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Abstract

Surveillance of drug-resistant bacteria is essential for healthcare providers to deliver effective
empiric antibiotic therapy. However, traditional molecular epidemiology does not typically occur
on a timescale that could impact patient treatment and outcomes. Here we present a method
called ‘genomic neighbor typing’ for inferring the phenotype of a bacterial sample by identifying
its closest relatives in a database of genomes with metadata. We show that this technique can
infer antibiotic susceptibility and resistance for both S. pneumoniae and N. gonorrhoeae. We
implemented this with rapid k-mer matching, which, when used on Oxford Nanopore MinlON
data, can run in real time. This resulted in determination of resistance within ten minutes
(sens/spec 91%/100% for S. pneumoniae and 81%/100% N. gonorrhoeae from isolates with a
representative database) of sequencing starting, and for clinical metagenomic sputum samples
(75%/100% for S. pneumoniae), within four hours of sample collection. This flexible approach has
wide application to pathogen surveillance and may be used to greatly accelerate appropriate

empirical antibiotic treatment.
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Introduction

Infections pose multiple challenges to healthcare systems, contributing to higher mortality,
morbidity, and escalating cost. Clinicians must regularly make rapid decisions on empiric
antibiotic treatment of infectious syndromes without knowing the causative pathogen(s) or
whether they are drug-susceptible or drug-resistant. In some cases, this is directly linked to poor
outcomes; in the case of septic shock, the risk of death increases by an estimated 10% with every

60 minutes delay in initiating effective treatment?®.

The molecular epidemiology of infectious disease allows us to identify high-risk pathogens and
determine their patterns of spread, on the basis of their genetics or (increasingly) genomics.
Conventionally such studies, including outbreak investigations and characterization of novel
resistant strains, have been conducted in retrospect, but this has been changing with the
availability of new and increasingly inexpensive sequencing technologies®3. The wealth of data
generated by genomics is promising but introduces a new challenge: while many features of a

sequence are correlated with the phenotype of interest, few are causative.

Prescription, however, has long been informed by correlative features when causative ones are
difficult to measure, for example whether the same syndrome or pathogen occurring in other
patients from the same clinical environment have responded to a particular antibiotic. This has
also been observed at the genetic level as well, as a result of genetic linkage between resistance
elements and the rest of the genome. An example is given by the pneumococcus (Streptococcus
pneumoniae). The Centers for Disease Control have rated the threat level of drug-resistant
pneumococcus as ‘serious’ 4. While resistance arises in pneumococci through a variety of
mechanisms, approximately 90% of the variance in the minimal inhibitory concentration (MIC)
for antibiotics of different classes can be explained by the loci determining the strain type>, even
though none of these loci themselves causes resistance. Thus, in the overwhelming majority of

cases, resistance and susceptibility can be inferred from coarse strain typing based on population
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structure. This population structure could be leveraged to offer an alternative approach to
detecting resistance in which rather than detecting high-risk genes, we identify high-risk strains.
While many approaches have been developed to identify whether a pathogen carries mutations
or genes known to confer resistance®?! (see ref?? for a comprehensive review), this is not

equivalent to the clinical question of whether the pathogen is susceptible.

We present a method called ‘genomic neighbor typing’ which can bring molecular epidemiology
closer to the bedside and provide information relevant to treatment at a much earlier stage. Our
method takes sequences generated from a sample in ‘real time’ and matches them to a database
of genomes to identify the closest relatives. Because closely related isolates usually have similar
properties, this yields an informed heuristic as to the pathogen’s phenotype. We demonstrate
this by identifying drug-resistant and drug-susceptible clones for both Streptococcus pneumoniae
(the pneumococcus) and Neisseria gonorrhoeae (the gonococcus), within minutes after the start
of sequencing using Oxford Nanopore Technology. The method has many potential applications,
depending on the specific pathogen and quality of the databases available for matching, which

we discuss together with its limitations.
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81 Results
82

83  Resistance is associated with clones in S. pneumoniae and N. gonorrhoeae

84

85  To quantify the association of clones with antibiotic resistance of the pathogens S. pneumoniae
86 and N. gonorrhoeae, we constructed optimal predictors of resistance from bacterial lineages and
87 measured the associated Area under the Receiver Operation Characteristic Curve (AUC)

88  (Supplementary Document 1). First, we applied the method to 616 pneumococcal genomes from
89  acarriage study in Massachusetts children?324, Second, we used 1102 clinical gonococcal isolates
90 collected from 2000 to 2013 by the Centers for Disease Control and Prevention’s Gonococcal

91 Isolate Surveillance Project?®. In both cases, the datasets comprised draft genome assemblies

92 from lllumina HiSeq reads, resistance data, and lineages inferred from sequence cluster

93  computed using Bayesian Analysis of Population Structure (BAPS)?. Lineages of S. pneumoniae
94  are predictive for benzylpenicillin, ceftriaxone, trimethoprim-sulfamethoxazole, erythromycin,
95 and tetracycline resistance with AUC ranging from 0.90 to 0.97 (Supplementary Document 1),
96  consistent with previous works®. In N. gonorrhoeae, ciprofloxacin, ceftriaxone, and cefixime

97  attained comparably large AUCs (from 0.93 to 0.98) whereas azithromycin demonstrated lower
98 association (AUC 0.80), as observed previously?.

99

100  Rapid identification of nearest known relative from sequencing reads

101

102  Based on the observed associations we developed an approach that we term ‘genomic neighbor
103  typing’ to predict phenotype from sequencing data. Genomic neighbor typing is a two-step

104  algorithm, which first compares a provided sample to a database of reference genomes with a
105 known phylogeny and phenotype, and then predicts the likely phenotype of the sample based on
106  the best hits (nearest neighbors) and their matching quality. We apply this here to the detection
107  of drug resistance.

108

(@3
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109 To implement genomic neighbor typing we developed software called RASE (Resistance-

110  Associated Sequence Elements) (Figure 1). RASE takes a stream of nanopore reads and compares
111  their k-mer content to references using a modified version of ProPhyle?’?%, a metagenomic

112  classifier implementing a fast and memory-efficient exact colored de Bruijn graph data

113 structure?® using a BWT index3® (Methods). Using ProPhyle RASE identifies which references are
114  the most similar to the read and increases their similarity weights (this approach was inspired by
115  but differs from other similar approaches such as Kraken3! and Kallisto3?). These weights are

116  cumulative scores capturing sample-to-reference similarity; they are set to zero at the beginning
117  and are increased on-the-fly as sequencing proceeds according to each read’s ‘information

118 content’ (Methods). Generally speaking, longer reads, such as those covering multiple accessory
119 genes, tend to be specific and have high scores, whereas short reads or reads from the core

120 genome are found in many lineages, tend to be non-specific and have low scores. Weights serve
121  as a proxy to inverted genetic distance between the sample and the references.

122

123  Resistance or susceptibility is predicted in two steps based on the computed weights, the

124 population structure, and the reference phenotypes. First, RASE identifies the lineage of the best
125  matching reference genome and estimates the confidence of lineage assignment by comparing
126  the two best matching lineages to compute a ‘lineage score’ (Methods). Subsequently, RASE

127  identifies the best match within that lineage and predicts resistance from the nearest resistant
128  and susceptible neighbors. Comparison of their weights provides a ‘susceptibility score’, which
129  quantifies the risk of resistance (Methods). When the weights are too similar, the call’s

130 confidence is considered low; this happens when resistant and susceptible strains are

131 insufficiently genetically distinct, which is often the case for resistance emerging recently in

132  evolutionary history (Methods). The ability to pinpoint the closest relatives in the database offers
133  further resolution, even in the case where the resistance phenotype varies within a lineage.

