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Abstract

Large-scale brain dynamics measures repeating spatiotemporal connectivity patterns that re-
flect a range of putative different brain states that underlie the dynamic repertoire of brain
functions. The role of transition between brain networks is poorly understood and whether
switching between these states is important for behavior has been little studied. Our aim here
is to model switching between functional brain networks using multilayer network methods
and test for associations between model parameters and behavioral measures. We calculated
time-resolved functional MRI (fMRI) connectivity from one-hour long data recordings in 1003
healthy human adults from the Human Connectome Project. The time-resolved fMRI connec-
tivity data was used to generate a spatiotemporal multilayer modularity model enabling us to
quantify network switching which we define as the rate at which each brain region transits be-
tween different fMRI networks. We found i) an inverse relationship between network switching
and connectivity dynamics —defined as the difference in variance between time-resolved fMRI
connectivity signals and phase randomized surrogates—; ii) brain connectivity was lower dur-
ing intervals of network switching; iii) brain areas with frequent network switching had greater
temporal complexity; iv) brain areas with high network switching were located in association
cortices; and v) using cross-validated Elastic Net regression, network switching predicted inter-
subject variation in working memory performance, planning/reasoning and amount of sleep.
Our findings shed new light on the importance of brain dynamics predicting task performance
and amount of sleep. The ability to switch between network configurations thus appears to be
a fundamental feature of optimal brain function.
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Introduction networks where nodes are connected across time and space.

. o Multilayer networks can be decomposed into modules that
Functional MRI (fMRD) l}as 51gn}ﬁcant1y enhar}ced OUL span time and space using a multilayer modularity algorithm
knowledge about human brain function (Bandettini, Wong, (Mucha, Richardson, Macon, Porter, & Onnela, 2010) that
Hinks, Tikofsky, & Hyde, ,1 992; Kwong et al., 1992; Ogawa estimates the spatiotemporal segregation of nodes forming a
et al., 1992), especially in recent years when fMRI data subset of non-overlapping modules or networks. This mul-

has been used to quantify. the brain as a complex network tilayer modularity model has a major advantage over other
(Rubinov & Sporns, 2010; Bullmore & Sporns, 2009). Al- time-resolved fMRI connectivity methods as it provides a

Fho.u gh fMRI-based n§twork analyses have led to several new “temporal link’ or connectivity between adjacent time points.
insights into the spatial and temporal nature of large-scale In other words, the multilayer modularity model allows us
brain network activity (Hutchison et al., 2013; Preti, Bolton, track and quantify temporal changes of each node, and also,
& Van D? Ville, 2017), mgny earl}'/ MRI network stgd@s when they ’switch’ between different module or network as-
treat spatial and temporal information as separate entities, signments (Bassett et al., 2013). Network switching is de-
meaning that brain regions are not interconnected across time fined as the rate at which a brain region transitions between

and space. different functional networks. Note this measure has previ-

Multilayfar network gnalysis (Muldoon & Bz}ssett, 2016; ously been called node flexibility as proposed by Bassett and
De Domenico, 2017) is a novel graph-theoretic model of
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others (Bassett et al., 2013, 2011), however, we prefer the
term node switching which has also been recently used by
Bassett’s group (Telesford et al., 2017). Despite multilayer
modularity being a relatively new technique, a series of stud-
ies suggest that network switching is associated with learning
of simple motor tasks (Bassett et al., 2011), attention (Shine,
Koyejo, & Poldrack, 2016), executive function (Braun et al.,
2015), fatigue (Betzel, Satterthwaite, Gold, & Bassett, 2017)
and depression (Zheng et al., 2017).

These studies suggest that multilayer modularity has an
underlying neurobiological basis; however, it remains un-
known whether network switching is correlated with the dy-
namics, or variance, of fMRI connectivity time-series, and
whether network switching occurs during time-periods of
high or low network connectivity and complexity. It is im-
portant to enhance our understanding about switching and
dynamics of fMRI connectivity in order to reconcile how
state changes and switching of networks (topology analysis)
may relate to statistical dynamics theory (signal analysis). In
an attempt to address these non-trivial questions and gaps in
the literature, we investigate network switching in a multi-
layer modularity model using time-resolved fMRI connec-
tivity data from 1003 healthy adults provided by the Human
Connectome Project (Van Essen et al., 2013). We hypoth-
esize that fMRI-based network switching, and connectivity
dynamics are intrinsically correlated. Given that network
switching is likely to be a ’strenuous’ event for the brain, we
also hypothesize that network switching is associated with
changes in fMRI complexity and connectivity. Lastly, we
hypothesize that network switching is correlated with cogni-
tively demanding behavioral tasks.

