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14 Abstract

15 Polygenic Risk Scores (PRS) consist in combining the information across many single-
16 nucleotide polymorphisms (SNPs) in a score reflecting the genetic risk of developing a disease.
17 PRS might have a major impact on public health, possibly allowing for screening campaigns
18 to identify high-genetic risk individuals for a given disease. The “Clumping+Thresholding”
19 (C+T) approach is the most common method to derive PRS. C+T uses only univariate genome-
20 wide association studies (GWAS) summary statistics, which makes it fast and easy to use.
21 However, previous work showed that jointly estimating SNP effects for computing PRS has the
22 potential to significantly improve the predictive performance of PRS as compared to C+T.

23 In this paper, we present an efficient method to jointly estimate SNP effects, allowing for
24 practical application of penalized logistic regression (PLR) on modern datasets including hun-
25 dreds of thousands of individuals. Moreover, our implementation of PLR directly includes au-
26 tomatic choices for hyper-parameters. The choice of hyper-parameters for a predictive model
27 is very important since it can dramatically impact its predictive performance. As an example,
28 AUC values range from less than 60% to 90% in a model with 30 causal SNPs, depending on
29 the p-value threshold in C+T.

30 We compare the performance of PLR, C+T and a derivation of random forests using both
31 real and simulated data. PLR consistently achieves higher predictive performance than the two
32 other methods while being as fast as C+T. We find that improvement in predictive performance
33 is more pronounced when there are few effects located in nearby genomic regions with corre-
34 lated SNPs; for instance, AUC values increase from 83% with the best prediction of C+T to
35 92.5% with PLR. We confirm these results in a data analysis of a case-control study for celiac
36 disease where PLR and the standard C+T method achieve AUC of 89% and of 82.5%.

37 In conclusion, our study demonstrates that penalized logistic regression can achieve more
38 discriminative polygenic risk scores, while being applicable to large-scale individual-level data
39 thanks to the implementation we provide in the R package bigstatsr.
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w 1 Introduction

#1 Polygenic Risk Scores (PRS) consist in combining the information across many single-nucleotide
42 polymorphisms (SNPs) in a score reflecting the genetic risk of developing a disease. PRS are
43 useful for genetic epidemiology when testing the polygenicity of one disease and finding a com-
44 mon genetic contribution between two diseases (Purcell et al.[2009). Personalized medicine
45 is another major application of PRS. Personalized medicine envisions to use PRS in screen-
46 ing campaigns in order to identify high-risk individuals for a given disease (Chatterjee ef al.
47 2016). As an example of practical application, targeting screening to men at higher polygenic
48 risk could reduce the problem of overdiagnosis and lead to a better benefit-to-harm balance in
49 screening for prostate cancer (Pashayan et al.|2015). Yet, PRS would have to show a high dis-
50 criminative power between cases and controls in order to be used for helping in the diagnosis
51 of diseases. For screening high-risk individuals and for presymptomatic diagnosis of the gen-
52 eral population, it is suggested that the AUC must be greater than 75% and 99% respectively
53 (Janssens et al.|2007)).

54 Several methods have been developed to predict disease status, or more generally any phe-
55 notype, based on SNP information. A commonly used method often called “P+T” or “C+T”
56 (which stands for “Clumping and Thresholding”) is used to derive PRS from results of Genome-
57 Wide Association Studies (GWAS) (Chatterjee et al.[2013; Dudbridge|2013; Evans et al.[|2009;
58 Purcell et al.|[2009; Wray et al.|[2007). This technique uses GWAS summary statistics only,
59 allowing for a fast implementation of C+T. However, C+T also has several limitations; for in-
60 stance, previous studies have shown that predictive performance of C+T is very sensitive to the
61 threshold of inclusion of SNPs, depending on the disease architecture (Ware et al.|2017). Lin-
62 ear Mixed-Models (LMMs) are another widely-used method in fields such as plant and animal
63 breeding or for predicting highly heritable quantitative human phenotypes such as height (Lello
64 et al.|2017}; [Yang et al.|2010). Yet, models resulting from LMM, known e.g. as “gBLUP”, are
65 not optimal for predicting disease status based on genotypes (Abraham et al.|2013). Moreover,
66 these methods and their derivatives are often computationally very demanding, both in terms
67 of memory and time required, which makes them unlikely to be used for prediction on very
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68 large datasets (Golan and Rosset|2014; |[Maier et al.|2015};|Speed and Balding|2014; Zhou ef al.
69 2013). Finally, statistical learning methods have also been used to derive PRS for complex hu-
70 man diseases by jointly estimating SNP effects. Such methods include joint logistic regression,
7 Support Vector Machine (SVM) and random forests (Abraham ez al.|[2012| [2014; [Botta et al.
72 2014} [Okser et al.|2014} [Wei et al.|2009).