134

135  Results of RASE are reported in real time as the best match in the database, together with

136  susceptibility scores to the antibiotics being tested and a proportion of matching k-mers for
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Figure 1: Overview of the RASE approach. In the first, loading step, the precomputed RASE database is loaded
into memory. As reads are generated, they are matched against the database using ProPhyle to calculate similarity
to individual strains. The weights for the most similar strains (D and E in the figure) are increased proportionate to
the number of matching k-mers. Finally, resistance is predicted from the obtained weights and the resistance profiles
of the database strains as follows: First, the best lineage is identified as the lineage of the best match (having the
highest weight, E in the figure) and its score is calculated (lineage score, LS). Second, for every antibiotic, a score
quantifying the chance of susceptibility (susceptibility score, SS) is calculated, based on the most similar susceptible
and resistant strains inside the identified lineage (B and E in the figure, respectively). The susceptibility or resistance
to each of the antibiotics is predicted from their susceptibility scores by a comparison with a threshold (0.5 in the
default setting), and reported together with the lineage, the best matching strain and that strain’s known properties
(e.g., the original antibiograms, MLST sequence type, or serotype).
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137  quality control. As the run progresses, the scores fluctuate and eventually stabilize (an example
138  shown in Figure 2).
139

140 RASE databases for hundreds of S. pneumoniae and N. gonorrhoeae strains

141

142  We constructed RASE databases for S. pneumoniae and N. gonorrhoeae from the same data as
143  described above (Methods). We assigned each pneumococcal and gonococcal strains to an

144  antibiotic-specific resistance categories using the European Committee on Antimicrobial

145  Susceptibility Testing (EUCAST) breakpoints? and the CDC Gonococcal Isolate Surveillance

146  Project (GISP) breakpoints34, respectively (Methods). Where MIC data were unavailable or

147  insufficiently specific, we estimated the likely resistance phenotype using ancestral state

148 reconstruction (Methods, Supplementary Note 1). To verify the results, we tested eight

149  pneumococcal isolates for which resistance phenotypes were not originally available (Methods),
150 and the measured MICs by microdilution matched the expected phenotypes (shown in bold in
151 Table 1). We constructed the ProPhyle k-mer indexes with a k-mer length optimized to minimize
152  prediction delays (k=18, Methods). The obtained pneumococcal and gonococcal RASE databases
153  occupy 321 MB and 242 MB RAM (4.3x and 12x compression rate) and can be further

154  compressed for transmission to 47 MB and 32 MB (29x and 90x compression rate), respectively
155  (Supplementary Figure 1). This would allow RASE to be used on portable devices and its

156  databases easily transmitted to the point of care over links with a limited bandwidth.

157

158  RASE identifies strains in the database within minutes

159  We first examined two pneumococcal isolates that were used to build the RASE database

160 (Table 1a, sens/spec 100%/100%, n=10) to test RASE can function in ideal circumstances. In the
161  case of a fully susceptible isolate (SP01), the correct lineage and sequenced strain were identified
162  within 1 minute and 7 minutes respectively. A multidrug-resistant isolate (SP02) was predicted
163  even faster, with both lineage and the sequenced strain correctly detected and stabilized within

164 1 minute. To compare with gene-based approaches for detecting resistance?? we evaluated how
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Figure 2: RASE obtains stable predictions of antibiotic resistance or susceptibility and lineage within min-
utes for an isolate of a pneumococcal 23F clone (SP06). Left: Number of reads, lineage score (LS), k-mer score
(KS), and susceptibility scores (SS) for individual antibiotics as a function of time from the start of sequencing. In
the top left plot, the times of stabilization are shown for the predicted lineage and susceptibility or resistance to all
antibiotics. Right: a)-c) Similarity rank plots for selected time points (1 minute, 5 minutes, and the end of sequenc-
ing). The bars correspond to 70 best matching strains in the database and display the normalized weights, which
serve as a proxy to inverted genetic distance. They are arranged by rank and colored according to the presence in
the predicted, alternative or another lineage. The bottom panels display the resistance profiles of the strains.
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a) Database isolates

ey Serotype Antibiogram Antibiogram Antibiogram Antibiogram Antibiogram
g Matched k- P CRO ERY PEN SXT TET MLST | cc
Sample| confidently mers Best Best Best Best Best Best | match | match
detected Actual match Actual match Actual match Actual match Actual match Actual match
SPO1 yes 16% 11D 11D S S S S S S S S s s Yes Yes
SP02 yes 9.6% 19A 19A R R R R R R R R R? [ R® Yes Yes
b) Non-database isolates
. Antibiogram Antibiogram Antibiogram Antibiogram Antibiogram
S co"r'l':.lz‘:‘-;:ly Matched k- | Serotype CRO ERY PEN SXT TET MLsT | cc
mers Best Best Best Best Best Best | match | match
detected Actual match Actual match Actual match Actual match Actual match Actual match
SPO3 yes 3.1% 23F 23F R R R S(3) R R R R S S 0OoD Yes
SP04 yes 12% 19A 19A R R R R R R R R R R® | 0OoD Yes
SPO5 no 1.8% 19F 19F R R R R! R R R R! R R! OoD | Yes
SP06 yes 8.3% 23F 23F R R R sG) R R R R S S OoD | Yes
c) Metagenomes L d s Suscentibl
ineane Antibiogram Antibiogram Antibiogram €gen R Nuscep| © bl
lelconfidantly] sp | Matched k- ERY PEN TET e | L°”'5”5‘;_zpt' o
L ' mers Best Best Best orrect prediction |- Ow contidence ca
Qs Actual | match [ AY3! | match | A%43! | match Incorrect prediction| NA Not available
SP07 no 2.3% 0.2% NA S S S R s ICannot be evaluated| 00D Out-of-database
SPO8 no 2.5% 0.9% s B s s! s s® () ID of a retested sample
SP09 no 4.0% 1.2% NA S S S S s SP Fra;tion of S. pneumoniae
SP10 ves 21% 5.2% R R R R R | R® reads
SP11 yes 70% 14% R R R R R R(®)
SP12 yes 86% 17% S S S S R s

Table 1: Predicted phenotypes of S. pneumoniae for a) database isolates, b) non-database isolates, and
c¢) metagenomes. The table displays actual and predicted resistance phenotypes (S = susceptible, R = non-
susceptible) for individual experiments, as well as information on match of the predicted MLST sequence type and
clonal complex. Resistance categories in bold were inferred using ancestral reconstruction and were also con-
firmed using phenotypic testing (see Methods and Supplementary Table 3). Metagenomic samples are sorted by
the estimated fraction of S. pneumoniae reads.

10
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165 long it took for resistance genes to be sequenced on the device, and observed that at least 25
166  minutes would be needed for single copies to be detected (Supplementary Note 2).

167

168 We then performed a similar evaluation with five gonococcal isolates from the database

169 (Table 2a, sens/spec 57%/100%, n=20); however, here we selected more complicated cases.

170  First, we tested a susceptible isolate (GC01), for which RASE identified the correct strain and

171  antibiogram within 3 minutes of sequencing. We then sequenced an isolate with a novel and

172 uncommon mechanism of cephalosporin resistance that has emerged recently (GC02)3>. Under
173  such circumstances, the resistant strain and its susceptible neighbors tend to be genetically very
174  similar, which could confound our analysis. However, RASE was still able to identify the correct
175 resistance phenotypes in 9 minutes, with the delay being due to difficulty distinguishing between
176  the close relatives, reflected also by a susceptibility score in the low-confidence range (Methods).
177  This was repeated in further experiments with the same isolate (GC03) which consistently

178  reported low confidence in resistance phenotype (Methods), which is a feature of our approach
179 intended to draw operators’ attention and indicate that further testing is necessary. In this

180 experiment, RASE also resolved sample mislabeling (Supplementary Note 3). For a multidrug-
181  resistant isolate (GC04) RASE predictions stabilized within 2 minutes but incorrectly predicted
182  susceptibility to ceftriaxone. A subsequent analysis revealed that the ceftriaxone MIC of the

183  sample was equal to the CDC GISP breakpoint (0.125 pg/mL), whereas the best match in the

184  database had an MIC of 0.062 pg/mL, within a single doubling dilution. We further found that
185  RASE performed well even with extremely poor data and low-quality reads (GCO5,

186  Supplementary Note 4). We also evaluated how genomic neighbor typing would perform if RASE
187  used Kraken3! instead of ProPhyle?® (Supplementary Note 5).

