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Abstract14

Polygenic Risk Scores (PRS) consist in combining the information across many single-15

nucleotide polymorphisms (SNPs) in a score reflecting the genetic risk of developing a disease.16

PRS might have a major impact on public health, possibly allowing for screening campaigns17

to identify high-genetic risk individuals for a given disease. The “Clumping+Thresholding”18

(C+T) approach is the most common method to derive PRS. C+T uses only univariate genome-19

wide association studies (GWAS) summary statistics, which makes it fast and easy to use.20

However, previous work showed that jointly estimating SNP effects for computing PRS has the21

potential to significantly improve the predictive performance of PRS as compared to C+T.22

In this paper, we present an efficient method to jointly estimate SNP effects, allowing for23

practical application of penalized logistic regression (PLR) on modern datasets including hun-24

dreds of thousands of individuals. Moreover, our implementation of PLR directly includes au-25

tomatic choices for hyper-parameters. The choice of hyper-parameters for a predictive model26

is very important since it can dramatically impact its predictive performance. As an example,27

AUC values range from less than 60% to 90% in a model with 30 causal SNPs, depending on28

the p-value threshold in C+T.29

We compare the performance of PLR, C+T and a derivation of random forests using both30

real and simulated data. PLR consistently achieves higher predictive performance than the two31

other methods while being as fast as C+T. We find that improvement in predictive performance32

is more pronounced when there are few effects located in nearby genomic regions with corre-33

lated SNPs; for instance, AUC values increase from 83% with the best prediction of C+T to34

92.5% with PLR. We confirm these results in a data analysis of a case-control study for celiac35

disease where PLR and the standard C+T method achieve AUC of 89% and of 82.5%.36

In conclusion, our study demonstrates that penalized logistic regression can achieve more37

discriminative polygenic risk scores, while being applicable to large-scale individual-level data38

thanks to the implementation we provide in the R package bigstatsr.39
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1 Introduction40

Polygenic Risk Scores (PRS) consist in combining the information across many single-nucleotide41

polymorphisms (SNPs) in a score reflecting the genetic risk of developing a disease. PRS are42

useful for genetic epidemiology when testing the polygenicity of one disease and finding a com-43

mon genetic contribution between two diseases (Purcell et al. 2009). Personalized medicine44

is another major application of PRS. Personalized medicine envisions to use PRS in screen-45

ing campaigns in order to identify high-risk individuals for a given disease (Chatterjee et al.46

2016). As an example of practical application, targeting screening to men at higher polygenic47

risk could reduce the problem of overdiagnosis and lead to a better benefit-to-harm balance in48

screening for prostate cancer (Pashayan et al. 2015). Yet, PRS would have to show a high dis-49

criminative power between cases and controls in order to be used for helping in the diagnosis50

of diseases. For screening high-risk individuals and for presymptomatic diagnosis of the gen-51

eral population, it is suggested that the AUC must be greater than 75% and 99% respectively52

(Janssens et al. 2007).53

Several methods have been developed to predict disease status, or more generally any phe-54

notype, based on SNP information. A commonly used method often called “P+T” or “C+T”55

(which stands for “Clumping and Thresholding”) is used to derive PRS from results of Genome-56

Wide Association Studies (GWAS) (Chatterjee et al. 2013; Dudbridge 2013; Evans et al. 2009;57

Purcell et al. 2009; Wray et al. 2007). This technique uses GWAS summary statistics only,58

allowing for a fast implementation of C+T. However, C+T also has several limitations; for in-59

stance, previous studies have shown that predictive performance of C+T is very sensitive to the60

threshold of inclusion of SNPs, depending on the disease architecture (Ware et al. 2017). Lin-61

ear Mixed-Models (LMMs) are another widely-used method in fields such as plant and animal62

breeding or for predicting highly heritable quantitative human phenotypes such as height (Lello63

et al. 2017; Yang et al. 2010). Yet, models resulting from LMM, known e.g. as “gBLUP”, are64

not optimal for predicting disease status based on genotypes (Abraham et al. 2013). Moreover,65

these methods and their derivatives are often computationally very demanding, both in terms66

of memory and time required, which makes them unlikely to be used for prediction on very67
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large datasets (Golan and Rosset 2014; Maier et al. 2015; Speed and Balding 2014; Zhou et al.68

2013). Finally, statistical learning methods have also been used to derive PRS for complex hu-69

man diseases by jointly estimating SNP effects. Such methods include joint logistic regression,70

Support Vector Machine (SVM) and random forests (Abraham et al. 2012, 2014; Botta et al.71

2014; Okser et al. 2014; Wei et al. 2009).72

We recently developed two R packages, bigstatsr and bigsnpr, for efficiently analyzing73

large-scale genome-wide data (Privé et al. 2018). Package bigstatsr now includes an efficient74

algorithm with a new implementation for computing sparse linear and logistic regressions on75

huge datasets as large as the UK Biobank (Bycroft et al. 2017). In this paper, we present a76

comprehensive comparative study of our implementation of penalized logistic regression (PLR)77

against the C+T method and the T-Trees algorithm, a derivation of random forests that has78

shown high predictive performance (Botta et al. 2014). In this comparison, we do not include79

any LMM method for the reasons mentioned before and do not include any SVM method80

because it is expected to give similar results to logistic regression (Abraham et al. 2012). For81