Results

Time-resolved fMRI connectivity was estimated with
correlation-based sliding window analysis from 25 brain
nodes (N — all brain nodes were derived from an Independent
Components Analysis across all subjects; all nodes are visu-
alized in Supplementary Figure 1), and 4800 time-points (~1
hour of data — concatenating 4x14.4 min sessions of fMRI
data). We used a window length of 100 seconds (139 time-
points), and a window overlap of 0.72 seconds (1 time-point).
This resulted in 4661 ’time-windows’ (W) forming three-
dimensional correlation coefficient matrices for each subject
with a size of NXNXW. This time-resolved fMRI connectiv-
ity data was used as an input to the multilayer modularity
model, which was an iterative Louvain community detection
algorithm with uniform ordinal temporal coupling between
adjacent time-points (Mucha et al., 2010). The temporal cou-
pling strength of this model is governed by an w parameter,
whereas the topological resolution of modules is governed
by a y parameter. Low/high w provides weak/strong tempo-
ral coupling between adjacent time-points, whereas low/high
v give few/many spatial modules. The most commonly used

parameters in this multilayer modularity algorithm are w =
v = 1. However, to ensure that our results are not affected
by a specific spatial and temporal parameter, we calculated
multilayer modularity across a range of parameter values in-
cludingy =10.9, 1, 1.1]; 0 = [0.5, 0.75, 1], previously found
to have strong spatiotemporal modularity (11). The output of
the multilayer modularity model was a two-dimensional ar-
ray (NXW) containing integer values outlining spatiotempo-
ral nodal network assignments. We then calculated nodal net-
work switching as the proportion of layers (time windows)
in which a node’s network assignment changes (see Figure
1, for an overview).

Switching and dynamics are inversely related

Firstly, we assessed whether network switching was re-
lated to dynamic connectivity. Dynamic connectivity was
defined as the difference between the standard deviation of
all fMRI sliding-windows connection-pairs and the standard
deviation of 500 phase randomized surrogates (correspond-
ing to the null hypothesis of an absence of any dynamics)
(Prichard & Theiler, 1994). An uncorrected p-value was as-
signed to the standard deviation value of each fMRI sliding-
window connection pair corresponding to its relative ‘rank’
compared to the 500 randomized surrogates. For example,
an fMRI connection-pair will have an uncorrected p-value of
0.002 if it has a greater standard deviation value than 499
of the 500 randomized surrogates (calculated as 1-rank/total
number of variables, where rank = 500 out of 501 total
variables). Statistical significance of connectivity dynamics
was then determined using a false discovery rate (Benjamini
& Hochberg, 1995) correction with threshold of g = 0.05,
over all uncorrected p-values. In order to reduce dynamic
connectivity information from the level of connection-pairs
(IN(N = 1)]/2) = 300) to nodes (N = 25), we calculated the
binary sum of all significant dynamic connections associated
with each node. This resulted in a nodal degree metric quan-
tifying the number of dynamic connections associated with
each node.

We found that network switching was inversely correlated
with fMRI-based connectivity dynamics. Averaged over all
subjects, the Spearman’s correlation between nodal network
switching and dynamics ranged between p = -0.49 and -
0.52, across all w and y parameters (Figure 2A — w and y
= 1 shown). Averaged over all brain nodes, the Spearman’s
correlation between subject-level network switching and dy-
namics ranged between p = -0.51 and -0.55, across all w and
y parameters (Figure 2B — w and y = 1 shown).

In line with our prior hypothesis, topological switching
and signal dynamics of networks are (inversely) correlated.
This finding raises the possibility that the switching brain
is associated with an overall reduction of brain connectiv-
ity, here sliding-window correlations. To further test this as-
sumption, we calculated the average correlation coefficient
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Figure 1. An overview of network switching within a multilayer modularity network with 6 nodes and 3 time-windows (window
1, window 2 and window 3) and 2 modularity partitions (red = network 1; blue = network 2). This example shows 2 switching
events exemplified when node changes between red and blue colors between time-points (solid black line between time-points).
Solid grey lines correspond to within-layer, or topological, connectivity. Dashed grey lines correspond to between-layer, or

temporal, connectivity.

of each sliding window correlation matrix corresponding to
time-widows when brain regions switch between networks
versus time-windows when brain regions do not switch be-
tween networks. Given that variation in w and vy had a negli-
gible impact, we henceforth only consider w and y = 1.

