

Construction and Characterization of a Synthetic Baculovirus-inducible 39K Promoter

3 Zhan-Qi Dong^{a†}, Zhi-Gang Hu^{a†}, Hai-Qing Li^a, Ya-Ming Jiang^a, Ming-Ya Cao^c, Peng
4 Chen^a, Cheng Lu^{a,b#}, Min-Hui Pan^{a,b#}

5 State Key Laboratory of Silkworm Genome Biology, Southwest University,
6 Chongqing 400716, China^a;

⁷ Key Laboratory for Sericulture Functional Genomics and Biotechnology of
⁸ Agricultural Ministry, Southwest University, Chongqing 400716, China^b.

9 Joint National Laboratory for Antibody Drug Engineering, Institute of Immunology

¹⁰ Henan University School of Medicine, Kaifeng 475004, China.^c;

12

12

15 These authors contributed equally to this work.

16 Address correspondence to Cheng Lu, lucheng@swu.edu.cn, and Min-Hui Pan,
17 pmh047@ 126.com.

18

19

20

21

22 **Abstract:** The low expression activity and specificity of natural promoters limit the
23 applications of genetic engineering. To construct a highly efficient synthetic inducible
24 promoter in the *Bombyx mori* (Lepidoptera), we analyzed the regulatory elements and
25 functional regions of the *B. mori* nucleopolyhedrovirus (BmNPV) 39K promoter. The
26 results of truncated mutation analysis of the 39K promoter showed that the
27 transcriptional regulatory region spanning positions -573 to -274 and +1 to +62 is
28 essential for virus-inducible promoter activity. Further investigation using
29 electrophoretic mobility shift assay (EMSA) revealed that the baculovirus IE-1
30 protein binds to the 39K promoter at the -310 to -355 region, and transcription
31 activates the expression of 39K promoter assay. Finally, we successfully constructed a
32 synthetic inducible promoter that increase the virus-inducing activity of other
33 promoters using the baculovirus-inducible transcriptional activation region that binds
34 to specific core elements of 39K (i.e., spanning the region -310 to -355). In summary,
35 we describes a novel, synthetic, and highly efficient biological tool, namely, a
36 virus-inducible 39K promoter, which provides endless possibilities for future gene
37 function research, gene therapy, and pest control in genetic engineering.

38

39 **Keyword:** *Baculovirus*, *39K*, *Inducible promoter*, *Synthetic*

40

41

42 **Important**

43 Silkworm genetic engineering is widely used in gene function, silk engineering
44 and disease-resistant engineering in most applied in Asia. However, some of the
45 earliest promoter elements are still used to control the development of silkworm
46 transgenic expression and gene therapy. To develop effective genetic engineering
47 technologies for silkworm and baculovirus expression system, we constructed a
48 highly efficiently synthetic baculovirus-inducible 39K promoter in insects. Which
49 successfully constructed and optimized a synthetic inducible promoter 39K that can
50 be effectively applied CRISPR/Cas9 gene editing and transgenic technology to
51 construct transgene material of silkworm and provides an efficient tool for synthetic
52 biology and gene therapy. The synthesized inducible promoters also provides new
53 insights to improve strategies for insect genetic engineering, pest control and gene
54 function research.

55

56 **Introduction**

57 The inducible promoter, known as the inducible regulation sequence or the
58 inducible enhancer, is a group of promoters that can enhance the expression of
59 exogenous genes under the stimulation of specific physical, chemical, or pathogen
60 signals (1, 2). In general, the inducible promoter, similar to the transcriptional
61 activator, exists in an inactive form and can be directly or indirectly activated by the
62 corresponding signal. Currently, several technical methods supported by inducible
63 promoters (se.g., Cre-loxp, Tet-On/Tet-Off, and ecdysone and pathogen inducible
64 systems), are widely used in the field of animal and plant genetic engineering,
65 including gene function identification or variety improvements (3-6). Insects are the
66 largest group of organisms on earth. Some insects such as silkworms and bees are of
67 important economic value. However, a highly efficient inducible system that could be
68 extensively used in insect genetic engineering research has not been established to
69 date, and thus it is of utmost significance to construct a pathogenic inducible promoter
70 in disease resistance breeding and gene therapy (7, 8).

71 The synthetic promoter is a promoter that constructs stronger expression levels
72 by combining a unique combination of different promoter elements and replacing or
73 redesigning sequences with various combinations of promoters (9-11). Previous
74 studies on synthetic promoters in plants have mainly focused on synthetic inducible
75 promoters (12). Synthetic promoters are mainly constructed using cis-regulatory
76 elements that bind to fuse core promoters (13). The construction of different
77 pathogen-inducible promoters could effectively improve the spectrum of transgenic
78 disease resistance in plant disease resistance breeding (12, 14). Alternatively,
79 constructing an inducible promoter in combination with a tissue-specific promoter
80 (e.g., root, stem, leaf) and an inducible promoter contributes to specific tissue-induced
81 expression to improve crop quality, crop robustness, and disease resistance (15).
82 Synthetic promoters have also been reported in animals (11). The construction of
83 these synthetic promoters mainly involves the same direction assembly of different
84 expression control sequences, the application to targeted therapy diseases, and

85 specific tissue expression of foreign genes (16-18). Synthetic promoters have recently
86 been initiated in insect research, particularly for insect disease breeding.

87 We previously screened for the *B. mori* nucleopolyhedrovirus (BmNPV)-induced
88 promoter (VP1054, P33, Bm21, Bm122, 39K, P143 and P6.9) activity and found that
89 the 39K promoter had the highest BmNPV-induced transcriptional activity (19). The
90 virus-inducing activity of the BmNPV 39K promoter could be further increased using
91 enhancers such as Hr3, Hr5, Polh and PU (19). Simultaneously, the overexpression of
92 an exogenous *hycu-ep32* gene controlled by an inducible 39K promoter shows high
93 antiviral capacity in transgenic lines (20). Furthermore, we constructed a
94 baculovirus-inducible RNA interference system that could inhibits BmNPV
95 replication, is tightly controlled by viral infection, and is not toxic to host cells (21).
96 Moreover, a highly efficient CRISPR/Cas9 gene editing system was constructed with
97 reduced potential off-target effects and high editing efficiency using virus-inducible
98 39K promoter, which enhances the antiviral ability of *B. mori* cells (22). Therefore, to
99 improve the efficiency of the virus-inducible 39K promoter for gene function studies,
100 silkworm resistance breeding, and pest control, it is imperative to construct a synthetic
101 promoter in insects.

102 Therefore, in the present study, we constructed a synthetic inducible promoter by
103 identifying the 39K promoter regulatory regions and binding sites. First, we verified
104 the key functional domains (spanning regions -573 to -274 and +1 to +62) of the 39K
105 promoter by gradually introducing truncating deletions at the 5' end, 3' end, and
106 intermediate regions based on the characteristics of the 39K promoter regulatory
107 region as indicated by the dual luciferase report system assay. Then, we constructed a
108 promoter with a shorter promoter sequence and better induction activity by analyzing
109 the regulatory elements of the 39K promoter and associated point mutations.
110 Furthermore, we identified the binding site of baculovirus IE-1 transcriptional
111 activation 39K promoter to the -310 to -355 region. Finally, we analyzed that the 39K
112 promoter-inducing active region combined with specific promoters to construct
113 inducible promoters that can efficiently and specifically activate promoter expression.
114 The results show that we successfully constructed a synthetic inducible promoter 39K

115 that can be effectively applied to insect gene function research, disease resistance
116 breeding, and pest control.

117

118 **Methods**

119 **Cells and Viruses**

120 The *B. mori* ovary cell line BmN-SWU1 was cultured at 27 °C in TC-100
121 medium (United States Biological, USA) supplemented with 10% (V/V) fetal bovine
122 serum (FBS) (Gibco, USA) and 10% (V/V) penicillin/streptomycin (23).
123 Recombinant BmNPV (vA4^{prm}-EGFP) containing an EGFP marker gene driven by the
124 *B. mori* actin A4 promoter was created from the bacmid bMON7214, which contains
125 the BmNPV genome (21, 24). The BmN-SWU1 cells were transfected with the
126 vA4^{prm}-EGFP construct, and viral titers were determined using the 50% tissue culture
127 infective doses (TCID₅₀) assay (24).