73 We recently developed two R packages, bigstatsr and bigsnpr, for efficiently analyzing
74 large-scale genome-wide data (Privé ef al.||2018]). Package bigstatsr now includes an efficient
75 algorithm with a new implementation for computing sparse linear and logistic regressions on
76 huge datasets as large as the UK Biobank (Bycroft ef al.|[2017). In this paper, we present a
77 comprehensive comparative study of our implementation of penalized logistic regression (PLR)
78 against the C+T method and the T-Trees algorithm, a derivation of random forests that has
79 shown high predictive performance (Botta ef al.|2014)). In this comparison, we do not include
80 any LMM method for the reasons mentioned before and do not include any SVM method
81 because it is expected to give similar results to logistic regression (Abraham et al.|2012). For
82 C+T, we report results for a large grid of hyper-parameters. For PLR, the choice of hyper-
83 parameters is included in the algorithm so that we report only one model for each simulation.
84 We also use a modified version of PLR in order to capture not only linear effects, but also
85 recessive and dominant effects.

86 To perform simulations, we use real genotype data and simulate new phenotypes. In order to
87 make our comparison as comprehensive as possible, we compare different disease architectures
88 by varying the number, size and location of causal effects as well as the disease heritability. We
89 also compare two different models for simulating phenotypes, one with additive effects only,
90 and one that combines additive, dominant and interaction-type effects. Overall, we find that
91 PLR consistently achieves higher predictive performance than the C+T and T-Trees methods
92 while being as fast as C+T. This demonstrates the feasibility and relevance of this approach for
93 PRS computation on large modern datasets.
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o 2 Material and Methods

% 2.1 Genotype data
9% We use real genotypes of European individuals from a case-control study for celiac disease
97 (Dubois et al.[2010). The composition of this dataset is presented in table[S1] Details of quality
98 control and imputation for this dataset are available in |Privé et al| (2018)). For simulations
99 presented later, we first restrict this dataset to controls from UK in order to remove the genetic
100 structure induced by the celiac disease status and population structure. This filtering process
101 results in a sample of 7100 individuals (see supplementary notebook “preprocessing”). We also
102 use this dataset for real data application, in this case keeping all 15,155 individuals (4496 cases
103 and 10,659 controls). Both datasets contain 281,122 SNPs.
104 2.2 Simulations of phenotypes
105 We simulate binary phenotypes using a Liability Threshold Model (LTM) with a prevalence
106 of 30% (Falconer |1965). We vary simulation parameters in order to match a range of genetic
107 architectures from low to high polygenicity. This is achieved by varying the number of causal
108 variants and their location (30, 300, or 3000 anywhere in all 22 autosomal chromosomes or 30
109 in the HLA region of chromosome 6), and the disease heritability 22 (50% or 80%). Liability
110 scores are computed either from a model with additive effects only (“ADD”’) or a more complex
11 model that combines additive, dominant and interaction-type effects (“COMP”). For model
112 “ADD”, we compute the liability score of the i-th individual

Yi = Z wj-éjj + €,

JE€Scausal

113 where Scausal 18 the set of causal SNPs, w; are weights generated from a Gaussian distribution
114 N(0,h?/|Scausat|) or a Laplace distribution Laplace(0, \/h2 /(2 |Scausal|))s G, ; is the allele
115 count of individual ¢ for SNP j, (f;zvj corresponds to its standardized version (zero mean and
116 unit variance for all SNPs), and ¢ follows a Gaussian distribution N (0,1 — h?). For model
117 “COMP”, we simulate liability scores using additive, dominant and interaction-type effects
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118 (see Supplementary Materials).