C+T, we report results for a large grid of hyper-parameters. For PLR, the choice of hyper-82

parameters is included in the algorithm so that we report only one model for each simulation.83

We also use a modified version of PLR in order to capture not only linear effects, but also84

recessive and dominant effects.85

To perform simulations, we use real genotype data and simulate new phenotypes. In order to86

make our comparison as comprehensive as possible, we compare different disease architectures87

by varying the number, size and location of causal effects as well as the disease heritability. We88

also compare two different models for simulating phenotypes, one with additive effects only,89

and one that combines additive, dominant and interaction-type effects. Overall, we find that90

PLR consistently achieves higher predictive performance than the C+T and T-Trees methods91

while being as fast as C+T. This demonstrates the feasibility and relevance of this approach for92

PRS computation on large modern datasets.93
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2 Material and Methods94

2.1 Genotype data95

We use real genotypes of European individuals from a case-control study for celiac disease96

(Dubois et al. 2010). The composition of this dataset is presented in table S1. Details of quality97

control and imputation for this dataset are available in Privé et al. (2018). For simulations98

presented later, we first restrict this dataset to controls from UK in order to remove the genetic99

structure induced by the celiac disease status and population structure. This filtering process100

results in a sample of 7100 individuals (see supplementary notebook “preprocessing”). We also101

use this dataset for real data application, in this case keeping all 15,155 individuals (4496 cases102

and 10,659 controls). Both datasets contain 281,122 SNPs.103

2.2 Simulations of phenotypes104

We simulate binary phenotypes using a Liability Threshold Model (LTM) with a prevalence105

of 30% (Falconer 1965). We vary simulation parameters in order to match a range of genetic106

architectures from low to high polygenicity. This is achieved by varying the number of causal107

variants and their location (30, 300, or 3000 anywhere in all 22 autosomal chromosomes or 30108

in the HLA region of chromosome 6), and the disease heritability h2 (50% or 80%). Liability109

scores are computed either from a model with additive effects only (“ADD”) or a more complex110

model that combines additive, dominant and interaction-type effects (“COMP”). For model111

“ADD”, we compute the liability score of the i-th individual112

yi =
∑

j∈Scausal

wj · G̃i,j + εi ,

where Scausal is the set of causal SNPs, wj are weights generated from a Gaussian distribution113

N(0, h2/|Scausal|) or a Laplace distribution Laplace(0,
√
h2/(2 |Scausal|)), Gi,j is the allele114

count of individual i for SNP j, G̃i,j corresponds to its standardized version (zero mean and115

unit variance for all SNPs), and ε follows a Gaussian distribution N(0, 1 − h2). For model116

“COMP”, we simulate liability scores using additive, dominant and interaction-type effects117
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(see Supplementary Materials).118

We implement 3 different simulation scenarios, summarized in table 2. Scenario №1 uses119

the whole dataset (all 22 autosomal chromosomes – 281,122 SNPs) and a training set of size120

6000. It compares all methods described in section 2.4. For each combination of the remaining121

parameters, results are based on 100 simulations excepted when comparing PLR with T-Trees,122

which relies on 5 simulations only because of a much higher computational burden of T-Trees123

as compared to other methods. Scenario №2 consists of 100 simulations per combination of124

parameters on a dataset composed of chromosome 6 only (18,941 SNPs). Reducing the number125

of SNPs increases the polygenicity (i.e. the proportion of causal SNPs) of the simulated models.126

Reducing the number of SNPs (p) is also equivalent to increasing the sample size (n) as predic-127

tive power is dependent on n/p (Dudbridge 2013; Vilhjálmsson et al. 2015). For this scenario,128

we use the additive model only, but continue to vary all other simulation parameters. Finally,129

scenario №3 uses the whole dataset as in scenario №1 while varying the size of the training130

set in order to assess how the sample size affects predictive performance of methods. A total131

of 100 simulations per combination of parameters are run using 300 causal SNPs randomly132

chosen on the genome.133

2.3 Predictive performance measures134

In this study, we use two different measures of predictive accuracy. First, we use the Area Under135

the Receiver Operating Characteristic (ROC) Curve (AUC) (Fawcett 2006; Lusted 1971). In136

the case of our study, the AUC is the probability that the PRS of a case is greater than the137

PRS of a control. This measure indicates the extent to which we can distinguish between cases138

and controls using PRS. As a second measure, we also report the partial AUC for specificities139

between 90% and 100% (Dodd and Pepe 2003; McClish 1989). This measure is similar to140

the AUC, but focuses on high specificities, which is the most useful part of the ROC curve141

in clinical settings. When reporting AUC results of simulations, we also report maximum142

achievable AUC values of 84% and 94% for heritabilities of 50% and 80% respectively. These143

estimates are based on three different yet consistent estimations (see Supplementary Materials).144

