTTTCTCTCTCGTCTCCTTCATGTTCCAATTCAATTTCATTTTGTTTTCCCTTTCT	28519
	-----	51
	Repeat D	Repeat E
<i>rfk-1</i> 7086	CTTCTCGTCTCCTTCATGTTCCAATTCAATTTCATTTTGTTTTCCCTTTCTCTCGTCTCCTTCATGTTCC	28589
	-----	51
	Repeat F	
<i>rfk-1</i> 7086	AGTTCATTTTCATTTTGTTTTCCCTTCATGTTCCAATTCAATTTCATTTTGTTTTCCCTT	28659
	-----	51
	Repeat G	Repeat H
<i>rfk-1</i> 7086	TCTCTTCTCGTCTCCTTCATGTTCCAATTCAATTTCATTTTGTTGTCCTTCATGTTCCAATTCAATTTCATTTTGTTTTCCCT	28729
	-----	66
<i>rfk-1</i> 7086	ACCTTACCTCTCGGTCC 28747	
	ACCTTGCCTTCGATCC 84	

Supporting Information

Rhoades *et al.* "Identification of a genetic element required for spore killing in *Neurospora*".

Contents

Figure S1. Unpaired $Sk-2^{INS1}$ -intervals do not kill ascospores in MSUD-proficient crosses.

Table S1. Primers for DJ-PCR-based construction of deletion vectors.

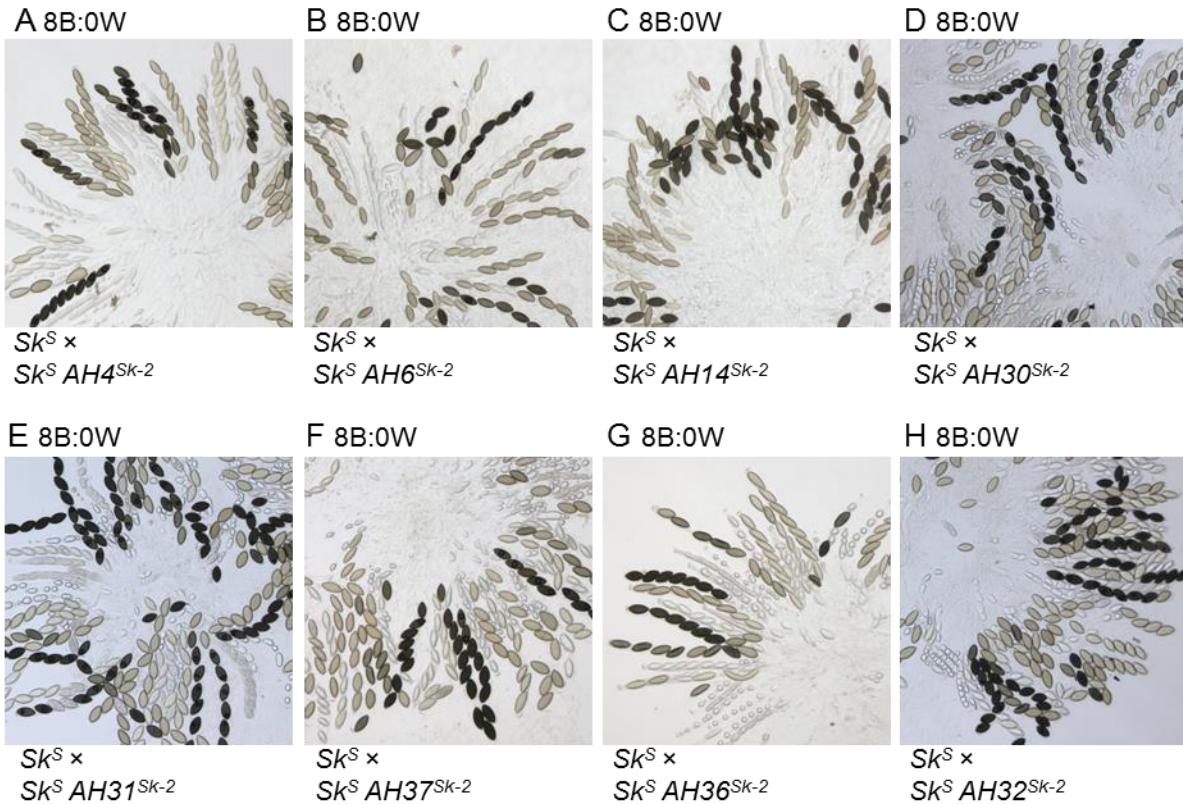

Table S2. Primers for DJ-PCR center products.

Table S3. Primers for cloning $Sk-2$ intervals to pTH1256.1.

