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Abstract
Recent prostate cancer screening trials have given conflicting results and it is unclear

how to reduce prostate cancer mortality while minimising overdiagnosis and
overtreatment. Prostate cancer testing is a partially observable process, and planning
for testing requires either extrapolation from randomised controlled trials or, more
flexibly, modelling of the cancer natural history.

An existing US prostate cancer natural history model (Gulati et al, Biostatistics
2010;11:707-719) did not model for differences in survival between Gleason 6 and 7
cancers and predicted too few Gleason 7 cancers for contemporary Sweden. We
re-implemented and re-calibrated the US model to Sweden. We extended the model to
more finely describe the disease states, their time to biopsy-detectable cancer and
prostate cancer survival. We first calibrated the model to the incidence rate ratio
observed in the European Randomised Study of Screening for Prostate Cancer (ERSPC)
together with age-specific cancer staging observed in the Stockholm PSA
(prostate-specific antigen) and Biopsy Register; we then calibrated age-specific survival
by disease states under contemporary testing and treatment using the Swedish National
Prostate Cancer Register.

After calibration, we were able to closely match observed prostate cancer incidence
trends in Sweden. Assuming that patients detected at an earlier stage by screening
receive a commensurate survival improvement, we find that the calibrated model
replicates the observed mortality reduction in a simulation of ERSPC.

Using the resulting model, we predicted incidence and mortality following the
introduction of regular testing. Compared with a model of the current testing pattern,
organised 8 yearly testing for men aged 55–69 years was predicted to reduce prostate
cancer incidence by 0.11% with no increase in the mortality rate. The model is open
source and suitable for planning for effective prostate cancer screening into the future.
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Author summary
A naïve perspective is that cancer screening is simple: people are screened, some cancers
are detected early, and cancer mortality rates decline. However, the mathematics for
screening becomes difficult quickly, it is hard to infer causation from observational data,
and even large randomised screening studies provide limited evidence. Simulations are
therefore important for planning cancer screening.

We found an older US prostate cancer natural history model to be poorly suited for
contemporary Sweden. We therefore re-implemented and re-calibrated the US model
using data from Swedish registries.

Our revised model, the Stockholm “Prostata” model, provides predictions similar to
those observed in the detailed Swedish registers on prostate cancer incidence and
mortality. By modelling the mechanisms of the screening effect, we can predict the
benefits and harms under a range of screening interventions.

Introduction 1

Cancer screening policies must balance the benefits and potential harms based on 2

uncertain and incomplete evidence. It is difficult to infer causation from observational 3

data, and even large randomised screening studies provide limited evidence. Simulations 4

using natural history models can provide further insights. Such natural history models 5

describe the course of the disease from onset to progression through to death. 6

Calibration of such models against observed disease incidence patterns with and without 7

screening can be used to improve our understanding of the mechanisms for disease 8

progression and cancer screening interventions. Simulations of the natural history of 9

disease can be used to bring together evidence from specific randomised controlled trials 10

with data from other sources and to generalise the results from specific population 11

structures and disease prevalence [1, 2]. Finally, these simulations can also be used as a 12

basis for cost-effectiveness analysis in order to make informed decisions on cancer 13

screening interventions [3–5]. 14

Our application relates to prostate cancer. The prostate is a male reproductive 15

organ that, together with other glands, is responsible for the production of semen. As 16

men age, they are more likely to suffer from prostate enlargement or prostate cancer. In 17

Sweden, prostate cancer accounts for a third of male cancer diagnoses and a fifth of 18

male cancer deaths [6]. 19

Evidence from ERSPC suggests that PSA testing can reduce prostate cancer 20

mortality by approximately 20% over 13 years [7]. There are two other large randomised 21

studies of prostate cancer screening: the Prostate, Lung, Colorectal and Ovarian Cancer 22

Screening Trial did not find any significant reduction in prostate cancer mortality when 23

the control arm included high levels of opportunistic PSA testing [8]. The recent 24

Cluster Randomized Trial of PSA Testing for Prostate Cancer found that with 40% 25

attending the clinical visit in the screening arm for a single PSA screen in men aged 26

50–69 years lead to an estimated mortality reduction of 4% at ten years [9]. Although 27

PSA testing is common in many western countries, testing is not systematically 28

organised, and the balance of harms versus benefits of PSA testing is uncertain [4]. 29

PSA testing in Sweden continues to be common and new prostate cancer tests are 30

becoming available. To assess whether organised prostate cancer testing would be 31

beneficial, we sought to develop a well-validated prostate cancer simulation model for 32

Sweden. 33

There are few existing models for the natural history of prostate cancer. However in 34

order to make full use of the detailed longitudinal Swedish registers and allow the 35

natural history model to represent the mortality rate ratio observed in the ERSPC [7], 36

PLOS 2/19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2018. ; https://doi.org/10.1101/402743doi: bioRxiv preprint 

https://doi.org/10.1101/402743
http://creativecommons.org/licenses/by/4.0/


we adapted and extended an existing model [10–12] with a more detailed natural history. 37

This is important for modelling risk-stratified prostate cancer testing in combination 38

with new screening tests. 39

Our objectives are to describe a contemporary, validated prostate cancer screening 40

model and to apply that model to predict key screening outcomes under different PSA 41

screening scenarios for Sweden. The longer-term goal is to use this simulation model to 42

plan for better prostate cancer testing and screening. 43

Results 44

Model overview 45

We adapted a prostate cancer screening model from the Fred Hutchinson Cancer 46

Research Center (FHCRC) [10–12]. The FHCRC model simulated for individual life 47

histories, coupling PSA trajectories with the disease onset and progression from 48

localised to advanced disease by Gleason score (low-moderate versus high grade). The 49

FHCRC model used inputs from the Prostate Cancer Prevention Trial (PCPT) [13] and 50