128 **Plasmid Construction**

129 Previous studies have shown that the -773 bp upstream and +134 bp downstream
130 motifs of the 39K promoter transcription initiation site are critical regions for 39K
131 promoter activity (19). To analyze the structural features of the 39K promoter, we
132 performed a stepwise truncation analysis of the 39K promoter. Truncated fragments of
133 39K promoters were cloned into a pGL3-basic vector (Promega, USA) to construct
134 the *Firefly luciferase* (FLUC) expression vector. The 5' truncated plasmids fragment
135 included P-723 (-773~-724 deletion), P-673 (-773~-674 deletion), P-623 (-773~-624
136 deletion), P-573 (-773~-574 deletion), P-523 (-773~-524 deletion), P-473 (-773~-474
137 deletion), P-423 (-773~-424 deletion), P-373 (-773~-374 deletion), P-323 (-773~-324
138 deletion), P-273 (-773~-274 deletion), P-223 (-773~-224 deletion), P-173 (-773~-174
139 deletion), P-123 (-773~-124 deletion), P-73 (-773~-74 deletion), and P-23 (-773~-24
140 deletion) (Figure 1B). The 3' truncated fragment plasmids included P+116
141 (+117~-+134 deletion), P+96 (+97~-+134 deletion), P+76 (+77~-+134 deletion), P+62
142 (+63~-+134 deletion), and P+1 (+2~-+134 deletion) (Figure 1D). The intermediate
143 segment deletion plasmids included ΔP-1~-223 (-1~-223 deletion), ΔP-1~-273
144 (-1~-273 deletion), ΔP-1~-373 (-1~-373 deletion), ΔP-1~-473 (-1~-473 deletion),
145 ΔP-223~-273 (-223~-273 deletion), ΔP-223~-373 (-223~-373 deletion), and
146 ΔP-373~-473 (-373~-473 deletion) (Figure 1C). Then, the sequence of the IE1

147 promoter and the *Renilla luciferase* (RLUC) reporter gene were linked to the pGL3
148 vector, named as pGL3-IE1-Rluc and used as internal reference plasmid.

149 The baculovirus immediate early genes *ie-0*, *ie-1*, *ie2*, *pe38* and *me53* from the
150 BmNPV genome were cloned into a pIZ/V5-His (Invitrogen, USA) vector to generate
151 pIZ-IE0, pIZ-IE1, pIZ-IE2, pIZ-PE38 and pIZ-ME53. Baculovirus-inducible
152 promoter 39K was cloned into pIZ-DsRed to replace the OpIE2 promoter. The
153 resulting p39K-DsRed plasmid was used as vector backbone for
154 baculovirus-inducible expression of DsRed. All clones were verified by sequencing.
155 All primers used in this study are presented in Table S1.

156 **Dual Luciferase Reporter Assays**

157 The dual luciferase expression plasmids pGL3-39K-Fluc (450 ng) and
158 pGL3-IE1-Rluc (50 ng) were co-transfected into the BmN-SWU1 cells.
159 Approximately 24 h later, these were then infected with BmNPV at MOI=10. At 72
160 hours post infection (h p.i.), the cells were collected, and luciferase activities were
161 measured with using Dual-Glo luciferase Assay kit (Promega) using ultra-high
162 sensitivity fluorescence chemiluminescence detector. Relative luciferase activity
163 (FLUC/RLUC) was normalized to the values obtained using pGL3-39K-Fluc as
164 control plasmid. Each experiment analysis was repeated thrice.

165 **Transfection and Fluorescence Analysis**

166 The BmN-SWU1 cells were cultured in 24-well plates (Corning, USA). After the
167 cells had stabilized, BmNPV immediate early gene expression plasmids pIZ-IE0,
168 pIZ-IE1, pIZ-IE2, pIZ-PE38 and pIZ-ME53 (0.4 μ g) with the p39K-DsRed (0.4 μ g)
169 plasmid were co-transfected into the cells using the X-tremeGENE HP DNA
170 Transfection Reagent (Roche, Switzerland). At 48 h post-transfection (h p.t.), all cells
171 were visualized on an Olympus inverted fluorescence microscope with the same
172 parameter settings.

173 **Reverse Transcription- quantitative PCR (RT-qPCR)**

174 After the BmNPV immediate early gene expression plasmid pIZ-IE0, pIZ-IE1,
175 pIZ-IE2, pIZ-PE38 or pIZ-ME53 with the p39K-DsRed plasmid were co-transfected

176 into the cells, total RNA was isolated using the TRIzol RNA extraction kit
177 (ThermoFisher Scientific, USA), following the manufacturer's instructions. RT-PCR
178 were performed with an iTaqTM Universal SYBR® Green Supermix and CFX
179 Connect Real-Time PCR Detection System (Bio-Rad, USA) using primers specific for
180 DsRed (Table S1). The *Bombyx mori* sw22934 gene was used as the reference. The
181 reaction conditions of RT-PCR were as follows: 95 °C for 30 s; followed by 40 cycles
182 at 95 °C for 5 s and 60 °C for 20 s with 1 M of each primer. All experiments were
183 repeated three times.

184 **Recombinant Expression and Protein Purification**

185 The coding region of IE-1 was amplified with specific primers IE1-F/IE1-R and
186 cloned into the pCold-I vector and the pGX-4T-1 vector. Positive plasmids were
187 transformed into *E. coli* strain BL21 competent cells and induced with 0.3 mM, 0.5
188 mM and 1.0 mM, of IPTG to express the IE1-His recombinant protein. The IE1-His
189 protein was purified using a His-Trap HP column (GE Healthcare, Germany),
190 according to the manufacturer's recommendations.

191 **Electrophoretic Mobility Shift Assay (EMSA) Analysis**

192 To analyze the potential binding sites of the 39K promoter, two different
193 transcription factor binding site prediction programs, namely, Neural Network
194 Promoter Prediction (http://www.fruitfly.org/seq_tools/nppHelp.html) and JASPAR
195 CORE (<http://jaspar.genereg.net/>) were used. A total of four potential transcription
196 factor binding sites were identified, which were located at positions -486 to -532, -386
197 to -431, -310 to -355 and +2 to +47 of the 39K promoter. For EMSA, the probes were
198 5'-labeled with biotin (Thermo Fisher Scientific, USA), and then the labeled
199 oligonucleotides were annealed to produce a double-stranded probe. All probe used in
200 this study are presented in Table S2.

201 To evaluate the interactions between IE-1 proteins and 39K regulatory elements,
202 EMSA was conducted according to the guidelines of the Light Shift
203 Chemiluminescent EMSA kit (Thermo Fisher Scientific). After a 30 min incubation at
204 25 °C, reaction mixtures were loaded onto 6% (w/v) native polyacrylamide gels and
205 resolved by electrophoresis electrophoresed in TBE buffer (89 mM Tris, 89 mM boric

206 acid, 2 mM EDTA, pH 8.3) for approximately 1 h at 100V on ice. The proteins were
207 transferred onto a PVDF membrane (Roche). Bound HRP-conjugated bands were
208 visualized using the LightShift Chemiluminescent EMSA kit according to the
209 manufacturer's protocol.

210 **Construction of the Artificial Inducible 39k Promoter**

211 Based on the results of 39K promoter truncation analysis, three synthetic
212 inducible promoters were constructed, namely, p39K-1 (contains the +1~+62 and
213 -273~573 fragments), p39K-5 (contains the +1 ~+134 and -273~573 fragments) and
214 p39K-9 (contains the +1~+134 and -273~773 fragments). To improve the promoter
215 activity of 39K, point mutations of the CAAT box to CGGT at position of -329, -399,
216 or -329 and -399 were created. A total of 12 synthetic inducible promoters were
217 constructed in combination with truncated and point mutation vectors and designated
218 as p39K-1 to p39K-12, respectively. All artificially inducible promoters were
219 synthesized by Genscript (Nanjing, China) and cloned into a pGL3-basic vector.

220 **Statistical analysis**

221 All data were expressed as the mean \pm SD of three independent biological
222 experiments. Statistical analyses were performed with student's *t* tests using
223 GraphPad Prism6. Differences with $P < 0.01$ were considered statistically significant.