6

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2018. ; https://doi.org/10.1101/403337doi: bioRxiv preprint 

https://doi.org/10.1101/403337
http://creativecommons.org/licenses/by-nc/4.0/


2.4 Methods compared145

In this paper, we compare three different types of methods: the C+T method, T-Trees and146

penalized logistic regression (PLR).147

The C+T (Clumping + Thresholding) method directly derives a Polygenic Risk Score (PRS)148

from the results of Genome-Wide Associations Studies (GWAS). In GWAS, a coefficient of149

regression (i.e. the estimated effect size β̂j) is learned independently for each SNP j along150

with a corresponding p-value pj . The SNPs are first clumped (C) so that there remain only151

loci that are weakly correlated with one another (this set of SNPs is denoted Sclumping). Then,152

thresholding (T) consists in removing SNPs with p-values larger than a user-defined threshold153

pT . Finally, the PRS for individual i is defined as the sum of allele counts of the remaining154

SNPs weighted by the corresponding effect coefficients155

PRSi =
∑

j∈Sclumping
pj < pT

β̂j ·Gi,j ,

where β̂j (pj) are the effect sizes (p-values) learned from the GWAS. In this study, we mostly156

report scores for a clumping threshold at r2 > 0.2 within regions of 500kb, but we also inves-157

tigate thresholds of 0.05 and 0.8. We report three different scores of prediction: one including158

all the SNPs remaining after clumping (denoted “C+T-all”), one including only the SNPs re-159

maining after clumping and that have a p-value under the GWAS threshold of significance160

(p < 5 · 10−8, “C+T-stringent”), and one that maximizes the AUC (“C+T-max”) for 102 p-161

value thresholds between 1 and 10−100 (Table S2). As we report the optimal threshold based162

on the test set, the AUC for “C+T-max” is an upper bound of the AUC for the C+T method.163

T-Trees (Trees inside Trees) is an algorithm derived from random forests (Breiman 2001)164

that takes into account the correlation structure among the genetic markers implied by linkage165

disequilibrium in GWAS data (Botta et al. 2014). We use the same parameters as reported in166

Table 4 of Botta et al. (2014), except that we use 100 trees instead of 1000. Using 1000 trees167

provides a minimal increase of AUC while requiring a disproportionately long processing time168

(e.g. AUC of 81.5% instead of 81%, data not shown).169
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Finally, for penalized logistic regression (PLR), we find regression coefficients β0 and β170

that minimize the following regularized loss function171

L(λ, α) = −
n∑

i=1

(yi log (pi) + (1− yi) log (1− pi))︸ ︷︷ ︸
Loss function

+λ

(
(1− α)1

2
‖β‖22 + α‖β‖1

)
︸ ︷︷ ︸

Penalization

,

where pi = 1/
(
1 + exp

(
−(β0 + xTi β)

))
, x is denoting the genotypes and covariables (e.g.172

principal components), y is the disease status to predict, λ and α are two regularization hyper-173

parameters that need to be chosen. Different regularizations can be used to prevent overfitting,174

among other benefits: the L2-regularization (“ridge”, Hoerl and Kennard (1970)) shrinks coeffi-175

cients and is ideal if there are many predictors drawn from a Gaussian distribution (corresponds176

to α = 0 in the previous equation); the L1-regularization (“lasso”, Tibshirani (1996)) forces177

some of the coefficients to be equal to zero and can be used as a means of variable selection,178

leading to sparse models (corresponds to α = 1); the L1- and L2-regularization (“elastic-net”,179

Zou and Hastie (2005)) is a compromise between the two previous penalties and is particularly180

useful in the p � n situation (p is the number of SNPs), or any situation involving many cor-181

related predictors (corresponds to 0 < α < 1) (Friedman et al. 2010). In this study, we use an182

embedded grid search over α ∈ {1, 0.5, 0.05, 0.001}.183

To fit this penalized logistic regression, we use an efficient algorithm (Friedman et al. 2010;184

Tibshirani et al. 2012; Zeng et al. 2017) from which we derived our own implementation in185

R package bigstatsr. This type of algorithm builds predictions for many values of λ, which is186

called a “regularization path”. To obtain an algorithm free of the choice of this hyper-parameter187

λ, we developed a procedure that we call Cross-Model Selection and Averaging (CMSA, figure188

S1). Because of L1-regularization, the resulting vectors of coefficients are sparse and can be189

used to make a PRS based on a linear combination of allele counts. We refer to this method as190