US PSA test patterns [14], and was calibrated to US data before and after the 51

introduction of PSA testing, and validated against (a) the prostate cancer mortality RR 52

from the ERSPC screening trial and (b) US prostate cancer incidence. Starting with the 53

model from [12], we re-implemented and extended the model to include additional states 54

by T-stage/M-stage and Gleason scoring as shown in Fig 1 (more recent developments 55

of the FHCRC model are described in the Discussion). We also used more detailed 56

inputs for calibration and validation. Data sources for the model inputs, calibration and 57

validation included: the National Patient Register (including data on cancer treatment), 58

National Prostate Register (cancer incidence by Gleason score, T-stage and M-stage), 59

Total Population Register (defining the at-risk population), Cause of Death Register, 60

the Stockholm PSA and Biopsy Register (SPBR), and the PCBaSe research database 61

for prostate cancer survival. Details are provided in the Materials and Methods. 62

Fig 1. Schematic of the prostate cancer natural history model reflecting disease onset,
progression and survival in the absence of screening. Individuals are assumed to be
healthy at age 35 years; they may progress to preclinical cancer states with fixed
Gleason score, but with progression by T-stage and to metastatic cancer; preclinical
cancers may be clinically diagnosed from nine different states, with survival from
prostate cancer death modelled from the time of clinical diagnosis; death due to other
causes is represented as a competing event. 63

64

Model calibration 65

Model calibration was undertaken in two steps. First, we calibrated for the relative 66

distributions of incident cancers from contemporary Sweden and the screening effect on 67

incidence from the ERSPC. Second, we calibrated to survival from contemporary 68

Sweden. The Swedish calibration targets were from a PSA tested population. We 69

modelled for PSA testing in this population using data from the SPBR (details are 70

provided in PSA testing sub-model). The initial uptake was modelled by age and 71

calendar period and PSA re-testing was modelled by age and PSA-value; PSA testing 72

rates by age and calendar period are shown in Fig 2. The probability of having a biopsy 73

following a positive PSA test (i.e. biopsy compliance) was modelled by age and PSA 74

value using the SPBR (see Table 2 in the S1 Appendix). 75
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Fig 2. Modelled current PSA testing rates per person-year for ages 40-80 years and
the calendar period 1995-2014 for men without an existing prostate cancer diagnosis.
The white contour lines indicates the rates 0.1, 0.2 and 0.3. The modelled values are
based on data from the Stockholm PSA and Biopsy Register [15]. 76

77

Calibrating to the relative distributions of cancer staging. The observed 78

relative distributions of incident cancer stages at diagnoses were used as calibration 79

targets for modelling several prostate cancer natural history parameters (Tables 1 80

and 2). Importantly, we modelled for transitions between T-stages and fitted the 81

relative distributions for the Gleason scores and cancer T and M stages by age groups; 82

see Fig 3. We included different T-stages to support more detailed modelling of 83

treatment and survival. The use of relative proportions allows for the absolute incidence 84

rates to be used for validation. The calibration used a reconstruction of a contemporary 85

Swedish population with data on PSA test uptake, health state proportions at diagnosis, 86

and survival from a screened population. A total of 4392 diagnoses in the ages 50–74 87

from a three-years interval (2011–2013) were used as calibration targets. 88

Fig 3. Fitted Gleason, T-stage and metastatic proportions of cases in 2011-2013 by
age groups to that observed in the SPBR register. 89

90

Calibration of screening effects on incidence. In addition to the calibration of 91

the screened Swedish population, we also simulated for the screened and unscreened 92

arms from the ERSPC to replicate results from the 13 years of follow-up [7]; for details 93

on the reconstruction of the ERSPC trial, see Materials and Methods. The ERSPC rate 94

ratio of prostate cancer incidence (1.57, 95% confidence interval (CI) 1.51–1.62) was 95

used in the calibration, while the ERSPC mortality RR of prostate cancer was used for 96

validation. To calibrate to the ERSPC incidence rate ratio and to model indirectly for 97

tumour size, we introduced a parameter for the proportion of the time from onset that a 98

T1–T2 cancer would not be biopsy detectable [16]; we estimated that the T1–T2 99

cancers would on average be undetectable at biopsy for 47% of the time before they 100

progressed to T3–T4 cancers. 101

Calibrating to survival from diagnosis. To calibrate prostate cancer survival, we 102

compared simulated survival from a contemporary Swedish population, including 103

longitudinal screening and treatment patterns, with observed 10- and 15-year survival 104

from the PCBaSe database [17,18]. The PCBaSe database contained 93014 men from 105

the Swedish National Prostate Cancer Register diagnosed in the period 1998–2014 106

linked with the health and population registers. Prostate cancer survival was stratified 107

by M stage, Gleason score (≤ 6, 7, ≥ 8), PSA (< 10, ≥ 10) and ten-year age groups. 108

Predictions from the calibrated model are displayed as Kaplan-Meier survival curves 109

and the observed 10- and 15-year survival are displayed as point estimates with 95% CIs 110

in Fig 4. The calibrated model has a clear separation in survival for men diagnosed with 111

either Gleason 6 or Gleason 7 cancers; see Fig 2 in the S1 Appendix for a comparison 112

with the FHCRC model, where survival is similar for Gleason 6 and 7 cancers. We did 113

not model for survival by treatment, as we did not have detailed information on the 114

reasons for treatment assignment. 115
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Fig 4. Simulated survival from the calibrated model displayed as Kaplan-Meier
survival curves together with the observed 10- and 15-year survival from PCBaSe
displayed as point estimates with 95% confidence intervals. Survival is stratified by age
at diagnosis, PSA at diagnosis, Gleason score and cancer extent. 116

117

Model validation 118

Population prostate cancer incidence. In Fig 5, we compared the 119

age-standardised prostate cancer incidence rates from the simulation with that of 120