119 We implement 3 different simulation scenarios, summarized in table[2] Scenario N1 uses
120 the whole dataset (all 22 autosomal chromosomes — 281,122 SNPs) and a training set of size
121 6000. It compares all methods described in section [2.4] For each combination of the remaining
122 parameters, results are based on 100 simulations excepted when comparing PLR with T-Trees,
123 which relies on 5 simulations only because of a much higher computational burden of T-Trees
124 as compared to other methods. Scenario N2 consists of 100 simulations per combination of
125 parameters on a dataset composed of chromosome 6 only (18,941 SNPs). Reducing the number
126 of SNPs increases the polygenicity (i.e. the proportion of causal SNPs) of the simulated models.
127 Reducing the number of SNPs (p) is also equivalent to increasing the sample size (n) as predic-
128 tive power is dependent on n/p (Dudbridge 2013} Vilhjalmsson et al.|2015)). For this scenario,
129 we use the additive model only, but continue to vary all other simulation parameters. Finally,
130 scenario N¢3 uses the whole dataset as in scenario Nel while varying the size of the training
131 set in order to assess how the sample size affects predictive performance of methods. A total
132 of 100 simulations per combination of parameters are run using 300 causal SNPs randomly
133 chosen on the genome.

104 2.3 Predictive performance measures

135 In this study, we use two different measures of predictive accuracy. First, we use the Area Under
136 the Receiver Operating Characteristic (ROC) Curve (AUC) (Fawcett 2006; Lusted [1971). In
137 the case of our study, the AUC is the probability that the PRS of a case is greater than the
138 PRS of a control. This measure indicates the extent to which we can distinguish between cases
139 and controls using PRS. As a second measure, we also report the partial AUC for specificities
140 between 90% and 100% (Dodd and Pepe|[2003; McClish|[1989). This measure is similar to
141 the AUC, but focuses on high specificities, which is the most useful part of the ROC curve
142 in clinical settings. When reporting AUC results of simulations, we also report maximum
143 achievable AUC values of 84% and 94% for heritabilities of 50% and 80% respectively. These
144 estimates are based on three different yet consistent estimations (see Supplementary Materials).
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145 2.4 Methods compared

146 In this paper, we compare three different types of methods: the C+T method, T-Trees and
147 penalized logistic regression (PLR).

148 The C+T (Clumping + Thresholding) method directly derives a Polygenic Risk Score (PRS)
149 from the results of Genome-Wide Associations Studies (GWAS). In GWAS, a coefficient of
150 regression (i.e. the estimated effect size Bj) is learned independently for each SNP j along
151 with a corresponding p-value p;. The SNPs are first clumped (C) so that there remain only
152 loci that are weakly correlated with one another (this set of SNPs is denoted S¢jumping). Then,
153 thresholding (T) consists in removing SNPs with p-values larger than a user-defined threshold
154 pr. Finally, the PRS for individual ¢ is defined as the sum of allele counts of the remaining
155 SNPs weighted by the corresponding effect coefficients

PRS;i= > B-Gy,

JESectumping

pj <pr
156 where Bj (p;) are the effect sizes (p-values) learned from the GWAS. In this study, we mostly
157 report scores for a clumping threshold at 72 > 0.2 within regions of 500kb, but we also inves-
158 tigate thresholds of 0.05 and 0.8. We report three different scores of prediction: one including
159 all the SNPs remaining after clumping (denoted “C+T-all”), one including only the SNPs re-
160 maining after clumping and that have a p-value under the GWAS threshold of significance
161 (p < 5-1078, “C+T-stringent”), and one that maximizes the AUC (“C+T-max”) for 102 p-
162 value thresholds between 1 and 10719 (Table . As we report the optimal threshold based
163 on the test set, the AUC for “C+T-max” is an upper bound of the AUC for the C+T method.
164 T-Trees (Trees inside Trees) is an algorithm derived from random forests (Breiman||2001)
165 that takes into account the correlation structure among the genetic markers implied by linkage
166 disequilibrium in GWAS data (Botta et al.|2014). We use the same parameters as reported in
167 Table 4 of Botta ef al.| (2014), except that we use 100 trees instead of 1000. Using 1000 trees
168 provides a minimal increase of AUC while requiring a disproportionately long processing time
169 (e.g. AUC of 81.5% instead of 81%, data not shown).
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170 Finally, for penalized logistic regression (PLR), we find regression coefficients 5y and (3