“PLR” in the results section.191

To capture recessive and dominant effects on top of additive effects in PLR, we use simple192

feature engineering: we construct a separate dataset with 3 times as many variables as the initial193

one. For each SNP variable, we add two more variables coding for recessive and dominant194

effects: one variable is coded 1 if homozygous variant and 0 otherwise, and the other is coded195
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0 for homozygous referent and 1 otherwise. We then apply our PLR implementation to this196

dataset with 3 times as many variables as the initial one; we refer to this method as “PLR3” in197

the rest of the paper.198

2.5 Evaluating predictive performance for Celiac data199

We use Monte Carlo cross-validation to compute AUC, partial AUC, the number of predictors200

and execution time for the original Celiac dataset with the observed case-control status: we201

randomly split 100 times the dataset in a training set of 12,000 indiduals and a test set composed202

of the remaining 3155 individuals.203

3 Results204

3.1 Joint estimation improves predictive performance205

We compared penalized logistic regression (PLR) with the C+T method using simulations of206

scenario №1 (Table 2). When simulating a model with 30 causal SNPs and an heritability of207

80%, PLR provides AUC of 93%, nearly reaching the maximum achievable AUC of 94% for208

this setting (Figure 1). Moreover, PLR consistently provides higher predictive performance209

than C+T across all scenarios we considered, excepted in some cases of high polygenicity210

or small sample size where all methods perform poorly (AUC values below 60% – figures 3211

and S3). PLR provides particularly higher predictive performance than C+T when there are212

correlations between predictors, i.e. when we choose causal SNPs to be in the HLA region. In213

this situation, the mean AUC reaches 92.5% for PLR and 84% for “C+T-max” (Figure 1). Note214

that, for the simulations, we do not report results in terms of partial AUC because partial AUC215

values have a Spearman correlation of 98% with the AUC results for all methods (Figure S2).216

3.2 Importance of hyper-parameters217

In practice, a particular value of the threshold of inclusion of SNPs should be chosen for the218

C+T method and this choice can dramatically impact the predictive performance of C+T. For219
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example, in a model with 30 causal SNPs, AUC ranges from less than 60% when using all220

SNPs passing clumping to 90% if choosing the optimal p-value threshold (Figures 2 and S4).221

Concerning the r2 threshold of the clumping step in C+T, we mostly used the common222

value of 0.2. Yet, using a more stringent value of 0.05 provides higher predictive performance223

than using 0.2 in most of the cases we considered (Figures S5, 3 and S6)224

Our implementation of PLR that automatically chooses hyper-parameter λ provides similar225

predictive performance than the best predictive performance of 100 models corresponding to226

different values of λ (Figure S10).227

3.3 Non-linear effects228

We tested the T-Trees method in scenario №1. As compared to PLR, T-Trees perform worse in229

terms of predictive ability, while taking much longer to run (Figure S7). Even for simulations230

with model “COMP” in which there are dominant and interaction-type effects that T-Trees231

should be able to handle, AUC is still lower when using T-Trees than when using PLR (Figure232

S7).233

We also compared the two penalized logistic regressions in scenario №1: PLR versus PLR3234

that uses additional features (variables) coding for recessive and dominant effects. Predictive235

performance of PLR3 are nearly as good as PLR when there are additive effects only (differ-236

ences of AUC are always smaller than 2%) and can lead to significantly greater results when237

there are also dominant and interactions effects (Figures S8 and S9). For model “COMP”,238

PLR3 provides AUC values at least 3.5% higher than PLR, excepted when there are 3000239

causal SNPs. Yet, PLR3 takes 2-3 times as much time to run and requires 3 times as much disk240

storage as PLR.241

3.4 Simulations varying number of SNPs and training size242

First, when reproducing simulations of scenario №1 using chromosome 6 only (scenario №2),243

the predictive performance of PLR always increase (Figure S6). There is a particularly large244

increase when simulating 3000 causal SNPs: AUC from PLR increases from 60% to nearly245
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80% for Gaussian effects and a disease heritability of 80%. On the contrary, when simulating246

only 30 or 300 causal SNPs with the corresponding dataset, AUC of “C+T-max” does not247

increase, and even decreases for an heritability of 80% (Figure S6). Secondly, when varying248

the training size (scenario №3), we report an increase of AUC with a larger training size, with249

a faster increase of AUC for PLR as compared to “C+T-max” (Figure 3).250

3.5 Polygenic scores for the celiac disease251

Joint logistic regressions also provide higher AUC values for the Celiac data: 88.7% with PLR252

and 89.1% with PLR3 as compared to 82.5% with “C+T-max”. The relative increase in partial253

AUC, for specificities larger than 90%, is even larger (42% and 47%) with partial AUC values of254

0.0411, 0.0426 and 0.0289 obtained with PLR, PLR3 and “C+T-max”, respectively. Moreover,255

logistic regressions use less predictors, respectively 1570, 2260 and 8360 (Table 1, figure 4 and256

supplementary notebook “results-celiac”). In terms of computation time, we show that PLR,257

while learning jointly on all SNPs at once and testing four different values for hyper-parameter258

α, is almost as fast as the C+T method (190 vs 130 seconds), and PLR3 takes less than twice259

as long as PLR (296 vs 190 seconds).260

Table 1: Results for the real Celiac dataset. The results are averaged over 100 runs where the train-
ing step is randomly composed of 12,000 individuals. In the parentheses is reported the standard
deviation of 105 bootstrap samples of the mean of the corresponding variable. Results are reported
with 3 significant digits.

