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Abstract

Recent prostate cancer screening trials have given conflicting results and it is unclear
how to reduce prostate cancer mortality while minimising overdiagnosis and
overtreatment. Prostate cancer testing is a partially observable process, and planning
for testing requires either extrapolation from randomised controlled trials or, more
flexibly, modelling of the cancer natural history.

An existing US prostate cancer natural history model (Gulati et al, Biostatistics
2010;11:707-719) did not model for differences in survival between Gleason 6 and 7
cancers and predicted too few Gleason 7 cancers for contemporary Sweden. We
re-implemented and re-calibrated the US model to Sweden. We extended the model to
more finely describe the disease states, their time to biopsy-detectable cancer and
prostate cancer survival. We first calibrated the model to the incidence rate ratio
observed in the European Randomised Study of Screening for Prostate Cancer (ERSPC)
together with age-specific cancer staging observed in the Stockholm PSA
(prostate-specific antigen) and Biopsy Register; we then calibrated age-specific survival
by disease states under contemporary testing and treatment using the Swedish National
Prostate Cancer Register.

After calibration, we were able to closely match observed prostate cancer incidence
trends in Sweden. Assuming that patients detected at an earlier stage by screening
receive a commensurate survival improvement, we find that the calibrated model
replicates the observed mortality reduction in a simulation of ERSPC.

Using the resulting model, we predicted incidence and mortality following the
introduction of regular testing. Compared with a model of the current testing pattern,
organised 8 yearly testing for men aged 55-69 years was predicted to reduce prostate
cancer incidence by 0.11% with no increase in the mortality rate. The model is open
source and suitable for planning for effective prostate cancer screening into the future.
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Author summary

A nalve perspective is that cancer screening is simple: people are screened, some cancers
are detected early, and cancer mortality rates decline. However, the mathematics for
screening becomes difficult quickly, it is hard to infer causation from observational data,
and even large randomised screening studies provide limited evidence. Simulations are
therefore important for planning cancer screening.

We found an older US prostate cancer natural history model to be poorly suited for
contemporary Sweden. We therefore re-implemented and re-calibrated the US model
using data from Swedish registries.

Our revised model, the Stockholm “Prostata” model, provides predictions similar to
those observed in the detailed Swedish registers on prostate cancer incidence and
mortality. By modelling the mechanisms of the screening effect, we can predict the
benefits and harms under a range of screening interventions.

Introduction

Cancer screening policies must balance the benefits and potential harms based on
uncertain and incomplete evidence. It is difficult to infer causation from observational
data, and even large randomised screening studies provide limited evidence. Simulations
using natural history models can provide further insights. Such natural history models
describe the course of the disease from onset to progression through to death.
Calibration of such models against observed disease incidence patterns with and without
screening can be used to improve our understanding of the mechanisms for disease
progression and cancer screening interventions. Simulations of the natural history of
disease can be used to bring together evidence from specific randomised controlled trials
with data from other sources and to generalise the results from specific population
structures and disease prevalence [1,2]. Finally, these simulations can also be used as a
basis for cost-effectiveness analysis in order to make informed decisions on cancer
screening interventions [3-5].

Our application relates to prostate cancer. The prostate is a male reproductive
organ that, together with other glands, is responsible for the production of semen. As
men age, they are more likely to suffer from prostate enlargement or prostate cancer. In
Sweden, prostate cancer accounts for a third of male cancer diagnoses and a fifth of
male cancer deaths [6].

Evidence from ERSPC suggests that PSA testing can reduce prostate cancer
mortality by approximately 20% over 13 years [7]. There are two other large randomised
studies of prostate cancer screening: the Prostate, Lung, Colorectal and Ovarian Cancer
Screening Trial did not find any significant reduction in prostate cancer mortality when
the control arm included high levels of opportunistic PSA testing [8]. The recent
Cluster Randomized Trial of PSA Testing for Prostate Cancer found that with 40%
attending the clinical visit in the screening arm for a single PSA screen in men aged
50-69 years lead to an estimated mortality reduction of 4% at ten years [9]. Although
PSA testing is common in many western countries, testing is not systematically
organised, and the balance of harms versus benefits of PSA testing is uncertain [4].

PSA testing in Sweden continues to be common and new prostate cancer tests are
becoming available. To assess whether organised prostate cancer testing would be
beneficial, we sought to develop a well-validated prostate cancer simulation model for
Sweden.

There are few existing models for the natural history of prostate cancer. However in
order to make full use of the detailed longitudinal Swedish registers and allow the
natural history model to represent the mortality rate ratio observed in the ERSPC [7],
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we adapted and extended an existing model [10-12] with a more detailed natural history.

This is important for modelling risk-stratified prostate cancer testing in combination
with new screening tests.

Our objectives are to describe a contemporary, validated prostate cancer screening
model and to apply that model to predict key screening outcomes under different PSA
screening scenarios for Sweden. The longer-term goal is to use this simulation model to
plan for better prostate cancer testing and screening.

Results

Model overview

We adapted a prostate cancer screening model from the Fred Hutchinson Cancer
Research Center (FHCRC) [10-12]. The FHCRC model simulated for individual life
histories, coupling PSA trajectories with the disease onset and progression from
localised to advanced disease by Gleason score (low-moderate versus high grade). The
FHCRC model used inputs from the Prostate Cancer Prevention Trial (PCPT) [13] and
US PSA test patterns [14], and was calibrated to US data before and after the
introduction of PSA testing, and validated against (a) the prostate cancer mortality RR
from the ERSPC screening trial and (b) US prostate cancer incidence. Starting with the
model from [12], we re-implemented and extended the model to include additional states
by T-stage/M-stage and Gleason scoring as shown in Fig 1 (more recent developments
of the FHCRC model are described in the Discussion). We also used more detailed
inputs for calibration and validation. Data sources for the model inputs, calibration and
validation included: the National Patient Register (including data on cancer treatment),
National Prostate Register (cancer incidence by Gleason score, T-stage and M-stage),
Total Population Register (defining the at-risk population), Cause of Death Register,
the Stockholm PSA and Biopsy Register (SPBR), and the PCBaSe research database
for prostate cancer survival. Details are provided in the Materials and Methods.