188

189  RASE identifies the closest relative of novel isolates

190 We next examined four novel pneumococcal isolates (Table 1b, sens/spec 89%/100%, n=20) for
191  which the serotype and limited antibiogram and lineage data were known. We compared three

192  characteristics of the sample to assess our performance: the serotype, the MLST sequence type,

11
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a) Database isolates

e |Antibiogram [Antibiogram [Antibiogram |[Antibiogram
s _mﬂdidy Matched| AZM CFM cip CRO __|MLST
detected | X-™Mers Actuall BESt lactual BESt lacyall BESL |acryayf Best matet
GCO01 yes 27% S S S S S 5 S S Yes
GC02 yes 27% S S R R! S S R R! Yes
GC03 yes 33% S S R S! S S R S! Yes
GC04 yes 21% S S R R R R R S Yes
GCO05 yes 7% R R S S S S S S Yes

b) Clinical isolates

Lineage Antibiogram | Antibiogram | Antibiogram | Antibiogram

FEmlG | iy T::::fsd AzMliest CFMBest < PBest CRC:!est

detected Actual e Actual match Actual AR Actual e
GC06 yes 19% S S R R R R S S
GCO07 no 20% S S S S R R S S
GC08 no 19% S S S] S R R S S
GC09 no 18% S S S S S S S S
GC10 no 20% S S S 5 R R S 5]
GC11 no 20% S S S S R R S S
GC12 no 20% S S S S R R 5] ]
GC13 yes 20% S S S S R R S S
GC14 yes 19% S S S S R R S S
GC15 yes 19% R S! S S S S S S
GC16 no 18% S S S S! R R S S!
GC17 no 19% S S S S! R R S S!
GC18 no 20% S S S S R R S S
GC19 yes 18% S S S S R R S S

Table 2: Predicted phenotypes of N. gonorrhoeae for a) database isolates and b) clinical isolates. The table
is in the same format as Table 1.

12
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193  and the antibiograms (benzylpenicillin, ceftriaxone, trimethoprim-sulfamethoxazole,

194  erythromycin, and tetracycline resistance according to the EUCAST breakpoints33).

195

196 In all cases, the closest relative was identified within 5 minutes, even if the correct MLST

197 sequence type was absent from the RASE database (an example shown in Figure 2). The two
198 samples from the 23F clone (SP03 and SP06) were correctly called as being closely related to the
199 Tennessee 23F-4 clone identified by PMEN, a clone strongly associated with macrolide

200 resistance®®. Consistent with this, the two samples were indeed resistant to erythromycin.

201  However, the Tennessee 23F-4 clone was absent from the Massachusetts sample, with the best
202  match being a comparatively distantly related strain that was penicillin resistant, but

203  erythromycin susceptible. This illustrates the importance of a relevant database.

204

205  We evaluated RASE with 14 clinical gonococcal isolates from the RaDAR-Go project3’

206  (Switzerland, 2015-2016) (Table 2b, sens/spec 93%/100%, n=56). These isolates were previously
207  sequenced using nanopore and have full antibiograms available32. The 55/56 correct calls

208 indicate the strength of the genomic neighbor typing in a clinical setting. The only incorrect call
209  (susceptibility to azithromycin in GC15) was marked as being low-confidence call on the basis of a
210  poor susceptibility score. It should be noted that the ranges for what is considered low-

211  confidence could vary among settings and pathogens but can be empirically determined and
212  modified by users. In this case our results suggest that informative results can be obtained even
213  using a database from one region (the US) to predict phenotype in another (Europe). However,
214  this may not be the case for all pathogens.

215

216  Phenotyping is still informative but lower quality on highly divergent lineages

217  As noted above, an important precondition of genomic neighbor typing is a comprehensive and
218 relevant reference database. To evaluate RASE performance in a setting with an incomplete

219  database, we used the gonococcal WHO 2016 reference strain collection3®. This includes a global

220  collection of 14 diverse isolates from Europe, Asia, North America, and Australia, collected over
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221  two decades and exhibiting phenotypes ranging from pan-susceptibility to multidrug resistance,
222  and as such the GISP database is expected to be non-representative in this study. The WHO

223  strains are available from the National Collection of Type Cultures, and were previously

224  sequenced using nanopore3® and genetically and phenotypically characterized®. Surprisingly,
225  RASE correctly identified all MLST sequence types represented in the database and in 7 cases it
226  provided fully correct resistance phenotypes (Supplementary Table 1, sens/spec 67%/91%,

227 n=56).In 6/7 cases where the complete resistance profile was not recovered, the closest

228 relatives were identified correctly but were genetically divergent from the query isolates

229  (Supplementary Note 6). In one case, the errors were due to a misidentification of the closest
230 relatives by ProPhyle. Therefore, most prediction errors could be addressed with a more

231 comprehensive database.

232

233 RASE can identify resistance in pneumococcus from sputum metagenomic samples

234  Because bacterial culture and phenotyping via agar-dilution, Etest, or disk diffusion introduces
235  significant delays in resistance profiling, direct metagenomic sequencing of clinical samples

236  would be preferable for point-of-care use. We therefore analyzed metagenomic nanopore data
237  from sputum samples obtained from patients suffering from lower respiratory tract infections*®
238 (UK, 2017), selecting 6 samples from the study that were already known to contain S.

239  pneumoniae (Table 1c, sens/spec 75%/100%, n=16).

240

241 One sample (SP10) contained DNA from multiple bacterial species. However, within 5 minutes
242  sequence was identified belonging to the Swedish 15A-25 clone (ST63) which is also known to be
243  associated with resistance phenotypes including macrolides and tetracyclines*!. This sample was
244  confirmed to be resistant to erythromycin, as well as clindamycin, tetracycline and oxacillin

245  according to the EUCAST breakpoints33. The original report of the Swedish 15A-25 clone did not
246  report resistance to penicillin antibiotics*!, which has subsequently emerged in this lineage.

247  However, our database correctly identified the risk of penicillin resistance in this sample. The

248 metagenomes SP11 and SP12 contain an estimated >20% reads that matched to S. pneumoniae,
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249  and their serotypes were identified to be 15A and 3, respectively. The susceptibility scores of the
250 best matches were fully consistent with the resistance profiles found in the samples, with the
251  exception of tetracycline resistance in SP12 due to an incomplete database (Supplementary

252  Note 7). The last remaining samples, SPO7-SP09, contained less than 5% unambiguously

253  pneumococcal reads. Despite the low proportions, all predicted phenotypes were concordant
254  with phenotypic tests, with the exception of SP07, which matched the same strain as SP12

255  (discussed above).
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256  Discussion

257

258  This paper presents a method that we term genomic neighbor typing to pinpoint the closest

259 relatives of a query genome within a suitable database and then to infer the phenotypic

260 properties of the query strain on the basis of the reported properties of its relatives. At present,
261 the precise lineage of a bacterial pathogen is often determined after most important clinical

262  decisions have been made. However, incorporating genomic neighbor typing at an earlier stage
263  offers a way of leveraging bacterial population structure to gain information on resistance and
264  susceptibility, and inform antimicrobial therapy. The results from the metagenomic samples

265  suggest that it is possible to apply this approach directly to clinical samples, and the success with
266  both S. pneumoniae and N. gonorrhoeae indicates that it may have wide application.