Table S4. Primers for amplification of $AH36^{Sk-2}::hph$.

Table S5. Primers for site directed mutagenesis of $AH36^{Sk-2}$.

Figure S1 Unpaired $Sk-2^{INS1}$ -intervals do not kill ascospores in MSUD-proficient crosses.

Unpaired $Sk-2^{INS1}$ -intervals do not kill ascospores in MSUD-proficient crosses. (A–H) The images depict asci from crosses between Sk^S strains, one of which carries an interval of the $Sk-2^{INS1}$ locus (e.g., $AH4^{Sk-2}$, $AH6^{Sk-2}$, etc.). All crosses produced asci with an 8B:0W phenotype. Crosses are as follows: (A) F2-26 × ISU-3224, (B) F2-26 × ISU-3228, (C) F2-23 × ISU-3243, (D) F2-26 × ISU-3656, (E) F2-26 × ISU-3658, (F) F2-23 × ISU-4269, (G) F2-26 × ISU-4271, and (H) F2-26 × ISU-3660.

Table S1 Primers for DJ-PCR-based construction of deletion vectors.

Nineteen deletion vectors were constructed by double joint (DJ)-PCR (Yu *et al.* 2004; Hammond *et al.* 2011). The table below lists the forward and reverse primer sequences (5' to 3') for the left recombination flank (L), the right recombination flank (R), and the nested amplification of each completed vector (N).

For each vector, the left and right DNA flanks were amplified from genomic DNA of the transformation host, which is also indicated in the table.

The center fragment for each vector is listed next to the name of each vector in the left-most column. Center fragments were either *hph*, *nat1*, or *hph-ccg-1*(P). See Table S2 for more information on the center fragments.

Vector (center) Primer numbers	Name of transformation host Primer sequences	Primer purpose
v3 (<i>hph</i>) 73 74 75 76 77 78	<i>Transformation host: ISU-3223</i> CAAGACCCAGAACAAACGCCAAC AAAAAATGCTCCTCAATATCAGTTCCCGCTCCCTTCCGCAAATT GAGTAGATGCCGACCGGGAAACCAGTTGGTGGGATACTCGGTGCAGGTA CGACACCTCGAACATGCCCTCTC CCGGAAACGTCAGCAAACACGTA GCGCAGCTCCTTACACTCTCC	L L R R N N
v4 (<i>hph</i>) 79 80 81 82 83 84	<i>Transformation host: ISU-3223</i> CCAAGCCAAACTCAAGGGAATCG AAAAAATGCTCCTCAATATCAGTTAACATGGCGGTGATCTCGACTGCT GAGTAGATGCCGACCGGGAAACCAGTTGCCAGACTCAGCTTGATTGAC TCACCTTGGCCCTGGAGTACCTG CAAACGGGAGCGAACCTCTATGA CCAAGCGGGTCCAGATAAGACG	L L R R N N
v5 (<i>hph</i>) 85 86 87 88 89 90	<i>Transformation host: ISU-3223</i> CACCATGTAGTCGGAGCGGAAGA AAAAAATGCTCCTCAATATCAGTTCATCTTGACGGGCAGAACTGAA GAGTAGATGCCGACCGGGAAACCAGTTGCTAACCGAGAACAGCGCTTAC CATCGAAAGGGAGAGGGACTTCG GCCTTCCTTCTTCACACGGAGGT ACAGGATCTGGTCATCCCGCTC	L L R R N N
v31 (<i>hph</i>) 85 86 167 168 89 170	<i>Transformation host: ISU-3223</i> CACCATGTAGTCGGAGCGGAAGA AAAAAATGCTCCTCAATATCAGTTCATCTTGACGGGCAGAACTGAA GAGTAGATGCCGACCGGGAAACCAGTTGAGGTGAGGACAAGCGATGA CATACGGCCCATGTTACCGCACT GCCTTCCTTCTTCACACGGAGGT CAACGAAGCAGGCTCCATACAG	L L R R N N
v32 (<i>hph</i>) 85 86 173 174 89 176	<i>Transformation host: ISU-3223</i> CACCATGTAGTCGGAGCGGAAGA AAAAAATGCTCCTCAATATCAGTTCATCTTGACGGGCAGAACTGAA GAGTAGATGCCGACCGGGAAACCAGTTGTCGTCCGTGAATCGTGATCCTT AATTGCCCGTGTACTTCGCTGTG GCCTTCCTTCTTCACACGGAGGT CGGTTGTATCTGCCGGTTGAAGA	L L R R N N
v33 (<i>hph</i>) 85 86 3 4 89 6	<i>Transformation host: ISU-3223</i> CACCATGTAGTCGGAGCGGAAGA AAAAAATGCTCCTCAATATCAGTTCATCTTGACGGGCAGAACTGAA GAGTAGATGCCGACCGGGAAACCAGTTCATGGCAGTGAAGTGGACAAGCTG GTGGTAAGCGCCGTTCCTGGTTAG GCCTTCCTTCTTCACACGGAGGT TGCGGCCTGTTACGAAATCAA	L L R R N N
v34 (<i>hph</i>) 85	<i>Transformation host: ISU-3223</i> CACCATGTAGTCGGAGCGGAAGA	L