Sweden during 1985–2016 which included the introduction of PSA testing. There is 121

evidence for a good fit although the rapid increase in incidence following the 122

introduction of PSA testing was not fully captured. This over-smoothing is possibly due 123

to the PSA uptake sub-model having few degrees of freedom. Importantly, this is a 124

validation and we did not calibrate for prostate cancer incidence rates. 125

Fig 5. Age-standardised prostate cancer incidence rates from the simulation model
compared with those observed in Sweden. 126

127

Screening effect on mortality. In contrast to the incidence increase from ERSPC, 128

which was used for calibration, the mortality decrease was used for validation. Using 129

simulations of the screened and unscreened arms in ERSPC 130

(see Materials and Methods), we estimated the 13-year mortality rate ratio using 131

Poisson regression. The ERSPC reported a mortality RR of 0.79 (95% CI 0.61–0.88), 132

whereas our calibrated model predicted a RR of 0.784 (95% Monte Carlo interval (MCI) 133

0.781–0.786). 134

Model predictions 135

When planning for prostate cancer testing policies, the following measures were 136

considered to represent the burden of disease: prostate cancer incidence rate; prostate 137

cancer overdiagnosis rate, where overdiagnosis is defined as the lifetime risk of having a 138

prostate cancer diagnosis that would never have been clinically detected prior to death 139

due to another cause; prostate cancer mortality rate; and life expectancy. We predicted 140

these measures for a policy that replaces the current testing pattern (see Fig 2) with 141

regular prostate cancer testing during ages 55–69 years: regular testing was introduced 142

from 2015 at age 55 years for those born in 1960 and in later birth cohorts. Using this 143

policy introduction, regular testing had completely replaced current testing across ages 144

55–69 years after 15 years. Our modelling of organised screening only specifically 145

addresses the effect of screening intensity for the targeted age groups. 146

In Fig 6, we predicted prostate cancer incidence and overdiagnosis rate ratios for 20 147

years of 2-yearly testing, 8-yearly testing and the complete cessation of asymptomatic 148

testing in comparison with the current testing pattern. The 2-yearly testing scenario 149

resulted in a minor reduction, RR 0.98 (95% MCI 0.98–0.98), in prostate cancer 150

incidence and a larger decrease in prostate cancer overdiagnosis, RR 0.80 (95% MCI 151

0.79–0.80), over 20 years compared with the current testing pattern. The less intensive 152

8-yearly testing scenario substantially reduced the prostate cancer incidence, RR 0.90 153

(95% MCI 0.89–0.90), and the reduction of prostate cancer overdiagnosis was even 154

larger, RR 0.57 (95% MCI 0.56–0.57), compared with the current testing pattern. The 155

hypothetical cessation of all PSA testing for asymptomatic men in 2015 would result in 156
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a substantial decrease, RR 0.74 (95% MCI 0.74–0.75), of prostate cancer incidence 157

compared with the current testing rates over 20 years as well as no overdiagnosis of 158

asymptomatic men. 159

Fig 6. Predicting incidence and overdiagnosis rate ratios for 2-yearly and 8-yearly
screening between 55 and 69 years of age and the cessation of asymptomatic testing
compared with current testing uptake. The changes in testing policy were introduced in
2015 for a population reflecting the Swedish age-structure. 160

161

The purpose of early detection for prostate cancer is to lower prostate cancer 162

mortality and increase the life expectancy. To assess these effects, we predicted 163

mortality rates and life-years gained for the different PSA testing policies (Fig 7). Both 164

the mortality rates and the life-years gained were expressed relative to the current PSA 165

testing pattern. We predict that the broad introduction across the 1946–1965 birth 166

cohorts contributed to the mortality reduction, which, while wearing off towards the end 167

of the 20 year period, causes an increase in mortality, particularly for the 8 yearly 168

testing. The relative effect on the mortality is considerably smaller than the effect on 169

the incidence and while the 2 yearly testing pattern slightly reduces mortality, RR 0.98 170

(95% MCI 0.97–0.98) , the 8 yearly testing pattern has a similar mortality, RR 1.01 171

(95% MCI 1.00–1.02), as the current uptake pattern for the predicted 20 years. 172

Similarly the 2 yearly testing pattern slightly increased the life expectancy, 0.03 (95% 173

MCI 0.03–0.04) life-years gained per 1,000 persons, and the 8 yearly testing pattern did 174

not noticeably affect the life expectancy, 0.01 (95% MCI 0.00–0.01) life-years gained per 175

1,000 persons, compared to the current uptake pattern for the predicted 20 years. The 176

hypothetical scenario of cessation of PSA testing for asymptomatic men in 2015 was 177

predicted to significantly increase prostate cancer mortality over 20 years, RR 1.08 (95% 178

MCI 1.07–1.08), and reduce the life expectancy by -0.07 (95% MCI -0.09—0.05) per 179

1000 persons. The effect is smaller than the 20% prostate cancer mortality reduction 180

observed in the ERSPC study as the current PSA uptake pattern is less intensive than 181

ERSPC and the lower biopsy compliance observed in Sweden (see Table 2 in the 182

S1 Appendix). 183

The modest mortality reductions are potentially explained by relatively high levels of 184

testing under the current PSA testing, and the use of the currently observed biopsy 185

compliance for all predicted scenarios. These reductions are also comparable to the 186

non-significant mortality reduction found in the Prostate, Lung, Colorectal and Ovarian 187

(PLCO) cancer screening trial [8], where there were high levels of PSA testing in the 188

control arm [19]. 189

Fig 7. Predicting mortality RRs and life-years gained for 2-yearly and 8-yearly
screening between 55 and 69 years of age and the cessation of asymptomatic PSA
testing compared with current testing patterns. The shifts in testing policy was
introduced 2015 on a population reflecting the Swedish age-structure. 190