267

268 The two pathogens studied here present contrasting features; the gonococcus is Gram-negative,
269  harbors plasmids, and has a strikingly uniform core genome, while the pneumococcus is Gram-
270  positive, does not contain plasmids and is diverse in both its core and accessory genome. Both
271  exhibit high rates of homologous recombination, which is expected to both spread

272  chromosomally encoded resistance elements and to scramble the phylogenetic signal that we
273  use to identify the lineages. Despite these differences and the large degree of recombination, our
274  approach performs well with both pathogens, with some differences that indicate opportunities
275  and limitations for the application.

276

277  Theinitial identification of the closest relative is consistently more robust in the pneumococcus
278  than the gonococcus, as a result of the former having more k-mers that are specific to an

279 individual lineage, reflecting greater sequence diversity. As a consequence of the much lower
280  diversity in gonococcus, when multiple closely related genomes are present in the database,

281  RASE fluctuates between them, even though it correctly identifies the region of the phylogeny. If
282  these genomes vary in their resistance profile, this is properly reflected in an uncertain

283  susceptibility score indicating that caution and further investigation are merited (e.g., GC03).
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284

285 Asin all inference, the principle limitation of genomic neighbor typing is the representativeness
286  of the database. While we have made use of relatively small samples from limited geographic
287  areas to demonstrate proof of principle, in practice there are multiple examples of large genome
288  databases generated by public health agencies, which could be combined with metadata on

289  resistance for genomic neighbor typing. Such databases could, if necessary, be supplemented
290  with local sampling. The relevant question for our approach therefore becomes whether the
291 database contains a sufficiently high proportion of strains that will be encountered in the clinic
292  and whether the resistance data are correct. Further work is required to determine the optimal
293  structure and contents of databases for each application, but we emphasize the range of

294  pathogens which appear to show promise for this approach. These include E. coli, in which data
295  on MLST type supplemented with epidemiologic information can consistently produce AUCs in
296  excess of 0.90 for multiple antibiotics*?, suggesting great potential for neighbor typing to offer
297  excellent resolution superior to MLST. However, genomic neighbor typing may be less suitable in
298 the case where there is little genomic variation (e.g., Mycobacterium tuberculosis) or when

299 resistance emerges rapidly on independent and diverse genomic backgrounds (e.g.,

300 Pseudomonas aeruginosa or resistance elements on highly promiscuous plasmids).

301

302 Inthe case where the infectious agent is unknown this problem is significantly more challenging.
303 K-mers from one pathogen can match others and produce false predictions, and so choice of the
304  correct database for prediction is key. Doing this will likely require a two-step solution in which
305 the reads are first passed through a metagenomic classifier such as Centrifuge*® or MetaMaps*4,
306 which would be used to select the correct RASE database on which to make a resistance call.
307

308 Another limitation is the time required for sample preparation, which currently includes human
309 DNA depletion, DNA isolation, and library preparation, taking a total of 4 hours. This is a rapidly

310 evolving area of technology and automated rapid library preparation kits are already in
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311  development®. Further advances in this space, in particular for the preparation of metagenomic
312  samples, will be required to bring the method closer to the bedside.

313

314  We have demonstrated that effectively predicting resistance and susceptibility from sequencing
315 data does not require knowledge of causal resistance determinants. In fact, neighbor typing only
316 requires that the phenotype be sufficiently strongly associated with the population structure to
317 make reliable predictions.

318

319 Akey advantage of this approach is that it requires very little genomic data, thus it is not limited
320 by high error rates or low coverage. In particular, it is not attempting to define the exact genome
321 sequence of the sample being tested, but merely which lineage it comes from. As a result, even
322  when a small fraction of k-mers in the read are informative in matching to the RASE database,
323  thisis sufficient to call the lineage. This has the benefit of being faster than gene detection by
324  virtue of the informative k-mers being distributed throughout the genome, and so more likely to
325 appearin the first few reads sequenced by the nanopore. Therefore, the approach we present
326 here can be seen as an application of compressed sensing: by measuring a sparse signal

327  distributed broadly across our data we can identify it with comparatively few error-tolerant

328 measurements.

329

330 Genomic neighbor typing can also be used to detect other phenotypes that are sufficiently tightly
331 linked to a phylogeny, such as virulence. Further applications may include rapid outbreak

332  investigations, as the closely related isolates involved in the outbreak would all be predicted to
333  match to the same strain in the RASE database. The approach also lends itself to enhanced

334  surveillance, including in the field; the 2014-2016 Ebola outbreak in West Africa, for example,
335 saw MinlON devices used in remote locations without advanced healthcare facilities?. Finally, at
336 present empiric treatment decisions are made within successive ‘windows’#%, in which increasing
337 information becomes available, from initial Gram stain to full phenotypic characterization. The

338 information from genomic neighbor typing is a natural complement to this process with the
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339 potential to improve therapy long before it would become clinically apparent that the patient is
340 not responding or before phenotypic susceptibility data were available. The combination of high-
341  quality RASE databases with genomic neighbor typing offers an alternative forward-looking

342  model for diagnostics and surveillance, with wide applications for the improved clinical

343  management of infectious disease.
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344 Methods
345

346  Overview

347

348  RASE uses rapid approximate k-mer-based matching of long sequencing reads against a database
349  of strains to predict resistance via neighbor typing. The database contains a highly compressed
350 exact k-mer index, a representation of the tree population structure, and metadata such as

351 lineage, resistance profiles, MLST sequence type and serotype. The RASE prediction pipeline

352 iterates over reads from the nanopore sequencer and provides real-time predictions of lineage
353  and resistance or susceptibility (Figure 1).

354

355  Resistance profiles

356

357  For all antibiotics, RASE associates individual strains with a resistance category, ‘susceptible’ (S)
358 or ‘non-susceptible’ (R). First, intervals of possible MIC values are extracted using regular

359  expressions from the available textual antibiograms. For instance, ‘>=4’, *2°, and ‘NA’ would be
360 translated to the intervals [4,+22), [2,2], and [0,+2°), respectively. Then the acquired intervals are
361 compared to the antibiotic-specific breakpoints (see below; Supplementary Figures 3 and 4). If a
362 given breakpoint is above or below the interval, susceptibility or non-susceptibility is reported,
363 respectively. However, no category can be assigned at this step if the breakpoint lies within the
364  extracted interval, an antibiogram is entirely missing, it is insufficiently specific, or its parsing
365 failed. Finally, missing categories are inferred using ancestral state reconstruction on the

366 associated phylogenetic tree while maximizing parsimony (i.e., minimizing the number of nodes
367  switching its resistance category; Supplementary Figures 5 and 6). When the solution for a node
368 is not unique, non-susceptibility is assigned.

369
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370  Genomic neighbor typing

371

372  All reference strains in the database are associated with similarity weights that are set to zero at
373  the start of the run. Each time a new read is read from the stream, k-mer-based matching is

374  applied to identify the strains with the maximum number of matching k-mers (see below). Such
375  strains are read’s nearest neighbors in the database according to the 1/(‘number of matched k-
376  mers’) pseudodistance.

377

378 The weights of the nearest neighbors are then increased according to the ‘information content’
379 of the read, calculated as the number of matched k-mers divided by the number of nearest

380 neighbors. Reads that do not match (i.e., 0 matching k-mers in the database) are not used in
381 subsequent analysis. The computed matches are also used for updating the k-mer score (KS),
382  which is the proportion of matched k-mers in all reads. KS helps to assess whether a sample is
383  truly matching the database and predicting resistance for the database species makes sense.
384

385 The obtained weights serve as a proxy to inverted genetic distance and are used as a basis for the
386  subsequent predictions of the lineage, and antibiotic resistance and susceptibility.