Fig 1. Schematic of the prostate cancer natural history model reflecting disease onset,
progression and survival in the absence of screening. Individuals are assumed to be
healthy at age 35 years; they may progress to preclinical cancer states with fixed
Gleason score, but with progression by T-stage and to metastatic cancer; preclinical
cancers may be clinically diagnosed from nine different states, with survival from
prostate cancer death modelled from the time of clinical diagnosis; death due to other
causes is represented as a competing event.

Model calibration

Model calibration was undertaken in two steps. First, we calibrated for the relative
distributions of incident cancers from contemporary Sweden and the screening effect on
incidence from the ERSPC. Second, we calibrated to survival from contemporary
Sweden. The Swedish calibration targets were from a PSA tested population. We
modelled for PSA testing in this population using data from the SPBR, (details are
provided in PSA testing sub-model). The initial uptake was modelled by age and
calendar period and PSA re-testing was modelled by age and PSA-value; PSA testing
rates by age and calendar period are shown in Fig 2. The probability of having a biopsy
following a positive PSA test (i.e. biopsy compliance) was modelled by age and PSA
value using the SPBR (see Table 2 in the S1 Appendix).
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Fig 2. Modelled current PSA testing rates per person-year for ages 40-80 years and
the calendar period 1995-2014 for men without an existing prostate cancer diagnosis.
The white contour lines indicates the rates 0.1, 0.2 and 0.3. The modelled values are
based on data from the Stockholm PSA and Biopsy Register [15].

Calibrating to the relative distributions of cancer staging. The observed
relative distributions of incident cancer stages at diagnoses were used as calibration
targets for modelling several prostate cancer natural history parameters (Tables 1

and 2). Importantly, we modelled for transitions between T-stages and fitted the
relative distributions for the Gleason scores and cancer T and M stages by age groups;
see Fig 3. We included different T-stages to support more detailed modelling of
treatment and survival. The use of relative proportions allows for the absolute incidence
rates to be used for validation. The calibration used a reconstruction of a contemporary
Swedish population with data on PSA test uptake, health state proportions at diagnosis,
and survival from a screened population. A total of 4392 diagnoses in the ages 50-74
from a three-years interval (2011-2013) were used as calibration targets.

Fig 3. Fitted Gleason, T-stage and metastatic proportions of cases in 2011-2013 by
age groups to that observed in the SPBR register.

Calibration of screening effects on incidence. In addition to the calibration of
the screened Swedish population, we also simulated for the screened and unscreened
arms from the ERSPC to replicate results from the 13 years of follow-up [7]; for details
on the reconstruction of the ERSPC trial, see Materials and Methods. The ERSPC rate
ratio of prostate cancer incidence (1.57, 95% confidence interval (CI) 1.51-1.62) was
used in the calibration, while the ERSPC mortality RR of prostate cancer was used for
validation. To calibrate to the ERSPC incidence rate ratio and to model indirectly for
tumour size, we introduced a parameter for the proportion of the time from onset that a
T1-T2 cancer would not be biopsy detectable [16]; we estimated that the T1-T2
cancers would on average be undetectable at biopsy for 47% of the time before they
progressed to T3-T4 cancers.

Calibrating to survival from diagnosis. To calibrate prostate cancer survival, we
compared simulated survival from a contemporary Swedish population, including
longitudinal screening and treatment patterns, with observed 10- and 15-year survival
from the PCBaSe database [17,18]. The PCBaSe database contained 93014 men from
the Swedish National Prostate Cancer Register diagnosed in the period 1998-2014
linked with the health and population registers. Prostate cancer survival was stratified
by M stage, Gleason score (< 6, 7, > 8), PSA (< 10, > 10) and ten-year age groups.
Predictions from the calibrated model are displayed as Kaplan-Meier survival curves
and the observed 10- and 15-year survival are displayed as point estimates with 95% Cls
in Fig 4. The calibrated model has a clear separation in survival for men diagnosed with
either Gleason 6 or Gleason 7 cancers; see Fig 2 in the S1 Appendix for a comparison
with the FHCRC model, where survival is similar for Gleason 6 and 7 cancers. We did
not model for survival by treatment, as we did not have detailed information on the
reasons for treatment assignment.
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Fig 4. Simulated survival from the calibrated model displayed as Kaplan-Meier
survival curves together with the observed 10- and 15-year survival from PCBaSe
displayed as point estimates with 95% confidence intervals. Survival is stratified by age
at diagnosis, PSA at diagnosis, Gleason score and cancer extent.

Model validation

Population prostate cancer incidence. In Fig 5, we compared the
age-standardised prostate cancer incidence rates from the simulation with that of
Sweden during 19852016 which included the introduction of PSA testing. There is
evidence for a good fit although the rapid increase in incidence following the
introduction of PSA testing was not fully captured. This over-smoothing is possibly due
to the PSA uptake sub-model having few degrees of freedom. Importantly, this is a
validation and we did not calibrate for prostate cancer incidence rates.

Fig 5. Age-standardised prostate cancer incidence rates from the simulation model
compared with those observed in Sweden.

Screening effect on mortality. In contrast to the incidence increase from ERSPC,
which was used for calibration, the mortality decrease was used for validation. Using
simulations of the screened and unscreened arms in ERSPC

(see Materials and Methods), we estimated the 13-year mortality rate ratio using
Poisson regression. The ERSPC reported a mortality RR of 0.79 (95% CT 0.61-0.88),
whereas our calibrated model predicted a RR of 0.784 (95% Monte Carlo interval (MCI)
0.781-0.786).