191

Discussion 192

Our aim was to develop, calibrate and validate a prostate cancer natural history model 193

that could be used to evaluate prostate cancer testing. Using extensive Swedish data 194

resources, we extended an older US-calibrated prostate cancer natural history model for 195

the Swedish population and validated the new model. We then used the revised model 196

to predict longer-term patterns of prostate cancer incidence and mortality in Sweden. 197
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One of the challenges with natural history models is finding a model that is 198

biologically meaningful and representative, whilst being mathematically simple and 199

potentially estimable. Another challenge is that many of the parameters of a cancer’s 200

natural history are either not observable, such as the initial onset of disease, or are only 201

partially observed at specific time points, such as the size of a tumour at the time of 202

diagnosis. 203

Investigators are divided in how to resolve these challenges. One school uses very 204

simple models with expert judgement for the effectiveness of interventions. The validity 205

of the predictions depend on the accuracy of the experts. A second school uses Markov 206

models fitted to evidence from randomised controlled trials (RCTs) to assess the 207

effectiveness of specific interventions within the follow-up from the RCTs. The validity 208

is limited by the available RCT evidence, with strong limitations for predicting outside 209

of the observed data. A third school uses more detailed natural history models and 210

simulate for individuals. The validity of the predictions primarily reflects the validity of 211

the natural history model. We are firmly in the last of these three schools. We have 212

previously modelled cancer screening using both simple and more complex Markov 213

models, and found issues with validity for the simple models and issues with model 214

complexity for scaling more detailed Markov models to combinations of natural history 215

and test states by time in state [20]. 216

One potential criticism of many microsimulation models for cancer screening is that 217

their complexity is coupled with a lack of model detail and that the source is usually 218

closed. The US-funded CISNET collaboration has provided detailed model 219

documentation [21] and some models (e.g. FHCRC) are available on request. We 220

addressed this criticism by making all of our code open source and easily available 221

(https://github.com/mclements/microsimulation and 222

https://github.com/mclements/prostata). We encourage other microsimulation 223

modellers to make their code openly available, which will lower the entry requirements 224

for other investigators. If the cost of entry remains high, then a closed source consulting 225

model will continue to be predominant. 226

There are several potential limitations. First, the revised natural history model was 227

less accurate for modelling event rates at older ages (e.g. over 80 years of age; 228

see S1 Appendix). This is consistent with observations that Nordic prostate cancer 229

mortality rates are typically higher than rates in US populations. We suggest caution 230

when interpreting incidence for Nordic populations for several reasons: the higher 231

Nordic rates may lead to greater absolute declines in rates, leading to more effective 232

screening; and the point estimate for the mortality reduction due to screening was 233

higher in the Göteborg site, although there was no statistically significant heterogeneity 234

between the ERSPC sites [7, p = 0.4]. More accurate modelling at older ages would 235

require a more detailed natural history model. Second, it is difficult to assess whether 236

the natural history model is causal and accurate: the disease process is only partially 237

observed and the biology represented using a simple mathematical representation. 238

Third, the prediction of age-standardised mortality rates were slightly lower than that 239

observed in the Swedish population. This underestimation could be due to e.g. changes 240

in Gleason grading, where the Gleason and T-stage distribution at diagnosis was based 241

on data from patients diagnosed 2011–2013 whereas the survival by stage was based on 242

patients diagnosed 1998–2014. 243

Finally, as individuals were followed for up to 15 years, the survival calibration was 244

influenced by earlier Gleason grading practices, possibly leading to an overestimation of 245

the risks for Gleason ≤ 6 cancers. Nonetheless, we expect that our predictions will have 246

strong internal validity, as the simulations allow for carefully controlled experimental 247

conditions. 248

Strengths of our approach include the wealth of detailed longitudinal data available 249
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from Sweden, and that we have made the model open source. Our natural history 250

model can support an evidence-based approach to assessing whether the introduction of 251

organised re-testing or screening would be effective and cost-effective. The Swedish 252

Prostata model was branched from the FHCRC prostate cancer model in 2013. Since 253

that time, both the Swedish Prostata model and the FHCRC model have incorporated a 254

number of similar extensions, including T-stage development and more detailed 255

modelling of Gleason grading [5]. A key difference is that the updated FHCRC model 256

includes a two-parameter model for cancer onset [22]. We are currently investigating 257

whether to incorporate these extensions into the Swedish Prostata model. A key 258

advantage of the Swedish Prostata model is the availability of detailed longitudinal data 259

on PSA values and prostate biopsies linked with clinical outcomes. The US CISNET 260

prostate cancer models have historically relied heavily on un-linked, cross-sectional 261

SEER data. In contrast the Swedish high coverage registry data is well suited for 262

modelling the disease progression and treatment pathways within men, and would 263

potentially improve the model validity. 264

Our choice of modelling approach included model calibration for some key 265

parameters in both unscreened and screened populations (Table 1). To assess whether 266

the adapted model was valid for Sweden, we compared the model predictions with 267

observed population incidence. This approach demonstrates both the strengths and 268

potential weaknesses of our model. 269

Our model is now well suited to the health economic evaluation of new prostate 270

cancer screening tests. In particular, we have modelled for Gleason ≤ 6 cancers, which 271

typically have very good prognosis, from Gleason 7 or Gleason ≥ 8 cancers, where the 272

last category has particularly poor prognosis. The new prostate cancer tests have 273

focused on maintaining sensitivity for more aggressive prostate cancers, such as Gleason 274

7 or higher, with reductions in the incidence of small Gleason ≤ 6 cancers and negative 275

biopsies. 276

From the section on Model predictions, we found evidence to suggest that organised 277

screening would reduce overdiagnosis without increasing mortality compared to current 278

screening practices. Future work is needed to investigate refined screening strategies 279

and evaluation of cost-effectiveness. 280
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Materials and Methods 286

In this section, we will describe the various data sources used to develop the model, 287

explain the model formulation, outline the methods for the calibration and validation of 288

the model, and finish with a description of the model implementation. 289

Data sources 290

We have integrated multiple sources of data in order to extract relevant Swedish 291

prostate cancer statistics for our model. The linkage between the different sources is 292

illustrated in Fig 8. Detailed individual data on men who had a PSA test or a prostate 293

core biopsy were extracted from the Stockholm PSA and Biopsy Register. Using the 294
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unique Swedish personal identification number [23], we linked the study cohort to a 295

number of population registers, including the National Cancer Register (NCR) and the 296