387

388  Predicting lineage

389

390 Alineage is predicted as the lineage of the best matching reference strain, i.e., the one with the
391 largest weight. The quality of lineage prediction is further quantified using a lineage score (LS),
392 calculated as LS=2f/(f+t)-1, where f and t denote the weights of the best matches in the first

393 (‘predicted’) and in the second best (‘alternative’) lineage, respectively. The values of LS can

394  range from 0.0 to 1.0 with the following special cases: LS=1.0 means that all reads were perfectly
395 matching the predicted lineage, whereas LS=0.0 means that the predicted and alternative

396 lineages were matched equally well.

397
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398 LSis used to measure how well a sample matching the identified lineage. If LS is higher than a
399 specified threshold (0.6 in default settings), the call is considered successful. If the score is lower
400 than this, the sample cannot be securely assigned to a lineage, and this should draw operators’
401  attention. Note that custom RASE databases may require a re-calibration of the threshold.

402

403  Predicting resistance and susceptibility

404

405  Resistance or susceptibility are predicted for individual antibiotics independently, based the

406  weights of the strains that belong to the predicted lineage. These are used to calculate a

407  susceptibility score, which is further interpreted by comparing to pre-defined thresholds.

408

409 The susceptibility score is calculated as SS=s/(s+r), where s and r denote the weights of the best
410 matching susceptible and best matching non-susceptible strains within the lineage. The values of
411  SScanrange from 0.0 to 1.0 with the following special cases: SS=0.0 and SS=1.0 mean that all
412  reads match only resistant or susceptible strains in the lineage, respectively. In practice, this

413  happens only if the lineage is entirely associated with resistance or susceptibility. S5=0.5 means
414  that the best matching resistant and susceptible strains are matched equally well. As follows
415  from the score definition, if SS is greater than 0.5, then the best matching strain is susceptible,
416  otherwise it is non-susceptible.

417

418  SSis used for predicting resistance or susceptibility as well as for evaluating the prediction’s

419  confidence. If SS is greater than 0.5, susceptibility to the antibiotic is reported, non-susceptibility
420 otherwise. Hence resistance is predicted as the resistance of the best match. However, when SS
421  is within the [0.4, 0.6] range, it is considered a low-confidence call, and as such it should draw
422  operators’ attention; this usually indicates that resistance or susceptibility emerged recently in
423  the evolutionary history and genomic neighbor typing may not be able to confidently distinguish

424  between these similar, but phenotypically distinct, strains. Note that the thresholds above might
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425  require a further re-calibration, based on the specific database, antibiotics, and application of
426  RASE.

427

428 S. pneumoniae RASE database

429

430 The S. pneumoniae RASE database was constructed with the EUCAST breakpoints3? ([mg/L]):

431  ceftriaxone (CRO): 0.25, erythromycin (ERY): 0.25, benzylpenicillin (PEN): 0.06, trimethoprim-
432  sulfamethoxazole (SXT): 1.00, and tetracycline (TET): 1.00. While we have used the above values
433  inthe present work, others may be readily defined and the database rapidly updated. This is
434  especially useful in the case where breakpoints may vary depending on the site of infection (as is
435  the case with pneumococcal meningitis and otitis media, where lower MICs are considered to be
436  resistant33).

437

438 The draft assemblies were downloaded from the SRA FTP server using the accession codes

439 provided in Table 1 in ref?*, The phylogenetic tree was downloaded from DataDryad (accession:
440 ‘10.5061/dryad.t55gq’). The pneumococcal ProPhyle index was constructed with the k-mer size
441  k=18.

442

443  The obtained S. pneumoniae RASE database including the code and source data is available from

444  https://github.com/c2-d2/rase-db-spneumoniae-sparc.

445

446  N. gonorrhoeae RASE database

447

448  The N. gonorrhoeae RASE database was constructed with the CDC GISP breakpoints®* ([mg/L]):
449  azithromycin (AZM): 2.0, cefixime (CFM): 0.25, ciprofloxacin (CIP): 1.0, and ceftriaxone (CRO):
450 0.125. Before applying the breakpoints, azithromycin MICs for strains collected before 2005 were
451  doubled in order to correct for the known inconsistencies of the phenotyping protocol due to a

452  change in formulation of the commercial media®’.
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453

454  The draft assemblies and the phylogenetic tree were downloaded from Zenodo (accession:

455  ‘10.5281/zenodo.2618836’). Three prevalent types of plasmids*® were downloaded from

456  GenBank, localized in the GISP database using BLAST*?, and removed from the dataset: the

457  cryptic plasmid (‘pJD1’, GenBank accession ‘NC_001377.1’), the beta-lactamase plasmid (‘pJD4’,
458  GenBank accession ‘NC_002098.1’), and the conjugative plasmid (‘pEP5289’, GenBank accession
459  ‘GU479466.1'). The gonococcal ProPhyle index was constructed with the k-mer size k=18.

460

461 The obtained N. gonorrhoeae RASE database including the code and source data is available from

462  https://github.com/c2-d2/rase-db-ngonorrhoeae-gisp.

463

464  K-mer-based matching

465

466  Reads were matched against the RASE databases using the ProPhyle classifier?’22 (commit

467  b55e026) and its ProPhex component®®!, ProPhyle index stores k-mers of all strains in a highly
468 compressed form, reducing the required memory footprint. In the database construction phase,
469 the strains’ k-mers are first propagated along the phylogenetic tree and then greedily assembled
470  to contigs. The obtained contigs are then placed into a single text file, for which a BWT index is
471  constructed®.

472

473  Inthe course of sequencing, each read is decomposed into overlapping k-mers. The k-mers are
474  then searched in the BWT index by ProPhex using BWT search using a sliding window*°. For every
475  k-mer, the obtained matches are translated back on the tree. This provides a list of nodes whose
476  descending leaves are the strains containing that k-mer. Finally, strains with maximum number of
477  matched k-mers are identified for each read, and reported in the SAM/BAM format>2.

478

479  Optimizing k-mer length

480
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481 The k-mer length is the main parameter of the classification. First, the subword complexity

482  function®? of pneumococcus was calculated using JellyFish>* (version 2.2.10) (Supplementary
483  Figure 7). Then, based on the characteristics of the function and the k-mer range supported by
484  ProPhyle, the possible range of k was determined as in [17, 32]. For these k-mer lengths, RASE
485 indexes were constructed and their performance evaluated using the RASE prediction pipeline
486  and selected experiments. While RASE showed robustness to k-mer length in terms of final

487  predictions, prediction delays differed (Supplementary Figure 8). Based on the obtained timing
488  data, we set kto 18.

489

490 Comparison to Kraken

491

492  For each RASE database, a fake NCBI taxonomy was generated from the database tree. Then a
493 library was built using Kraken3! (v1.1.1, with default parameters) from the same FASTA files as
494  used for building the RASE database. Finally, Kraken databases were constructed for both k=18
495  and k=31.

496

497  The obtained Kraken databases were used to classify reads from individual experiments. The
498 obtained Kraken assignment were subsequently converted using an ad-hoc Python script to
499  RASE-BAM (a subset of the BAM format>? used by RASE). Finally, RASE prediction was applied on
500 the BAM files, with the use of the RASE database metadata, and the results compared with the
501 results of the standard RASE with ProPhyle.

502

503 Measuring time

504

505 To determine how RASE works with nanopore data generated in real time, the timestamps of
506 individual reads extracted were using regular expressions from the read names. These were then
507 used for sorting the base-called nanopore reads by time. When the RASE pipeline was applied,

508 the timestamps were used for expressing the predictions as a function of time. The times of
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509 ProPhyle assighments were also compared to the original timestamps to ensure that the

510 prediction pipeline was not slower than sequencing.