Model predictions

When planning for prostate cancer testing policies, the following measures were
considered to represent the burden of disease: prostate cancer incidence rate; prostate
cancer overdiagnosis rate, where overdiagnosis is defined as the lifetime risk of having a
prostate cancer diagnosis that would never have been clinically detected prior to death
due to another cause; prostate cancer mortality rate; and life expectancy. We predicted
these measures for a policy that replaces the current testing pattern (see Fig 2) with
regular prostate cancer testing during ages 5569 years: regular testing was introduced
from 2015 at age 55 years for those born in 1960 and in later birth cohorts. Using this
policy introduction, regular testing had completely replaced current testing across ages
55—69 years after 15 years. Our modelling of organised screening only specifically
addresses the effect of screening intensity for the targeted age groups.

In Fig 6, we predicted prostate cancer incidence and overdiagnosis rate ratios for 20
years of 2-yearly testing, 8-yearly testing and the complete cessation of asymptomatic
testing in comparison with the current testing pattern. The 2-yearly testing scenario
resulted in a minor reduction, RR 0.98 (95% MCI 0.98-0.98), in prostate cancer
incidence and a larger decrease in prostate cancer overdiagnosis, RR 0.80 (95% MCI
0.79-0.80), over 20 years compared with the current testing pattern. The less intensive
8-yearly testing scenario substantially reduced the prostate cancer incidence, RR 0.90
(95% MCI 0.89-0.90), and the reduction of prostate cancer overdiagnosis was even
larger, RR 0.57 (95% MCI 0.56-0.57), compared with the current testing pattern. The
hypothetical cessation of all PSA testing for asymptomatic men in 2015 would result in
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a substantial decrease, RR 0.74 (95% MCI 0.74-0.75), of prostate cancer incidence
compared with the current testing rates over 20 years as well as no overdiagnosis of
asymptomatic men.

Fig 6. Predicting incidence and overdiagnosis rate ratios for 2-yearly and 8-yearly
screening between 55 and 69 years of age and the cessation of asymptomatic testing
compared with current testing uptake. The changes in testing policy were introduced in
2015 for a population reflecting the Swedish age-structure.

The purpose of early detection for prostate cancer is to lower prostate cancer
mortality and increase the life expectancy. To assess these effects, we predicted
mortality rates and life-years gained for the different PSA testing policies (Fig 7). Both
the mortality rates and the life-years gained were expressed relative to the current PSA
testing pattern. We predict that the broad introduction across the 1946-1965 birth
cohorts contributed to the mortality reduction, which, while wearing off towards the end
of the 20 year period, causes an increase in mortality, particularly for the 8 yearly
testing. The relative effect on the mortality is considerably smaller than the effect on
the incidence and while the 2 yearly testing pattern slightly reduces mortality, RR 0.98
(95% MCI 0.97-0.98) , the 8 yearly testing pattern has a similar mortality, RR 1.01
(95% MCI 1.00-1.02), as the current uptake pattern for the predicted 20 years.
Similarly the 2 yearly testing pattern slightly increased the life expectancy, 0.03 (95%
MCI 0.03-0.04) life-years gained per 1,000 persons, and the 8 yearly testing pattern did
not noticeably affect the life expectancy, 0.01 (95% MCT 0.00-0.01) life-years gained per
1,000 persons, compared to the current uptake pattern for the predicted 20 years. The
hypothetical scenario of cessation of PSA testing for asymptomatic men in 2015 was
predicted to significantly increase prostate cancer mortality over 20 years, RR 1.08 (95%
MCI 1.07-1.08), and reduce the life expectancy by -0.07 (95% MCT -0.09—0.05) per
1000 persons. The effect is smaller than the 20% prostate cancer mortality reduction
observed in the ERSPC study as the current PSA uptake pattern is less intensive than
ERSPC and the lower biopsy compliance observed in Sweden (see Table 2 in the
S1 Appendix).

The modest mortality reductions are potentially explained by relatively high levels of
testing under the current PSA testing, and the use of the currently observed biopsy
compliance for all predicted scenarios. These reductions are also comparable to the
non-significant mortality reduction found in the Prostate, Lung, Colorectal and Ovarian
(PLCO) cancer screening trial [8], where there were high levels of PSA testing in the
control arm [19].

Fig 7. Predicting mortality RRs and life-years gained for 2-yearly and 8-yearly
screening between 55 and 69 years of age and the cessation of asymptomatic PSA
testing compared with current testing patterns. The shifts in testing policy was
introduced 2015 on a population reflecting the Swedish age-structure.

Discussion

Our aim was to develop, calibrate and validate a prostate cancer natural history model
that could be used to evaluate prostate cancer testing. Using extensive Swedish data
resources, we extended an older US-calibrated prostate cancer natural history model for
the Swedish population and validated the new model. We then used the revised model
to predict longer-term patterns of prostate cancer incidence and mortality in Sweden.
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One of the challenges with natural history models is finding a model that is
biologically meaningful and representative, whilst being mathematically simple and
potentially estimable. Another challenge is that many of the parameters of a cancer’s
natural history are either not observable, such as the initial onset of disease, or are only
partially observed at specific time points, such as the size of a tumour at the time of
diagnosis.

Investigators are divided in how to resolve these challenges. One school uses very
simple models with expert judgement for the effectiveness of interventions. The validity
of the predictions depend on the accuracy of the experts. A second school uses Markov
models fitted to evidence from randomised controlled trials (RCTs) to assess the
effectiveness of specific interventions within the follow-up from the RCTs. The validity
is limited by the available RCT evidence, with strong limitations for predicting outside
of the observed data. A third school uses more detailed natural history models and
simulate for individuals. The validity of the predictions primarily reflects the validity of
the natural history model. We are firmly in the last of these three schools. We have
previously modelled cancer screening using both simple and more complex Markov
models, and found issues with validity for the simple models and issues with model
complexity for scaling more detailed Markov models to combinations of natural history
and test states by time in state [20].