224 **Results**

225 **Structural and Functional Analysis of the 39K Promoter**

226 To generate optimized virus-inducible specific promoters, a truncation and
227 mutation strategy was employed to gradually remove the 39K promoter core region,
228 followed by analysis for change in 39K promoter activity. After the 39K
229 promoter-controlled *Firefly luciferase* and the reference plasmid IE1
230 promoter-controlled *Renilla luciferase* were co-transfected into the BmN-SWU1 cells,
231 promoter activity was assessed by detecting changes in *Firefly luciferase* activity
232 relative to that of *Renilla luciferase* (Figure 1A). To identify the core areas required
233 for highly expression, deletion mutants were created. Using -773~+134 as the original
234 sequence of the 39K promoter, each truncation was reduced by 50 bp relative to the
235 original sequence (Figure 1B). Fifteen 5'-truncated luciferase assay plasmids of the
236 39K promoter and the reference pGL3-IE1-Rluc plasmid were co-transfected into the
237 BmN-SWU1 cells. At 48 h p.t., the luciferase activity was evaluated by adding
238 BmNPV or the culture medium and incubating for 48 h. The results indicated a
239 gradual decrease in promoter activity with shorter promoter lengths. The length of the
240 P573 promoter was shorter by 200-bp relative to the 39K promoter, but t promoter
241 activity only showed a 14.5% decrease (Figure 1B). Fragment -773~573 exhibited
242 little effect on 39K promoter activity. However, the activity of the P-323 promoter
243 decreased by 97.21% relative to the 39K promoter. These findings suggest that the
244 -323~573 fragment harbors an important regulatory element of the 39K inducible
245 promoter. The plasmids P273, P323, and P373 showed strong constitutive promoter
246 activity, and that of the P273 promoter was 12.27-fold higher than P223, indicating
247 that the -223-273 fragment was related to the constitutive promoter activity of the
248 39K promoter (Figure 1B).

249 To further analyze the 39K promoter regulatory motif, an intermediate deletion
250 fragment of the 39K promoter was created. The results showed that ΔP -1~-273,
251 ΔP -223~-273, and ΔP -373~-473 had no significant effect on 39K promoter activity
252 (Figure 1C). Further promoter deletion fragment of ΔP -1~-223, ΔP -1~-373, and

253 $\Delta P-1\sim-473$, led to a rapid decrease in promoter activity (Figure 1C). Therefore,
254 combined with the 5'-end deletion results and the principle of selecting optimal
255 promoters, the -1 to -273 fragment of 39K promoter could be deleted to construction of
256 artificial inducible 39K promoter. The +1~+134 fragment of the 39K promoter is the
257 core region, and the 3' end was gradually truncated and the promoter activity was
258 analyzed. The results showed that the promoter activities of P+116 and P+62
259 increased by 35.4% and 97.00% compared to 39K, respectively. These results indicate
260 that the deletion of +134~+116 and +76~+62 increases the activity of the 39K
261 promoter (Figure 1D). These two fragments impart inhibitory effects on promoter
262 activity. Therefore, the optimal promoter would have the +136 to +62 fragments
263 deleted from the 3' end based.

264 **Construction of an Artificial Inducible 39K Promoter**

265 Deletion analysis of the 39K promoter identified the regions that have an effect
266 on promoter activity. In addition, we analyzed the key regulatory elements in the core
267 region of the promoter using a promoter prediction program. Online analysis showed
268 that the 39K promoter contains core components such as two enhancer-like
269 components CGTGCAG, six CAAT loci, two transcription inhibitors TGAC, two
270 *cis*-regulatory originals CACT, and two TATA boxes (Figure 2A). In combination with
271 the position of the 39K promoter core element and key regulatory regions, we first
272 constructed three artificial inducible promoters, which included P39K-1 (-573~-273
273 and +1~+62 fragments), P39K-5 (-573~-273 and +1~+134), and P39K-9 (-773~-273
274 and +1~+134). The activities of the P39K-1, P39K-5 and P39K-9 promoters were
275 87.24%, 75.94%, and 112.34% of that of the 39K promoter, respectively (Figure 2B).
276 The promoter lengths of the P39K-1, P39K-5, and P39K-9 promoters were 362 bp,
277 436 bp, and 636 bp, respectively. The purpose of constructing an artificial promoter
278 was to minimize the length of the promoter without affecting its activity. Therefore,
279 the length of the P39K-1 promoter was only 39.91% of the 39K promoter sequence,
280 but the promoter activity still reached the original 87.24%, which is the better
281 artificially induced promoter. Previous studies have shown that mutations involving of
282 the CAAT site to CGGT significantly increases the promoter activity (25). Therefore,

283 we constructed nine artificial inducible promoters with -326 loci, -399 loci, and two
284 simultaneous mutations in the P39K-1, P39K-5, and P39K-9 promoters, respectively.
285 Dual luciferase reporter assays showed that the promoters of these nine point
286 mutations did not significantly increase promoter activity relative to the P39K-1,
287 P39K-5 and P39K-9 promoters (Figure 2B). The P39K-1 artificially inducible
288 promoter still contains enhancers such as component CGTGC, the CAAT locus,
289 and the transcription inhibitor TGAC. After the previous two TATA boxes were
290 deleted, a new TATA box appeared at the -70 bp position of the transcription initiation
291 site of the artificially inducible promoter P39K-1 (Figure 2A). These results indicate
292 that P39K-1 still possesses the original promoter regulatory mechanism and thus an
293 optimized artificial inducible promoter.

294 **Identification of Inducible Promoter 39K-regulated Genes**

295 The expression of the baculovirus gene is regulated by the cascade, and
296 subsequent phase gene expression is dependent on the previous phase (26). The
297 baculovirus 39K gene is a delayed early expression gene (27). To identify the 39K
298 promoter transcriptional control gene, we first screened the transcriptional regulation
299 of the 39K promoter by analyzing five immediate-early genes (i.e., *ie-0*, *ie-1*, *ie-2*,
300 *pe38* and *me53*). We co-transfected pIZ-IE0, pIZ-IE1, pIZ-IE2, pIZ-PE38 and
301 pIZ-ME53 with p39K-DsRed and then detected DsRed at the transcriptional levels.
302 The results indicated the expression of the DsRed protein only in the viral-infected
303 and pIZ-IE1 transfected BmN-SWU1 cells, but not in the pIZ-IE1, pIZ-IE2, pIZ-PE38,
304 pIZ-ME53, and non-infected cells (Figure 3A). These results indicate that the DsRed
305 protein is rapidly activated by viral infection and IE-1 protein expression. Moreover,
306 to detect the sensitivity of the inducible promoter, we investigated the transcription of
307 DsRed as induced by viral protein and BmNPV. The results showed that the virus and
308 IE-1 protein induced large-scale transcription of *DsRed* (Figure 3B). No changes in
309 *DsRed* transcription levels in the pIZ-IE0, pIZ-IE2, pIZ-PE38, pIZ-ME53 transfected
310 and non-infected cells were observed. The luciferase assay also showed that only the
311 IE-1 protein could effectively induce 39K promoter activity. In addition, the other
312 early genes were not transcriptionally regulated by the 39K promoter.

313 **EMSA Analysis of IE-1 Binding to the 39K Promoter Region**

314 To further strengthen the argument that IE-1 is a direct transcriptional target of
315 the 39K promoter, we performed a gel-shift competition assay using a biotin-labeled
316 oligonucleotide spanning the potential IE1-binding sequence as probe. Through online
317 program prediction, we designed a total of four probes containing multiple potential
318 binding sites. These probes were named probe 1 (-486~-532), probe 2 (-386~-431),
319 probe 3 (-310~-355), and probe 4 (+2~+47), which were incubated with purified IE-1
320 derived from prokaryotic expression. The incubation of the biotin with the IE-1
321 protein. The incubation of biotin labelled probe 3 (-310~-355) with IE-1 protein
322 resulted in a distinct band shift in the EMSA, which disappeared with the addition of
323 competitive unlabeled DNA probes (Figure 4A). In contrast, no significant band shift
324 was detected in the EMSA after incubation with probe 1 (-486~-532), probe 2
325 (-386~-431) and probe 4 (+2~+47) (Figure 4A).

326 To further examine the binding activity of probe 3 with the IE-1 proteins, we
327 analyzed the effect of the biotin labelled probe and unlabeled DNA on band shifting.
328 The results showed that the incubation of probe 3 with the IE-1 protein resulted in a
329 band shift, which increased with greater biotin labelled probe 3 concentrations and
330 reduced with increasing concentrations of competitive unlabeled DNA probes (Figure
331 4B). No significant band shift was detected in the probe without incubation with the
332 IE-1 proteins. These results indicate indicating that IE-1 specifically binds to 39K
333 promoter probe 3 (-310 to -355) during the transcriptional activation of the BmNPV
334 IE-1 protein-inducible 39K promoter.