National Prostate Cancer Register (NPCR). The NCR included data on tumour extent 297

(loco-regional vs distant) and the date of diagnosis; the NPCR contained additional 298

clinical information, including Gleason score and TNM cancer stage classification. The 299

NCR and NPCR were known to cover 96.3% and 94% of cancer patients, 300

respectively [18,24]. A dynamic cohort (with men moving in and out of the Stockholm 301

County) was defined via the Population Register which contains information on 302

migrations within Sweden as well as external migration. 303

From PCBaSe, a research database linking the NPCR with other health and 304

population registers, we extracted survival following a prostate cancer diagnosis by 305

calendar period, age, stage, PSA value and Gleason score; and treatment modality by 306

calendar period, age and Gleason score. 307

Data on prostate cancer incidence by calendar year, age, stage and Gleason scores 308

were extracted from the NCR and the NPCR. Prostate cancer mortality by calendar 309

year and age were obtained from the Cause of Death Register. The Total Population 310

Register was used to calculate the male population at risk by calendar period and age. 311

Fig 8. Overview of data sources and their linkage. 312

313

Model description 314

The prostate cancer natural history model links PSA growth with prostate cancer 315

progression. 316

The two main components of the model are: (i) longitudinal PSA growth; and (ii) 317

transitions between natural history disease states, as shown in Fig 1. The PSA growth 318

is expressed functionally in Equation (1) and the transitions between states is defined in 319

equations (5) – (11). Cancer onset is assumed to be independent of PSA, and that PSA 320

rises faster after cancer onset. The distribution of Gleason score is assumed to be 321

multinomial with the proportions modelled as a function of age at cancer onset, with no 322

de-differentiation (or change in Gleason score) after onset. 323

PSA growth. The change in PSA values after cancer onset is assumed to differ by 324

Gleason score, with a specific change for Gleason score 6 and below (G6-), Gleason 7 325

(G7) and Gleason 8 and above (G8+). 326

log(yi(t)) = β0i + β1i(t− 35)+
(β2iI(G6−) + β3iI(G7) + β4iI(G8+))(t− toi)I(t > toi) + εi(t) (1)

where yi(t) is measured PSA at age t for subject i, I(A) is a 1 if A is true and 0 327

otherwise, toi is the age of cancer onset and where 328

• β0i ∼ N(µ0, σ
2
0), is a random intercept 329

• β1i ∼ N(µ1, σ
2
1)I(β1i > 0), which is a random slope 330

• βki ∼ N(µk, σ2
2)I(βki > 0), k = 2, 3, 4, is a Gleason-specific random change of 331

slope after cancer onset 332

• εi(t) ∼ N(0, φ2), represents measurement error. 333
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The random slopes N(µ,σ2)I(β>0) are truncated distributions to ensure that PSA 334

growth is monotonically increasing. 335

The values for µ1, σ1, µ4 and σ4 were from [11], while the estimates for µ2, σ2, µ3 336

and σ3 were weighted sums to separate the estimates of Gleason ≤ 7 from [11] into 337

Gleason ≤ 6 and Gleason 7. 338

Gleason score distribution. The Gleason score assigned to an individual at cancer 339

onset is dependent on the age at cancer onset according to the probabilities modelled 340

via the multinomial logistic regression in Equations (2) – (4) as illustrated in Fig 9 341

(right panel). 342

Fig 9. Comparing the modelled proportion of Gleason scores at cancer onset from
FHCRC model in 2013 and 2018 with the Stockholm Prostata model. 343

344

P (Gleason ≤ 6) = 1
1 + eα7+β7(t−35) + eα8+β8(t−35) (2)

P (Gleason = 7) = eα7+β7(t−35)

1 + eα7+β7(t−35) + eα8+β8(t−35) (3)

P (Gleason ≥ 8) = eα8+β8(t−35)

1 + eα7+β7(t−35) + eα8+β8(t−35) (4)

where t ≥ 35. 345

Transition rates. Transitions between different states in the model (i.e. healthy, 346

localized states, metastatic states and death) are simulated via events, which occur with 347

different rates. 348

The disease onset (a transition from the healthy to a localized state) is modelled via
a time-dependent hazard (from age 35) as

λo(t) = γo(t− 35) (5)

which means that the time-to-event follows a Weibull distribution (shape parameter 2 349

and scale parameter
√
γo/2). The cumulative distribution (the complement of the 350

survival function) for the time to cancer onset is hence 351

Ro(t) = 1− exp
(
−γo

2 (t− 35)2) [11]. The event density, which is simply the probability 352

density for the Weibull distribution with parameters as above, represents the rate of 353

cancer onset per unit time (see Fig 1 in the S1 Appendix). 354

Transitions between disease states are dependent on age (t) and the individual 355

log-PSA-values (ỹi(t) = yi(t)− εi(t)). The model includes T-stage transitions within 356

localised cancer states for preclinical cancer. The transition from T1–T2 to T3–T4 is 357

the same for all Gleason categories and is described in Equation (6). γt is the hazard of 358

transitioning to T3–T4 and the time-dependence comes from the log-PSA levels. 359

λt(t) = γtỹ(t) (6)

The rate from T3–T4 to metastatic disease is proportional to PSA and γm which is 360

the metastasis hazard (see Equation (7)). Note that the FHCRC model used γt to 361

represent the parameter for the transition rate from onset to metastatic [11]. 362

PLOS 10/19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2018. ; https://doi.org/10.1101/402743doi: bioRxiv preprint 

https://doi.org/10.1101/402743
http://creativecommons.org/licenses/by/4.0/


λm(t) = γmỹ(t) (7)