Switching is frequent when network connectivity is low

The (absolute) average sliding-window correlation coef-
ficient of all possible pair-wise correlations between nodes
was significantly lower during time-windows when nodes
switch between networks (i.e., between two neighboring lay-
ers when the ’switch’ occurred), compared to time-windows
when nodes do not switch between networks (Hedges’ g ef-
fect size = 1.46; 95" percentile confidence interval = 1.22-
1.67; df = 2004; p <0.0001 — Figure 2C). This suggests
that network switching occurs during periods of low network
connectivity. Given that this analysis was conducted in the
topological domain, we next wanted to elucidate whether
temporal complexity was also affected by network switch-
ing. To this end, we calculated entropy (signal complexity)
of brain nodes that switch networks most frequently versus
brain nodes that switch networks least frequently.

Association between signal complexity and switching

We found significantly higher sample entropy (Richman
& Moorman, 2000) (parameter values were M = 2; r = 0.2
times the standard deviation of signals) values of sliding-
window correlation time-series in the five brain regions with
highest rate of network switching (superior parietal lobule,
precuneus, left frontoparietal lobe and right frontoparietal
lobe and right intraparietal sulcus), compared to the five brain

regions with lowest rate of network switching (secondary vi-
sual cortex, superior temporal lobe, primary motor cortex
and left cerebellum and right cerebellum). Hedges’ g effect
size = 1.32; 95 percentile confidence interval = 1.11-1.53;
df = 2004; p <0.0001 (Figure 2D). This finding suggests
that network switching is associated with temporally com-
plex fMRI connectivity signals.

Insofar, our results suggest that i) switching and dynamics
are negatively correlated, ii) switching time-windows have
lower correlations in the topological domain and iii) fre-
quently switching nodes have greater complexity in the tem-
poral domain. Following this, we next sought to localize
which cortical and subcortical regions switch the most.

Switching is most frequent in association cortex

We observed a divergent spatial pattern between network
switching and functional dynamics. Higher switching was
observed in association cortex compared to primary cortex
(hot colors in Figure 2E) whereas the converse pattern was
evident for connectivity dynamics (hot colors in Figure 2F).
In Figure 2G, we report results from a paired t-test outlin-
ing nodal differences between switching and dynamics. In
total, 24 of 25 brain nodes were statistically different be-
tween switching and connectivity dynamics after correcting
for multiple comparisons (False Discovery Rate, g = 0.05).
The only brain region not statistically significant between
switching and dynamics was the secondary visual cortex (see
node 4 in Supplementary Figure 1).

In light of these spatial network findings (Figure 2 E-
F), we next aimed to confirm that the multilayer modu-
larity algorithm delineated spatial modules conforming to
well-known resting-state networks. A module consensus
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Figure 2. Scatter-plot between network switching and connectivity dynamics A) Each data-point denotes a single node, aver-
aged across all subjects; B) Each data-point denotes a single subject, averaged across all nodes; C) During time-windows with
network switching (cyan color), nodes display significantly lower absolute sliding-window correlations than time- windows
with no switching (magenta color). D) Average Sample Entropy in the 5 nodes with most network switching (cyan color) was
significantly higher than the 5 brain nodes with lowest network switching (magenta color). E) Network switching was high in
association cortices and low in primary cortices. F) Dynamic connectivity was high in primary cortices and low in association
cortices. G) Paired t-test difference between the 25 nodes in E and F. Data for all 25 brain nodes were normalized into z-scores
so ensure both connectivity dynamics and switching values were scaled equally and appropriate for univariate t-test analysis.

map was generated using a group-averaged agreement ma-
trix that contains probability values [0,1] denoting the num-
ber of times node-pairs share the same module divided
by the number of possible times two nodes can share the
same module. By computing a Louvain clustering algo-
rithm of the group-averaged agreement matrix (Lancichinetti
& Fortunato, 2012), we obtained five well-known mod-
ules, or networks, common to all subjects including: i) pri-
mary sensory cortices, ii) secondary sensory cortices, iii)
salience/subcortical network, iv) fronto-parietal network and
v) default mode network (see Supplementary Figure 2).