511

512  When timestamps of sequencing reads were not available (i.e., the gonococcal WHO and clinical
513  samples), RASE estimated the progress in time from the number of processed base pairs. This
514  was done by dividing the cumulative base-pair count by the typical nanopore flow, which we had
515  previously estimated from SP01 as 1.43Mbps per second. However, such an estimated progress
516 s indicative only, as it does not follow the true order of reads in the course of sequencing. As the
517 nanopore signal quality tends to decrease over time (see the decrease of KS in Figure 2 after

518 t=15mins), the randomized read order provides results of lower quality than true real-time

519 sequencing.

520

521 Lower time estimates on resistance gene detection

522

523 A complete genome of the multidrug-resistant SP02 isolate was assembled from the nanopore
524  reads using the CANU> (version 1.5, with default parameters). Prior to the assembly step, reads
525  were filtered using SAMsift>® based on the matching quality with the pneumococcal RASE

526  database: only reads at least 1000bp long with at least 10% 18-mers shared with some of the
527 reference draft assemblies were used. The obtained assembly was further corrected by Pilon®’
528  (version 1.2, default parameters) using lllumina reads from the same isolate (taxid ‘1QJAP’ in the
529  SPARC dataset?*) mapped to the nanopore assembly using BWA-MEM®8 (version 0.7.17, with the
530 default parameters) and sorted using SAMtools®2.

531

532  The obtained assembly was searched for resistance-causing genes using the online CARD tool® (as
533  0of 2018/08/01). All of the original nanopore reads were then mapped using Minimap2°° (version
534  2.11, with -x map-ont’) to the corrected assembly and resistance genes in the reads identified

535  using BEDtools—intersect® (version 2.27.1, with ‘-F 95’). Timestamps of the resistance-
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536 informative reads were extracted and associated with the genes. Only reads longer than 2kbp
537  were used in the analysis.

538

539  Evaluation of the N. gonorrhoeae WHO samples

540

541  To evaluate the predictions of the WHO samples, we inferred a phylogenetic tree from a data set
542  comprising both the GISP isolates and the WHO isolates. First, reads were downloaded for the
543  GISP isolates (NCBI BioProject: ‘PRIEB2999’ and ‘PRIEB7904’) and for the WHO isolates F—P (NCBI
544  BioProject: ‘PRIEB4024’). For the WHO isolates U-Z, read data were simulated from the finished
545  de-novo assemblies (NCBI BioProject: ‘PRJEB14020’) using Art-lllumina®! (version 2.5.1). Reads
546  were mapped to the NCCP11945 reference genome (GenBank accession: ‘CP001050.1’) using
547 BWA-MEM?>2 (version 0.7.17) and deduplicated using Picard®? (version 2.8.0). Pilon®’ (version
548  1.16, with ‘--mindepth 10 --minmq 20’) was used to call variants and further filtered to include
549  only ‘pass’ sites and sites where the alternate allele was supported with AF > 0.9. Gubbins®3

550 (version 2.3.4) with RAXML®* (version 8.2.10) were run on the aligned pseudogenomes to

551 generate the final recombination-corrected phylogeny (Supplementary File 1).

552

553  The closest relatives identified by RASE were verified using the obtained tree. For every WHO
554  isolate, the obtained RASE prediction was compared to the closest GISP isolate on the tree.

555

556  Library preparation

557

558  Forisolates SP01-SP06, cultures were grown in Todd—Hewitt medium with 0.5% yeast extract
559  (THY; Becton Dickinson and Company, Sparks, MD) at 37°C in 5% CO2 for 24 hrs. High-molecular-
560  weight (>1 pug) genomic DNA was extracted and purified from cultures using DNeasy Blood and
561  Tissue kit (QIAGEN, Valencia CA). DNA concentration was measured using Qubit fluorometer
562  (Invitrogen, Grand Island NY). Library preparation was performed using the Oxford Nanopore

563 Technologies 1D ligation sequencing kit SQK LSK108.
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564

565  For experiments SP07-SP12, library preparation was performed using the ONT Rapid Low-Input
566  Barcoding kit SQK-RLB0O01, with saponin-based host DNA depletion used for reducing the

567  proportion of human reads. More details can be found in the original manuscript.

568

569  Forisolates GCO1-GCO5, cultures were grown on Chocolate-Agar media i.e., Difco GC base media
570 containing 1% IsoVitaleX (Becton Dickinson Co., Franklin Lakes, NJ) and 1% Remel Hemoglobin
571  (Thermo Fisher Scientific, Carlsbad, CA) at 37°Cin 5% CO2 for 20 hrs. For GC01-GC04 genomic
572  DNA was extracted and purified from cultures using the PureLink Genomic DNA MiniKit (Thermo
573  Fisher Scientific, Carlsbad, CA), and for GCO5 DNA was extracted using the phenol-chloroform
574 method®. Genomic DNA was extracted and purified from cultures using the PureLink Genomic
575  DNA MiniKit (Thermo Fisher Scientific, Carlsbad, CA). DNA concentration was measured using the
576  Qubit fluorometer (Invitrogen, Grand Island, NY). Library preparation was performed using the
577  Oxford Nanopore Technologies 1D ligation sequencing kit SQK-LSK109.

578

579  MinlON sequencing

580

581  Sequencing was performed on the MinlON MK1 device using R9.4/FLO-MIN106 flow cells,

582  according to the manufacturer’s instructions. For experiments SP01-SP06, base-calling was

583  performed using ONT Metrichor (versions 1.6.11 (SP01), 1.7.3 (SP02), 1.7.14 (SP03-SP06))

584  simultaneously with sequencing and all reads passing Metrichor quality check were used in the
585 further analysis. For experiments SP07-SP12, the ONT MinKNOW software (versions 1.4-1.13.1)
586  was used to collect raw sequencing data and ONT Albacore (versions 1.2.2-2.1.10) was used for
587 local base-calling of the raw data after sequencing runs were completed. For experiments GCO1—
588  GCO5, ONT MinKNOW software was used to collect raw sequencing data and ONT Albacore

589  (version 2.3.4) was used for local base-calling.

590
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591 Testing resistance phenotype

592

593  Additional retesting of SPARC isolates was done using microdilution. Organism suspensions were
594  prepared from overnight growth on blood agar plates to the density of a 0.5 McFarland standard.
595  This organism suspension was then diluted to provide a final inoculum of 105 to 106 CFU/mL.
596  Microdilution trays were prepared according to the NCCLS methodology with cation-adjusted
597  Mueller-Hinton broth (Sigma-Aldrich) supplemented with 5% lysed horse blood (Hemostat

598 Laboratories)®®®’. Penicillin (TRC Canada) and chloramphenicol (USB) concentrations ranged from
599  0.016 to 16 pug/mL. Erythromycin (Enzo Life Sciences), tetracycline (Sigma-Aldrich), and

600 trimethoprim-sulfamethoxazole (MP Biomedicals) concentrations ranged from 0.0625 to

601 64 ug/mL. Ceftriaxone (Sigma-Aldrich) concentrations ranged from 0.007 to 8 ug/mL. The

602  microdilution trays were incubated in ambient air at 35°C for 24 h. The MICs were then visually
603 read and breakpoints applied. A list of individual microdilution measurements and the obtained
604  resistance categories is provided in Supplementary Table 2.