335 **Application of Artificial Inducible 39K Promoter**

336 To expand the potential use of artificially-inducible 39K promoters in insect genetic
337 engineering, we synthesized new promoters P33+39K(-310~-355) by combining
338 baculovirus P33 promoters and 39K(-310~-355) binding sequences. Dual luciferase
339 assays indicated that the P33+39K(-310~-355) promoters exhibited a significant
340 increase in activity compared to the original sequence after binding to the 39K
341 sequence (Figure 5A). The promoter activity of P33+39K(-310~-355) increased by
342 4.46 fold after viral infection, which was 1.48-fold higher than the original sequence

343 (Figure 5A). These results demonstrate that the 39K promoter fragment can be
344 utilized in the construction of an artificially inducible promoter to increase induction
345 activity in genetic engineering.

346

347

348 **Discussion**

349 Naturally occurring promoters are currently used in protein production and gene
350 therapy (28, 29). However, natural promoters are not always capable of driving high
351 levels of gene expression and may also lack the required specificity depending on the
352 promoter and the specific application (28, 30). As genetic engineering goals become
353 more elaborate and targeted, more precise gene expression tools will be needed (31,
354 32). Synthetic promoters contain fragments of natural promoters to form new DNA
355 sequence fragments that are not found in nature and are more powerful and specific
356 than naturally occurring promoters (11, 32). Considering that scientists have been
357 engineering silkworms for more than 20 years and that silkworm genetic engineering
358 has been widely used in gene function, silk engineering, and disease resistance
359 breeding in most applied in Asia, it is surprising that we are still using some of the
360 earliest-developed tools to control transgene expression in silkworms (33-36). To
361 more effectively and specifically apply silkworm genetic engineering, we constructed
362 a highly efficient synthetic baculovirus-inducible39K promoter. The 39K (-310~355)
363 sequence widely used to enhance other promoter activities to construct synthetic
364 inducible promoters provides an efficient tool for synthetic biology and genetic
365 engineering.

366 In our previous studies, we have shown that the P-44 (-44 to +133) and
367 (from-420 to -611) are important regions for the transcriptional activation of the 39K
368 promoter, although the activity of the 39K promoter induced by the transcriptional
369 regulatory region was not studied in detail (19). To obtain a synthetically inducible
370 promoter with a shorter sequence and better induction activity, we performed a
371 stepwise analysis of the 39K promoter transcriptional regulatory region to identify the
372 influence of different regions on 39K promoter and induction activity. In combination
373 with the above promoter activity analysis, we constructed three artificially inducible
374 promoters P39K-1 (-573~273 and +1~+62 fragments), P39K-1 (-573~273 and
375 +1~+134), and P39K-9 (-773~273 and +1~+134). Previous studies have shown that
376 mutation of the *Autographa californica* multiple nucleopolyhedrovirus (AcMNPV)
377 ubiquitin promoter CAAT into CGGT increases inducible promoter activity (25). In

378 the present study, we compared mutations in the CAAT site of each artificially
379 inducible promoter, which did not exhibit a significant increase compared to the
380 original promoter (Figure 2). Therefore, the optimal synthetic inducible promoter for
381 P39K-1 was constructed in this study. The promoter length of P39K-1 was only 33%
382 of the P39K promoter, without a significant decrease in promoter activity relative to
383 the P39K promoter. The reduction of such long promoter fragments provides
384 significant improvement to the field of genetic engineering.

385 The AcMNPV 39K promoter is mainly expressed by immediate early genes
386 (37-39). To systematically analyze transcriptional activation of BmNPV, we analyzed
387 the expression of the 39K promoter as induced by different early transcriptional
388 activator factors. The results showed that only the IE-1 could induce 39K promoter
389 initiation activity, but that of IE-0 and IE-2 did not, unlike the AcMNPV 39K
390 promoter (Figure 3) (27, 38, 39). The promoter-specific application could be
391 significantly improved by the expression of the promoter according to the inducible
392 promoter regulatory sequence binding specificity in plant genetic engineering and
393 mammalian gene therapy applications (6, 18, 32). Here, we demonstrate that the 39K
394 (-310~-355) sequence can be applied to the construction of artificially inducible
395 promoters (Figure 5B). Furthermore, we also could use the original sequence to
396 increase the induction activity of other weakly expressed promoters or increase the
397 inducible activity of a promoter by repeating this fragment several times. Meanwhile,
398 the combination of different promoter regulatory elements also could be used to
399 improve the activity of synthetic inducible promoters. In our previous studies, we
400 successfully applied the virus-inducible promoter 39K to transgenic overexpressing
401 foreign genes, RNAi, and gene editing, and the determination of this promoter
402 binding region may be more accurately applied to the regulation of genetic
403 engineering (20-22). These synthetic inducible promoters also allows more extensive
404 applications to biopharmaceutical and agricultural process and in novel gene therapies.
405 The successful construction of baculovirus synthetic inducible promoters provides a
406 new strategy for the research and application of insect genetic engineering, pest
407 control, baculovirus expression systems, and insect bioreactors. In our future research,

408 we plan to use the following strategies to improve the scope of applications of
409 virus-inducible promoters: 1) incorporating inducible promoter regulatory sequences
410 and tissue-specific promoters to synthesize new promoters to induce expression of
411 specific proteins in specific tissues to avoid loss of host energy and cell cytotoxicity. 2)
412 combined with 39K promoter and IE1 protein binding sequence, a foreign protein
413 inducible expression system will be constructed and applied to insect gene function
414 research; and 3) a broad-spectrum pathogen induction system will be constructed to
415 cultivate genetic engineering varieties that could respond to different pathogens. In
416 addition, the optimization of synthesized promoters can further increase the
417 specificity and yield of foreign proteins expressed by baculovirus expression systems,
418 as well as the application of insect pest control, such as pathogen-inducible transgenic
419 cotton bollworm, *Spodoptera exigua*, and the other economic crop pests. In
420 conclusion, the successful construction of synthesized inducible promoters provides
421 new insights to improve strategies for insect genetic engineering, pest control and
422 gene function research.

423

424 **Funding**

425 This work was supported by grants from the National Natural Science Foundation of
426 China (Nos. 31872427, 31472153 and 31572466), China Agriculture Research
427 System (CARS-18).

428 **Author contributions**

429 Z.D. and Z.H. performed the vector cloning, sequencing, cell cultures and PCR. Z.D.,
430 Y.J. and Z.H. performed the protein purification and EMSA analysis. Y.J., Z.H., and
431 M.C. performed the qRT-PCR and dual luciferase reporter assays. Z.D., M.P., and
432 C.L. conceived the experimental design and helped with date analysis. Z.D., M.P.,
433 P.C., and C.L. preparation of the manuscript. The final manuscript was reviewed and
434 approved by all authors.

435

436 **References:**

437 1. **Taylor WE, Straus DB, Grossman AD, Burton ZF, Gross CA, Burgess**
438 **RR.** 1984. Transcription from a heat-inducible promoter causes heat shock
439 regulation of the sigma subunit of *E. coli* RNA polymerase. *Cell* **38**:371-381.

440 2. **Ryals J, Dierks P, Ragg H, Weissmann C.** 1985. A 46-nucleotide promoter
441 segment from an IFN-alpha gene renders an unrelated promoter inducible by
442 virus. *Cell* **41**:497-507.

443 3. **Park TS, Kim SW, Lee JH.** 2017. Efficient transgene expression system
444 using a cumatate-inducible promoter and Cre-loxP recombination in avian cells.
445 *Asian-Australas J Anim Sci* **30**:886-892.

446 4. **Mizuguchi H, Hayakawa T.** 2002. The tet-off system is more effective than
447 the tet-on system for regulating transgene expression in a single adenovirus
448 vector. *J Gene Med* **4**:240-247.

449 5. **Luers GH, Jess N, Franz T.** 2000. Reporter-linked monitoring of transgene
450 expression in living cells using the ecdysone-inducible promoter system. *Eur J*
451 *Cell Biol* **79**:653-657.

452 6. **Yin S, Mei L, Newman J, Back K, Chappell J.** 1997. Regulation of
453 sesquiterpene cyclase gene expression. Characterization of an elicitor- and
454 pathogen-inducible promoter. *Plant Physiol* **115**:437-451.

455 7. **Godard KA, Byun-McKay A, Levasseur C, Plant A, Seguin A, Bohlmann**
456 **J.** 2007. Testing of a heterologous, wound- and insect-inducible promoter for
457 functional genomics studies in conifer defense. *Plant Cell Rep* **26**:2083-2090.

458 8. **Kumar M, Shukla AK, Singh H, Tuli R.** 2009. Development of insect
459 resistant transgenic cotton lines expressing cry1EC gene from an insect bite
460 and wound inducible promoter. *J Biotechnol* **140**:143-148.