One potential criticism of many microsimulation models for cancer screening is that
their complexity is coupled with a lack of model detail and that the source is usually
closed. The US-funded CISNET collaboration has provided detailed model
documentation [21] and some models (e.g. FHCRC) are available on request. We
addressed this criticism by making all of our code open source and easily available
(https://github.com/mclements/microsimulation and
https://github.com/mclements/prostata). We encourage other microsimulation
modellers to make their code openly available, which will lower the entry requirements
for other investigators. If the cost of entry remains high, then a closed source consulting
model will continue to be predominant.

There are several potential limitations. First, the revised natural history model was
less accurate for modelling event rates at older ages (e.g. over 80 years of age;
see S1 Appendix). This is consistent with observations that Nordic prostate cancer
mortality rates are typically higher than rates in US populations. We suggest caution
when interpreting incidence for Nordic populations for several reasons: the higher
Nordic rates may lead to greater absolute declines in rates, leading to more effective
screening; and the point estimate for the mortality reduction due to screening was
higher in the Goéteborg site, although there was no statistically significant heterogeneity
between the ERSPC sites [7, p = 0.4]. More accurate modelling at older ages would
require a more detailed natural history model. Second, it is difficult to assess whether
the natural history model is causal and accurate: the disease process is only partially
observed and the biology represented using a simple mathematical representation.
Third, the prediction of age-standardised mortality rates were slightly lower than that
observed in the Swedish population. This underestimation could be due to e.g. changes
in Gleason grading, where the Gleason and T-stage distribution at diagnosis was based
on data from patients diagnosed 2011-2013 whereas the survival by stage was based on
patients diagnosed 1998-2014.

Finally, as individuals were followed for up to 15 years, the survival calibration was
influenced by earlier Gleason grading practices, possibly leading to an overestimation of
the risks for Gleason < 6 cancers. Nonetheless, we expect that our predictions will have
strong internal validity, as the simulations allow for carefully controlled experimental
conditions.

Strengths of our approach include the wealth of detailed longitudinal data available
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from Sweden, and that we have made the model open source. Our natural history
model can support an evidence-based approach to assessing whether the introduction of
organised re-testing or screening would be effective and cost-effective. The Swedish
Prostata model was branched from the FHCRC prostate cancer model in 2013. Since
that time, both the Swedish Prostata model and the FHCRC model have incorporated a
number of similar extensions, including T-stage development and more detailed
modelling of Gleason grading [5]. A key difference is that the updated FHCRC model
includes a two-parameter model for cancer onset [22]. We are currently investigating
whether to incorporate these extensions into the Swedish Prostata model. A key
advantage of the Swedish Prostata model is the availability of detailed longitudinal data
on PSA values and prostate biopsies linked with clinical outcomes. The US CISNET
prostate cancer models have historically relied heavily on un-linked, cross-sectional
SEER data. In contrast the Swedish high coverage registry data is well suited for
modelling the disease progression and treatment pathways within men, and would
potentially improve the model validity.

Our choice of modelling approach included model calibration for some key
parameters in both unscreened and screened populations (Table 1). To assess whether
the adapted model was valid for Sweden, we compared the model predictions with
observed population incidence. This approach demonstrates both the strengths and
potential weaknesses of our model.

Our model is now well suited to the health economic evaluation of new prostate
cancer screening tests. In particular, we have modelled for Gleason < 6 cancers, which
typically have very good prognosis, from Gleason 7 or Gleason > 8 cancers, where the
last category has particularly poor prognosis. The new prostate cancer tests have
focused on maintaining sensitivity for more aggressive prostate cancers, such as Gleason
7 or higher, with reductions in the incidence of small Gleason < 6 cancers and negative
biopsies.

From the section on Model predictions, we found evidence to suggest that organised
screening would reduce overdiagnosis without increasing mortality compared to current
screening practices. Future work is needed to investigate refined screening strategies
and evaluation of cost-effectiveness.
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Materials and Methods

In this section, we will describe the various data sources used to develop the model,
explain the model formulation, outline the methods for the calibration and validation of
the model, and finish with a description of the model implementation.

Data sources

We have integrated multiple sources of data in order to extract relevant Swedish
prostate cancer statistics for our model. The linkage between the different sources is
illustrated in Fig 8. Detailed individual data on men who had a PSA test or a prostate
core biopsy were extracted from the Stockholm PSA and Biopsy Register. Using the

PLOS

8/19

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294


https://doi.org/10.1101/402743
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/402743; this version posted August 28, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

®PLOS

SUBMISSION

aCC-BY 4.0 International license.

unique Swedish personal identification number [23], we linked the study cohort to a
number of population registers, including the National Cancer Register (NCR) and the
National Prostate Cancer Register (NPCR). The NCR included data on tumour extent
(loco-regional vs distant) and the date of diagnosis; the NPCR contained additional
clinical information, including Gleason score and TNM cancer stage classification. The
NCR and NPCR were known to cover 96.3% and 94% of cancer patients,

respectively [18,24]. A dynamic cohort (with men moving in and out of the Stockholm
County) was defined via the Population Register which contains information on
migrations within Sweden as well as external migration.

From PCBaSe, a research database linking the NPCR, with other health and
population registers, we extracted survival following a prostate cancer diagnosis by
calendar period, age, stage, PSA value and Gleason score; and treatment modality by
calendar period, age and Gleason score.

Data on prostate cancer incidence by calendar year, age, stage and Gleason scores
were extracted from the NCR and the NPCR. Prostate cancer mortality by calendar
year and age were obtained from the Cause of Death Register. The Total Population
Register was used to calculate the male population at risk by calendar period and age.

Fig 8. Overview of data sources and their linkage.

Model description

The prostate cancer natural history model links PSA growth with prostate cancer
progression.