Method AUC pAUC # predictors Execution time (s)
C+T-max 0.825 (0.000664) 0.0289 (0.000187) 8360 (744) 130 (0.143)
PLR 0.887 (0.00061) 0.0411 (0.000224) 1570 (46.4) 190 (1.21)
PLR3 0.891 (0.000628) 0.0426 (0.000219) 2260 (56.1) 296 (2.03)
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4 Discussion261

4.1 Joint estimation improves predictive performance262

In this comparative study, we present a computationally efficient implementation of penalized263

logistic regression (PLR). This model can be used to build polygenic risk scores based on very264

large individual-level SNP datasets such as the UK biobank (Bycroft et al. 2017). In agree-265

ment with previous work (Abraham et al. 2013), we show that jointly estimating SNP effects266

has the potential to substantially improve predictive performance as compared to the standard267

C+T approach in which SNP effects are learned independently. PLR always outperform the268

C+T method, excepted in some highly underpowered cases, and the benefits of using PLR are269

more pronounced with an increasing sample size or when causal SNPs are correlated with one270

another.271

4.2 Importance of hyper-parameters272

The choice of hyper-parameter values is very important since it can greatly impact method273

performance. In the C+T method, there are two main hyper-parameters: the r2 and the pT274

thresholds that control how stringent are the clumping and thresholding steps, respectively.275

The choice of the r2 threshold of the clumping step is important. Indeed, on the one hand,276

choosing a low value for this threshold may discard informative SNPs that are correlated. Yet,277

on the other hand, when choosing a high value for this threshold, too much redundant infor-278

mation would be included in the model, which would add some noise to the PRS. Based on279

the simulations, we find that using a stringent threshold (r2 = 0.05) leads to higher predictive280

performance, even when causal SNPs are correlated. It means that, in most cases, avoiding281

redundant information is more important than including all causal SNPs. The choice of the pT282

threshold is also very important as it can greatly impact the predictive performance of the C+T283

method, which we confirm in this study (Ware et al. 2017). In this paper, we reported the max-284

imum AUC of 102 different p-value thresholds, a threshold that should normally be learned on285

the training set only. To our knowledge, there is no clear standard on how to choose these two286
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critical hyper-parameters for C+T.287

On the contrary, for the penalized logistic regression presented here, we developed an au-288

tomatic procedure called Cross-Model Selection and Averaging (CMSA) that releases investi-289

gators from the burden of choosing hyper-parameter λ that accounts for the amount of regu-290

larization used in the model. Not only this procedure provides near-optimal results, but it also291

accelerates the model training thanks to the development of an early stopping criterion. Usu-292

ally, cross-validation is used to choose hyper-parameter values and then the model is trained293

again with these particular hyper-parameter values (Hastie et al. 2008; Wei et al. 2013). Yet,294

performing cross-validation and retraining the model is computationally demanding; CMSA295

offers a less burdensome alternative. Concerning hyper-parameter α that accounts for the rel-296

ative importance of the L1 and L2 regularizations, we use a grid search directly embedded in297

the CMSA procedure.298

4.3 Non-linear effects299

We also explored how to capture non-linear effects. For this, we introduced a simple feature300

engineering technique that enables PLR to detect and learn not only additive effects, but also301

dominant and recessive effects. This technique improves the predictive performance of PLR302

when there are some non-linear effects in the simulations, while providing nearly the same pre-303

dictive performance when there are additive effects only. Moreover, it also improves predictive304

performance for the celiac disease.305

Yet, this approach is not able to detect interaction-type effects. In order to capture interaction-306

type effects, we tested T-Trees, a method that is able to exploit SNP correlations and interac-307

tions thanks to special decision trees (Botta et al. 2014). However, predictive performance of308

T-Trees are consistently lower than with penalized logistic regression, even when simulating a309

model with dominant and interaction-type effects that T-Trees should be able to handle.310
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4.4 Limitations311

Our approach has one major limitation: the main advantage of the C+T method is its direct312

applicability to summary statistics, allowing to leverage the largest GWAS results to date, even313

when individual cohort data cannot be merged because of practical or ethical reasons (e.g. con-314

sortium data including many cohorts). As of today, the proposed penalized logistic regression315

does not allow for the analysis of summary data, but this represents an important future di-316

rection of our work. The current version is of particular interest for the analysis of modern317

individual-level datasets including hundreds of thousands of individuals.318

Finally, in this comparative study, we did not consider the problem of population structure319

(Márquez-Luna et al. 2017; Martin et al. 2017; Vilhjálmsson et al. 2015) and also did not320

consider non-genetic data such as environmental and clinical data (Dey et al. 2013; Van Vliet321

et al. 2012).322

4.5 Conclusion323

In this comparative study, we have presented a computationally efficient implementation of324

penalized logistic regression that can be used to predict disease status based on genotypes.325