Relationship between switching and behavior

Lastly, we aimed to test whether switching predicted inter-
individual variation in behavior and task performance. Given
that the Human Connectome Project offers a wealth of be-
havioral information (Barch et al., 2013), we wanted to use
a data-driven regression approach without any prior bias. To
this end, we included 50 behavioral variables comprising be-
havioral domains such as cognition (working memory, atten-
tion, executive functioning, planning, reasoning and gam-
bling), social functioning, personality traits, physical func-
tion and sleep. Although we used a data driven regression
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Figure 3. Scatterplots between Elastic net predicted and rescaled behavioral variables (y-axes) and original values (x-axes).
Stippled lines are the best linear fit between predicted and original values. Each data-point denote a subject.

approach, we hypothesized that the subset of tasks important
for “higher-order’ or ’frontal lobe’ function would be most
important for efficient brain network switching. These cogni-
tive tasks include: i) the Flanker task (cognitive inhibition); i)
card sorting task (cognitive flexibility); iii) processing speed
(general cognitive ability); iv) N-back task (working mem-
ory); and v) relational task (planning and reasoning).

We used Elastic net regression (Zou & Hastie, 2005) to
test whether any of the 50 behavioral domains (independent
variables) predicted whole-brain averaged network switching
(dependent variable). Elastic net regression is well suited to
data-driven regression analysis as it provides a sparse out-
put by removing all behavioral data deemed to be unrelated
to network switching. Elastic net is governed a regular-
ization parameter A that alters the sparsity and variability
of the regression model. The regularization parameter was
determined with 10-fold cross validation (Lachenbruch &
Mickey, 1968). The minimum mean square error (0.028)
was achieved with a regularization parameter A = 0.023 (see
Supplementary Figure 3). At this value, behavioral data
accounted for ~3% of the total variance of fMRI network
switching data (r? = 0.029, defined as 1-[residual sum of
squares/total sum of squares] of the regression model). This
12 value was significantly higher than expected due to chance
(p <0.001, compared to r* estimates from 500 randomly gen-
erated Elastic Net regressions).

The Elastic net regression result at A of 0.023 showed that
3 of 50 behavioral domains were weakly, but significantly,
related to network switching (note that Elastic net regression
B values were zero for all other 47 measures): i) number of
hours of sleep the night before the MRI scan (Spearman’s
correlation between switching and hours of sleep was p =
0.14, p <0.0001; Elastic net regression S was 0.071; the
Spearman’s correlation between original and predicted data
was p = 0.86 — Figure 3 left); As hypothesized, higher-order
functions were also correlated with switching: ii) accuracy of
N-back task using the average accuracy score from the 0- and

2-back tasks, important for working memory (Spearman’s
correlation between switching and N-back task was p = 0.11,
p <0.0001; Elastic net regression 8 was 0.036; the Spear-
man’s correlation between original and predicted data was p
= 0.54 — Figure 3 middle); and iii) relational task involved
in planning and reasoning (Spearman’s correlation between
switching and relational task was p = 0.11, p <0.0001; Elas-
tic net regression S was 0.017; the Spearman’s correlation
between original and predicted data was p = 0.46 — Figure 3
right).

Discussion

By leveraging the information-rich brain imaging dataset
(approximately one-hour fMRI recordings from 1003 sub-
jects) provided by the Human Connectome Project (Van Es-
sen et al., 2013) we found that fMRI network switching was
inversely correlated with the dynamics of fMRI connectivity
(Figure 2 A-B), with most prominent network switching in
association cortices (Figure 2 E). Although it is unlikely that
these high switching nodes (e.g., bilateral frontal and pari-
etal cortex) do not exhibit dynamic activity, they do not con-
form to our current metric of standard deviation as a proxy of
dynamic connectivity, suggesting they have unchanging sta-
tistical properties over time. We also found that brain nodes
switch between networks during time-windows with low net-
work connectivity (Figure 2C), and high-switching nodes
were more ‘temporally complex’ —estimated with Sample
Entropy— compared to low-switching nodes (Figure 2D).
Switching is known to increase in systems with high entropy
or information load (Amigd, Kloeden, & Giménez, 2013).
We consequently hypothesize that our observed relationship
between brain network switching and high entropy/low net-
work connectivity may be related to increased information
load imposed on specific brain regions, especially those lo-
cated within the association cortex (e.g., bilateral fontal and
parietal cortex) known to integrate information between a
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range of different networks (Van Den Heuvel & Sporns,
2011).