The two main components of the model are: (i) longitudinal PSA growth; and (ii)
transitions between natural history disease states, as shown in Fig 1. The PSA growth
is expressed functionally in Equation (1) and the transitions between states is defined in
equations (5) — (11). Cancer onset is assumed to be independent of PSA, and that PSA
rises faster after cancer onset. The distribution of Gleason score is assumed to be
multinomial with the proportions modelled as a function of age at cancer onset, with no
de-differentiation (or change in Gleason score) after onset.

PSA growth. The change in PSA values after cancer onset is assumed to differ by
Gleason score, with a specific change for Gleason score 6 and below (G6-), Gleason 7
(GT7) and Gleason 8 and above (G8+).

log(yi(t)) = Boi + Prs(t — 35)+
(B2l (G6—) + B3l (GT) + Bail (G8+))(t — toi)I(t > to;) +€(t) (1)

where y;(t) is measured PSA at age ¢ for subject 4, I(A) is a 1 if A is true and 0
otherwise, t,; is the age of cancer onset and where

e Boi ~ N(uo,0d), is a random intercept
o B1i ~ N(u1,02)I(B1; > 0), which is a random slope

o Bri ~ N(ug,03)I(Bri > 0),k = 2,3,4, is a Gleason-specific random change of
slope after cancer onset

e ¢;(t) ~ N(0,¢?), represents measurement error.
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The random slopes N(z,02)I(8>0) are truncated distributions to ensure that PSA
growth is monotonically increasing.

The values for u1, 01, ug and o4 were from [11], while the estimates for us, oo, ps3
and o3 were weighted sums to separate the estimates of Gleason < 7 from [11] into
Gleason < 6 and Gleason 7.

Gleason score distribution. The Gleason score assigned to an individual at cancer
onset is dependent on the age at cancer onset according to the probabilities modelled
via the multinomial logistic regression in Equations (2) — (4) as illustrated in Fig 9
(right panel).

Fig 9. Comparing the modelled proportion of Gleason scores at cancer onset from
FHCRC model in 2013 and 2018 with the Stockholm Prostata model.

P(Gleason < 6) = g 60‘7+ﬁ7(t735])- T eas+Bs(t—35) (2)
e@7+B7(t—35)

P(Gleason = 7) = 1+ cor+B7(t—35) J cas+Bs(t—35) (3)
cas +Bs(6-35)

P(Gleason > 8) = 1+ cor+P7(1—35) 1 gastBa(i—35) (4)

where t > 35.

Transition rates. Transitions between different states in the model (i.e. healthy,
localized states, metastatic states and death) are simulated via events, which occur with
different rates.

The disease onset (a transition from the healthy to a localized state) is modelled via
a time-dependent hazard (from age 35) as

Ao(t) = Yo(t — 35) (5)

which means that the time-to-event follows a Weibull distribution (shape parameter 2
and scale parameter \/7,/2). The cumulative distribution (the complement of the
survival function) for the time to cancer onset is hence

R,(t)=1—exp (f%(t — 35)2) [11]. The event density, which is simply the probability
density for the Weibull distribution with parameters as above, represents the rate of
cancer onset per unit time (see Fig 1 in the S1 Appendix).

Transitions between disease states are dependent on age (t) and the individual
log-PSA-values (7;(t) = y;(t) — €;(t)). The model includes T-stage transitions within
localised cancer states for preclinical cancer. The transition from T1-T2 to T3-T4 is
the same for all Gleason categories and is described in Equation (6). ; is the hazard of
transitioning to T3-T4 and the time-dependence comes from the log-PSA levels.

Ae(t) = 7g(t) (6)

The rate from T3-T4 to metastatic disease is proportional to PSA and ~,, which is
the metastasis hazard (see Equation (7)). Note that the FHCRC model used ~; to
represent the parameter for the transition rate from onset to metastatic [11].
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Am(t) = Ym3(1) (7)

The clinical diagnosis rate for localised cancer onset for Gleason score 7 and lower
(Equation (8)) and Gleason score 8 and higher (Equation (9)) are proportional to PSA
and fylcc;*, which is the clinical diagnosis hazard for localised cancer for the two Gleason
score categories. As per the older US model, we combined the Gleason < 6 and 7 scores
for these transitions due to a lack of informative data.

AT () =2 (b (8)
AZET(t) =423 a(t) (9)

The rate to clinical diagnosis after metastatic onset for Gleason score 7 and below
(Equation (10)) and Gleason score eight and above (Equation (11)), is proportional to
PSA and ~$* is the post-metastasis clinical diagnosis hazard for the two Gleason score
categories.

PSA testing sub-model. Diffusion of a new health technology into a population is a

dynamic process. This process may reach a stationary state after a longer period of time.

For PSA testing, test uptake was distributed across a range of ages over a comparatively
short period, such that the PSA test patterns varied substantially by birth cohorts.
PSA test uptake is required for calibrating the model to screened populations.

The natural history model is calibrated to data that are observed both before and
since the introduction of PSA testing. In particular, we have survival data for men

diagnosed for prostate cancer from 1998, which is after the introduction of PSA testing.

This requires that we accurately model for PSA uptake and re-testing and for treatment
to represent the men at risk for prostate cancer incidence, survival and mortality.

The PSA sub-model represents uptake of the PSA test together with the pattern of
PSA re-testing. Uptake was modelled as: (i) a function of age for cohorts born from
1960; (ii) a function of calendar period multiplied by a factor for birth cohort for birth
cohorts born before 1932; and (iii) a mixture of (i) and (ii) for the birth cohorts between
1932 and 1960. Mathematically, age-specific uptake (i) is modelled by the cumulative
density function for a log-logistic cure model, such that

Fi(tlat, ba, ) = m1(e)(1 — 1/(1 + ((t — 35)/b1)™)),  t>35 (12)

where t is age at uptake, 71 is the proportion of men ever having a PSA test, ¢ is the
calendar year of birth (or birth cohort), and where a; and by are the shape and scale for
a log-logistic distribution for those men who ever have a PSA test. The calendar-specific
uptake for the older cohorts (ii) is modelled by