171 that minimize the following regularized loss function

n

LOva) == 3 (o () + (1 = ) log (1 = )+ ( (1= @) 1318 + Bl )

=1

i Penalization
Loss function alizatio

172 where p; = 1/ (1 + exp (*(ﬁo + l‘lTﬁ))), z is denoting the genotypes and covariables (e.g.
173 principal components), y is the disease status to predict, A and « are two regularization hyper-
174 parameters that need to be chosen. Different regularizations can be used to prevent overfitting,
175 among other benefits: the L2-regularization (“ridge”,|Hoerl and Kennard|(1970)) shrinks coeffi-
176 cients and is ideal if there are many predictors drawn from a Gaussian distribution (corresponds
177 to a = 0 in the previous equation); the L1-regularization (“lasso”, [Tibshirani| (1996)) forces
178 some of the coefficients to be equal to zero and can be used as a means of variable selection,
179 leading to sparse models (corresponds to o = 1); the L1- and L2-regularization (“elastic-net”,
180 Zou and Hastie| (2005))) is a compromise between the two previous penalties and is particularly
181 useful in the p > n situation (p is the number of SNPs), or any situation involving many cor-
182 related predictors (corresponds to 0 < a < 1) (Friedman et al.|2010). In this study, we use an
183 embedded grid search over « € {1, 0.5, 0.05, 0.001}.

184 To fit this penalized logistic regression, we use an efficient algorithm (Friedman et al.|2010;
185 Tibshirani ef al.|2012; Zeng et al.|[2017)) from which we derived our own implementation in
186 R package bigstatsr. This type of algorithm builds predictions for many values of A, which is
187 called a “regularization path”. To obtain an algorithm free of the choice of this hyper-parameter
188 A, we developed a procedure that we call Cross-Model Selection and Averaging (CMSA, figure
189 [ST). Because of L1-regularization, the resulting vectors of coefficients are sparse and can be
190 used to make a PRS based on a linear combination of allele counts. We refer to this method as
191 “PLR” in the results section.

192 To capture recessive and dominant effects on top of additive effects in PLR, we use simple
103 feature engineering: we construct a separate dataset with 3 times as many variables as the initial
104 one. For each SNP variable, we add two more variables coding for recessive and dominant
195 effects: one variable is coded 1 if homozygous variant and O otherwise, and the other is coded


https://doi.org/10.1101/403337
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/403337; this version posted October 9, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

196 0 for homozygous referent and 1 otherwise. We then apply our PLR implementation to this
197 dataset with 3 times as many variables as the initial one; we refer to this method as “PLR3” in
198 the rest of the paper.

190 2.5 Evaluating predictive performance for Celiac data

200 We use Monte Carlo cross-validation to compute AUC, partial AUC, the number of predictors
201 and execution time for the original Celiac dataset with the observed case-control status: we
202 randomly split 100 times the dataset in a training set of 12,000 indiduals and a test set composed
203 of the remaining 3155 individuals.

204 3 Results

205 3.1 Joint estimation improves predictive performance

206 We compared penalized logistic regression (PLR) with the C+T method using simulations of
207 scenario Nel (Table [2). When simulating a model with 30 causal SNPs and an heritability of
208 80%, PLR provides AUC of 93%, nearly reaching the maximum achievable AUC of 94% for
209 this setting (Figure [I). Moreover, PLR consistently provides higher predictive performance
210 than C+T across all scenarios we considered, excepted in some cases of high polygenicity
211 or small sample size where all methods perform poorly (AUC values below 60% — figures [3]
212 and [S3). PLR provides particularly higher predictive performance than C+T when there are
213 correlations between predictors, i.e. when we choose causal SNPs to be in the HLA region. In
214 this situation, the mean AUC reaches 92.5% for PLR and 84% for “C+T-max” (Figure[I). Note
215 that, for the simulations, we do not report results in terms of partial AUC because partial AUC
216 values have a Spearman correlation of 98% with the AUC results for all methods (Figure [S2)).
217 3.2 Importance of hyper-parameters