461 9. **Pelham HR, Bienz M.** 1982. A synthetic heat-shock promoter element
462 confers heat-inducibility on the herpes simplex virus thymidine kinase gene.
463 *EMBO J* **1**:1473-1477.

464 10. **Hammer K, Mijakovic I, Jensen PR.** 2006. Synthetic promoter

465 libraries--tuning of gene expression. *Trends Biotechnol* **24**:53-55.

466 11. **Rushton PJ.** 2016. What Have We Learned About Synthetic Promoter
467 Construction? *Methods Mol Biol* **1482**:1-13.

468 12. **Li M, Song B, Zhang Q, Liu X, Lin Y, Ou Y, Zhang H, Liu J.** 2013. A
469 synthetic tuber-specific and cold-induced promoter is applicable in controlling
470 potato cold-induced sweetening. *Plant Physiol Biochem* **67**:41-47.

471 13. **Gilman J, Love J.** 2016. Synthetic promoter design for new microbial
472 chassis. *Biochem Soc Trans* **44**:731-737.

473 14. **Mohan C, Jayanarayanan AN, Narayanan S.** 2017. Construction of a novel
474 synthetic root-specific promoter and its characterization in transgenic tobacco
475 plants. *3 Biotech* **7**:234.

476 15. **Cazzonelli CI, Velten J.** 2008. In vivo characterization of plant promoter
477 element interaction using synthetic promoters. *Transgenic Res* **17**:437-457.

478 16. **Liu SH, Yu J, Sanchez R, Liu X, Heidt D, Willey J, Nemunaitis J,**
479 **Brunicardi FC.** 2018. A novel synthetic human insulin super promoter for
480 targeting PDX-1-expressing pancreatic cancer. *Cancer Lett* **418**:75-83.

481 17. **Yan Z, Sun X, Feng Z, Li G, Fisher JT, Stewart ZA, Engelhardt JF.** 2015.
482 Optimization of Recombinant Adeno-Associated Virus-Mediated Expression
483 for Large Transgenes, Using a Synthetic Promoter and Tandem Array
484 Enhancers. *Hum Gene Ther* **26**:334-346.

485 18. **He W, Qiang M, Ma W, Valente AJ, Quinones MP, Wang W, Reddick
486 RL, Xiao Q, Ahuja SS, Clark RA, Freeman GL, Li S.** 2006. Development
487 of a synthetic promoter for macrophage gene therapy. *Hum Gene Ther*
488 **17**:949-959.

489 19. **Cao MY, Kuang XX, Li HQ, Lei XJ, Xiao WF, Dong ZQ, Zhang J, Hu N,**
490 **Chen TT, Lu C, Pan MH.** 2016. Screening and optimization of an efficient
491 *Bombyx mori* nucleopolyhedrovirus inducible promoter. *J Biotechnol*
492 **231**:72-80.

493 20. **Jiang L, Cheng T, Zhao P, Yang Q, Wang G, Jin S, Lin P, Xiao Y, Xia Q.**
494 2012. Resistance to BmNPV via overexpression of an exogenous gene

495 controlled by an inducible promoter and enhancer in transgenic silkworm,
496 *Bombyx mori*. PLoS One **7**:e41838.

497 21. **Zhang J, He Q, Zhang CD, Chen XY, Chen XM, Dong ZQ, Li N, Kuang**
498 **XX, Cao MY, Lu C, Pan MH.** 2014. Inhibition of BmNPV replication in
499 silkworm cells using inducible and regulated artificial microRNA precursors
500 targeting the essential viral gene lef-11. Antiviral Res **104**:143-152.

501 22. **Dong ZQ, Chen TT, Zhang J, Hu N, Cao MY, Dong FF, Jiang YM, Chen**
502 **P, Lu C, Pan MH.** 2016. Establishment of a highly efficient virus-inducible
503 CRISPR/Cas9 system in insect cells. Antiviral Res **130**:50-57.

504 23. **Pan MH, Cai XJ, Liu M, Lv J, Tang H, Tan J, Lu C.** 2010. Establishment
505 and characterization of an ovarian cell line of the silkworm, *Bombyx mori*.
506 *Tissue Cell* **42**:42-46.

507 24. **Dong ZQ, Zhang J, Chen XM, He Q, Cao MY, Wang L, Li HQ, Xiao WF,**
508 **Pan CX, Lu C, Pan MH.** 2014. *Bombyx mori* nucleopolyhedrovirus ORF79
509 is a per os infectivity factor associated with the PIF complex. *Virus Res*
510 **184**:62-70.

511 25. **Lin X, Chen Y, Yi Y, Yan J, Zhang Z.** 2008. Promoter analysis of *Bombyx*
512 *mori* nucleopolyhedrovirus ubiquitin gene. *J Microbiol* **46**:429-435.

513 26. **Friesen PD, Miller LK.** 1986. The regulation of baculovirus gene expression.
514 *Curr Top Microbiol Immunol* **131**:31-49.

515 27. **Carson DD, Guarino LA, Summers MD.** 1988. Functional mapping of an
516 AcNPV immediately early gene which augments expression of the IE-1
517 trans-activated 39K gene. *Virology* **162**:444-451.

518 28. **Alper H, Fischer C, Nevoigt E, Stephanopoulos G.** 2005. Tuning genetic
519 control through promoter engineering. *Proc Natl Acad Sci U S A*
520 **102**:12678-12683.

521 29. **Nevoigt E, Fischer C, Mucha O, Matthaus F, Stahl U, Stephanopoulos G.**
522 2007. Engineering promoter regulation. *Biotechnol Bioeng* **96**:550-558.

523 30. **Deaner M, Alper HS.** 2018. Promoter and Terminator Discovery and
524 Engineering. *Adv Biochem Eng Biotechnol* **162**:21-44.

525 31. **Searle PF, Stuart GW, Palmiter RD.** 1985. Building a metal-responsive
526 promoter with synthetic regulatory elements. *Mol Cell Biol* **5**:1480-1489.

527 32. **Hammond JM, Oke PG, Coupar BE.** 1997. A synthetic vaccinia virus
528 promoter with enhanced early and late activity. *J Virol Methods* **66**:135-138.

529 33. **Chkoniia TT, Nikolaev AI, Kafiani-Eristavi KA.** 1991. [Restriction analysis
530 of autonomously replicating molecules containing exogenous DNA in a
531 transgenic silkworm line]. *Mol Biol (Mosk)* **25**:1427-1436.

532 34. **Zhang F, Zhao Y, Chen X, Xu AY, Huang JT, Lu CD.** 1999. Fluorescent
533 Transgenic Silkworm. *Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao*
534 (Shanghai) **31**:119-123.

535 35. **Imamura M, Nakahara Y, Kanda T, Tamura T, Taniai K.** 2006. A
536 transgenic silkworm expressing the immune-inducible cecropin B-GFP
537 reporter gene. *Insect Biochem Mol Biol* **36**:429-434.

538 36. **Thomas JL, Da Rocha M, Besse A, Mauchamp B, Chavancy G.** 2002.
539 3xP3-EGFP marker facilitates screening for transgenic silkworm *Bombyx*
540 *mori* L. from the embryonic stage onwards. *Insect Biochem Mol Biol*
541 **32**:247-253.

542 37. **Luria N, Lu L, Chejanovsky N.** 2012. Conserved structural motifs at the
543 C-terminus of baculovirus protein IE0 are important for its functions in
544 transactivation and supporting hr5-mediated DNA replication. *Viruses*
545 **4**:761-776.

546 38. **Choi J, Guarino LA.** 1995. Expression of the IE1 transactivator of
547 *Autographa californica* nuclear polyhedrosis virus during viral infection.
548 *Virology* **209**:99-107.

549 39. **Yoo S, Guarino LA.** 1994. The *Autographa californica* nuclear polyhedrosis
550 virus ie2 gene encodes a transcriptional regulator. *Virology* **202**:746-753.

551

552

553

554

555 **Figure legends**

556 **Figure 1. Structural and functional analysis of the 39K promoter** (A) Schematic
557 of *Firefly luciferase* and *Renilla luciferase* expressed vectors to sustain the dual
558 luciferase reporter system. (B) Relative luciferase assay of the 5'-end truncated of the
559 39K promoter. Cells co-transfected with the *Firely luciferase* and *Renilla luciferase*
560 expression vector were infected or uninfected with BmNPV at 10 MOI. Cells were
561 examined under luciferase reporter system at 48 h p.i.. Black represents -773~-1
562 fragment, blue represents +1~-+136 fragment and dashed line represents the missing
563 fragment of the 39K promoter. Red represents the *Firely luciferase* reporter gene. The
564 39K promoter luciferase activity represents 1 and the promoter activity of the other
565 truncated fragment is a ratio relative to 39K promoter. (C) Relative luciferase assay
566 deletion and truncated fragment of the 39K promoter. (D) Relative luciferase assay
567 3'-end truncated of the 39K promoter.