The clinical diagnosis rate for localised cancer onset for Gleason score 7 and lower 363

(Equation (8)) and Gleason score 8 and higher (Equation (9)) are proportional to PSA 364

and γG∗lc , which is the clinical diagnosis hazard for localised cancer for the two Gleason 365

score categories. As per the older US model, we combined the Gleason ≤ 6 and 7 scores 366

for these transitions due to a lack of informative data. 367

λG7−
lc (t) = γG7−

lc ỹi(t) (8)
λG8+
lc (t) = γG8+

lc ỹi(t) (9)

The rate to clinical diagnosis after metastatic onset for Gleason score 7 and below 368

(Equation (10)) and Gleason score eight and above (Equation (11)), is proportional to 369

PSA and γG∗mc is the post-metastasis clinical diagnosis hazard for the two Gleason score 370

categories. 371

λG7−
mc (t) = γG7−

mc ỹi(t) (10)
λG8+
mc (t) = γG8+

mc ỹi(t) (11)

PSA testing sub-model. Diffusion of a new health technology into a population is a 372

dynamic process. This process may reach a stationary state after a longer period of time. 373

For PSA testing, test uptake was distributed across a range of ages over a comparatively 374

short period, such that the PSA test patterns varied substantially by birth cohorts. 375

PSA test uptake is required for calibrating the model to screened populations. 376

The natural history model is calibrated to data that are observed both before and 377

since the introduction of PSA testing. In particular, we have survival data for men 378

diagnosed for prostate cancer from 1998, which is after the introduction of PSA testing. 379

This requires that we accurately model for PSA uptake and re-testing and for treatment 380

to represent the men at risk for prostate cancer incidence, survival and mortality. 381

The PSA sub-model represents uptake of the PSA test together with the pattern of
PSA re-testing. Uptake was modelled as: (i) a function of age for cohorts born from
1960; (ii) a function of calendar period multiplied by a factor for birth cohort for birth
cohorts born before 1932; and (iii) a mixture of (i) and (ii) for the birth cohorts between
1932 and 1960. Mathematically, age-specific uptake (i) is modelled by the cumulative
density function for a log-logistic cure model, such that

F1(t|a1, b2, c) = π1(c)(1− 1/(1 + ((t− 35)/b1)a1)), t ≥ 35 (12)

where t is age at uptake, π1 is the proportion of men ever having a PSA test, c is the
calendar year of birth (or birth cohort), and where a1 and b1 are the shape and scale for
a log-logistic distribution for those men who ever have a PSA test. The calendar-specific
uptake for the older cohorts (ii) is modelled by

F2(t|a2, b2, c) = π2(c)(1− 1/(1 + ((t− (1995− c))/b2)a2)), t ≥ 1995− c (13)

where π2 is the proportion of men who ever have a PSA test, and where a1 and b1 are 382

the shape and scale for a log-logistic distribution for those men who ever have a PSA 383

test. Finally, for the intermediate birth cohorts, t1 is sampled from F1, t2 is sampled 384

from F2, and t1 is selected over t2 with probability (1960− c)/(1960− 1932). 385
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PSA re-testing is modelled using a Weibull cure model, such that

F3(t|a3, b3, t0, y0) = π3(y0)
(

1− exp
(
−
(
t− t0
b3(y0)

)a3(y0)
))

, t > t0 (14)

where t0 is the age at the previous PSA test, y0 is the value of the previous PSA test, 386

π3 is the proportion of men who will ever have a re-test, and where a3 and b3 are the 387

shape and scale parameters of the Weibull distribution for those who ever have a re-test. 388

For re-testing, the parameters π, a3 and b3 were estimated using a Weibull cure 389

model stratified by the five-year age groups (30–34, 35–39, . . . , 85–89, 90+) and by PSA 390

values ([0, 1), [1, 3), [3, 10), [10,∞)) at the previous PSA test. The parameters 391

π1, π2, a1, a2, b1 and b2 were calibrated to observed PSA test rates for Stockholm using 392

a Poisson likelihood. 393

Biopsy sensitivity and compliance. For men who had a PSA value above 3 ng/mL, 394

the proportion complying with a subsequent biopsy varied by PSA values and age, and 395

was estimated from the SPBR (see Table 2 in the S1 Appendix). We also modelled for 396

whether a prostate cancer was biopsy-detectable, assuming that a cancer was not 397

initially detectable for a proportion φlag (16) – (17) of the time from cancer onset to the 398

development of a T3–T4 cancer. Our approach varied from Wever et al. 2010 [16], who 399

modelled for the sensitivity of a PSA test to detect a cancer by stage, irrespective of the 400

time from cancer onset. The probability of a biopsy (Bx) rendering a diagnosis (Dx) 401

depends on the biopsy sensitivity, the biopsy compliance and the probability of cancer: 402

P (Dx|PSA+) = P (Bxsens)P (Bxcomp(t,PSA|PSA+))P (t ≥ t0) (15)

where P(t ≥ t0) is the probability of having had a cancer onset,
P (Bxcomp(t,PSA|PSA+)) is probability of performing a biopsy after a positive PSA
test depending on age and PSA value and P (Bxsens) is the biopsy sensitivity as
expressed below:

P (Bxsens|t0 < t ≤ t0 + ∆φlag) = 0 (16)
P (Bxsens|t0 + ∆φlag < t ≤ tT3−T4) = 1 (17)

where ∆ = tT3−T4 − t0 is the time with a T1–T2 cancer. 403

Treatment sub-model. Probabilities for treatment assignment to either active 404

surveillance, radical prostatectomy, radiotherapy or androgen deprivation therapy were 405

assessed from the SBPR. These values were stratified by five year age groups and 406