218 In practice, a particular value of the threshold of inclusion of SNPs should be chosen for the
219 C+T method and this choice can dramatically impact the predictive performance of C+T. For


https://doi.org/10.1101/403337
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/403337; this version posted October 9, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

220 example, in a model with 30 causal SNPs, AUC ranges from less than 60% when using all
221 SNPs passing clumping to 90% if choosing the optimal p-value threshold (Figures [2]and [S4).
222 Concerning the 72 threshold of the clumping step in C+T, we mostly used the common
223 value of 0.2. Yet, using a more stringent value of 0.05 provides higher predictive performance
224 than using 0.2 in most of the cases we considered (Figures and

225 Our implementation of PLR that automatically chooses hyper-parameter A provides similar
226 predictive performance than the best predictive performance of 100 models corresponding to
227 different values of A (Figure[S10).

228 3.3 Non-linear effects

229 We tested the T-Trees method in scenario Nel. As compared to PLR, T-Trees perform worse in
230 terms of predictive ability, while taking much longer to run (Figure [S7). Even for simulations
231 with model “COMP” in which there are dominant and interaction-type effects that T-Trees
232 should be able to handle, AUC is still lower when using T-Trees than when using PLR (Figure
233 [S7).

234 We also compared the two penalized logistic regressions in scenario Ne1: PLR versus PLR3
235 that uses additional features (variables) coding for recessive and dominant effects. Predictive
236 performance of PLR3 are nearly as good as PLR when there are additive effects only (differ-
237 ences of AUC are always smaller than 2%) and can lead to significantly greater results when
238 there are also dominant and interactions effects (Figures [S8] and [S9). For model “COMP”,
239 PLR3 provides AUC values at least 3.5% higher than PLR, excepted when there are 3000
240 causal SNPs. Yet, PLR3 takes 2-3 times as much time to run and requires 3 times as much disk
241 storage as PLR.

242 3.4 Simulations varying number of SNPs and training size

243 First, when reproducing simulations of scenario N¢1 using chromosome 6 only (scenario N2),
244 the predictive performance of PLR always increase (Figure [S6). There is a particularly large
245 increase when simulating 3000 causal SNPs: AUC from PLR increases from 60% to nearly

10
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246 80% for Gaussian effects and a disease heritability of 80%. On the contrary, when simulating
247 only 30 or 300 causal SNPs with the corresponding dataset, AUC of “C+T-max” does not
248 increase, and even decreases for an heritability of 80% (Figure [S6). Secondly, when varying
249 the training size (scenario N¢3), we report an increase of AUC with a larger training size, with
250 a faster increase of AUC for PLR as compared to “C+T-max” (Figure[3).

251 3.5 Polygenic scores for the celiac disease

252 Joint logistic regressions also provide higher AUC values for the Celiac data: 88.7% with PLR
253 and 89.1% with PLR3 as compared to 82.5% with “C+T-max”. The relative increase in partial
254 AUC, for specificities larger than 90%, is even larger (42% and 47%) with partial AUC values of
255 0.0411, 0.0426 and 0.0289 obtained with PLR, PLR3 and “C+T-max”, respectively. Moreover,
256 logistic regressions use less predictors, respectively 1570, 2260 and 8360 (Table[I] figure @] and
257 supplementary notebook “results-celiac”). In terms of computation time, we show that PLR,
258 while learning jointly on all SNPs at once and testing four different values for hyper-parameter
259 «, is almost as fast as the C+T method (190 vs 130 seconds), and PLR3 takes less than twice
260 as long as PLR (296 vs 190 seconds).

Table 1: Results for the real Celiac dataset. The results are averaged over 100 runs where the train-
ing step is randomly composed of 12,000 individuals. In the parentheses is reported the standard
deviation of 10° bootstrap samples of the mean of the corresponding variable. Results are reported
with 3 significant digits.