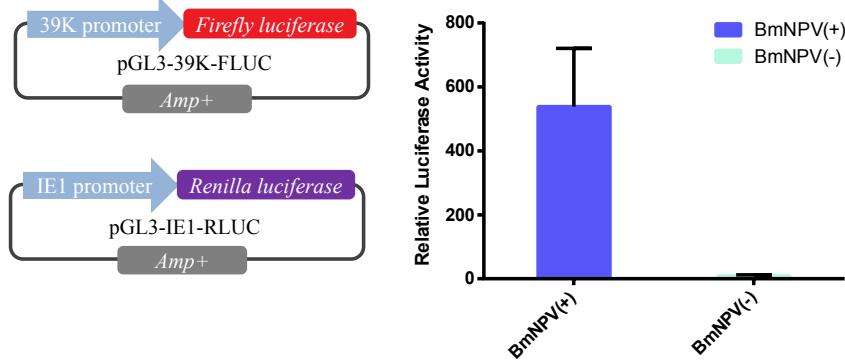
568 **Figure 2. Construction of an artificial inducible 39K promoter.** (A) Analysis of
569 39K promoter regulatory element. Purple represents enhancer like components
570 CGTGC_nGC element, red represents CAAT locus, blue represents transcription
571 inhibitor TGAC box, green represents cis-regulatory original CACT element, and
572 pink represent TATA boxes. Artificially inducible 39K promoter sequences are
573 underlined. (B) Relative luciferase assay of the artificial inducible 39K promoter.
574 BmN-SWU1 cells were co-transfected with the indicated *Firely luciferase* and *Renilla*
575 *luciferase* expression vector and infected with BmNPV at 10 MOI or uninfected. At
576 48 h p.i., cells were examined using a luciferase reporter system. Each data point was
577 determined from the mean of three independent replicates. The red location represents
578 the CAAT mutation to CGGT of 39K promoter -399 site. The blue location represents
579 the CAAT mutation to CGGT of 39K promoter -329 site.

580 **Figure 3. Identification of inducible promoter 39K-regulated genes.** (A)
581 Immunofluorescence analysis of 39K promoter activated foreign protein expression.
582 p39K-DsRed plasmid co-transfection with immediate early genes and examined under
583 a fluorescence microscope at 96 h p.i. Red represents DsRed protein expression, white
584 represents the number of cells. (B) Transcription of inducible p39K-DsRed system

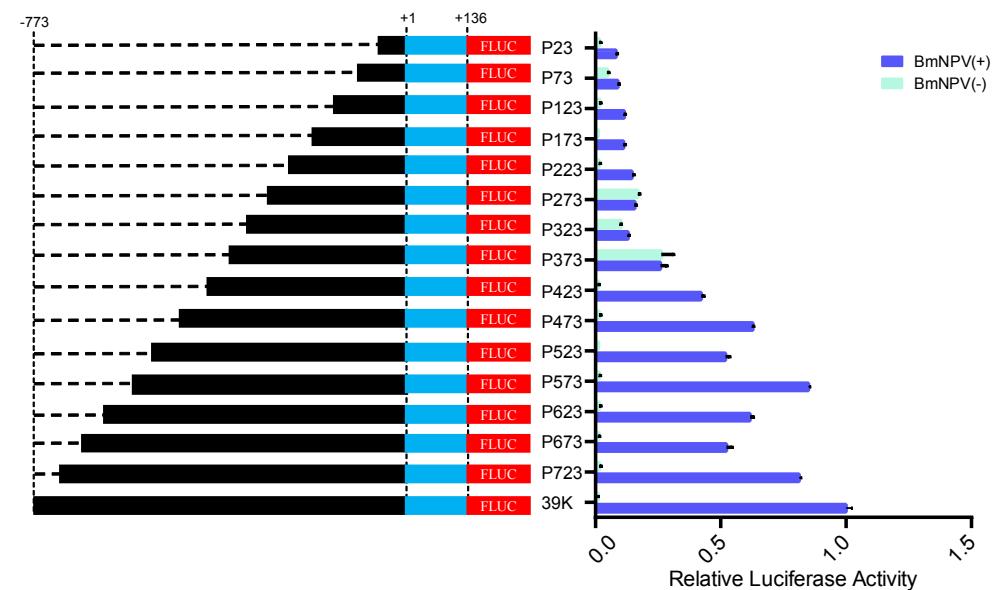
585 with BmNPV immediate early genes. Transient co-expression of p39K-DsRed
586 plasmid and immediate early gene or infected with BmNPV at 10 MOI. At 48 h p.i.,
587 total RNA was isolated from each transfected cell and quantified by RT-PCR. Each
588 data point was determined from the mean of three independent replicates. (C) Relative
589 luciferase assay of inducible p39K-DsRed system with BmNPV immediate early
590 genes. Each data point was determined from the mean of three independent replicates.
591 ** represent statistically significant differences at the level of $P < 0.01$.

592 **Figure 4. EMSA analysis of IE-1 binding to 39K promoter region.** (A)
593 Electrophoretic mobility shift assay indicated that the 39K probes bind to the
594 recombinant IE-1 proteins. We used the competitive inhibitors unlabeled DNA probes
595 as control and without IE-1 proteins as negative control. The shift of the positive
596 control is indicated by a thick stripe. We detected probes 3 (-310~355) with block
597 stripes. On the contrary, probe 1 (-486~532), probe 2 (-386~431), and probe 4
598 (+2~+47) were not associated with IE-1. (B) The EMAS detected that the probe 3
599 (-310~355) binds to the recombinant IE-1 proteins. The probe 3 (-310~355) probes
600 concentrations were 1, 2, and 6 pmol/L; the IE-1 protein concentration was 0.8 μ g/L;
601 the concentrations of compete probes were 2, 20, and 100 pmol/L.

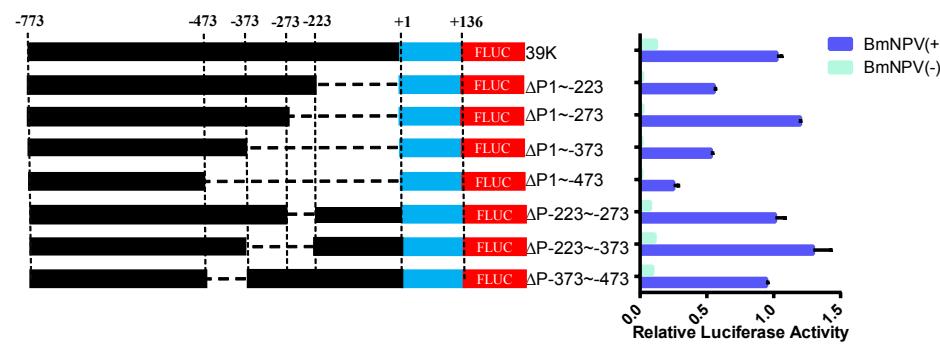
602 **Figure 5. Application of the artificial inducible 39K promoter.** (A) Relative
603 luciferase assay of the artificial inducible 39K promoter. BmN-SWU1 cells were
604 co-transfected with indicated *Firely* luciferase and *Renilla* luciferase expression
605 vector and infected with BmNPV at 10 MOI or uninfected. At 48 h p.i., cells were
606 examined under luciferase reporter system. Each data point was determined from the
607 mean of three independent replicates. NS, not significant. ** represent statistically
608 significant differences at the level of $P < 0.01$. (C) Schematic plot of the synthetic
609 inducible promoter project.