Network switching also predicted inter-subject behavior,
using data-driven Elastic net regression (Figure 3). Even
though we included a range of behavioral variables such as
personality traits, physical performance, emotion and well-
being, behaviors that tap into association cortex function
were predicted by network switching, including working
memory and planning/reasoning (Courtney, Petit, Maisog,
Ungerleider, & Haxby, 1998). We noted a resemblance be-
tween our spatial network switching map displayed in Figure
2D and previous task-based fMRI studies of working mem-
ory tasks (Wager & Smith, 2003), with prominent bilateral
frontal and parietal cortices important for higher-order cog-
nitive functions. Notably, network switching predicted the
amount of sleep that participants had the night before the
MRI scan. As all participants were instructed to keep their
eyes open during the whole scan, falling asleep in the scanner
cannot explain this finding. Sleep impacts on the same do-
mains of brain performance as seen in this study (Alhola &
Polo-Kantola, 2007) and findings by (Betzel et al., 2017) also
suggest that fatigue may be an important "driver’ for network
switching. Taken together, this suggests that the impact of
sleep deprivation on cognitive performance may be mediated
through its effect on brain network switching.

The computational complexity of multilayer network
analyses was a limitation of our study as high spatial and/or
temporal resolution of multilayer networks results in very
large networks as they are connected in both time and space
([((NXW)(NXxW)] ~ 10'° data points per subjects in this
study). Given that we needed to include many time-windows
(here, 4800 time-windows) to statistically detect fMRI dy-
namic connectivity —this was previously demonstrated by
(Hindriks et al., 2016), and further validated in this study
as seen in Supplementary Figure 4—, we needed to keep the
spatial resolution of fMRI data rather coarse (here, 25 brain
nodes). We hope that more efficient computational methods
will be developed in the future to enable assessment of multi-
layer network modularity in fMRI data with high spatial and
temporal resolution.

It is worth noting that the main limitation of only having
25 network nodes is the so-called ’resolution limit’ of modu-
larity algorithms. This means that at some point there are in-
sufficient number of nodes that can converge into segregated
and non-overlapping modules. The resolution limit did not
appear to be a problem in the current study as nodes were
readily sub-divided into five well-known ’resting-state net-
works’ across subjects associated with relatively high mod-
ularity scores (Q = ~0.6) serving as a quality function of
the obtained multilayer modularity partitions (Supplemen-
tary Figure 2).

Methods and Materials
Subjects, fMRI data and processing

We used resting state fMRI data from 1003 healthy
adults from the Human Connectome Project (Van Essen
et al.,, 2012) (female subjects = 534/1003; male subjects
= 469/1003) and Institutional Review Board approval was
considered unnecessary for the current study. fMRI recon
r177+1227 data was used and subject were between ages of
22 and 35 years. fMRI parameters included: echo time =
33.1 ms; field of view = 208x180 mm?2; number of slices =
72; voxel size = 2 mm?® and flip angle = 52°. We used four
fMRI scans for each subject (14.4 minutes per scans where
subjects were instructed to keep their eyes open). At a rep-
etition time of 0.72 seconds there were 1200 time-points in
each scan - we concatenated all four scans into continuous
fMRI time-series comprising 4800 time-points.

The fMRI data of each subject was preprocessed by the
Human Connectome team with echo planar imaging gradi-
ent distortion correction, motion correction, field bias cor-
rection, spatial transformation and normalization into a com-
mon Montreal Neurological Institute space (Glasser et al.,
2013), and artefact removal using Independent Component
Analysis FIX (Salimi-Khorshidi et al., 2014). A group-level
Independent Component Analysis was used to define the 25
brain nodes of interest, common across all subjects. We ad-
ditionally filtered the fMRI data between frequencies of 0.01
and 0.1 Hz.