Method AUC pAUC # predictors | Execution time (s)
C+T-max | 0.825 (0.000664) | 0.0289 (0.000187) | 8360 (744) 130 (0.143)
PLR 0.887 (0.00061) | 0.0411 (0.000224) | 1570 (46.4) 190 (1.21)
PLR3 0.891 (0.000628) | 0.0426 (0.000219) | 2260 (56.1) 296 (2.03)

11
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261 4 Discussion

262 4.1 Joint estimation improves predictive performance

263 In this comparative study, we present a computationally efficient implementation of penalized
264 logistic regression (PLR). This model can be used to build polygenic risk scores based on very
265 large individual-level SNP datasets such as the UK biobank (Bycroft et al.|[2017). In agree-
266 ment with previous work (Abraham et al.[[2013)), we show that jointly estimating SNP effects
267 has the potential to substantially improve predictive performance as compared to the standard
268 C+T approach in which SNP effects are learned independently. PLR always outperform the
269 C+T method, excepted in some highly underpowered cases, and the benefits of using PLR are
270 more pronounced with an increasing sample size or when causal SNPs are correlated with one
271 another.

272 4.2 Importance of hyper-parameters

273 The choice of hyper-parameter values is very important since it can greatly impact method
274 performance. In the C+T method, there are two main hyper-parameters: the 2 and the pr
275 thresholds that control how stringent are the clumping and thresholding steps, respectively.
276 The choice of the 72 threshold of the clumping step is important. Indeed, on the one hand,
277 choosing a low value for this threshold may discard informative SNPs that are correlated. Yet,
278 on the other hand, when choosing a high value for this threshold, too much redundant infor-
279 mation would be included in the model, which would add some noise to the PRS. Based on
280 the simulations, we find that using a stringent threshold (r? = 0.05) leads to higher predictive
281 performance, even when causal SNPs are correlated. It means that, in most cases, avoiding
282 redundant information is more important than including all causal SNPs. The choice of the pr
283 threshold is also very important as it can greatly impact the predictive performance of the C+T
284 method, which we confirm in this study (Ware et al.[|2017). In this paper, we reported the max-
285 imum AUC of 102 different p-value thresholds, a threshold that should normally be learned on
286 the training set only. To our knowledge, there is no clear standard on how to choose these two

12
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287 critical hyper-parameters for C+T.

288 On the contrary, for the penalized logistic regression presented here, we developed an au-
289 tomatic procedure called Cross-Model Selection and Averaging (CMSA) that releases investi-
290 gators from the burden of choosing hyper-parameter A that accounts for the amount of regu-
291 larization used in the model. Not only this procedure provides near-optimal results, but it also
292 accelerates the model training thanks to the development of an early stopping criterion. Usu-
293 ally, cross-validation is used to choose hyper-parameter values and then the model is trained
294 again with these particular hyper-parameter values (Hastie et al.|2008; [Wei et al.|[2013)). Yet,
295 performing cross-validation and retraining the model is computationally demanding; CMSA
296 offers a less burdensome alternative. Concerning hyper-parameter « that accounts for the rel-
297 ative importance of the L1 and L2 regularizations, we use a grid search directly embedded in
298 the CMSA procedure.

299 4.3 Non-linear effects

300 We also explored how to capture non-linear effects. For this, we introduced a simple feature
301 engineering technique that enables PLR to detect and learn not only additive effects, but also
302 dominant and recessive effects. This technique improves the predictive performance of PLR
303 when there are some non-linear effects in the simulations, while providing nearly the same pre-
304 dictive performance when there are additive effects only. Moreover, it also improves predictive
305 performance for the celiac disease.

306 Yet, this approach is not able to detect interaction-type effects. In order to capture interaction-
307 type effects, we tested T-Trees, a method that is able to exploit SNP correlations and interac-
308 tions thanks to special decision trees (Botta et al.|2014). However, predictive performance of
309 T-Trees are consistently lower than with penalized logistic regression, even when simulating a
310 model with dominant and interaction-type effects that T-Trees should be able to handle.
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a1 4.4 Limitations

312 Our approach has one major limitation: the main advantage of the C+T method is its direct
313 applicability to summary statistics, allowing to leverage the largest GWAS results to date, even
314 when individual cohort data cannot be merged because of practical or ethical reasons (e.g. con-
315 sortium data including many cohorts). As of today, the proposed penalized logistic regression
316 does not allow for the analysis of summary data, but this represents an important future di-
317 rection of our work. The current version is of particular interest for the analysis of modern
318 individual-level datasets including hundreds of thousands of individuals.