Note that a similar penalized linear regression is also available in our software. Our approach326

solves the dramatic computational burden faced by standard implementations, thus allowing327

for the analysis of large-scale datasets such as the UK biobank (Bycroft et al. 2017).328

We also demonstrated in simulations that our implementation of penalized regressions re-329

mains highly effective over a broad range of disease architectures. It can be appropriate for330

predicting autoimmune diseases with a few strong effects (e.g. celiac disease) as well as highly331

polygenic traits (e.g. standing height). Finally, note that these models could also be used to pre-332

dict phenotypes based on other omics data since the implementation is not specific to genotype333

data.334
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Table 2: Summary of all simulations. Where there is symbol ‘-’ in a box, it means that the param-
eters are the same as the ones in the upper box.

Numero of
Dataset

Size of Causal SNPs Distribution
Heritability

Simulation
Methods

scenario training set (number and location) of effects model

1 All 22 chromosomes 6000

30 in HLA
Gaussian 0.5 ADD

C+T
30 in all PLR

300 in all Laplace 0.8 COMP PLR3
3000 in all (T-Trees)

2 Chromosome 6 only - - - - ADD
C+T
PLR

3 All 22 chromosomes

1000

300 in all - - - -
2000
3000
4000
5000
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Figure 1: Main comparison of C+T and PLR in scenario №1 for model “ADD” and an heritability of
80%. Mean AUC over 100 simulations for PLR and the maximum AUC reported with “C+T-max”.
Upper (lower) panel is presenting results for effets following a Gaussian (Laplace) distribution.
Error bars are representing ±2SD of 105 non-parametric bootstrap of the mean AUC. The blue
dotted line represents the maximum achievable AUC.
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Figure 2: Comparison of three different p-value thresholds used in the C+T method in scenario
№1 for model “ADD” and an heritability of 80%. Mean AUC over 100 simulations. Upper (lower)
panel is presenting results for effets following a Gaussian (Laplace) distribution. Error bars are rep-
resenting±2SD of 105 non-parametric bootstrap of the mean AUC. The blue dotted line represents
the maximum achievable AUC.
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Figure 3: Comparison of methods when varying sample size in scenario №3 for model “ADD”
with 300 causal SNPs sampled anywhere on the genome. Mean AUC over 100 simulations for the
maximum values of C+T for three different r2 thresholds (0.05, 0.2 and 0.8) and PLR as a function
of the training size. Upper (lower) panels are presenting results for effets following a Gaussian
(Laplace) distribution and left (right) panels are presenting results for an heritability of 0.5 (0.8).
Error bars are representing ±2SD of 105 non-parametric bootstrap of the mean AUC. The blue
dotted line represents the maximum achievable AUC.

18

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2018. ; https://doi.org/10.1101/403337doi: bioRxiv preprint 

https://doi.org/10.1101/403337
http://creativecommons.org/licenses/by-nc/4.0/


0.00

0.10

0.25

0.50

0.75

0.90

1.00

0.00 0.10 0.25 0.50 0.75 0.90 1.00
1 − Specificity

S
en

si
tiv

ity

Method
C+T−max
PLR
PLR3

Figure 4: ROC Curves for C+T, PLR and PLR3 for the celiac disease dataset. Models were trained
using 12,000 individuals. These are results projecting these models on the remaining 3155 individ-
uals. The figure is plotted using R package plotROC (Sachs et al. 2017).
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Description of Supplemental Data335

Supplemental Data include a PDF with two sections of methods, two tables and ten figures.336

Supplemental Data also include six HTML R notebooks including all code and results used337

in this paper, for reproducibility purposes, and available at https://figshare.com/338

articles/code/7178750.339

Declaration of Interests340

The authors declare no competing interests.341

Acknowledgements342

Authors acknowledge LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01). Authors also ac-343

knowledge the Grenoble Alpes Data Institute that is supported by the French National Re-344

search Agency under the “Investissements d’avenir” program (ANR-15-IDEX-02). We are345

also grateful to Félix Balazard for useful discussions about T-Trees, and to Yaohui Zeng for346

useful discussions about R package biglasso.347

Web Resources348

Results of simulations are available at https://figshare.com/articles/results_349

zip/7126964. A tutorial on how to start with R packages bigstatsr and bigsnpr is available350

at https://privefl.github.io/bigsnpr/articles/demo.html. The two R351

packages are available on GitHub.352

20

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2018. ; https://doi.org/10.1101/403337doi: bioRxiv preprint 

https://figshare.com/articles/code/7178750
https://figshare.com/articles/code/7178750
https://figshare.com/articles/code/7178750
https://figshare.com/articles/results_zip/7126964
https://figshare.com/articles/results_zip/7126964
https://figshare.com/articles/results_zip/7126964
https://privefl.github.io/bigsnpr/articles/demo.html
https://doi.org/10.1101/403337
http://creativecommons.org/licenses/by-nc/4.0/