fMRI correlation-based sliding-windows analysis

We used a Pearson’s correlation-based sliding window
analysis to estimate time-resolved fMRI connectivity. Pear-
son’s correlation coefficient between two fMRI time-series
(Zalesky, Fornito, Cocchi, Gollo, & Breakspear, 2014; Keil-
holz, Magnuson, Pan, Willis, & Thompson, 2013; Peder-
sen, Omidvarnia, Zalesky, & Jackson, 2018) X[f] and Y[¢]
of length 7 is written as:

. Y (X[ - X)(Y[1] - 7)
\/ZL(XM -X)? \/ZL(YM -Y)?

where X and X denote sample means and r ranges from
-1 (full anti-correlation) to 1 (full correlation). Here, the
pair-wise correlation coefficient between 25 brain regions-
of-interest were calculated based on a fixed window length
consisting of 139 fMRI time-point (100 seconds), which sat-
isfies the 1/fy wavelength criterion for a minimum cut-off fre-
quency of 0.01Hz (Leonardi & Van De Ville, 2015; Zalesky
& Breakspear, 2015). Windows were shifted with single-
frame increments resulting in a total number of 4661 win-
dows. We tapered each correlation-based window with a
Hamming function to mitigate edge-artefacts of the windows
and attenuate potentially noisy signals.

o))
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Multilayer modularity and network switching

To quantify spatiotemporal network switching we used
an iterative and ordinal Louvain algorithm to track network
function over time (Mucha et al., 2010) (implemented with
codes from Lucas G. S. Jeub, Marya Bazzi, Inderjit S.
Jutla, and Peter J. Mucha, ’A generalized Louvain method
for community detection implemented in MATLAB,;
http://netwiki.amath.unc.edu/GenLouvain (2011-
2016)). Modularity is quantified by Q ranging from 0 (low
network segregation) to 1 (high network segregation). This
measure is governed by y and w parameters, which deter-
mine the strength of topological and temporal connectivity,
respectively. Multilayer modularity is written as following:

_ 1 o Kk Y
Oy, w) = ZZ (A = 757, 10(M i, M) o

+ 5([, ./) : wjrs]é(Miss M/r)

Ajjs is the sliding window correlation matrix between node
i and j, for time-point s whereas % (k = node degree at
time-point s; m = sum degree of all nodes at time-point s)
denote the Newman-Girvan null model of intra-network con-
nectivity. As this multi-layer modularity algorithm only al-
lows positive matrix values, we removed all negative correla-
tions in the sliding-window matrices, A. y; is the topological
resolution parameter of time-point, or ’layer’, s, and wjy., is
the temporal coupling parameter for node j between time-
point r and s. Then, 6(M;;M ;) and 6(M;;M ;) are 1 if nodes
belong to in the same module, and O if they do not belong
to the same module (M). This process was, on average, iter-
ated 5 times before the inherent heuristics of the multilayer
modularity algorithm converged. Networks had an average
Q-value of 0.59 + 0.012 s.d., and an average of 3 modules
per subject (range: 2-6 modules). The final output of the
multilayer modularity algorithm was a two-dimensional ar-
ray (NxW) with integer values denoting modules with strong
within-network connectivity. The switching rate for each
node was then estimated as the percentage of time-windows
when a brain node transitions between different network as-
signments.

As discussed previously, it is non-trivial to select v and
w parameters and we used a range of parameters including
v =109, 1, 1.1] and w = [0.5, 0.75, 1]. As shown in Sup-
plementary Figure 5, the temporal y parameter appeared to
alter spatiotemporal modularity more than the topological w
parameter. Specifically, lower w values led to increased net-
work switching. Nodes switched 1.48% of time for w = 1;
1.55% of time for w = 0.75; and 1.61% of the time for w =
0.5, at a constant y value of 1.

fMRI dynamic connectivity

The standard deviation of fMRI sliding-windowed cor-
relation time-series between node pairs was here used as
a proxy of dynamic connectivity, where high standard
deviation indicates greater signal dispersion from mean
correlation-based sliding window time-series. To deter-
mine whether our obtained standard deviation values of
time-resolved fMRI connectivity likely reflect ’true dynam-
ics’ (meaning that we obtain information from this measure
that cannot be obtained in time-averaged, or static, analy-
sis), we compared standard deviation between original and
phase randomised data where fMRI time-series were phase
shuffled in the Fourier domain while preserving the power
spectral magnitude and the correlational nature of the data
(Prichard & Theiler, 1994). We obtained 500 phase ran-
domized signals and used False Discovery Rate (¢ = 0.05)
to reduce probability of type-I errors given that each subject
has 300 unique comparisons. In total, 28.9 % of node-pairs
were deemed "dynamic’ after correcting for multiple compar-
isons. To convert the dynamic connectivity data from matrix
(I(N(N - 1)/2)] = 300) to node (N = 25) space, we summa-
rized the (binary) number significant connections for each
of, resulting in a degree metric summarized how ’dynamic’ a
node is.