Gleason score (see Fig 3 in the S1 Appendix). 407

Survival sub-model. Survival from cancer diagnosis to death due to screening was 408

calibrated to the NPCR. In summary, we first simulated for Sweden for 1998–2014 409

including screening uptake with survival distributions from SEER (localised vs 410

metatstatic), which are also used as inputs to the FHCRC model. NPCR survival 411

estimates were available at ten and fifteen years after diagnosis by age groups for the 412

period 1998–2014; for non-metastatic cancer, survival was available by Gleason score 413

and for PSA less than 10 ng/mL and for 10 ng/mL and over. We compared the 414

Kaplan-Meier estimates of survival from diagnosis from the simulated data with 415
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observed Kaplan-Meier estimates for men diagnosed with prostate cancer in Sweden. 416

We did not calibrate to observed survival from the pre-PSA era, as such estimates were 417

not available. 418

One significant modelling challenge is selecting and fitting a mathematical 419

representation for the effect of cancer screening. For cancers with a short period 420

between a screen-detected diagnosis and a counter-factual clinical diagnosis, a common 421

model is to represent differential survival based on changes in stage at diagnosis and 422

changes in treatment. For prostate cancer, there is potentially a long period between 423

screen-detectable prostate cancer and clinical diagnosis. The lead-time between a 424

screen-detected diagnosis and clinical diagnosis is of the order of 10 years [25,26] . We 425

represent the effect of screening on survival S as a function of time t = a− ac from the 426

possibly counter-factual age of clinical diagnosis rather than the age of screen-detected 427

diagnosis as, where we can assume that 428

S(t | ac,ClinicalDx) = S(t | ac,Stage(ac),Treatment(ac),PSA(ac)) (18)
S(t | ac, as,ScreenDx) = S(t | ac,Stage(as),Treatment(as),PSA(as)) (19)

where ClinicalDx and ScreenDx represents either a clinical diagnosis or a screen-detected
diagnosis, respectively, and Treatment(a), Stage(a) PSA(a) are the treatment modality,
stage and PSA value at age a, respectively. The treatment sub-model assumes that the
hazard ratio from SPCG-4 [27, 0.56] applies comparing both radical prostatectomy and
radiation therapy with either watchful waiting or active surveillance. This point
estimate is consistent with the point estimate from the PIVOT trial [28], albeit without
the latter being significantly different from one. We then model survival as

S(t | ac,Stage(a),Treatment(a),PSA(a)) = S(t | ac,Stage(a),PSA(a))0.56I(Treatment(a)∈{RP,RT })

(20)

Implementation of the Stockholm Prostata model 429

The FHCRC prostate cancer model was implemented in C under an open source GPL 430

licence, although the code has not been widely distributed. We have implemented our 431

extended model using existing C++ simulation libraries and to manage input 432

parameters and output predictions using R. The model is implemented together with an 433

extensible microsimulation framework. It is available from 434

https://github.com/mclements/microsimulation and 435

https://github.com/mclements/prostata under a GPL3 license, allowing for use 436

and reuse, in contrast to most existing microsimulation models which are not open 437

source [29]. 438

Model fitting and calibration 439

To adapt the extended prostate cancer model to the Swedish context, a number of input 440

parameters were estimated from external data and a smaller set of parameters were 441

estimated using simulation predictions fitted to calibration targets. 442

First, a set of parameters were estimated from available data sources, including 443

parameters describing the longitudinal development of PSA with age, the rate 444

controlling time to cancer onset, and transition between cancer states, as indicated in 445

the first 2 rows of Table 1. 446

Observed characteristics of the modelled population were collected and used to 447

estimate another set of parameters via simulations of the model. The characteristics 448

used as calibration targets were the distribution of Gleason scores in the population, 449
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survival across age groups, and disease stage, as well as the PSA uptake (second column 450

of Table 1). The PSA test uptake prior to 2003 was reconstructed by fitting a model to 451

prostate cancer incidence using later PSA test rates as covariates, and we used survival 452

analysis to estimate re-testing rates prior to cancer diagnosis by age and PSA value 453

categories. 454

Table 1. Population characteristics used to adapt the model to the Swedish context. 455

456

Parameter Description Source
External PSA trajectories FHCRC [11]
inputs Natural history prior to diagnosis FHCRC [11,12]
Directly Treatment SPBR
observed PSA and biopsy compliance SPBR

PSA re-testing SPBR
Calibrated PSA test rates SPBR
parameters Survival PCBaSe [17]

Gleason distribution SPBR
Progression from T1–T2 to T3–T4 SPBR
Biopsy undetectable in T1–T2 ERSPC (incidence RR) [7]

Validation Cancer incidence (screened & unscreened) Stockholm & Sweden [30]
targets Cancer mortality (screened & unscreened) Stockholm & Sweden [30]

Screening mortality rate ratio ERSPC (mortality RR) [7]

457

The model was validated against the population of Sweden and the population of 458

Stockholm [30] (the bottom rows in Table 1). For the validation we simulated the 459

observed PSA testing pattern and validated the model against the population data for 460

incidence, all-cause mortality and prostate cancer mortality (results provided in the 461

S1 Appendix). 462

Emulating the ERSPC trial. We performed a simulation experiment to emulate the 463

ERSPC trial, where we predicted both the “control” arm and the “screening” arm with 464

100 million simulated men. Both arms where constructed as flat populations with 465

inclusion between ages 55–69 years after which they where followed for 13 years. For 466

study eligibility, we assumed that the men had not had a prostate cancer diagnosis prior 467

to age 55 years. For the control arm, we assumed no screening. For the screening arm, 468

we assumed four-yearly screening between ages 55 and 69 years. The PSA threshold was 469

assumed to be 3.0 ng/mL, although in fact this varied by study site. We also used the 470

reported biopsy compliance of 85.6%. Treatment and other-cause deaths were assumed 471

to be similar to those observed in Stockholm. 472

Calibration methods 473

We used four sets of targets for our calibration procedure: 474

1. The relative distribution of cancer staging for contemporary Sweden 475

2. An equality constraint on the mean time from onset to metastatic cancer 476

3. The incidence rate ratio due to screening from the ERSPC 477

4. Detailed prostate cancer survival for contemporary Sweden. 478

For the first step, we calibrated for the incidence-related targets 1, 2 and 3 in one 479

likelihood; and then, as a second step, we calibrated for target 4. For targets 1, 2 and 4, 480
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we simulated for current PSA testing in Sweden; for target 3, we simulated for both 481

arms of the ERSPC. 482

For target 1, we used a multinomial likelihood with unknown parameters
θ = (β7, β8, γt, γm, φlag)′. The multinomial log-likelihood was defined as

l1(θ) =
∑
i

log(ni!) +
∑
j

(yij log(max(pij(θ), 0.5/mi(θ)))− log(yij !))