Fy(tlag, by, ¢) = ma(c)(1 — 1/(1 + ((t — (1995 — €)) /b2)?2)),  t>1995—c  (13)

where 75 is the proportion of men who ever have a PSA test, and where a; and b; are
the shape and scale for a log-logistic distribution for those men who ever have a PSA
test. Finally, for the intermediate birth cohorts, ¢; is sampled from Fy, to is sampled
from Fb, and ¢; is selected over o with probability (1960 — ¢)/(1960 — 1932).
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PSA re-testing is modelled using a Weibull cure model, such that

as(yo)
t—1
Fs(tlas, bs, o, yo) = 3(Yo) (1 — exp (— (bg(yoo)) )) ; t >t (14)

where t( is the age at the previous PSA test, yo is the value of the previous PSA test,
w3 is the proportion of men who will ever have a re-test, and where as and b3 are the

shape and scale parameters of the Weibull distribution for those who ever have a re-test.

For re-testing, the parameters 7, as and by were estimated using a Weibull cure
model stratified by the five-year age groups (30-34, 35-39, ..., 85-89, 90+) and by PSA
values ([0,1),[1,3),[3,10),[10,00)) at the previous PSA test. The parameters
T, T2, a1, 02,b1 and by were calibrated to observed PSA test rates for Stockholm using
a Poisson likelihood.

Biopsy sensitivity and compliance. For men who had a PSA value above 3 ng/mL,
the proportion complying with a subsequent biopsy varied by PSA values and age, and
was estimated from the SPBR (see Table 2 in the S1 Appendix). We also modelled for
whether a prostate cancer was biopsy-detectable, assuming that a cancer was not
initially detectable for a proportion ¢i.g (16) — (17) of the time from cancer onset to the
development of a T3-T4 cancer. Our approach varied from Wever et al. 2010 [16], who
modelled for the sensitivity of a PSA test to detect a cancer by stage, irrespective of the
time from cancer onset. The probability of a biopsy (Bx) rendering a diagnosis (Dx)
depends on the biopsy sensitivity, the biopsy compliance and the probability of cancer:

P(Dx|PSA™) = P(BxXsens) P(BXcomp (t, PSA|PSAT)) P(t > ) (15)

where P(t > tg) is the probability of having had a cancer onset,

P (Bxcomp (£, PSA|PSA™)) is probability of performing a biopsy after a positive PSA
test depending on age and PSA value and P(BZgens) is the biopsy sensitivity as
expressed below:

P(BXsens|t0 <t S tO + A(blag) =0 (16)
P(BXsens|t0 + A(blag <t< tT37T4) =1

where A = tp3_74 — tg is the time with a T1-T2 cancer.

Treatment sub-model. Probabilities for treatment assignment to either active
surveillance, radical prostatectomy, radiotherapy or androgen deprivation therapy were
assessed from the SBPR. These values were stratified by five year age groups and
Gleason score (see Fig 3 in the S1 Appendix).

Survival sub-model. Survival from cancer diagnosis to death due to screening was
calibrated to the NPCR. In summary, we first simulated for Sweden for 1998-2014
including screening uptake with survival distributions from SEER (localised vs
metatstatic), which are also used as inputs to the FHCRC model. NPCR survival
estimates were available at ten and fifteen years after diagnosis by age groups for the
period 1998-2014; for non-metastatic cancer, survival was available by Gleason score
and for PSA less than 10 ng/mL and for 10 ng/mL and over. We compared the
Kaplan-Meier estimates of survival from diagnosis from the simulated data with

PLOS

12/19

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

404

405

407

408

409

410

411

413

414

415


https://doi.org/10.1101/402743
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/402743; this version posted August 28, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

®PLOS

SUBMISSION

aCC-BY 4.0 International license.

observed Kaplan-Meier estimates for men diagnosed with prostate cancer in Sweden. 416
We did not calibrate to observed survival from the pre-PSA era, as such estimates were a7
not available. a1

One significant modelling challenge is selecting and fitting a mathematical a9
representation for the effect of cancer screening. For cancers with a short period 420
between a screen-detected diagnosis and a counter-factual clinical diagnosis, a common
model is to represent differential survival based on changes in stage at diagnosis and a
changes in treatment. For prostate cancer, there is potentially a long period between 23
screen-detectable prostate cancer and clinical diagnosis. The lead-time between a o

screen-detected diagnosis and clinical diagnosis is of the order of 10 years [25,26] . We s
represent the effect of screening on survival S as a function of time ¢ = a — a, from the s
possibly counter-factual age of clinical diagnosis rather than the age of screen-detected 4
diagnosis as, where we can assume that 28

S(t| ac, ClinicalDx) = S(¢| a., Stage(a.), Treatment(a.), PSA(a.)) (18)
S(t|ac,as,ScreenDx) = S(t | ac, Stage(as), Treatment(as), PSA(as)) (19)

where ClinicalDx and ScreenDx represents either a clinical diagnosis or a screen-detected
diagnosis, respectively, and Treatment(a), Stage(a) PSA(a) are the treatment modality,
stage and PSA value at age a, respectively. The treatment sub-model assumes that the
hazard ratio from SPCG-4 [27, 0.56] applies comparing both radical prostatectomy and
radiation therapy with either watchful waiting or active surveillance. This point
estimate is consistent with the point estimate from the PIVOT trial [28], albeit without
the latter being significantly different from one. We then model survival as

0.561(Treatment(a) €{RP,RT})

(20)

S(t|ac, Stage(a), Treatment(a), PSA(a)) = S(t| ac, Stage(a), PSA(a))

Implementation of the Stockholm Prostata model 29

The FHCRC prostate cancer model was implemented in C under an open source GPL 0
licence, although the code has not been widely distributed. We have implemented our

extended model using existing C++ simulation libraries and to manage input 32
parameters and output predictions using R. The model is implemented together with an 3
extensible microsimulation framework. It is available from a3
https://github.com/mclements/microsimulation and 435
https://github.com/mclements/prostata under a GPL3 license, allowing for use 436
and reuse, in contrast to most existing microsimulation models which are not open 437
source [29]. a3
Model fitting and calibration a0
To adapt the extended prostate cancer model to the Swedish context, a number of input 40
parameters were estimated from external data and a smaller set of parameters were an
estimated using simulation predictions fitted to calibration targets. a2