86	AAAAAAATGCTCCTTCAATATCAGTTCATCTTGACGGGCAGAACTGAA	L
9	GAGTAGATGCCGACCGGGAACCACTCTCGATTGCCGACACCTCTGT	R
4	GTGTTAAGCGCCTGTTCTGGTTAG	R
89	GCCTTCCTCTTCACACGGAGGT	N
11	CGAAAGACAGAGAGGACCGAGAGGA	N
<i>v35 (hph)</i>		
1	<i>Transformation host: ISU-3223</i>	L
2	TCGGAAGGATTGCTGACTTGTGTGT	L
87	CCAAAAAATGCTCCTTCAATATCAGTTAGTTGGTAGCTGGCGCGAAAG	R
88	GAGTAGATGCCGACCGGGAACCACTTGCTAACCGGAACAGGCCTTACC	R
5	CATCGAAAGGGAGAGGCACCTCG	R
90	GCGCAGACGAACATCAAGGAGAA	N
	ACAGGATCTGGTCATCCGCTTC	N
<i>v37 (hph)</i>		
7	<i>Transformation host: P15-53</i>	L
8	GGCAGATACAACCGACGCCAAA	L
87	CCAAAAAATGCTCCTTCAATATCAGTTCCGTTTCGTTATGATGTTAATGATG	R
88	GAGTAGATGCCGACCGGGAACCACTTGCTAACCGGAACAGGCCTTACC	R
10	CATCGAAAGGGAGAGGCACCTCG	R
90	CACGTAGGGAAGGAGGGTTGAAGGT	N
	ACAGGATCTGGTCATCCGCTTC	N
<i>v38 (hph)</i>		
309	<i>Transformation host: P15-53</i>	L
310	ACGCCAAAAGGTGTAGGGGGATT	L
87	CCAAAAAATGCTCCTTCAATATCAGTTGACCGAACAAACCGGAATGACCT	R
88	GAGTAGATGCCGACCGGGAACCACTTGCTAACCGGAACAGGCCTTACC	R
311	CATCGAAAGGGAGAGGCACCTCG	R
90	AGGTCCGCAACTATTGTCCGTT	N
	ACAGGATCTGGTCATCCGCTTC	N
<i>v39 (hph)</i>		
309	<i>Transformation host: P15-53</i>	L
312	ACGCCAAAAGGTGTAGGGGGATT	L
87	CCAAAAAATGCTCCTTCAATATCAGTTGACCGAACAAACCGGAATGACCT	R
88	GAGTAGATGCCGACCGGGAACCACTTGCTAACCGGAACAGGCCTTACC	R
311	CATCGAAAGGGAGAGGCACCTCG	R
90	AGGTCCGCAACTATTGTCCGTT	N
	ACAGGATCTGGTCATCCGCTTC	N
<i>v40 (hph)</i>		
309	<i>Transformation host: P15-53</i>	L
310	ACGCCAAAAGGTGTAGGGGGATT	L
313	CCAAAAAATGCTCCTTCAATATCAGTTGACCGAACAAACCGGAATGACCT	R
88	GAGTAGATGCCGACCGGGAACCACTTGCTGGCCAACCTCTCCTCAGAAT	R
311	CATCGAAAGGGAGAGGCACCTCG	R
90	AGGTCCGCAACTATTGTCCGTT	N
	ACAGGATCTGGTCATCCGCTTC	N
<i>v140 (hph)</i>		
1303	<i>Transformation host: P15-53</i>	L
1304	AACCAGGAACAGGCCTTACAC	L
1305	AAAAAAATGCTCCTTCAATATCAGTTACGGGTAGCGGGACGTTTC	R
871	GAGTAGATGCCGACCGGGAACCACTTGCTAACAAAGCGCGTGTATTTTCG	R
1306	GAACTCGAACCACTCCACGCAA	R
872	ACAGGACAGCGGGTTGTGGTT	N
	CATTCGGCTCTGAGGTCGTTGC	N
<i>v150 (hph)</i>		
1332	<i>Transformation host: P8-43</i>	L
1304	CCCGGAATGGTTAACTGCACGGC	L
1305	AAAAAAATGCTCCTTCAATATCAGTTACGGGTAGCGGGACGTTTC	R
1333	GAGTAGATGCCGACCGGGAACCACTTGCTAACAAAGCGCGTGTATTTTCG	R
1334	GTCGGCATAGGCTGTGGTCG	R
1335	ATGCGGCCTTGATGCACTGGCTG	N
	CGAGAGGGAGAGGCACCTCGCA	N
<i>v160 (nat1)</i>		
10	<i>Transformation host: ISU-3222</i>	L
869	CACGTAGGGAAGGAGGGTTGAAGGT	L
870	TGAATGCTAAAAGACACCAATTCCCACACTCCCTCAGCAAGTAAGCGGTACGATCC	R
871	GCTGGCTCAATACAAGCGTTCCACCTAACCAACTAACAAAGCGCGTGTATTTTCG	R
311	GAACTCGAACCACTCCACGCAA	R
872	AGGTCCGCAACTATTGTCCGTT	N
	CATTCGGCTCTGAGGTCGTTGC	N