610

611 **Supplemental Table 1. Sequences of primers used in this study.**


612 **Supplemental Table 2. Sequences of probes used in this study.**

613


Figure 1A

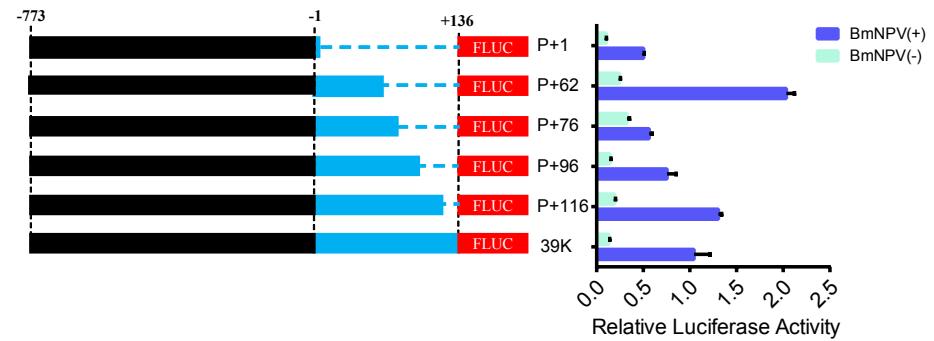

Figure 1B

Figure 1C

Figure 1D

Figure 2A

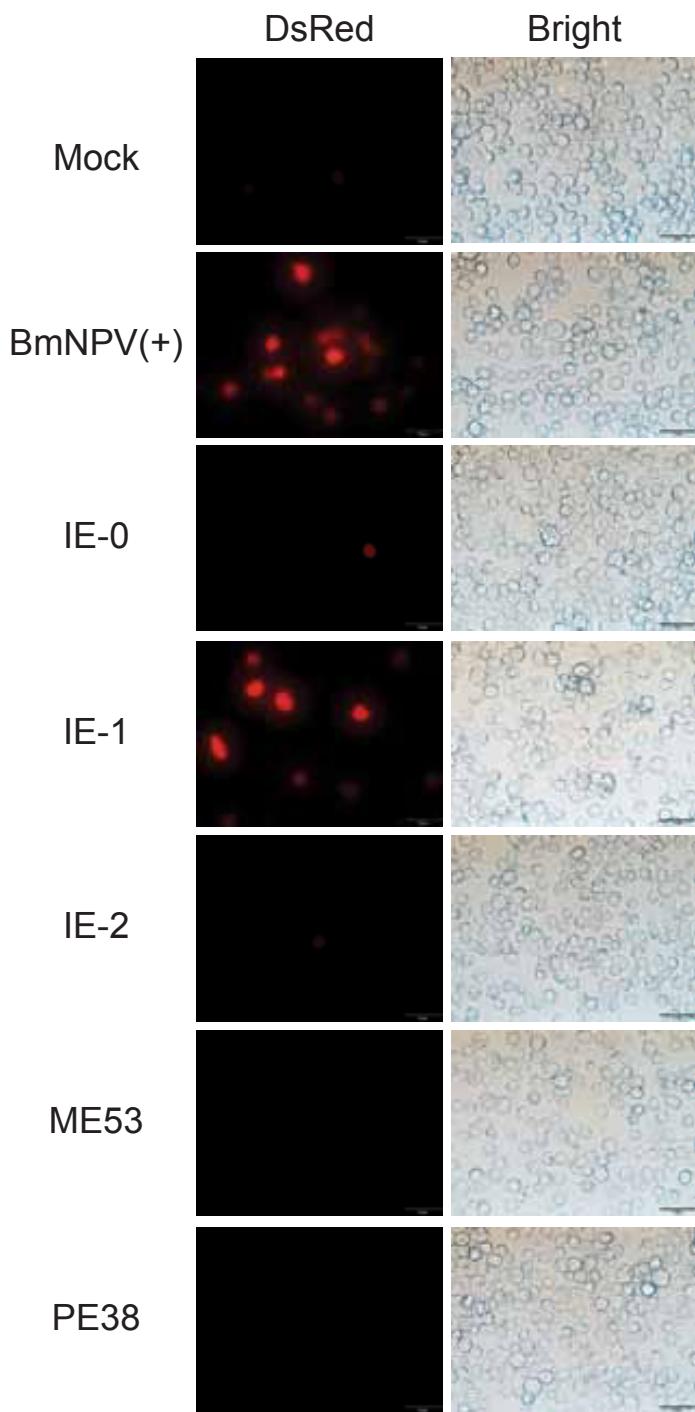
-773 AAGGCTGTCTTGCTGTGCCCGTCGCGTACCGGAGCGCGAACGCGCCGCCGACATAAACGACACTTTCTAGAAAAAATTCCATACCACGAG
 -673 GTCATCGGATTGTCGACGCAAAGTTACGAAACTGC **CGTGC** GAGTTGTGGAAGAACTGGCCGTTTTTGACAGCGCTTACAGCTACAGT
 -573 TCCATTACGTTA**CAAT** GGAAAGACGACGGTGTCACTTACAAGTATTGATATACGTAGGC **CGTGC** GGCACCTGATTGACGTGAACGCCAACCC
 -473 AACACGTACACCGTGAAGTTGTCGCCGGCACGTTGGCAACGACTATCGTATAATGTTAAACCGCGACGCTT**CAAT** TGCAAAATAACGCGCAGCCTGG
 -373 CCATCGTGCCTCAACAAATATTTAATTATATGAAACGACAA**CAAT** TGATCACGTACGATTACAG**CAAT** TACATTGAATTTTAGTTGTGCGCAG
 -273 CATCAAGAAGCGTTCGATAATAGG**CAAT** TGCAAGACTTTCTACGCC**CACT** CTAAGGAGATAGACAACAGATGCCCAAAATTGCAAG**CACT**
 -173 AGGCGGGTGTAATCGGACTGCTTGACCCGAAGCGAAATACAAGCGCTGTTAGGGAGCCATCACACGCTCAAGCACA**CAAT** GAATACAGAAGACGTC
 -73 TGCACATGTTGGACATCGTGTGTTGAGCG**TATAAAGAA**TATAAAGAGCTAATTAGGCCATTTC**ACAGTAATTACCGACAAATGTTCAAGC**
 +27 **GTAAGGTGTCTTCATCACAAACGAATTGCCAGGCTTGGCATTAAAAAAATATATCATCAAGAATACAAGCGGGTCGTTCAAAGGTTACAAAAAA**
 +127 **TCAAACATG**