References353

Abraham, G., Kowalczyk, A., Zobel, J., and Inouye, M. (2012). Sparsnp: Fast and memory-efficient analysis of all snps for phenotype prediction.354

BMC bioinformatics, 13(1), 88.355

Abraham, G., Kowalczyk, A., Zobel, J., and Inouye, M. (2013). Performance and robustness of penalized and unpenalized methods for genetic356

prediction of complex human disease. Genetic Epidemiology, 37(2), 184–195.357

Abraham, G., Tye-Din, J. A., Bhalala, O. G., Kowalczyk, A., Zobel, J., and Inouye, M. (2014). Accurate and robust genomic prediction of celiac358

disease using statistical learning. PLoS genetics, 10(2), e1004137.359

Botta, V., Louppe, G., Geurts, P., and Wehenkel, L. (2014). Exploiting snp correlations within random forest for genome-wide association studies.360

PloS one, 9(4), e93379.361

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.362

Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L. T., Sharp, K., Motyer, A., Vukcevic, D., Delaneau, O., O’Connell, J., et al. (2017).363

Genome-wide genetic data on ~500,000 uk biobank participants. bioRxiv, page 166298.364

Chatterjee, N., Wheeler, B., Sampson, J., Hartge, P., Chanock, S. J., and Park, J.-H. (2013). Projecting the performance of risk prediction based on365

polygenic analyses of genome-wide association studies. Nature genetics, 45(4), 400–405.366

Chatterjee, N., Shi, J., and García-Closas, M. (2016). Developing and evaluating polygenic risk prediction models for stratified disease prevention.367

Nature Reviews Genetics, 17(7), 392.368

Dey, S., Gupta, R., Steinbach, M., and Kumar, V. (2013). Integration of clinical and genomic data: a methodological survey. Briefings in Bioinfor-369

matics.370

Dodd, L. E. and Pepe, M. S. (2003). Partial auc estimation and regression. Biometrics, 59(3), 614–623.371

Dubois, P. C., Trynka, G., Franke, L., Hunt, K. A., Romanos, J., Curtotti, A., Zhernakova, A., Heap, G. A., Ádány, R., Aromaa, A., et al. (2010).372

Multiple common variants for celiac disease influencing immune gene expression. Nature genetics, 42(4), 295–302.373

Dudbridge, F. (2013). Power and predictive accuracy of polygenic risk scores. PLoS genetics, 9(3), e1003348.374

Evans, D. M., Visscher, P. M., and Wray, N. R. (2009). Harnessing the information contained within genome-wide association studies to improve375

individual prediction of complex disease risk. Human molecular genetics, 18(18), 3525–3531.376

Falconer, D. S. (1965). The inheritance of liability to certain diseases, estimated from the incidence among relatives. Annals of human genetics,377

29(1), 51–76.378

Fawcett, T. (2006). An introduction to roc analysis. Pattern recognition letters, 27(8), 861–874.379

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of statistical380

software, 33(1), 1.381

Golan, D. and Rosset, S. (2014). Effective genetic-risk prediction using mixed models. The American Journal of Human Genetics, 95(4), 383–393.382

Hastie, T., Tibshirani, R., and Friedman, J. (2008). Model assessment and selection. In The Elements of Statistical Learning, pages 219–259.383

Springer New York.384

21

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2018. ; https://doi.org/10.1101/403337doi: bioRxiv preprint 

https://doi.org/10.1101/403337
http://creativecommons.org/licenses/by-nc/4.0/


Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55–67.385

Janssens, A. C. J., Moonesinghe, R., Yang, Q., Steyerberg, E. W., van Duijn, C. M., and Khoury, M. J. (2007). The impact of genotype frequencies386

on the clinical validity of genomic profiling for predicting common chronic diseases. Genetics in Medicine, 9(8), 528–535.387

Lello, L., Avery, S. G., Tellier, L., Vazquez, A., Campos, G. d. l., and Hsu, S. D. (2017). Accurate genomic prediction of human height. arXiv388

preprint arXiv:1709.06489.389

Lusted, L. B. (1971). Signal detectability and medical decision-making. Science, 171(3977), 1217–1219.390

Maier, R., Moser, G., Chen, G.-B., Ripke, S., Absher, D., Agartz, I., Akil, H., Amin, F., Andreassen, O. A., Anjorin, A., et al. (2015). Joint analysis391

of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and major depressive disorder. The American392

Journal of Human Genetics, 96(2), 283–294.393

Márquez-Luna, C., Loh, P.-R., and Price, A. L. (2017). Multiethnic polygenic risk scores improve risk prediction in diverse populations. Genetic394

epidemiology, 41(8), 811–823.395

Martin, A. R., Gignoux, C. R., Walters, R. K., Wojcik, G. L., Neale, B. M., Gravel, S., Daly, M. J., Bustamante, C. D., and Kenny, E. E. (2017).396

Human demographic history impacts genetic risk prediction across diverse populations. The American Journal of Human Genetics, 100(4),397