v175 (<i>hph</i>)	<i>Transformation host: ISU-3222</i> 1433 GGAACAGCGCTTACCAACCA 1434 AAAAATGCTCCTCAATATCAGTTGAAATGTTGATGCCTCCCTGGAT 1435 GAGTAGATGCCGACCGGGAAACAGTTGGGTTAGGGAGGGCTGCAT 1436 TTCCCTTCCCGCTCCGTG 1437 ACAGGACAGCGGGTTGTGG 1438 CCGAATACCGACCCCCGATT	L L R R N N
v176 (<i>hph</i>)	<i>Transformation host: P8-43</i> 1439 TGGCAGGTCAAGGTCGATTGC 1440 AAAAATGCTCCTCAATATCAGTTGAAATGTTGATGCCTCCCTAGAT 1441 GAGTAGATGCCGACCGGGAAACAGTTGGGTTAGGCAGGGCTGGAT 1442 TTCCCTTCCCGCTCCGTG 1443 CGGCCGCGAATGGTTAAGT 1438 CCGAATACCGACCCCCGATT	L L R R N N
v199 [<i>hph-ccg-1(P)</i>]	<i>Transformation host: P15-53</i> 1538 CGAAGGACAAGAGGAACCGGGAAA 1539 GCAGCCTGAATGGCGAATGGACGCCGCGGGCAGCAGCTTGCTTGT 1544 TTACACAACCCCTCACATCAACCAAATGGCCTGCCACAGGGTT 1541 GTCACGGTGTAGCGGGACGTTT 1542 GGGGCGGAGAGGAGAAAGATGAGT 1543 GGAATTACAACCCCTGCGTGACC	L L R R N N
v200 [<i>hph-ccg-1(P)</i>]	<i>Transformation host: P15-53</i> 1538 CGAAGGACAAGAGGAACCGGGAAA 1539 GCAGCCTGAATGGCGAATGGACGCCGCGGGCAGCAGCTTGCTTGT 1540 TTACACAACCCCTCACATCAACCAAATTGTCTCCCCGGTTTGG 1541 GTCACGGTGTAGCGGGACGTTT 1542 GGGGCGGAGAGGAGAAAGATGAGT 1543 GGAATTACAACCCCTGCGTGACC	L L R R N N

Table S2 Primers for DJ-PCR center products.

The forward and reverse primers used to amplify the center fragments for construction of DJ-PCR deletion vectors are described below.

Center Primer number	Name of template Primer sequences
<i>hph</i> 12 13	<i>pTH1256.1</i> (<i>GenBank MH550659</i>) AACTGATATTGAAGGAGCATTGG AACTGGTCCCGGTGGCAT
<i>nat1</i> 297 298	<i>pNR28.12</i> (<i>GenBank MH553564</i>) GAGGGAGTGTGGAAATGGTGTC GTTGGITAGGTGGGAACGCTTGT
<i>hph-ccg-1(P)</i> 550 1555	<i>pTH1117.12</i> (<i>GenBank JF749202</i>) GCGCGTCCATTGCCATTCA TTTGGTTGATGTGAGGGTTGTGA

Table S3 Primers for cloning *Sk-2* intervals to pTH1256.1.

Eight intervals of *Sk-2*^{INS1} were cloned to the *NotI* site of pTH1256.1 (GenBank MH550659), using the primers listed below. These cloning procedures created plasmids pAH4, pAH6, pAH14, pAH30, pAH31, pAH32, pAH36, and pAH37. Each plasmid was then used to transform strain P8-43.