605

606  Resistance of streptococcus in the metagenomic samples (SPO7-SP12) was determined by agar
607  diffusion using the EUCAST methodology and breakpoints®3. First, the inoculated agar plates

608 were incubated at 37 °C overnight and then examined for growth with the potential for re-

609 incubation up to 48 hours. Then, the samples were screened to oxacillin: if the zone diameter r
610 was >20mm, the isolate was considered sensitive to benzylpenicillin, otherwise a full MIC

611 measurement to benzylpenicillin was done. Finally, the isolate was screened for resistance to
612  tetracycline (r>25mm for sensitive, r<22mm for resistant) and erythromycin (r>22mm for

613  sensitive, r<19mm for resistant); when the isolate showed intermediate resistance, a full MIC
614  measurement was done.

615

616  Results for all tested samples — isolates and metagenomes — are summarized in Supplementary
617 Table 3.

618

29


https://doi.org/10.1101/403204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/403204; this version posted August 7, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

619  Data, implementation and availability

620

621  RASE was developed using Python, GNU Make, GNU Parallel®®, Snakemake®®, and the ETE 37° and
622  PySam®? libraries, and was based on ProPhyle (commit b55e026). Bioconda’* was used to ensure
623  reproducibility of the software environments. All code, the generated databases and other

624  supplementary materials are available under the MIT license from https://github.com/c2-

625 d2/rase-supplement. The analyses in the paper were performed with the following versions of

626  the RASE databases: “N. gonorrhoeae GISP USA v1.4” and “S. pneumoniae SPARC USA v1.3”.

627  Sequencing data for all experiments can be downloaded from Zenodo (accession:

628  ‘10.5281/zenodo.3346055’); for the metagenomic experiments, only the filtered datasets (i.e.,
629  after removing the remaining human reads in silico) were made publicly available.
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837  Supplementary notes

838

839  Supplementary Note 1. Out of all 616 pneumococcal strains (Supplementary Table 4a), after the
840 ancestral reconstruction step 485 were associated with susceptibility to ceftriaxone, 484 to

841  erythromycin, 341 to benzylpenicillin, 480 to trimethoprim-sulfamethoxazole, and 551 to

842  tetracycline (Supplementary Table 5a). In case of gonococcus, ancestral reconstruction was

843  needed only for cefixime (62 records affected). Out of all 1102 gonococcal strains

844  (Supplementary Table 4b), 808 were associated with susceptibility to azithromycin, 833 to

845  cefixime, 508 to ciprofloxacin, and 1033 to ceftriaxone (Supplementary Table 5b). In our

846  subsequent experiments, if original MIC data were not available for the best match in the RASE
847  database, the relevant strain was tested to confirm resistance phenotype (Methods).

848

849  Supplementary Note 2. We evaluated how long it took for resistance genes to be reliably

850 detected in nanopore reads. For SPO2 we observed that at least 25 minutes were needed to

851 detect resistance (i.e., to observe all resistance genes at least once), assuming that the genes in
852  question can be unambiguously identified in nanopore data despite the high per-base error rate,
853  and that the presence of the loci is directly linked to the resistance phenotype (Supplementary
854  Figure 2). If this is not the case (for example if resistance is conferred by a single SNP, requiring
855  coverage with multiple reads), further delays would be expected. Thus, genomic neighbor typing
856  can offer a time advantage compared to methods based on identifying the presence of resistance
857 genes even in a sample of DNA from a purified isolate as opposed to a metagenome, potentially
858 allowing for more rapid changes to antimicrobial therapy.

859

860 Supplementary Note 3. We originally attempted to evaluate a multidrug-resistant isolate

861 (GCGS0938 in the GISP collection); however, RASE placed it onto a distant part of the phylogeny
862  and identified it as GCGS0324 or GCGS1095. A subsequent analysis revealed that the sample was
863 mislabeled and that it was indeed GCGS1095, i.e., the same strain as in GCO2, although from a
864  different stock.
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865

866 Supplementary Note 4. We evaluated how RASE performs in extremely unfavorable sequencing
867 conditions; we sequenced an isolate (GCO5) from the GISP collection with the use of an expired
868 flow cell (purchased in October 2017, expired in December 2017, and the sequencing done in
869  April 2018). In consequence, we obtained only 3.5 Mbps of low-quality reads (only 7% of

870  matching k-mers compared to 20% obtained in the other isolates) (GCO5 in Table 2a). An

871  experiment with such a low yield would normally be discarded; despite that RASE provided

872  correct and stabilized predictions (once the first long read was obtained from the sequencer at
873  t=21mins).

874

875  Supplementary Note 5. We evaluated how genomic neighbor typing would perform if RASE used
876  Kraken®! instead of ProPhyle? for the read-to-strain comparison (the matching step in Figure 1).
877  Both tools use k-mer-based matching to assign sequencing reads to a phylogenetic tree, but with
878  several key differences. Whereas Kraken stores for each k-mer the lowest common ancestor

879  (LCA) only, assigns reads to the LCA of the best hits and ignores low-complexity k-mers, ProPhyle
880 indexes all k-mers using an exact index and can thus resolve ambiguities both on the level of

881 individual k-mers and read assignments.

882

883  To compare both tools, we implemented a RASE wrapper for Kraken (Methods) and applied that
884  tothe same read and database data. We then compared the final inference results obtained with
885  Kraken (with k=18 and k=31) with the results obtained from the standard RASE pipeline

886  (Supplementary File 2).

887

888  For S. pneumoniae and N. gonorrhoeae, the number of inference errors increased more than 1.5x
889  and 1.7x, respectively (in case of both k-mer sizes). In the case of N. gonorrhoeae, RASE-Kraken
890 showed large systematic biases in neighbor typing, assigning 16 (k=18) and 18 (k=31) out of the
891  gonococcal 33 samples to a single strain (GCGS1028), whereas RASE-ProPhyle identified this

892  strain only once. While in the WHO dataset the numbers of RASE-ProPhyle and RASE-Kraken
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893  errors were comparable (10 vs. 12 and 11), in the RaDAR-Go dataset it increased from 1 to 8 and
894  10. Overall, the obtained results suggest that Kraken is less suited for the use in genomic

895  neighbor typing than ProPhyle.

896

897  Supplementary Note 6. We analyzed the results of the WHO gonococcal samples

898  (Supplementary Table 1). First, we evaluated the RASE ability to predict MLST sequence types. In
899  all cases, either RASE predicted the correct sequence type (n=9), or the true sequence type was
900 not present in the reference database (n=5). The latter was the case only in the samples F

901 through P, which belonged to the initial 2008 WHO reference panel and were collected primarily
902 inthe late 1990s, with the majority of specimens isolated from the Eastern Hemisphere’?. The
903  GISP database, comprising strains collected in the US from 2000-2013, may not be

904 representative then of the circulating lineages in those regions during that time span, which

905 could result in both sequence type and antibiogram prediction errors. However, we observed
906 perfect prediction of sequence types in the additional 2016 WHO reference strains comprising U
907 through Z that were collected in 2007 and onwards®°.

908

909 We next sought to evaluate the resistance predictions. In 7 cases (F, K, N, O, P, U, W), the

910 antibiograms were identified fully correctly; in 4 (G, V, X, Z) and 3 cases (L, M, Y) one and two
911 mistakes were made, respectively. To explain these discrepancies, we inferred a recombination-
912  corrected phylogenetic tree comprising the GISP database isolates as well as the WHO samples
913  (Supplementary File 1). With the exception of G and Y, the WHO isolates and their respective
914  RASE-predicted best matches were the closest GISP isolates, indicative of accurate matching by
915  RASE. While branch lengths of L, M and V on the tree reveal that the corresponding parts of the
916  phylogeny are not well sampled in the database, the X, Y, and Z samples emerged from lineages
917 that are well-represented but have acquired an atypically high level of cephalosporin resistance.
918 Whereas X and Z acquired a novel resistance-conferring mosaic penA allele’?, Y acquired a novel
919  active site mutation in the context of a pre-existing mosaic penA allele’. While both of these

920 adaptations resulted in high-level resistance, these mutations also appear to incur fitness costs in

41


https://doi.org/10.1101/403204
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/403204; this version posted August 7, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

921 vitro and in the gonococcal mouse model’. In line with this, these strains have only been

922  sporadically observed in genomic surveillance of clinical isolates. These results highlight how
923  ancestral or emerging resistant lineages may not be well-captured by sequence-based methods
924  including RASE and emphasize the value of continuous updating of the RASE database for public
925  health.