Enhancer like components **CGTGC**

CAAT locus **CAAT**

Transcription inhibitor **TGAC**

Cis-regulatory originals **CACT**


TATA box **TATA**

Promoter region **CACT**

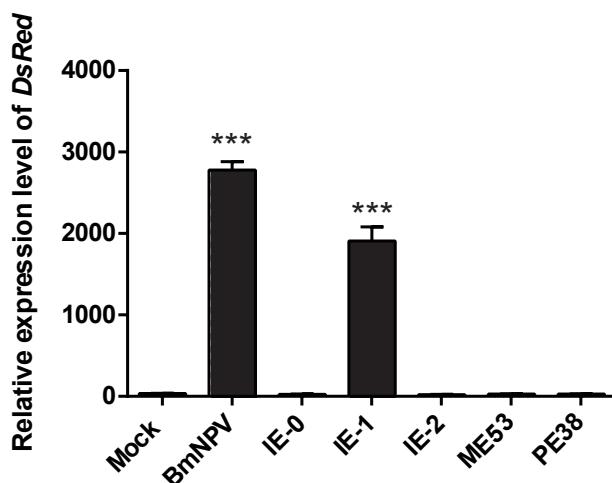

Figure 2B

Figure 3A

Figure 3B

Figure 3C

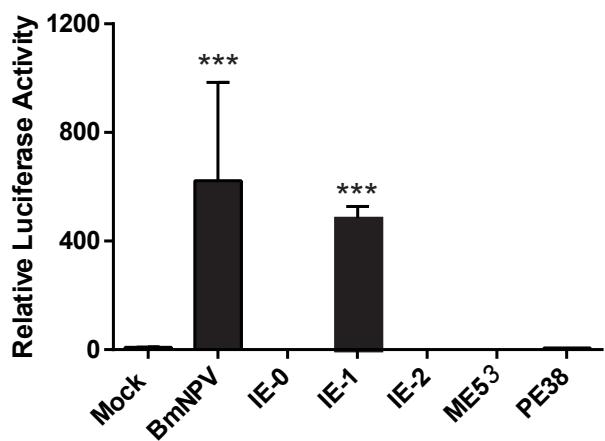


Figure 4A

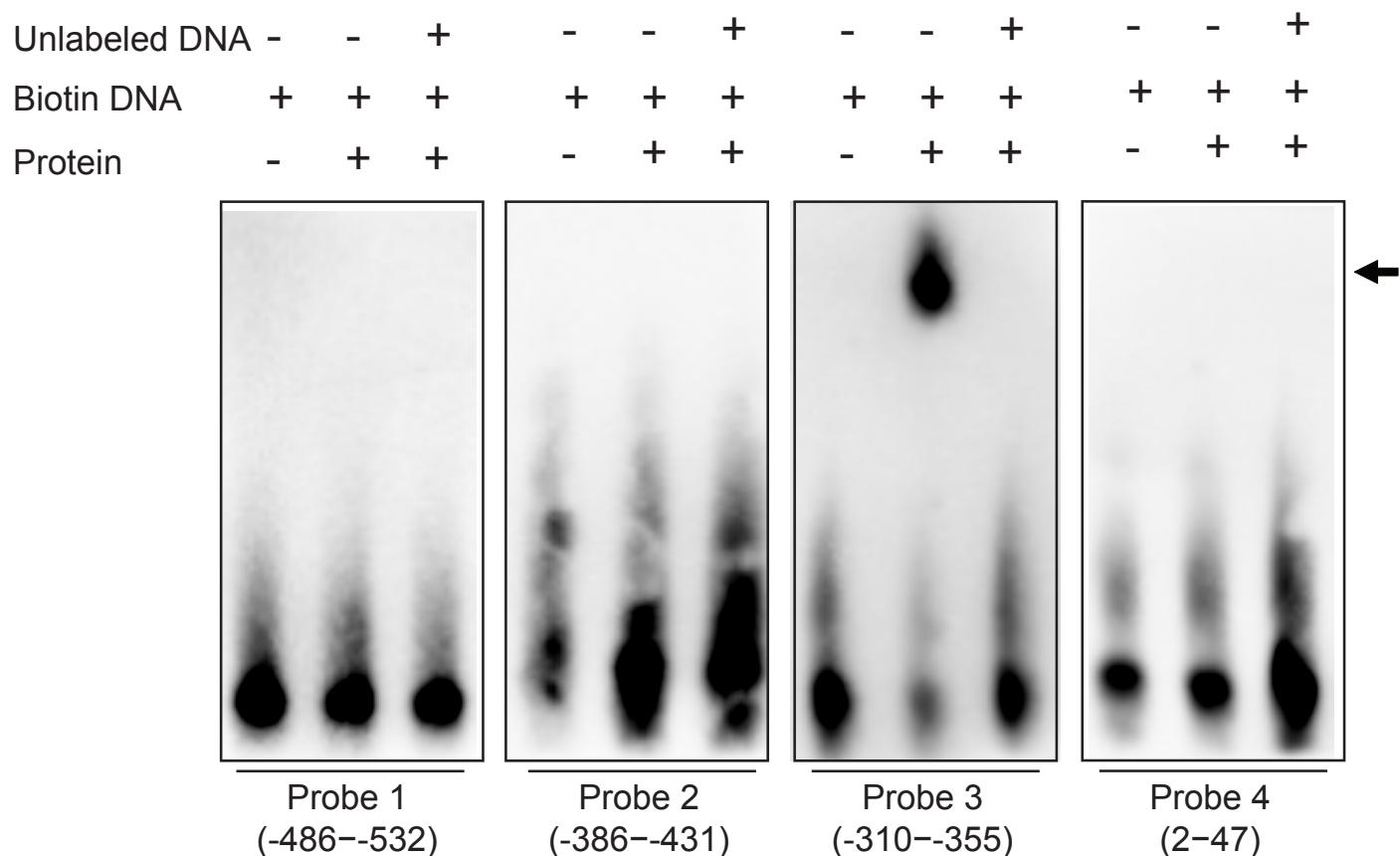
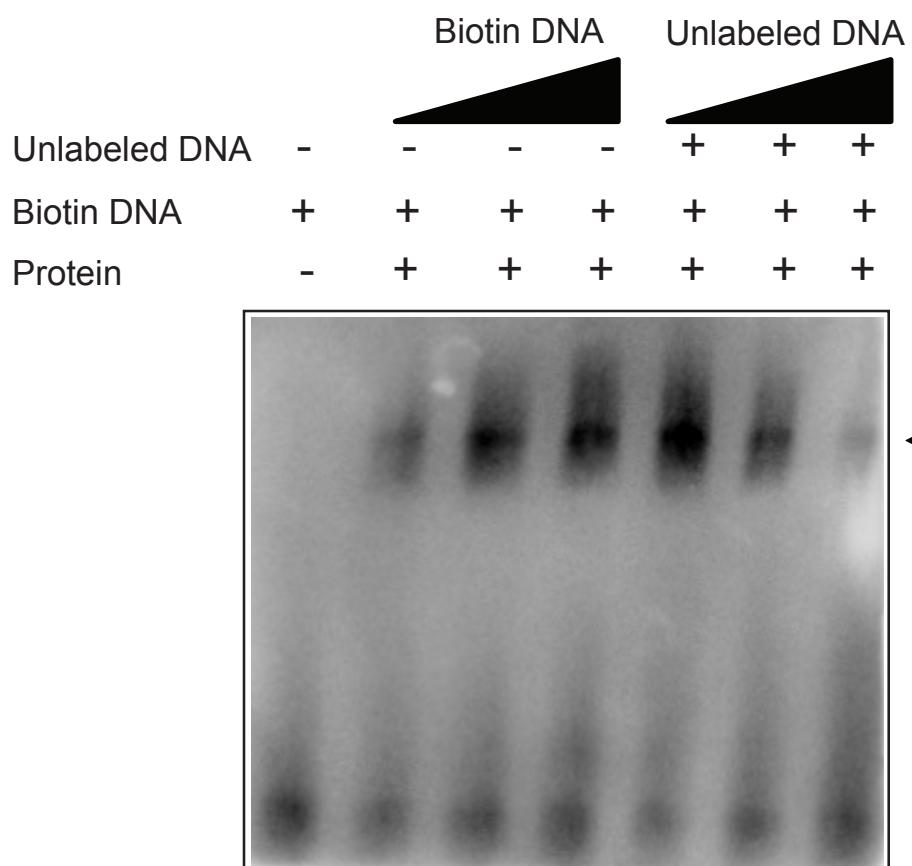
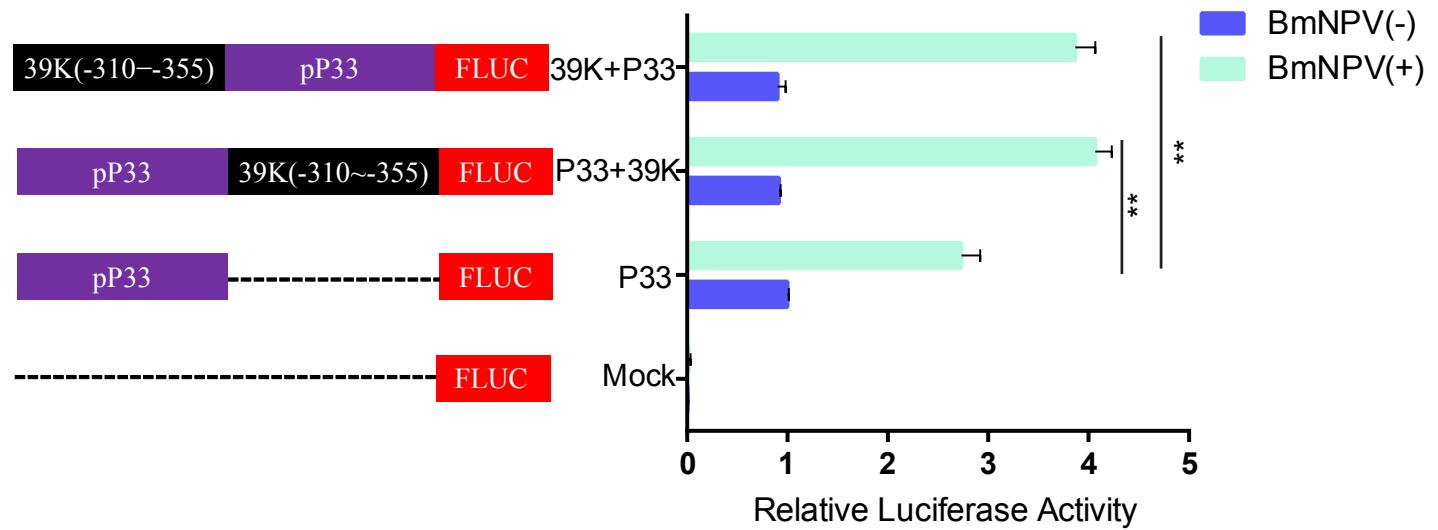




Figure 4B

Figure 5A

Figure 5B