319 Finally, in this comparative study, we did not consider the problem of population structure
320 (Mérquez-Luna et al.|[2017; Martin et al.||2017; [Vilhjalmsson et al.|2015) and also did not
321 consider non-genetic data such as environmental and clinical data (Dey et al.|[2013; [Van Vliet
322 et al.|2012)).

32 4.5 Conclusion

324 In this comparative study, we have presented a computationally efficient implementation of
325 penalized logistic regression that can be used to predict disease status based on genotypes.
326 Note that a similar penalized linear regression is also available in our software. Our approach
327 solves the dramatic computational burden faced by standard implementations, thus allowing
328 for the analysis of large-scale datasets such as the UK biobank (Bycroft ez al.|2017).

329 We also demonstrated in simulations that our implementation of penalized regressions re-
330 mains highly effective over a broad range of disease architectures. It can be appropriate for
331 predicting autoimmune diseases with a few strong effects (e.g. celiac disease) as well as highly
332 polygenic traits (e.g. standing height). Finally, note that these models could also be used to pre-
333 dict phenotypes based on other omics data since the implementation is not specific to genotype
334 data.
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Table 2: Summary of all simulations. Where there is symbol ‘-’ in a box, it means that the param-
eters are the same as the ones in the upper box.

Numero of Size of Causal SNPs Distribution . Simulation
. Dataset . . Heritability Methods
scenario training set | (number and location) | of effects model
30 in HLA C+T
: Gaussian 0.5 ADD
1 All 22 chromosomes 6000 30 n all PLR
300 in all Laplace 0.8 COMP PLR3
3000 in all (T-Trees)
C+T
2 Chromosome 6 only - - - - ADD PLR
1000
2000
3 All 22 chromosomes 3000 300 in all - - - -
4000
5000
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Figure 1: Main comparison of C+T and PLR in scenario N°1 for model “ADD” and an heritability of
80%. Mean AUC over 100 simulations for PLR and the maximum AUC reported with “C+T-max”.
Upper (lower) panel is presenting results for effets following a Gaussian (Laplace) distribution.
Error bars are representing +-2SD of 10° non-parametric bootstrap of the mean AUC. The blue
dotted line represents the maximum achievable AUC.
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Figure 2: Comparison of three different p-value thresholds used in the C+T method in scenario
Nel for model “ADD” and an heritability of 80%. Mean AUC over 100 simulations. Upper (lower)
panel is presenting results for effets following a Gaussian (Laplace) distribution. Error bars are rep-
resenting £2SD of 10° non-parametric bootstrap of the mean AUC. The blue dotted line represents
the maximum achievable AUC.
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Figure 3: Comparison of methods when varying sample size in scenario N¢3 for model “ADD”
with 300 causal SNPs sampled anywhere on the genome. Mean AUC over 100 simulations for the
maximum values of C+T for three different 2 thresholds (0.05, 0.2 and 0.8) and PLR as a function
of the training size. Upper (lower) panels are presenting results for effets following a Gaussian
(Laplace) distribution and left (right) panels are presenting results for an heritability of 0.5 (0.8).
Error bars are representing +2SD of 10° non-parametric bootstrap of the mean AUC. The blue
dotted line represents the maximum achievable AUC.
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Figure 4: ROC Curves for C+T, PLR and PLR3 for the celiac disease dataset. Models were trained
using 12,000 individuals. These are results projecting these models on the remaining 3155 individ-
uals. The figure is plotted using R package plotROC (Sachs et al.|2017).
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Description of Supplemental Data

Supplemental Data include a PDF with two sections of methods, two tables and ten figures.
Supplemental Data also include six HTML R notebooks including all code and results used
in this paper, for reproducibility purposes, and available at https://figshare.com/

articles/code/7178750.
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Web Resources

Results of simulations are available athttps://figshare.com/articles/results_|
zip/7126964. A tutorial on how to start with R packages bigstatsr and bigsnpr is available
at https://privefl.github.io/bigsnpr/articles/demo.html. The two R

packages are available on GitHub.
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