926

927  Supplementary Note 7. Further analysis of the reads from SP12 using Krocus’® suggested that
928 the pneumococcal DNA present was from the ST180 clonal complex, and matched specifically
929 either to the sequence type ST180 or ST3798. This is consistent with identification as serotype 3,
930 because this clonal complex contains the great majority of strains with this capsule type, which
931 historically has not been associated with resistance’’. However, improved sampling and study of
932 this lineage has recently found highly divergent subclades that are associated with resistance.
933  These lineages were previously rare, and thus were less likely to be included in our database, but
934  now are increasing in frequency’®. In this case, ST3798 is found to be in clade 1B, which is

935 notable for exhibiting sporadic tetracycline resistance. Again, the failure to match to thisis a

936 result of the original database not containing a suitable example for comparison.

937

938
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Supplementary Figure 1: Size and memory footprint of the S. pneumoniae and N. gonorrhoeae RASE
databases. The graph compares the size of the ProPhyle RASE index to the size of the original sequences: original
draft assemblies (seq—fa), original draft assemblies compressed using gzip (seq-fagz), memory footprint of ProPhyle
with the RASE index (ind—mem), and size of the ProPhyle RASE index compressed for transmission (ind—transm).
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Supplementary Figure 2: Timeline of resistance genes. Number of occurrences of individual resistance genes
in reads of SP02, as a function of time for the first hour of nanopore sequencing.
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Supplementary Figure 3: MIC intervals for individual strains in the S. pneumoniae RASE database. The plot
illustrates MIC intervals and point values extracted from. Each panel corresponds to a single antibiotic, while vertical

lines and points correspond to individual strains. Their colors correspond to the resistance category after applying a
breakpoint (horizontal lines). When a resistance category could not be assigned directly (i.e., in case of an interval
crossing the breakpoint line), then it was inferred using ancestral state reconstruction.
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Supplementary Figure 4: MIC intervals for individual strains in the N. gonorrhoeae RASE database. The
figure is of the same format as Supplementary Figure 3.
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Supplementary Figure 5: Ancestral state reconstruction of resistance categories in the S. pneumoniae RASE
database. Each panel corresponds to a single antibiotic and displays the database phylogenetic tree, colored ac-
cording to the reconstructed resistance categories for the antibiotic (blue, green, red, violet correspond to ‘suscep-
tible’, ‘'unknown — inferred susceptible’, ‘non-susceptible’, ‘unknown — inferred non-susceptible’, respectively).
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Supplementary Figure 6: Ancestral state reconstruction of resistance categories in the N. gonorrhoeae
RASE database. The figure is of the same format as Supplementary Figure 5.
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Supplementary Figure 7: Subword complexity of pneumococcus. The plot depicts the number of canonical
k-mers as a function of k for S. pneumoniae ATCC 700669 (GenBank accession: ‘NC_011900.1’) and for a random
DNA text containing all possible k-mers. For k£ < 10, the pneumococcus k-mer composition is similar to the one
of random text. For £ > 14, the k-mer sets are almost saturated and the complexity grows very slowly. Since the
genome length is finite and bacterial chromosomes are circular, the function attains its maximum at the genome size
(2,221, 315 in this case). The highlighted region corresponds to the range of values of &, which are suitable for use
in RASE.
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Supplementary Figure 8: Delays in prediction based on the k-mer length. The plot displays delays in prediction
as a function of the used k-mer length, for selected experiments and all possible k-mer lengths. Each horizontal
panel displays times required for stabilization of one of the three predictions: the lineage, the alternative lineage,
and the closest strain. Every column within a panel corresponds to a single k-mer length. When the required time
exceeded 1 hour, the point is displayed at the top. Experiments where lineage could not be identified are plotted
in red. The highlighted column corresponds to the k-mer length used for constructing the RASE databases in this
paper.
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Supplementary File 1: Comprehensive phylogenetic tree for N. gonorrhoeae. A recombination-corrected tree
in the Newick format comprising the GISP database isolates and the WHO samples.

Supplementary File 2: Comparison of ProPhyle- and Kraken-powered genomic neighbor typing. The spread-
sheet shows the final resistance and susceptibility inference calls for the ProPhyle (k=18) and Kraken (k=18 and

k=31) classifiers plugged into RASE; erroneous calls are highlighted in red.

WHO Iineages

Lineage Antibiogram Antibiogram Antibiogram Antibiogram
Sample Region confidently Ma:_-:::: k- AZMBest CFMBest CIPBest CROBest nli:;.tsc':"
detected Actual G Actual e Actual e Actual e
WHO F (2008) Canada no 17% S S! S S S S S S OoD
WHO G (2008) Thailand no 14% S S S S S R S S 0OoD
WHO K (2008) Japan yes 20% S S R R R R S S yes
WHO L (2008) Asia yes 20% S S S R R S R R OoD
WHO M (2008)|  Philippines yes 21% S R S S R S S S yes
WHO N (2008) Australia no 19% S S S S R R S S 0OoD
WHO O (2008) Canada yes 20% S S S S S S S S yes
WHO P (2008) USA yes 19% R R S S S S S S OoD
WHO U (2016) Sweden yes 20% R R S S S S S S yes
WHO V (2016) Sweden yes 19% R S S S R R S S yes
V(VZI-(I)C;SV)V Hong Kong yes 20% S S R R R R S S yes
WHO X (2016) Japan yes 21% S S R R R R R S yes
WHO Y (2016) France no 18% S S R S R R R S yes
WHO Z (2016) Australia yes 19% S S R R R R R S yes

Supplementary Table 1: Predicted phenotypes of N. gonorrhoeae for the WHO lineages. The table is in the
same format as Table 1.
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Supplementary Table 2: Additional MIC measurements for selected strains. The table displays results from
strain retesting. Each record contains date when the retesting was done, the antibiotic, the measured MIC, and the
corresponding resistance category.

Supplementary Table 3: Overview of performed resistance tests. For all sequencing experiments, the table
displays the best matching strains, their MICs, and all measurements of database MICs (the original reported values
or categories inferred using ancestral state reconstruction when not available, retested values, and the resulting
resistance categories).

Supplementary Table 4: Metadata for all strains included in the a) S. pneumoniae and b) N. gonorrhoeae
RASE database. Each record contains the strain’s taxid, lineage, serotype (for S. pneumoniae only), MLST se-
quence type, order in the phylogenetic tree, and three fields related to resistance for every antibiotics: the *_mic’,

_int’, ‘_cat’ fields contain the original published MIC information (possibly corrected after retesting), the extracted
MIC interval, and the resulting category after ancestral state reconstruction (S = susceptible, R = non-susceptible, s
= unknown but reconstructed susceptible, r = unknown but reconstructed non-susceptible), respectively.

Supplementary Table 5: Prevalence of resistance phenotypes across lineages in the a) S. pneumoniae and
b) N. gonorrhoeae RASE database. Statistics on prevalence of resistance phenotypes across lineages before and
after the ancestral state reconstruction step.

Supplementary Table 6: Sensitivity and specificity of resistance and susceptibility inference in all the
datasets. The table shows the number of true positive (TP), true negative (TN), false negative (FN), and false
positive (FP) calls for resistance/susceptibility in individual datasets and the resulting sensitivity and specificity.
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