First, a set of parameters were estimated from available data sources, including 443
parameters describing the longitudinal development of PSA with age, the rate a4
controlling time to cancer onset, and transition between cancer states, as indicated in s
the first 2 rows of Table 1. a6

Observed characteristics of the modelled population were collected and used to 147
estimate another set of parameters via simulations of the model. The characteristics a4
used as calibration targets were the distribution of Gleason scores in the population, 449
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survival across age groups, and disease stage, as well as the PSA uptake (second column
of Table 1). The PSA test uptake prior to 2003 was reconstructed by fitting a model to
prostate cancer incidence using later PSA test rates as covariates, and we used survival
analysis to estimate re-testing rates prior to cancer diagnosis by age and PSA value
categories.

Table 1. Population characteristics used to adapt the model to the Swedish context.

Parameter  Description Source
External PSA trajectories FHCRC [11]
inputs Natural history prior to diagnosis FHCRC [11,12]
Directly Treatment SPBR
observed PSA and biopsy compliance SPBR
PSA re-testing SPBR
Calibrated  PSA test rates SPBR
parameters  Survival PCBaSe [17]
Gleason distribution SPBR
Progression from T1-T2 to T3-T4 SPBR
Biopsy undetectable in T1-T2 ERSPC (incidence RR) [7]
Validation  Cancer incidence (screened & unscreened) — Stockholm & Sweden [30]
targets Cancer mortality (screened & unscreened) Stockholm & Sweden [30]
Screening mortality rate ratio ERSPC (mortality RR) [7]

The model was validated against the population of Sweden and the population of
Stockholm [30] (the bottom rows in Table 1). For the validation we simulated the
observed PSA testing pattern and validated the model against the population data for
incidence, all-cause mortality and prostate cancer mortality (results provided in the
S1 Appendix).

Emulating the ERSPC trial. We performed a simulation experiment to emulate the
ERSPC trial, where we predicted both the “control” arm and the “screening” arm with
100 million simulated men. Both arms where constructed as flat populations with
inclusion between ages 5569 years after which they where followed for 13 years. For
study eligibility, we assumed that the men had not had a prostate cancer diagnosis prior
to age 55 years. For the control arm, we assumed no screening. For the screening arm,
we assumed four-yearly screening between ages 55 and 69 years. The PSA threshold was
assumed to be 3.0 ng/mL, although in fact this varied by study site. We also used the
reported biopsy compliance of 85.6%. Treatment and other-cause deaths were assumed
to be similar to those observed in Stockholm.

Calibration methods
We used four sets of targets for our calibration procedure:

1. The relative distribution of cancer staging for contemporary Sweden

2. An equality constraint on the mean time from onset to metastatic cancer
3. The incidence rate ratio due to screening from the ERSPC

4. Detailed prostate cancer survival for contemporary Sweden.

For the first step, we calibrated for the incidence-related targets 1, 2 and 3 in one
likelihood; and then, as a second step, we calibrated for target 4. For targets 1, 2 and 4,
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we simulated for current PSA testing in Sweden; for target 3, we simulated for both
arms of the ERSPC.

For target 1, we used a multinomial likelihood with unknown parameters
0 = (B7, B8, 7> Ym» Plag)’- The multinomial log-likelihood was defined as

0(0) = { log(ni!) + ) (ys; log(max(pi; (),0.5/mi(6))) — log(yi;!)) (21)
i J
where ¢ is an index over age, j is an index over cancer staging, n; is the observed total
count in a particular age group, y;; is the observed count for a combination of age and
cancer staging, m;(0) is the simulated total count, and p;;(80) is the simulated
proportion of individuals in a particular disease state (see Equations (2) — (4) for the
multinomial data generating mechanism). The cancer staging for the observed
frequencies and simulated proportions were by age and (i) loco-regional cancers by
combinations of Gleason score and T-stage, and (ii) metastatic prostate cancers. The
intercept terms a7 and ag for the distribution of Gleason score at age 35 years were not
identifiable and we assumed that a7 = log(0.2) and ag=log(0.002). Half-cell corrections
were performed to handle empty cells in the simulated proportions.
For target 2, we used a non-linear equality constraint on the expected time from

onset to metastatic cancer to ensure identifiability of progression across T-stages.
Formally,

15(0) = (tr1-72(0) + t13-14(0) — t01a)? (22)

where t_Tl,TQ(H) are the mean simulated transition times from onset to T3-T4,
ET37T4(0) are the mean simulated transition times from T3-T4 to metastatic cancer,
and to1q is the expected mean time from onset to metastatic cancer from a model
without separate T stages (25.9 years from the FHCRC model; [12]).

For target 3, we used a non-linear equality constraint on the simulated incidence rate
ratio from the ERSPC, where

13(6) = (log(IRR) — log(IRR(9)))* (23)

where IRR is the observed PSA screening incidence rate ratio from the ERSPC study

and IRR(O) is the simulated incidence rate ratio for the emulation of the ERSPC study.

Formally, the log-likelihood [l123(8) for targets 1-3 was

where ws and w3 are weights for the non-linear constraints. Note that the equality

constraints in targets 2 and 3 were formulated in terms of weighted quadratic penalties.

The weights were selected so that the constraints were approximately satisfied
(’LUQ = ].7 w3 = 104)

To optimise the simulation log-likelihood l123(0), we used the Nelder-Mead
optimisation algorithm. For each iteration of the optimisation, we evaluated the

log-likelihood by simulating three different scenarios that depended on the parameters 6.