Plasmid name Primer number	Name of transformation host Primer sequences
pAH4 248 249	<i>Transformation host: P8-43</i> AAAAGCGGCCGCAGGGTGGTGGGTGAGGATGT TTTGCAGGCCGAGCGGAAGTGTGTTGCTTGTGA
pAH6 252 253	<i>Transformation host: P8-43</i> AAAAGCGGCCGCATGCCAACGGGCATTCAAG AAAAGCGGCCGCACCCGCCTACACATGCACCAC
pAH14 302 314	<i>Transformation host: P8-43</i> AAAAGCGGCCGCTGCATGTGTAGGCGGGTATTGTG AAAAGCGGCCGCGGGCAGGGCAGCAAGTAAG
pAH30 304 251	<i>Transformation host: P8-43</i> AAAAGCGGCCGCGAGGACCAGCTCGACGGTAGTAGG AAAAGCGGCCGCGAGGAATAGGACGTGAGGGTGTGG
pAH31 353 251	<i>Transformation host: P8-43</i> TTTGCAGGCCATTGATACCGAGTCTTCCGTTC AAAAGCGGCCGCGAGGAATAGGACGTGAGGGTGTGG
pAH32 351 251	<i>Transformation host: P8-43</i> AAAAGCGGCCGCAACTCCTCACCCATCCCCATTG AAAAGCGGCCGCGAGGAATAGGACGTGAGGGTGTGG
pAH36 353 639	<i>Transformation host: P8-43</i> TTTGCAGGCCATTGATACCGAGTCTTCCGTTC AAAAGCGGCCGCGACGGTGTAGCGGGACGTTC
pAH37 353 640	<i>Transformation host: P8-43</i> TTTGCAGGCCATTGATACCGAGTCTTCCGTTC AAAAGCGGCCGCGTCTGACTTTCCGACCA

Table S4 Primers for amplification of $AH36^{Sk-2}::hph$.

The $AH36^{Sk-2}::hph$ allele was amplified from ISU-4344 using the primers 10 and 871. These primers span the $v140^\Delta::hph$ allele in ISU-4344 and produce a PCR product containing $AH36^{Sk-2}$ and hph between recombination flanks suitable for replacing $AH36^\Delta::nat1$ in ISU-4562 with $AH36^{Sk-2}::hph$.

Target Primer number	Template; <i>Name of transformation host</i> Sequence
$AH36^{Sk-2}::hph$	Amplify from ISU-4344; <i>Transformation host: ISU-4562</i>
10	CACGTAGGGAAGGAGGTTGAAGGT
871	GAACTCGAACCACTCCACGCAAA

Table S5. Primers for site directed mutagenesis of *AH36*^{Sk-2}.

Site directed mutagenesis was performed essentially as described for the QuikChange II Site-Directed Mutagenesis Kit (Revision E.01, Agilent Technologies). The *AH36* interval from *Sk-2* was cloned to the *Not*I site of a standard 3 kb bacterial cloning vector with primers 353 and 639 (Table S2). Site-specific mutations were introduced into the resulting plasmid (pNR9.1) by PCR with the primer sets described below. PCR products were digested with *Dpn*I and used to transform chemically-competent *E. coli* IgTM 5-alpha cells (Intact Genomics). Site directed mutations were confirmed by Sanger sequencing and mutated plasmids were used to transform P8-43.

Purpose of primers Primer number	Primer sequences
Change G to A at position 27945 1138 1139	GTTGGAGTGAGGATATAATCCGGCACGTCGAAG CTTCGACGTGCCGGATTATATCCTCACTCCAAC
Change G to A at position 27972 1136 1137	GATGATGACTGACTTATTACTATAGTTCCCTCTGACGT ACGTCGAAGGAGGAACTATAGTAAATAAGTCAGTCATCATC
Change G to A at position 28052 1134 1135	CGACGGGGGCCCTACCTTCCCTTAGTT AACTAAGGGAAGGTAGGGCCCCGTG
Change G to A at position 28104 1132 1133	CTAACCCACTACTAACAAAACAAAGCAAGAGCTGCTGC GCAGCAGCTTGTCTTGTAGTAGTGGTTAG
Change G to A at position 28300 1130 1131	GGGATGGTGAGGAGTTGCTAAAAAGAGCGGTAAAAAAC GTTTTTACCGCTTTAGCAAACCTCACCATCCC
Change G to A at position 28326 1128 1129	GAATACAAACACCAACACTCAAATGGGGATGGTGAG CTCACCATCCCCATTGAGTGTGGTTGTATT