635–649.398

McClish, D. K. (1989). Analyzing a portion of the roc curve. Medical Decision Making, 9(3), 190–195.399

Okser, S., Pahikkala, T., Airola, A., Salakoski, T., Ripatti, S., and Aittokallio, T. (2014). Regularized machine learning in the genetic prediction of400

complex traits. PLoS genetics, 10(11), e1004754.401

Pashayan, N., Duffy, S. W., Neal, D. E., Hamdy, F. C., Donovan, J. L., Martin, R. M., Harrington, P., Benlloch, S., Al Olama, A. A., Shah, M., et al.402

(2015). Implications of polygenic risk-stratified screening for prostate cancer on overdiagnosis. Genetics in Medicine, 17(10), 789–795.403

Privé, F., Aschard, H., Ziyatdinov, A., and Blum, M. G. B. (2018). Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr404

and bigsnpr. Bioinformatics, 34(16), 2781–2787.405

Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O’donovan, M. C., Sullivan, P. F., Sklar, P., Ruderfer, D. M., McQuillin, A., Morris, D. W.,406

et al. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460(7256), 748–752.407

Sachs, M. C. et al. (2017). plotroc: A tool for plotting roc curves. Journal of Statistical Software, 79(c02).408

Speed, D. and Balding, D. J. (2014). Multiblup: improved snp-based prediction for complex traits. Genome research, 24(9), 1550–1557.409

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), pages410

267–288.411

Tibshirani, R., Bien, J., Friedman, J., Hastie, T., Simon, N., Taylor, J., and Tibshirani, R. J. (2012). Strong rules for discarding predictors in lasso-type412

problems. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74(2), 245–266.413

Van Vliet, M. H., Horlings, H. M., Van De Vijver, M. J., Reinders, M. J., and Wessels, L. F. (2012). Integration of clinical and gene expression data414

has a synergetic effect on predicting breast cancer outcome. PloS one, 7(7), e40358.415

Vilhjálmsson, B. J., Yang, J., Finucane, H. K., Gusev, A., Lindström, S., Ripke, S., Genovese, G., Loh, P.-R., Bhatia, G., Do, R., et al. (2015).416

Modeling linkage disequilibrium increases accuracy of polygenic risk scores. The American Journal of Human Genetics, 97(4), 576–592.417

22

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2018. ; https://doi.org/10.1101/403337doi: bioRxiv preprint 

https://doi.org/10.1101/403337
http://creativecommons.org/licenses/by-nc/4.0/


Ware, E. B., Schmitz, L. L., Faul, J. D., Gard, A., Mitchell, C., Smith, J. A., Zhao, W., Weir, D., and Kardia, S. L. (2017). Heterogeneity in polygenic418

scores for common human traits. bioRxiv, page 106062.419

Wei, Z., Wang, K., Qu, H.-Q., Zhang, H., Bradfield, J., Kim, C., Frackleton, E., Hou, C., Glessner, J. T., Chiavacci, R., et al. (2009). From disease420

association to risk assessment: an optimistic view from genome-wide association studies on type 1 diabetes. PLoS genetics, 5(10), e1000678.421

Wei, Z., Wang, W., Bradfield, J., Li, J., Cardinale, C., Frackelton, E., Kim, C., Mentch, F., Van Steen, K., Visscher, P. M., et al. (2013). Large sample422

size, wide variant spectrum, and advanced machine-learning technique boost risk prediction for inflammatory bowel disease. The American423

Journal of Human Genetics, 92(6), 1008–1012.424

Wray, N. R., Goddard, M. E., and Visscher, P. M. (2007). Prediction of individual genetic risk to disease from genome-wide association studies.425

Genome research, 17(10), 1520–1528.426

Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., Madden, P. A., Heath, A. C., Martin, N. G., Montgomery, G. W.,427

et al. (2010). Common snps explain a large proportion of the heritability for human height. Nature genetics, 42(7), 565–569.428

Zeng, Y., Breheny, P., and Yang, T. (2017). Efficient feature screening for lasso-type problems via hybrid safe-strong rules. arXiv preprint429

arXiv:1704.08742.430

Zhou, X., Carbonetto, P., and Stephens, M. (2013). Polygenic modeling with bayesian sparse linear mixed models. PLoS genetics, 9(2), e1003264.431

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical432

Methodology), 67(2), 301–320.433

23

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2018. ; https://doi.org/10.1101/403337doi: bioRxiv preprint 

https://doi.org/10.1101/403337
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Material and Methods
	Genotype data
	Simulations of phenotypes
	Predictive performance measures
	Methods compared
	Evaluating predictive performance for Celiac data

	Results
	Joint estimation improves predictive performance
	Importance of hyper-parameters
	Non-linear effects
	Simulations varying number of SNPs and training size
	Polygenic scores for the celiac disease

	Discussion
	Joint estimation improves predictive performance
	Importance of hyper-parameters
	Non-linear effects
	Limitations
	Conclusion