From these scenarios, we predicted values that were used in the log-likelihood, including
the relative distribution of cancer staging, the mean time from onset to metastatic
cancer, and the PSA screening incidence rate ratio for the reconstructed ERSPC trial.
The Nelder-Mead algorithm is commonly used to optimise functions for which
derivatives are difficult to calculate and for objectives that are not smooth. The
standard errors were calculated from the inverse of the Hessian matrix for the negative
log-likelihood (see Table 2). Given the simulation likelihood, the calculation of the
Hessian matrix required that the step size for the finite differences used a larger step
size (0.01).
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Table 2. Estimated parameters from calibration procedure.

Label Estimate Standard error Equation
Br 6.4-102  2.0-10* (2) - (4)
Bs 1.9-10! 5.9-104 (2) - (4)
o 9.7-10* 6.9-10 (6)
Y 1.5:10°%  2.0-10™* (7)
Plag 5.3-107! 7.8:107 (16) — (17)

For the second step and target 4, the distributions of Gleason score, T-stage and
metastatic cancer () were kept fixed. Using the mean between the observed 10- and
15-year survival as the calibration target and Kaplan-Meier estimates based on the
model simulations, we calculated the hazard ratios by age group, cancer stage, Gleason
score and PSA values. The adjustment HR was calculated by averaging on the log
hazard ratio scale

log ﬁﬁ(Age, Gleason, PSA, metastatic; 8) =
1 10|A 1 PSA i f

0.5 x log ( 0g(S(10|Age, Gleason, PS ,metastatw,@)))
c)
;0

log(S(10|Age, Gleason, PSA, metastatic))
0.5 x log <log(5(15|Age, Gleason, PSA, metastatic; )))

2
log(S(15|Age, Gleason, PSA, metastatic)) (25)

where S(t|Age, Gleason, PSA, metastatic; é) is the simulated survival to time ¢ based on
the parameters from step 1 and S(t|Age, Gleason, PSA, metastatic) is observed survival
to time t from the NPCR.

Validation of the ERSPC mortality rate ratio. To validate against the ERSPC
screening mortality RR, of 0.79 (95% CI 0.61-0.88), we performed a simulation
experiment to emulate the ERSPC trial (see Emulating the ERSPC trial). The
mortality hazard ratio comparing the screening arm with the control arm was estimated
using Poisson regression taking account of the number of prostate cancer deaths and the

person-time by one-year age groups. Our validation predictions resulted in a mortality
RR of 0.784 (95% Monte Carlo interval (MCI) 0.781-0.786).
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Supporting information

S1 Appendix. The appendix contains further detail on the model and the model
inputs. It also holds a comparison of survival from diagnosis by Gleason with the
FHCRC model. Finally, it also includes further validation of the model.

PLOS

19/19


https://doi.org/10.1101/402743
http://creativecommons.org/licenses/by/4.0/

Prostate cancer inciagence rate

bioRxiv preprint doi: https://doi.org/10.1101/402743; this version posted August 28, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Swedish Population Simulated Population
0.003
0.002
0.001 A
0.000 A
1990 2000 2010

Year


https://doi.org/10.1101/402743
http://creativecommons.org/licenses/by/4.0/



https://doi.org/10.1101/402743
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/402743; this version posted August 28, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

—— 2 yearly, ages 55-69 — 8 yearly, ages 55-69 — Current testing — Ended testing

Prostate cancer mortality rate ratio

-1.10

-1.05

~1.00

Life-years gained per 1,000 persons

~0.0

--0.1

2010

2015 2020 2025 2030 2035
Year


https://doi.org/10.1101/402743
http://creativecommons.org/licenses/by/4.0/



https://doi.org/10.1101/402743
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/402743; this version posted August 28, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

—— 2 yearly, ages 55-69 —— 8 yearly, ages 55-69 — Current testing — Ended testing

2.0

(0]

(&)

C

[0}

B L15

O R

£

g m —

0 !—'_'_

Q

] 0.5

(%))

o

> z
0.0 T

0 Lo0 &

(72 —

o (@]

C

&

'_§ _‘ F1.5

(0]

>

g 1= ] »

3 L] '

C

(Y]

(&)

Qo F0.5

[

»

o

2 I 0.0

2010 2015 2020 2025 2030 2035

Year


https://doi.org/10.1101/402743
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/402743; this version posted August 28, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.


https://doi.org/10.1101/402743
http://creativecommons.org/licenses/by/4.0/

Calendar period

2010

N
o
(=]
)]

N
o
o
o

1995

bioRxiv preprint doi: https://doi.org/10.1101/402743; this version posted August 28, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Rate



https://doi.org/10.1101/402743
http://creativecommons.org/licenses/by/4.0/

Proportion

bioRxiv preprint doi: https://doi.org/10.1101/402743; this version posted August 28, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

—— SBPR - Stockholm Prostata model

T-stage 1-2 T-stage 1-2 T-stage 1-2
Gleason<6 Gleason=7 Gleason>8
60% 1 ——___
40% l_l— —
20% -
0%
T-stage 3—-4 T-stage 3-4 T-stage 3-4
Gleason <6 Gleason=7 Gleason>8
60% -
40% -
20% A
0% - ; ; ; ¥ t t : . : ; ' t
Metastatic 50 55 60 65 70 75 50 55 60 65 70 75
Metastatic
60% -
40%
20% A
0% - —

50 55 60 65 70 75
Age


https://doi.org/10.1101/402743
http://creativecommons.org/licenses/by/4.0/

Proportion

bioRxiv preprint doi: https://doi.org/10.1101/402743; this version posted August 28, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Gleason <6 Gleason =7 Gleason>8

Gleason

1.00

0.75-

0.50-

0.25-

0.00-
50

FHCRC 2013 FHCRC 2018 Stockholm Prostata Model

55 60 65 70 7550 55 60 65 70 7550 55 60 65 70 75
Age (years)


https://doi.org/10.1101/402743
http://creativecommons.org/licenses/by/4.0/