Sample Entropy

We used Sample Entropy to estimate the difference in tem-
poral complexity of time-resolved fMRI connectivity signals
between 5 nodes with most network switching and 5 nodes
with least network switching. We used a epoch length, M, of
2 and a tolerance parameter, 7, of 0.2 X the standard deviation
of the signal. See (Richman & Moorman, 2000), for more
information about Sample Entropy. In brief, a low Sample
Entropy score suggests a signal is regular or whereas a high
Sample Entropy score suggests the signal is random or un-
predictable.

Cross-validated Elastic net regression

We used Elastic net regression to test whether whole-brain
averaged network switching predicted 50 behavioral vari-
ables across subjects. Elastic net enables data-driven regres-
sion analysis by enforcing sparsity of regression output val-
ues (i.e., reducing the number of final S regression values).
In other words, it provides automatic variable selection by
removing all behavioral variables not predicted by network
switching.

Given that network switching data and behavioral data
had different numerical scales, we normalized all input data,
x, which denotes both switching data and the 50 behavioral
variables.

=" 3)
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This resulted in variables, x’, with values between -1 and
1. The Elastic net equation is then written as (y = a vector
of size 11003 containing subject-specific information from
whole brain averaged network switching data; X = an ar-
ray of size 50x1003 containing subject-specific information
from 50 behavioral variables):

BoB i=1
+ 2 [1(1 — ) +alp |]}
=12 ! Ar

This is a doubly penalized regression model using both
LASSO regression (@ = 0; an [-1 penalty resulting in a sparse
but uncorrelated 8 values) (Tibshirani, 1996) and Ridge re-
gression (¢ = 1; an [-2 penalty resulting in a variance-
reducing, but non-sparse S8 values) (Hoerl & Kennard, 1970).
We set the a value to 0.5 to take advantage of the relative
strengths of the two above regression approaches, provid-
ing a non-sparse solution with low-variance among several
correlated behavioural independent variables (Supplemen-
tary Figure 6).

To select a A threshold, which determines the overall spar-
sity of the regression model, we calculated Elastic net’s over
a range of different A values between O and 1 with incre-
ments of 0.001 (total of 1001 A values) using 10-fold cross-
validation (=900 people were trained and ~100 people were
left out for testing, repeated 10 times until all subject have
been left out once for training). The ’optimal’ threshold had
lowest mean square error over all possible A’s across the 10-
folds. We found A = 0.023 had the lowest mean square error
of 0.028 (see Supplementary Figure 3).

As reported in the main text, our results showed network
switching predicted 3 of 50 behavioral variables. We defined
prediction as:

n P 2
ﬁojg = argmin{ Z ()’i -Bo - Zﬂjxij)
j=1

“

Prediction = X8 + 83, ©)

where X is the original matrix values of our 3 behavioural
variables and 3, is the intercept of the Elastic net regression
model.
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Appendix
A) Dynamic connectivity can be detected B) An example of a dynamic and non-dynamic
in long fMRI recordings fMRI signal
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Figure S4. A) Increased probability of statistically significant
node 11 node 12 node 13 node 14 node 15 connectivity dynamics in long fMRI recordings. B) examples

0 * of dynamic/non-dynamics fMRI connectivity signals
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Figure S1. Brain nodes used in this study
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Figure S5. Effects of different spatial y (y-axis) and temporal
Figure S2. Group-consensus partition based on multilayer ) (x-axis) on network switching (color-scale)

network modularity model — module number 1: frontopari-
etal network; module number 2: primary sensory cor-
tices; module number 3: secondary sensory network; mod-
ule number 4: fronto-parietal network; module number 5:
salience/subcorical network.
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Figure S3. Mean square error -y-axis- of the 10-fold cross- Figure S6. Distribution of correlations between task perfor-
validated Elastic net regression, across a range of A -x-axis- mance across subjects (50 tasks and conditions)
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