 (21)

where i is an index over age, j is an index over cancer staging, ni is the observed total 483

count in a particular age group, yij is the observed count for a combination of age and 484

cancer staging, mi(θ) is the simulated total count, and pij(θ) is the simulated 485

proportion of individuals in a particular disease state (see Equations (2) – (4) for the 486

multinomial data generating mechanism). The cancer staging for the observed 487

frequencies and simulated proportions were by age and (i) loco-regional cancers by 488

combinations of Gleason score and T-stage, and (ii) metastatic prostate cancers. The 489

intercept terms α7 and α8 for the distribution of Gleason score at age 35 years were not 490

identifiable and we assumed that α7 = log(0.2) and α8=log(0.002). Half-cell corrections 491

were performed to handle empty cells in the simulated proportions. 492

For target 2, we used a non-linear equality constraint on the expected time from
onset to metastatic cancer to ensure identifiability of progression across T-stages.
Formally,

l2(θ) = (t̄T1–T2(θ) + t̄T3–T4(θ)− t̄old)2 (22)

where t̄T1–T2(θ) are the mean simulated transition times from onset to T3–T4, 493

t̄T3–T4(θ) are the mean simulated transition times from T3–T4 to metastatic cancer, 494

and t̄old is the expected mean time from onset to metastatic cancer from a model 495

without separate T stages (25.9 years from the FHCRC model; [12]). 496

For target 3, we used a non-linear equality constraint on the simulated incidence rate
ratio from the ERSPC, where

l3(θ) = (log(IRR)− log(IRR(θ)))2 (23)

where IRR is the observed PSA screening incidence rate ratio from the ERSPC study 497

and IRR(θ) is the simulated incidence rate ratio for the emulation of the ERSPC study. 498

Formally, the log-likelihood l123(θ) for targets 1–3 was

l123(θ) = l1(θ) + w2l2(θ) + w3l3(θ) (24)

where w2 and w3 are weights for the non-linear constraints. Note that the equality 499

constraints in targets 2 and 3 were formulated in terms of weighted quadratic penalties. 500

The weights were selected so that the constraints were approximately satisfied 501

(w2 = 1; w3 = 104). 502

To optimise the simulation log-likelihood l123(θ), we used the Nelder-Mead 503

optimisation algorithm. For each iteration of the optimisation, we evaluated the 504

log-likelihood by simulating three different scenarios that depended on the parameters θ. 505

From these scenarios, we predicted values that were used in the log-likelihood, including 506

the relative distribution of cancer staging, the mean time from onset to metastatic 507

cancer, and the PSA screening incidence rate ratio for the reconstructed ERSPC trial. 508

The Nelder-Mead algorithm is commonly used to optimise functions for which 509

derivatives are difficult to calculate and for objectives that are not smooth. The 510

standard errors were calculated from the inverse of the Hessian matrix for the negative 511

log-likelihood (see Table 2). Given the simulation likelihood, the calculation of the 512

Hessian matrix required that the step size for the finite differences used a larger step 513

size (0.01). 514
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Table 2. Estimated parameters from calibration procedure. 515

Label Estimate Standard error Equation
β7 6.4·10-2 2.0·10-4 (2) – (4)
β8 1.9·10-1 5.9·10-4 (2) – (4)
γt 9.7·10-4 6.9·10-5 (6)
γm 1.5·10-3 2.0·10-4 (7)
φlag 5.3·10-1 7.8·10-3 (16) – (17)

516

For the second step and target 4, the distributions of Gleason score, T-stage and 517

metastatic cancer (θ) were kept fixed. Using the mean between the observed 10- and 518

15-year survival as the calibration target and Kaplan-Meier estimates based on the 519

model simulations, we calculated the hazard ratios by age group, cancer stage, Gleason 520

score and PSA values. The adjustment ĤR was calculated by averaging on the log 521

hazard ratio scale 522

log ĤR(Age,Gleason,PSA,metastatic; θ̂) =

0.5× log
(

log(S(10|Age,Gleason,PSA,metastatic; θ̂))
log(S(10|Age,Gleason,PSA,metastatic))

)
+

0.5× log
(

log(S(15|Age,Gleason,PSA,metastatic; θ̂))
log(S(15|Age,Gleason,PSA,metastatic))

)
(25)

where S(t|Age,Gleason,PSA,metastatic; θ̂) is the simulated survival to time t based on 523

the parameters from step 1 and S(t|Age,Gleason,PSA,metastatic) is observed survival 524

to time t from the NPCR. 525

Validation of the ERSPC mortality rate ratio. To validate against the ERSPC 526

screening mortality RR of 0.79 (95% CI 0.61–0.88), we performed a simulation 527

experiment to emulate the ERSPC trial (see Emulating the ERSPC trial). The 528

mortality hazard ratio comparing the screening arm with the control arm was estimated 529

using Poisson regression taking account of the number of prostate cancer deaths and the 530

person-time by one-year age groups. Our validation predictions resulted in a mortality 531

RR of 0.784 (95% Monte Carlo interval (MCI) 0.781–0.786). 532
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Supporting information
S1 Appendix. The appendix contains further detail on the model and the model
inputs. It also holds a comparison of survival from diagnosis by Gleason with the
FHCRC model. Finally, it also includes further validation of the model.
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